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P
hotons traveling through a vacuum do not interact with each 
other. �is linearity in light propagation, in combination with 
the high frequency and hence large bandwidth provided by 

waves at optical frequencies, has made optical signals the preferred 
method for communicating information over long distances. In 
contrast, the processing of information requires some form of inter-
action between signals. In the case of light, such interactions can 
be enabled by nonlinear optical processes. �ese processes, which 
are now found ubiquitously throughout science and technology, 
include optical modulation and switching, nonlinear spectroscopy 
and frequency conversion1, and have applications across both the 
physical2 and biological3,4 sciences.

A long-standing goal in optical science has been the imple-
mentation of nonlinear e�ects at progressively lower light pow-
ers or pulse energies. �e ultimate limit may be termed ‘quantum 
nonlinear optics’ (Box 1) — the regime where individual photons 
interact so strongly with one another that the propagation of light 
pulses containing one, two or more photons varies substantially 
with photon number. Although this domain is di�cult to reach 
owing to the small nonlinear coe�cients of bulk optical materials, 
the potential payo� is signi�cant. �e realization of quantum non-
linear optics could improve the performance of classical nonlinear 
devices, enabling, for example, fast energy-e�cient optical transis-
tors that avoid Ohmic heating5. Furthermore, nonlinear switches 
activated by single photons could enable optical quantum infor-
mation processing and communication6, as well as other applica-
tions that rely on the generation and manipulation of non-classical 
light �elds7,8.

The challenge of making photons interact
At low optical powers, most optical materials exhibit only linear 
optical phenomena, such as refraction and absorption, which can be 
described by a complex index of refraction. However, a su�ciently 
intense light beam can modify a material’s index of refraction, such 
that the light propagation becomes power-dependent. �is is the 
essence of classical nonlinear optics (Box  1). Large optical �elds 
are required to alter the index of refraction of conventional bulk 
materials because a strong nonlinear response can only be induced 
if the electric �eld of the light beam acting on the electrons is com-
parable to the �eld of the nucleus. As a result, early experimental 
observations of nonlinear optical phenomena, such as frequency-
doubling or sum-frequency generation9, were achievable only a�er 
the development of powerful lasers.

Quantum nonlinear optics — photon by photon
Darrick E. Chang1, Vladan Vuletić2 and Mikhail D. Lukin3*

The realization of strong interactions between individual photons is a long-standing goal of both fundamental and technological 
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Advances in nonlinear optics over the past four decades have 
resulted in progressively more e�cient nonlinear processes10, thus 
enabling the observation of nonlinear processes at lower and lower 
light levels. It is natural to inquire if and how these nonlinear inter-
actions can be made so strong that they become important even 
at the level of individual quanta of radiation. Although this ques-
tion was addressed in early theoretical studies11–13, it has become 
more pressing with the advent of quantum information science. 
Speci�cally, following the pioneering experiments by Turchette and 
co-workers14, much theoretical and experimental e�ort has been 
directed towards the realization of two-photon nonlinearities and 
photonic quantum logic. In the microwave domain, signi�cant pro-
gress has been made using either Rydberg atoms in high-Q cavities, 
or superconducting circuits as ‘arti�cial atoms’ (see, for example, 
the excellent reviews by Haroche and Raimond15, and Devoret and 
Schoelkopf 16). In the optical domain, the probabilistic realization 
of quantum logic operations using linear optics and photon detec-
tion has been actively explored17, where the e�ective nonlinearity in 
an otherwise linear system arises from the post-selection of photon 
detection events. Although this approach has recently been used to, 
for example, implement quantum algorithms in systems of up to 
four photons18, the success rate decreases exponentially with pho-
ton number at �nite photon detection probabilities, which makes it 
di�cult to scale the process to a larger number of photons or opera-
tions. In parallel, researchers have pursued the technologically more 
challenging — but potentially more powerful and scalable — method 
of implementing deterministic photon–photon interactions13,19–22.

