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Abstract: Quantum cryptography is the field of cryptography that explores the quantum properties
of matter. Generally, it aims to develop primitives beyond the reach of classical cryptography and
to improve existing classical implementations. Although much of the work in this field covers
quantum key distribution (QKD), there have been some crucial steps towards the understanding
and development of quantum oblivious transfer (QOT). One can show the similarity between the
application structure of both QKD and QOT primitives. Just as QKD protocols allow quantum-safe
communication, QOT protocols allow quantum-safe computation. However, the conditions under
which QOT is fully quantum-safe have been subject to intense scrutiny and study. In this review
article, we survey the work developed around the concept of oblivious transfer within theoretical
quantum cryptography. We focus on some proposed protocols and their security requirements.
We review the impossibility results that daunt this primitive and discuss several quantum security
models under which it is possible to prove QOT security.

Keywords: quantum cryptography; oblivious transfer; secure multiparty computation; private
database query

1. Introduction

Quantum technology has evolved to a point where it can be integrated into complex en-
gineering systems. Most of the applications lie in the field of quantum cryptography, where
one thrives to find protocols that offer some advantage over their classical counterparts. As
analysed in [1,2], these advantages can be of two types:

1. improve the security requirements, rendering protocols that are information-theoretically
secure or require fewer computational assumptions;

2. achieve new primitives that were previously not possible just with classical techniques.

Despite the most famous use-case of quantum cryptography being quantum key dis-
tribution (QKD), other primitives play an important role in this quest. Some examples
of these cryptographic tasks are bit commitment [3], coin flipping [4], delegated quan-
tum computation [5], oblivious transfer [6], position verification [7], and password-based
identification [8,9].

The study of oblivious transfer (OT) has been very active since its first proposal in
1981 by Rabin [10] in the classical setting. Intriguingly enough, more than a decade earlier,
a similar concept was proposed by Wiesner and rejected for publication due to the lack of
acceptance in the research community. The importance of OT comes from its wide number
of applications. More specifically, one can prove that OT is equivalent to the secure two-
party computation of general functions [11,12], i.e., one can implement a secure two-party
computation using OT as its building block. Additionally, this primitive can also be used
for secure multi-party computation (SMC) [13], private information retrieval [14], private
set intersection [15], and privacy-preserving location-based services [16]. More recently, the
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first direct quantum protocol for a generalization of oblivious transfer known as oblivious
linear evaluation was proposed [17]. In addition, quantum versions of oblivious transfer
have recently been applied to SMC systems in the field of genomics medicine [18,19].
Developing efficient and secure OT primitives is essential not only from a theoretical
perspective but also from a practical one. When used in SMC systems, OTs mask every
input bit [20] or mask the computation at every boolean circuit gate [21]. Regarding OT
generation, a genomics use case [18,19] with three parties based on the Yao protocol [20]
requires the execution of ∼12 million OTs. Hopefully, quantum OT approaches can be
extended through classical methods [22,23], increasing the amount of OT produced. Since
these OT extension methods only use symmetric cryptographic assumptions, they provide a
better security level when compared with OT protocols based on asymmetric cryptography.
Effectively, this hybrid approach is not attacked by Shor’s quantum algorithm [24]. Looking
at the tree-party genomics use-case again, one only needs ∼25 thousand quantum base OTs
when we use a classical OT extension protocol.

In a recent survey on classical OT [25], all the analysed protocols require some form
of asymmetric cryptography. Indeed, in the classical setting, it is impossible to develop
information-theoretic secure OT or even reduce it to one-way functions, requiring some
public-key computational assumptions. As shown by Impaggliazzo and Rudich [26], one-
way functions (symmetric cryptography) alone do not imply key agreement (asymmetric
cryptography). Also, Gertner et al. [27] pointed out that since it is known that OT implies
key agreement, this sets a separation between symmetric cryptography and OT, leading to
the conclusion that OT cannot be generated alone by symmetric cryptography. This poses
a threat to all classical OT protocols [28–30] that are based on mathematical assumptions
provably broken by a quantum computer [24]. Besides the security problem, asymmetric
cryptography tends to be more computationally complex than the symmetric one, creating
a problem in terms of speed when a large number of OTs are required. Other approaches,
usually named post-quantum, are still based on complexity problems and are not necessar-
ily less complex, on the contrary, than the previously mentioned ones. The development
of quantum OT tackles this issue, aiming to improve its security. Remarkably, there is a
distinctive difference between classical and quantum OT from a security standpoint, as
the latter is proved to be possible assuming only the existence of quantum-hard one-way
functions [31,32]. This means quantum OT requires weaker security assumptions than
classical OT.