To understand why it is di�cult to generate an optical response 
that is nonlinear at the level of individual photons, let us consider 
the interaction of a tightly focused laser beam with atoms (Box 1). 
We would like to determine how many photons it takes to alter the 
atomic response, which can in turn modify the light propagation. 
To answer this question, we can think about light propagation in 
a focused beam as a �ow of photons in a cylinder of diameter d. 
�e probability of interaction p between one photon and one atom 
is then given by the ratio of an e�ective size of the atom as seen 
by a photon (the atom’s absorption cross-section, σ) and the trans-
verse area of the laser beam (~d2). �e absorption cross-section is 
a function of the frequency of light. It reaches its maximum when 
the light frequency matches the frequency of the atomic transition, 
with a value of the order of the wavelength of light squared (~λ2), 
giving p ≈ λ2/d2. Because di�raction prevents the focusing of light 
below the wavelength scale, in free space d > λ, so typically p « 1. 
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Hence a large number of atoms N ≈ 1/p is required to substantially 
modify the propagation of the light beam. To saturate such an 
atomic ensemble and thus produce a nonlinear optical response, a 
correspondingly large number of photons n  ≈  N  ≈  d2/λ2  ≈  1/p is 
needed. A number of experiments have attempted to maximize the 
atom–photon interaction probability p by concentrating laser light 
to a small area, achieving sizeable atom–photon interaction prob-
abilities of p ≈ 0.05 with laser beams focused on neutral atoms23,24, 
p ≈ 0.01 with ions25, and p ≈ 0.1 with molecules on a surface26.

In the limit where the atom–photon interaction probability p 
approaches unity, a single atom can cause substantial attenuation, 
phase shi� or re�ection of an incident single photon. At the same 
time, because a single two-level atom has a highly nonlinear opti-
cal response — it cannot absorb or emit more than one photon 
at a given time — the absorption of a photon drastically changes 
the atom’s response to a second arriving photon. In other words, 
a pair of simultaneous incident photons will experience an atomic 
response that is signi�cantly di�erent from the response to a single 
photon, resulting in an optical nonlinearity at the two-photon level. 
In the following, we describe several practical methods for reach-
ing the regime of p → 1 and obtaining strong interactions between 
individual photons.

Single atoms in cavities 
One technique for enhancing the atom–photon interaction prob-
ability beyond what is possible with a tightly focused laser beam is 
to make the photon pass through the atom repeatedly. �is can be 
achieved by means of an optical cavity27–32 (Fig. 1). In this case, the 
interaction probability is enhanced by the number of bounces the 
photon makes between the mirrors before leaving the cavity, which 
is conventionally quanti�ed by the cavity �nesse F. By taking the 
multipass atom–photon interaction into account, we can de�ne a 
quantity η ≈ Fλ2/d2 known as the cooperativity32; when η » 1, the 
interaction probability p approaches unity.

In such a cavity quantum electrodynamics system, the optical 
nonlinearity arises from the discrete level structure of the atom. In a 
two-level atom the e�ect is simply the familiar saturation of atomic 

absorption: an atom in the ground state absorbs light, whereas an 
atom in an excited state emits or ampli�es light. A high coopera-
tivity ensures that even a single photon can alter the response of a 
single atom inside the resonator. In a pioneering early experiment, 
Turchette and co-workers demonstrated that atomic saturation can 
be used to shi� the phase of one photon by around π/10 (ref. 14). 

A two-level atom coupled to an optical cavity gives rise to the 
nonlinear energy level structure of the Jaynes–Cummings model33 
(Fig.  1). In particular, the strong atom–photon coupling yields an 
extra interaction energy cost to populate the system with n photons, 
as compared with an empty cavity in which n photons have an 
energy corresponding to n times that of a single photon. �is fea-
ture can be used to generate non-classical light by tuning the excita-
tion laser to the corresponding transition frequency of the nonlinear 
Jaynes–Cummings ladder, as demonstrated in experiments with a sin-
gle atom trapped inside a high-�nesse optical resonator27,34,35 (Fig. 1).