Regarding efficiency, little work exists comparing classical and quantum approaches.
This was recently initiated by Santos et al. [33], where the authors theoretically compared
different classical OT approaches with the quantum BBCS (Bennett–Brassard–Crépeau–
Skubiszewska) protocol in the Fcom−hybrid model (defined in Section 4.2). In addition,
in subsequent work, Santos et al. [19] experimentally compared the efficiency impact of
classical and quantum OT protocols on an SMC system.

In this paper, we review the particular topic of quantum oblivious transfer. We
mainly comment on several important OT protocols, their underlying security models
and assumptions, and how these contribute to the above points 1. and 2. in the quantum
setting. To the best of our knowledge, there is no prior survey dedicated to quantum OT
protocols alone. Usually, its analysis is integrated into more general surveys under the topic
of “quantum cryptography”, leading to a less in-depth exposition of the topic. For reference,
we provide some distinctive reviews on the general topic of quantum cryptography [1,34–40].

This review is divided as follows. In Section 2, we give some definitions of the
primitives used throughout this work. Section 3 of this review contains a brief overview of
the impossibility results related to OT. Section 4 provides an exposition of some of the most
well-known quantum OT protocols based on some assumptions. Section 5 of this review
is devoted to a relaxed version of the OT primitive. In Section 6, we review the work on
a similar quantum primitive, private database query. Finally, we give a brief overview of
topics not covered throughout this review (Section 7).
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2. Definitions

For the sake of clarity, we present the definitions of the primitives used throughout
this review.

Definition 1 (1-out-of-2 OT). A 1-out-of-2 oblivious transfer is a two-party protocol between a
sender S and a receiver R with the following specification:

• The sender inputs two messages m0, m1 ∈ {0, 1}l and outputs nothing.
• The receiver inputs one bit choice b ∈ {0, 1} and outputs the corresponding message, i.e., mb.

Moreover, it must satisfy the following security requirements:

• Concealing: the sender knows nothing about the receiver bit choice b.
• Oblivious: the receiver knows nothing about the message m1−b.

This definition can be generalized to the case of k-out-of-N OT, where the sender owns
N messages, and the receiver can choose k. For k = 1, this is commonly called private
database query (PDQ). We may have different randomized versions of this primitive. We
call receiver random 1-out-of-2 OT whenever the receiver’s bit choice is random; sender
random 1-out-of-2 OT whenever the sender’s messages are random; random 1-out-of-2 OT
whenever both input elements are random. We call “chosen” OT the non-randomized OT
version of Definition 1.

Definition 2 (All-or-nothing OT). An all-or-nothing oblivious transfer is a two-party protocol
between a sender S and a receiver R with the following specification:

• The sender inputs one message m ∈ {0, 1}l and outputs nothing.
• The receiver outputs with probability 1/2 the message m.

Moreover, it must satisfy the following security requirement:

• Concealing: the sender does not know whether the receiver obtained her message or not.

Definition 3 (Bit commitment). A bit commitment is a two-phase reactive two-party protocol
between a sender S, who wants to commit to some message m, and a receiver R:

• Commitment phase: the sender inputs one message of the form (commit, m) and the receiver
receives the confirmation that the sender has committed to some message.

• Opening phase: the receiver asks the sender to open the commitment who reveals the message
m to the receiver.

Moreover, it must satisfy the following security requirements:

• Concealing (or hiding): the receiver knows nothing about the sender’s message m until the
sender agrees to reveal it.

• Binding: the sender is unable to change the message m after it is committed.