Instead of using real atoms, which must be cooled and trapped 
inside an optical resonator, it is also possible to use arti�cial atoms in 
a solid-state system, such as quantum dots in semiconductors29,36–38 
or nitrogen–vacancy centres in diamond39,40. Arti�cial atoms typi-
cally feature much larger linewidths and hence large optical band-
widths, whereas lithographically fabricated subwavelength-size 
cavities enable large cooperativities. Such arti�cial atoms constitute 
e�ective two-level systems that have been used to demonstrate a 
variety of nonlinear e�ects, including nonlinear phase shi�s and 
optical switching at power levels corresponding to one photon on 
average29,31, and the generation of non-classical light36,37,41,42.

Although two-level atoms are capable of generating quantum 
nonlinearities, they face a number of limitations. Speci�cally, the 
short lifetimes associated with electronic excited states prevents 
atoms from ‘remembering’ their interaction with photons for long 
time intervals. �is implies that two photons must arrive simultane-
ously at an atom to interact. In such a case, a two-level atom behaves 
as a nonlinear frequency mixer, which generates unwanted entangle-
ment between spatial degrees of freedom of photons and thus lim-
its certain processes and applications43,44. �ese limitations can be 
overcome by employing multilevel atoms with two ground and/or 

Box 1 | Physics of photon–photon interactions.
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�e interaction between an atom and a photon, con�ned to a beam 
of diameter d, can be understood from simple geometrical con-
siderations (a). At resonance, the atom has a maximal scattering 
cross-section that is proportional to the square of the optical wave-
length, σ ≈ λ2. �e probability that a single photon in the beam 
interacts with the atom is therefore p  ≈  λ2/d2, which is typically 
much smaller than unity. �is can be enhanced by using an opti-
cal cavity to make a photon interact with an atom multiple times, 
or by con�ning light to subwavelength dimensions. �e excitation 
spectrum of a single atom is extremely nonlinear, as the absorp-
tion of a single photon saturates the atomic response. �is results 
in strong photon–photon interactions when the atom–photon 
interaction probability p approaches unity.

�e di�erent regimes of nonlinear optical phenomena can 
be characterized by the interaction strength per photon and the 
number of photons involved (b). In conventional optical media, 
the interaction strength per photon is weak, which corresponds to 
linear optics at a low photon number (light grey box). At a higher 
photon number, we enter the regime of classical nonlinear optics 
(dark grey box). Quantum nonlinear optical phenomena occur 
when the interaction strength per photon becomes large. For a 
small photon number, strong interactions can be used to achieve 
quantum control of light �elds photon-by-photon (blue box), and 
to implement photonic quantum gates. A novel regime occurs 

when many photons interact simultaneously to produce strongly 
correlated many-body behaviour (yellow box).
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metastable states45,46, in which quantum coherence can be stored for 
long periods. Such states enable the implementation of a quantum 
memory45, whereby a quantum state of light can be mapped onto 
atomic states (Fig. 2). Here, by using an auxiliary laser to implement 
Raman absorption, an incoming photon can be converted into a 
long-lived superposition of atomic ground states, as demonstrated 
by Specht and co-workers47 (Fig. 2). Using the �rst photon to transfer 
the atom to another ground state switches the transmission or re�ec-
tion of the atom, thus enabling the �rst photon to interact with sub-
sequently applied probe photons. Similar approaches have recently 
allowed researchers to implement a non-destructive photon detec-
tor48, a quantum phase switch between a single atom and a single 
photon49, and a quantum gate between an atom and a photon50. �ese 
demonstrations constitute a key enabling technology for quantum 
networks6, where individual, remote quantum bits encoded in atoms 
are connected and entangled via photonic channels (Fig. 2).

Quantum nonlinear optics using atomic ensembles
Instead of using a cavity to store a photon in a single atom, it is 
also possible to map the photon onto the collective states of an 
atomic ensemble46,51. �e central idea is illustrated in Fig.  3a, in 
which a weak probe �eld incident on an atomic gas is coupled to 
a third atomic state |sñ by means of a second, stronger laser �eld — 
the control �eld. For a weak probe �eld, the control �eld induces 
a spectral transparency window in the otherwise opaque medium 
through electromagnetically induced transparency46 (EIT), and 
the probe pulse travels at a much reduced speed in the form of a 

coupled excitation of light and matter. Such a slowly propagating 
probe light pulse can be manipulated very e�ciently. For instance, 
ramping down the control �eld reduces the group velocity of the 
probe pulse to zero, which maps the quantum state of the probe 
�eld onto atoms52,53. By reversing this procedure, the atomic state 
can be mapped back onto the probe �eld propagating in the original 
direction. If the metastable state |sñ is coupled to a fourth state, the 
system can also be used to produce a strong nonlinear response. 
A resonant light beam tuned to the |sñ–|eñ transition (switch �eld, 
shown by the green arrow in Fig. 3a) destroys the quantum interfer-
ence associated with EIT and blocks transmission of the probe �eld. 
Such EIT cross-coupling nonlinearities54 and similar e�ects55 at the 
few-photon level have been observed by means of strong transverse 
con�nement of the light inside optical �bres (Fig. 3b,c).

Recently, these techniques have been extended into the quantum 
regime by con�ning either the control or the switching �eld in a cav-
ity. For example, Tanji-Suzuki and co-workers used an ensemble of 
three-level atoms to implement vacuum-induced transparency32 — 
an inherently nonlinear system56 in which the classical control beam 
of EIT is replaced by a cavity vacuum �eld. With four-level atoms, 
Chen and co-workers have realized an optical transistor gated by 
just one stored photon57.

Quantum nonlinear optics through atom–atom interactions
An alternative approach that does not require the use of optical res-
onators exploits strong atom–atom interactions in the metastable 
state |rñ of an EIT scheme58–61 (Fig. 4). If |rñ is chosen as a state with 
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Figure 1 | Quantum nonlinear optics in a cavity. a, The energy spectrum of the Jaynes–Cummings model, which describes a single-mode field coupled 

to a single atom. Strong interactions result in a mixing of atomic and photonic states, and the energies of the corresponding eigenstates (denoted as 

|±ñ) are split by an amount proportional to the single-photon Rabi frequency g0
 and square root of photon number n. This dependence results in an 

anharmonic (nonlinear) energy spectrum. When the system is probed by a laser field of frequency ωp tuned to one of the resonances associated with the 

single-excitation manifold, the system can only transmit one photon at a time, as the doubly excited state is detuned. b, The suppression of two-photon 

transmission can be observed by splitting the transmitted field and measuring coincident photon detection events at detectors D1 and D2. The probability 

of detecting a second photon at time τ, given a detection event at τ = 0, is given by the second-order correlation function g(2)(τ). The ‘antibunching’ dip at 

τ = 0, g(2)(0) < 1, is a non-classical signature that reflects the improbable occurrence of two photons being transmitted simultaneously. Figure reproduced 

from ref. 27, Nature Publishing Group.
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a high principal quantum number of n ≈ 100 (Rydberg state) onto 
which a photon is mapped46, then the strong long-range interaction 
between two Rydberg atoms can mediate a strong e�ective photon–
photon interaction. In the simplest case of resonant Rydberg EIT 
(both lasers resonant with their respective transitions, Fig. 4), the 
strong interaction between two Rydberg atoms tunes the two-pho-
ton transition out of resonance, thereby destroying the transparency 
and leading to absorption22,58,59,62–64 for two or more photons. �e 
quantum nonlinearity in this case arises from the Rydberg excita-
tion blockade61, which precludes the simultaneous excitation of two 
Rydberg atoms that are separated by less than the blockade radius 
rb (Fig. 4). In essence, such an excited Rydberg system behaves as a 
‘superatom’ consisting of Nb atoms within the blockade radius, with 
an e�ective cross-section enhanced by a factor Nb, and a correspond-
ing collectively enhanced cooperativity ηcoll ≈ Nbλ

2/d2. Because the 
blockade prevents multiple excitations, such a superatom behaves 
as a two-level system, thus resulting in strong optical nonlinearity at 
the two-photon level when ηcoll » 1.