3. Impossibility Results

The beginning of the development of quantum oblivious transfer (QOT) came hand in
hand with the development of quantum bit commitment (QBC). In fact, the first proposed
QOT protocol, known as the BBCS (Bennett–Brassard–Crépeau–Skubiszewska) protocol,
reduces QOT to QBC [6]. This sets a distinctive difference between classical and quantum
protocols. Although bit commitment (BC) can be reduced to oblivious transfer (OT) [12], the
reverse is not true using only classical communication [41]. As pointed out by Salvail [41]:
“classically, bit commitment can be built from any one-way function but oblivious transfer
requires trapdoor one-way functions. It is very unlikely that one can find a proof that
one-way functions and trapdoor one-way functions are in fact the same thing”. Therefore,
Yao’s proof [42] of BBCS protocol [6] gives quantum communications the enhanced quality
of having an equivalence between QOT and QBC—they can be reduced to each other—a
relation that is not known and is very unlikely to exist in the classical realm.
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At the time of the BBCS protocol, the quest for unconditionally secure QOT was based
on the possibility of unconditional secure QBC. A year later, Brassard et al. presented a QBC
protocol [43] named after the authors, BCJL (Brassard–Crépeau–Jozsa–Langlois). However,
this work presented a flawed proof of its unconditional security which was generally
accepted for some time, until Mayers spotted an issue on it [44]. Just one year after, Lo and
Chau [45], and Mayers [46] independently proved unconditional QBC to be impossible.
Nevertheless, the existence of unconditionally secure QOT not based on QBC was still
put as an open question [34] even after the so-called no-go theorems [45,46]. However, Lo
was able to prove directly that unconditionally secure QOT is also impossible [47]. He
concluded this as a corollary of a more general result that states that secure two-party
computations which allow only one of the parties to learn the result (one-side secure
two-party computation) cannot be unconditionally secure. Lo’s results triggered a line of
research on the possibility of two-sided secure two-party computation (both parties are
allowed to learn the result without having access to the other party’s inputs), which was
also proved by Colbeck to be impossible [48] and extended in subsequent works [49–51].
For a more in-depth review of the impossibility results presented by Lo, Chau and Mayers,
we refer the interested reader to the following works [41,52].

Although the impossibility results have been well accepted in the quantum cryptogra-
phy community, there was some criticism regarding the generality of the results [53–56].
This line of research reflects the view put forward by Yuen [53] in the first of these papers:
“Since there is no known characterization of all possible QBC protocols, logically there can
really be no general impossibility proof, strong or not, even if it were indeed impossible
to have an unconditionally secure QBC protocol”. In parallel, subsequent analyses were
carried out, reaffirming the general belief of impossibility [57–59]. However, most of the dis-
cord has ended with Ariano et al. proof [60] in 2007, giving an impossibility proof covering
all conceivable protocols based on classical and quantum information theory. Subsequent
work digested Ariano et al. [60] work, trying to present more succinct proofs [61–63] and
to translate it into categorical quantum mechanics language [64–66].

Facing these impossibility results, the quantum cryptography community followed
two main paths:

1. Develop protocols under some assumptions (Section 4). These could be based on lim-
iting the technological power of the adversary (e.g., noisy-storage model, relativistic
protocols, isolated-qubit model) or assuming the existence of additional functionalities
primitives (e.g., bit commitment).

2. Develop protocols with a relaxed security definition of OT, allowing the adversary to
extract, with a given probability, some information (partial or total) about the honest
party input/output. This approach leads to the concepts of Weak OT (Section 5) and
Weak Private Database Query (Section 6).

4. Qot Protocols with Assumptions

In this section, we explore protocols that circumvent the no-go theorems [45,46]
utilizing some assumptions. Most of the presented solutions try to avoid using quantum-
hard trapdoor one-way functions, making them fundamentally different from most post-
quantum solutions that are based on trapdoor one-way functions. As an alternative,
some of the presented solutions are based on one-way functions, which are believed to
be quantum-hard [31,32,67], and others rely on some technological or physical limitation
of the adversaries [68–73]. The latter are qualitatively different from complexity-based
assumptions on which post-quantum protocols rely. In addition, all these assumptions have
the important property that they only have to hold during the execution of the protocol for
its security to be preserved. In other words, even if the assumptions lose their validity at
some later point in time, the security of the protocol is not compromised, which also makes
a major distinction from classical cryptographic approaches. This property is commonly
known as everlasting security [74].
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We start by presenting the first QOT protocol. We see how this leads to the develop-
ment of two assumption models: FCOM−hybrid model and the noisy-storage model. Then,
we present the isolated-qubit model and how it leads to a QOT protocol. Finally, we review
the possible types of QOT protocols under relativistic effects.

4.1. Bbcs Protocol

In 1983, Wiesner came up with the idea of quantum conjugate coding [75]. This
technique is the main building block of many important quantum cryptographic proto-
cols [8,76,77], including quantum oblivious transfer [6]. It also goes under the name of
quantum multiplexing [77], quantum coding [78] or BB84 coding [41]. In quantum conjugate
coding we encode classical information in two conjugate (non-orthogonal) bases. This
allows us to have the distinctive property that measuring on one basis destroys the encoded
information on the corresponding conjugate basis. So, when bit 0 and 1 are encoded by
these two bases, no measurement is able to perfectly distinguish the states. Throughout
this work, we will be using the following bases in the two-dimensional Hilbert spaceH2:

• Computational basis: + := {|0〉+, |1〉+};

• Hadamard basis: × := {|0〉×, |1〉×} =
{

1√
2

(
|0〉+ + |1〉+

)
, 1√

2

(
|0〉+ − |1〉+

)}
.