�is idea, �rst demonstrated in a pioneering experiment by 
Pritchard and co-workers65,66, has recently been used to create a non-
linear optical medium that transmits only one photon, but absorbs 
two or more photons. As shown by Peyronel and co-workers67, such 
a medium converts incident coherent states of light, consisting of a 
Poisson distribution in photon number, into outgoing single-photon 

pulses by absorptive �ltering of photon-number states. Related 
techniques allow the implementation of a deterministic single-
photon source68, the switching of light with light69, atom–photon 
entanglement70 and the control of light using Rydberg polaritons71.

Instead of creating an e�ective dissipative nonlinearity (that is, 
a large absorption probability for two photons when they are close 
to each other), it is also possible to create an e�ective dispersive 
nonlinearity — an index of refraction that depends on the distance 
between the photons. �e index of refraction can be viewed as a 
potential energy because the wavelength in the medium depends 
on the index of refraction. �is implies that two photons can 
experience an e�ective distance-dependent potential and force. 
Firstenberg and co-workers recently implemented such a situation 
by means of detuned EIT72, whereby the control laser is detuned 
from resonance with the intermediate state, but the two-photon 
resonance with probe and control laser to the Rydberg state is 
maintained. In this case, the photons not only travel slowly, but 
also acquire an e�ective mass owing to group-velocity dispersion. 
�e attractive interaction between photons in a one-dimensional 
system then supports a bound state of two photons that mani-
fests itself in the form of photon bunching at the system exit72 
(Fig. 5). Extensions of this technique should allow for the creation 
of bound states of three or more photons, which can be viewed as 
quantum solitons73,74.
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quantum information locally. These nodes are connected via optical fibres that can carry quantum information encoded in photons. Qubits can be mapped 

from light to atoms mediated, for example, by optical transitions in cavities. b–d, Operation of a two-node quantum network. First, a qubit is stored in 

a coherent superposition of two Zeeman sublevels of a single atom. It is then mapped to a polarization state of a propagating light field (b). Finally, the 

photonic qubit is mapped back to an atomic state in a separate node by coherently absorbing the photon (c). The results of this single-qubit transfer are 

reflected in the elements of the process matrix χmn (d). This matrix relates the initial and final density matrices, ρf = Σ3
m,n=0 χmnσmρiσn, where σ0 is the identity 

matrix and the other σi are Pauli matrices. Perfect state transfer is achieved when χ00 = 1. Figure reproduced from ref. 75, Nature Publishing Group.
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Applications of quantum nonlinear optics
Quantum nonlinear systems like those described above constitute a 
powerful resource for optical quantum information processing. �ese 
systems can simultaneously provide both linear operations, such as 
the storage and state manipulation of photons, and nonlinear opera-
tions, such as the generation of single photons on demand and quan-
tum logic between photonic quantum bits. �e realization of universal 
quantum computation requires the implementation of a conditional 
quantum logic operation (such as a conditional phase shi�) between 
two photons, in combination with single-photon operations (such as 
polarization rotations). �is possibility has served as a major motiva-
tion for the development of quantum nonlinear optics6. Recent exper-
imental demonstrations within this context include photon-mediated 
quantum state transfer between atoms in distant cavities75, a quantum 
phase switch between a single atom and a single photon49, and a quan-
tum gate between an atom and a photon50. A major goal is to scale 
these systems up to large numbers of qubits, nodes and operations. 
Such scaling is now becoming possible thanks to the advent of highly 
e�cient atom–photon and photon–photon interactions.

Strongly nonlinear systems also have a number of other 
important applications. For example, the strong dependence of light 
propagation on photon number allows the sorting or counting of 
photons non-destructively48,56,76, which, in combination with feed-
back, could be used to implement various sources of non-classical 
light �elds. Quantum nonlinearities also enable classical nonlinear 
optical devices, such as routers77,78 or all-optical switches, to be oper-
ated at their fundamental limit. One example is the case of a single-
photon transistor79, in which even a single ‘gate’ photon can switch 
hundreds of signal photons57.

Once the generation of single photons and the interactions 
between individual photons can be reliably controlled, it will be con-
ceptually straightforward to repeat these operations in sequence to 
generate many-photon (or many-atom) states with a high degree of 
quantum correlation. In early work, for example, an algorithmic pro-
cedure was devised to create an arbitrary photonic state by moving 
up the nonlinear Jaynes–Cummings energy ladder from the ground 
state80. In a complementary fashion, when several atoms are coupled 
to a single cavity, strong interactions between the cavity �eld and 

Spin wave

Probe
Control

Switch

a

b

c

|s〉

|g〉

t = to

Reference

Probe

Control

Switch

1 µs

500 ns

Time

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Tr
an

sm
is

si
o

n

Switch photons (500 ns pulse)

0 500 1,000 1,500 2,000

|e′〉

|e〉

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Tr
an

sm
is

si
o

n

Frequency (MHz)

−20 −10 0 10 20

Figure 3 | Nonlinear optics using electromagnetically induced transparency (EIT). a, In EIT, the propagation of a probe field through an otherwise opaque 

atomic gas is drastically altered by introducing a strong ‘control’ laser field, which couples the excited state |eñ to a metastable state |sñ. This coupling 

causes photons in the probe field to mix strongly with spin–wave excitations between states |gñ and |sñ, resulting in a strongly reduced group velocity and 

the opening of a spectral transparency window for the probe field. The probe field can interact with an additional switch field, which couples state |sñ to a 

second excited state |eñ. The switch field destroys the transparency window and causes absorption of the probe field by an amount that depends on the 

switch intensity. b, Red curve: transmission spectrum for a probe field under standard EIT conditions (that is, without the switch field), which exhibits a 

narrow transparency window (T ≈ 1) around zero probe detuning. Blue curve: the spectrum in the presence of a switching pulse reveals suppression of the 

transparency. c, Dependence of the probe transmission at zero detuning on the mean number of photons per switching pulse. Parts b,c, reproduced from 

ref. 54, © 2009 APS.

REVIEW ARTICLENATURE PHOTONICS DOI: 10.1038/NPHOTON.2014.192

© 2014 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphoton.2014.192


690 NATURE PHOTONICS | VOL 8 | SEPTEMBER 2014 | www.nature.com/naturephotonics

collective states of the atoms can be exploited to generate many-atom 
entanglement81. Such states could �nd applications in quantum-
enhanced metrology8 and super-resolution optical imaging7.

Many-body physics with strongly interacting photons
Most proposals based on quantum nonlinear systems envision the 
production of single photons and controlled interactions between 
individual photons as sequential building blocks, which are used to 
generate highly correlated states of light. Instead of building up corre-
lated states in steps, can such complex states emerge from the simul-
taneous interaction of many photons in a highly nonlinear optical 
medium? If the answer is yes, then what are the appropriate descrip-
tions of these dynamic, non-equilibrium many-body systems?

�e classical limit of this problem has been studied for several 
decades in nonlinear media, particularly in the context of optical 
�bres2. Here, the nonlinear response of the �bre core, when accumu-
lated over a long propagation distance, can give rise to pronounced 
e�ects. For example, it can be used to compensate for group- velocity 
dispersion through the formation of shape-preserving optical pulses 
known as solitons, yield propagation instabilities or induce strong 
mixing with acoustic waves2. Achieving a detailed understanding 
of nonlinear e�ects in optical �bres has been critical to the advent 
of high-capacity optical communication networks. A key fea-
ture behind the richness of nonlinear phenomena in these optical 

systems is the continuous spatial (or frequency) degrees of freedom 
that must be accounted for. (In contrast, the simplest description of 
cavity QED involves just a single, �xed spatial mode of interest33.) 
Early seminal work towards understanding multimode e�ects in the 
quantum domain focused on developing quantum descriptions of 
solitons73,74. �is work predicted a number of important e�ects, such 
as the possibility of squeezed �uctuations74. However, for weak non-
linearities, where the quantum �uctuations associated with a large 
number of photons are fractionally small, most of the classical prop-
erties of solitons are retained in a quantum mechanical description. 
Complementary work pointed to the possibility of few-photon 
bound states82–84, although the weak nonlinearities associated with 
�bres made their physical realization unrealistic at the time. Only 
very recently have such two-photon bound states been observed 
experimentally in Rydberg EIT72 (Fig. 5).