Protocol [6]. The first proposal of a quantum oblivious transfer protocol (BBCS protocol)
is presented in Figure 1 and builds on top of the quantum conjugate coding technique.
The sender S starts by using this coding to generate a set of qubits that are subsequently
randomly measured by the receiver R. These two steps make up the first phase of the
protocol that is also common to the BB84 QKD protocol. For this reason, it is called the
BB84 phase. Next, with the output bits obtained by R and the random elements generated
by S, both parties are ready to share a special type of key, known as oblivious key. This is
achieved when S reveals her bases θS to R. Using the oblivious key as a resource, S can
then obliviously send one of the messages m0, m1 to R, ensuring that R is only able to know
one of the messages. This is achieved using a two-universal family of hash functions F
from {0, 1}n/2 to {0, 1}l . In addition, we use the notation s ←$ S to describe a situation
where an element s is drawn uniformly at random from the set S.

Oblivious keys. The term oblivious key was used for the first time by Fehr and Schaffner [79]
referring to a Random OT. However, under a subtle different concept, it was used by
Jakobi et al. [80] as a way to implement Private Database Queries (PDQ), which we review
in Section 6. In recent work, Lemus et al. [81] presented the concept of oblivious key
applied to OT protocols. We can define it as follows.

Definition 4 (Oblivious key). An oblivious key shared between two parties, sender S and receiver
R, is a tuple ok :=

(
okS, (okR, eR)

)
where okS is the sender’s key, okR is the receiver’s key and eR

is the receiver’s signal string. eR indicates which indexes of okS and okR are correlated and which
indexes are uncorrelated.

The oblivious key ok shared between the two parties is independent of the sender’s
messages m0, m1 and is not the same as Random OT. As the sender S does not know the
groups of indexes I0 and I1 deduced by R after the basis revelation, S does not have her
messages fully defined. In addition, a similar concept was defined by König et al. [70]
under the name of weak string erasure.
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ΠBBCS protocol

Parameters: n, security parameter; F two-universal family of hash functions.
S input: (m0, m1) ∈ {0, 1}l (two messages).
R input: b ∈ {0, 1} (bit choice).

BB84 phase:
1. S generates random bits xS ←$ {0, 1}n and random bases θS ←$ {+,×}n.

Sends the state
∣∣∣xS〉

θS
to R.

2. R randomly chooses bases θR ←$ {+,×}n to measure the received qubits. We
denote by xR his output bits.

Oblivious key phase:
3. S reveals to R the bases θS used during the BB84 phase and sets his oblivious

key to okS := xS.
4. R computes eR = θR ⊕ θS and sets okR := xR.

Transfer phase:
5. R defines I0 = {i : eRi = 0} and I1 = {i : eRi = 1} and sends the set Ib to S.
6. S picks two uniformly random hash functions f0, f1 ∈ F , computes the pair of

strings (s0, s1) as si = mi ⊕ fi(ok
S
Ib⊕i

) and sends the pairs ( f0, f1) and (s0, s1) to
R.

7. R computes mb = sb ⊕ fi(ok
R
I0
).

S output: ⊥.
R output: mb.

Figure 1. BBCS OT protocol.

Security. Regarding security, the BBCS protocol is unconditionally secure against dishonest
S. Intuitively, this comes from the fact that S does not receive any information from R other
than some set of indexes I0. However, the BBCS protocol is insecure against dishonest R.
In its original paper [6], the authors describe a memory attack that provides R complete
knowledge on both messages m0 and m1 without being detected. This can be achieved by
having the receiver delay his measurements in step 2 to some moment after step 3. This
procedure is commonly called the memory attack as it requires quantum memory to hold the
states until step 3. The authors suggest that, for the protocol to be secure, the receiver has to
be forced to measure the received states at step 2. In the following sections, we present two
common approaches to tackle this issue. We may assume the existence of commitments or
set physical assumptions that constrain R from delaying his measurement.