�e emergence of physical systems in which these few-photon 
quantum e�ects can be experimentally observed has sparked a 
recent resurgence of interest into the many-body problem of light 
propagation in strongly nonlinear media. Early proposals envi-
sioned that individual cavities containing quantum emitters could 
be coupled to form extended arrays85–88. �e competition between 
the linear e�ect of photons hopping between cavities and the inter-
action of photons occupying the same cavity was predicted to give 
rise to quantum phase transitions. Other work considered light 

Figure 4 | Rydberg-blockade-mediated interaction between slowly propagating photons. a, Schematic set-up. A strong control beam governs the 

propagation of a probe beam under electromagnetically induced transparency (EIT) conditions through a cold atomic gas, where a Rydberg state |rñ 
serves as a metastable level. The probe photons, which propagate as polaritons through the medium, strongly interact due to their atomic Rydberg 

state components. This strong interaction prevents polaritons from propagating when they are closer than the Rydberg ‘blockade radius’ rb, which yields 

antibunching in the second-order correlation g(2)(τ) of the transmitted probe field. b, Atomic level scheme used in the Rydberg EIT setup. The probe field 

couples the atomic state |gñ to the short-lived excited state |eñ, and the control field couples |eñ to a Rydberg state |rñ of high quantum number n ≈ 100. 

An interaction potential V = −C6/r6 between two atoms separated by a distance r in their Rydberg states yields an e�ective nonlinear interaction between 

polaritons. Here, C6 is the atomic van der Waals coe�cient. Figure reproduced from ref. 67, Nature Publishing Group.
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propagating in cold atomic gases, in which the photon–photon 
interactions are induced using either single-atom nonlinearities or 
strong interactions between atoms in Rydberg states89,90. For exam-
ple, researchers predict that a photonic state exhibiting crystal corre-
lations could be produced by engineering strong e�ective repulsion 
between photons and an e�ective photonic mass in EIT-based 
systems89,90. �is represents a remarkable new avenue for quan-
tum nonlinear optics, wherein exotic states of light can be created 
whose collective properties cannot be understood in a mean-�eld 
picture — a type of behaviour that in the past has been associated 
primarily with strongly interacting condensed-matter systems.

Like their condensed matter counterparts, strongly interacting 
many-body photonic systems o�er a number of challenges and 
opportunities. For example, e�ective theories such as Luttinger 
liquids have proven very useful for describing condensed-matter 
systems, but it is an open question whether such theories are also 
applicable to photons90. Once we have established a mapping to 
a model of interest, these strongly interacting photonic systems 
could be used, for example, to perform quantum simulations of the 
corresponding Hamiltonian. However, strongly interacting pho-
tonic systems have a number of unique aspects when compared 
with condensed-matter systems: they are intrinsically driven and 
open  — light must be injected and can leak out — and they are 
generally not coupled to a thermal bath. �e nature of phase transi-
tions and photonic correlations in such open, driven systems91, and 
whether dissipation itself can lead to strongly correlated states92, will 

Figure 5 | Many-body quantum dynamics in a nonlinear medium. a, Two-photon dynamics of attractive photons in Rydberg electromagnetically induced 

transparency (EIT), resulting in a two-photon bound state. Top: photon bunching, observed in the second-order correlation function g(2)(r), which indicates 

attraction between photons. The cusp-like peak near r = 0 is a generic feature of a bound state in a one-dimensional system. The circles and blue line 

indicate experimentally measured values and a theoretical model, respectively. Bottom: The Rydberg EIT medium gives rise to an e�ective photon–

photon interaction potential that can be modelled approximately as a rectangular potential well (green), which supports the two-photon bound-state 

wavefunction ψ(r) (red). b, In the case of repulsive photons, a strongly nonlinear medium is theoretically predicted to give rise to photon crystallization. 

Here, a pulse of overlapping photons enters the medium, which is initially tuned to have negligible nonlinear interactions. An increase in repulsive 

interaction energy (indicated by the shaded regions) causes the optical pulse to spread out and the photons to separate, finally producing a crystal in 

the limit of very strong interactions. Signatures of crystallization can be observed in second-order correlation measurements, as illustrated in the bottom 

panel. The correlation function exhibits not only antibunching at z = 0 (which indicates the absence of overlapping photons) but long-range correlations 

indicative of crystal-like properties. Part a reproduced from ref. 72, Nature Publishing Group.
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be explored in the coming years. An important task is to develop 
e�cient analytical or numerical techniques for modelling the non-
equilibrium quantum dynamics of strongly interacting photons. 
Recent work in this area focused on applying �eld-theoretical or 
condensed-matter techniques, such as S-matrix scattering93–95 or 
density matrix renormalization group92.

Outlook
�e rapid development of quantum nonlinear optics in recent years 
has been driven by the experimental realization of new physical sys-
tems that implement strong interactions between atoms and pho-
tons. Furthermore, in addition to quantum nonlinearities resulting 
from single-atom saturation, novel mechanisms and technologies 
have been identi�ed that could in�uence the direction of the �eld.

On the experimental side, signi�cant e�orts have been made 
towards the development of novel nanophotonic elements and inte-
grated interfaces with atoms and solid-state emitters (Fig.  6).  For 
example, the tightly guided modes associated with tapered optical 
�bres96 or photonic crystal waveguides97 o�er an attractive alter-
native to free-space focusing. In a recent experiment, Goban and 
co-workers97 demonstrated an interaction probability of p  ≈  0.3 
between a single atom and a single guided photon in a photonic 
crystal waveguide on a single pass. Ensembles containing more 
than 1,000 cold atoms have now been coupled to tapered �bres96. 
It is also possible to implement cavity structures with photonic 
crystals, which enable strong atom–photon interactions by way of 
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subdi�raction-limited mode volumes in combination with high 
cavity quality factors98. �e ability to interface such nano- and 
microscopic cavities e�ciently with conventional photonic wave-
guides and �bres77,99 makes these systems promising for the practical 
realization of quantum networks. In addition, remarkable advances 
in the fabrication of photonic structures from nonconventional 
optical materials, such as diamond containing nitrogen–vacancy 
centres39,40, may allow for multifunctional quantum devices that 
simultaneously exhibit strong optical nonlinearities and multiqu-
bit interactions. Strong single-pass interactions between individual 
emitters and single photons, in the form of surface plasmons focused 
tightly below the di�raction limit by thin conducting nanowires, 
have also been recently demonstrated100,101.

Furthermore, novel mechanisms for generating strong opti-
cal nonlinearities  — other than the electronic spectrum of an 
atom — have recently been identi�ed. For example, optomechani-
cal systems102 produce e�ective optical nonlinearities from motion-
induced shi�s in the frequency of an optical resonator. It was 
recently shown that su�ciently large photon–phonon couplings can 
enable strong interactions between single photons103 (Fig. 6d). �e 
state-of-the-art systems are currently within two orders of mag-
nitude of this regime.104 (Fig. 6e). �is type of nonlinearity might 
also be explored using atoms as novel light–mass optomechani-
cal elements. Gupta and co-workers have demonstrated that the 
motion of a Bose–Einstein condensate inside a Fabry–Pérot cavity, 
in response to the optical potential created by just one intracavity 
photon, results in a signi�cant alteration of the optical response 
for subsequent photons105. �is motion-induced Kerr nonlinearity 
was su�ciently strong enough to provide optical bistability at the 
individual-photon level. Finally, there is renewed interest in opti-
cal materials that can achieve strong single-photon interactions, as 
has been proposed recently for graphene106 (Fig.  6f). In the wake 
of recent breakthroughs, the coming years will undoubtedly bring 

forth exciting advances in the fundamental science of strongly 
interacting photons, as well as the �rst practical applications enabled 
by these techniques.
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