4.2. BBCS in the Fcom–Hybrid Model

Model. As mentioned in the previous section, a secure BBCS protocol requires the receiver
R to measure his qubits in step 2. In this section, we follow the suggestion from the original
BBCS paper [6] and fix this loophole using a commitment scheme. Since we assume we
have access to some commitment scheme, we call it Fcom–hybrid model. The notation Fcom
is commonly used for ideal functionalities; however, here we abuse the notation by using
Fcom to refer to any commitment scheme (including the ideal commitment functionality).

Protocol. The modified BBCS (Figure 2) adds a cut and choose phase that makes use of a
commitment scheme com to check whether R measured his qubits in step 2 or not. It goes
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as follows. R commits to the bases used to measure the qubits in the BB84 phase and the
resulting output bits. Then, S chooses a subset of qubits to be tested and asks R to open the
corresponding commitments of the bases and output elements. If no inconsistency is found,
both parties can proceed with the protocol. Note that the size of the testing subset has to be
proportional to n (security parameter), as this guarantees that the rest of the qubits were
measured by R with overwhelming probability in n.

ΠBBCS
Fcom

protocol

Parameters: n, security parameter; F two-universal family of hash functions.
S input: (m0, m1) ∈ {0, 1}l (two messages).
R input: b ∈ {0, 1} (bit choice).

BB84 phase: Same as in ΠBBCS (Figure 1).

Cut and choose phase:
3. R commits to the bases used and the measured bits, i.e., com

(
θR, xR

)
, and

sends to S.
4. S asks R to open a subset T of commitments (e.g., n/2 elements) and receives

{θRi , xRi }i∈T .
5. In case any opening is not correct or xRi 6= xSi for θRi = θSi , abort. Otherwise,

proceed.

Oblivious key phase: Same as in ΠBBCS (Figure 1).

Transfer phase: Same as in ΠBBCS (Figure 1).

S output: ⊥.
R output: mb.

Figure 2. BBCS OT protocol in the Fcom–hybrid model.

Security. Formally proving the security of this protocol led to a long line of research [6,9,31,
32,42,79,82–87]. Earlier proofs from the 90s started by analyzing the security of the protocol
against limited adversaries that were only able to do individual measurements [83]. Then,
Yao [42] was able to prove its security against more general adversaries capable of doing
fully coherent measurements. Although these initial works [42,83,84] were important to
start developing a QOT security proof, they were based on unsatisfactory security defini-
tions. At the time of these initial works, there was no composability framework [79,86]
under which the security of the protocol could be considered. In modern quantum cryp-
tography, these protocols are commonly proved in some quantum simulation-paradigm
frameworks [9,70,79,86]. In this paradigm, the security is proved by showing that an
adversary in a real execution of the protocol cannot cheat more than what he is allowed in
an ideal execution, which is secure by definition. This is commonly proved by utilizing an
entity, simulator, whose role is to guarantee that a real execution of the protocol is indistin-
guishable from an ideal execution. Moreover, they measured the adversary’s information
through average-case measures (e.g., Collision Entropy, Mutual Information) which are
proven to be weak security measures when applied to cryptography [88,89].

More desirable worst-case measures started to be applied to quantum oblivious trans-
fer around a decade later [90,91]. These were based on the concept of min-entropy [88,89],
Hmin, which, intuitively, reflects the maximum probability of an event to happen. More
precisely, in order to prove security against dishonest receiver, one is interested in mea-
suring the receiver’s min-entropy on the sender’s oblivious key okS conditioned on some
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quantum side information E he may has, i.e., Hmin(ok
S|E). Informally, for a bipartite

classical-quantum state ρXE the conditional min-entropy Hmin(X|E) is given by

Hmin(X|E)ρXE := − log Pguess(X|E),

where Pguess(X|E) is the probability the adversary guesses the value x maximized over
all possible measurements. Damgård et al. [9] were able to prove the stand-alone QOT
security when equipped with this min-entropy measure and with the quantum simulation-
paradigm framework developed by Fehr and Schaffner [79]. Their argument to prove
the protocol to be secure against dishonest receiver essentially works as follows. The cut
and choose phase ensures that the receiver’s conditional min-entropy on the elements
of okS belonging to I1 (indexes with uncorrelated elements between S and R oblivious
keys) is lower-bounded by some value that is proportional to the security parameter, i.e.,
Hmin(ok

S
I1
|E) ≥ nλ for some λ > 0. Note that this is equivalent to derive an upper bound

on the guessing probability Pguess(ok
S
I1
|E) ≤ 2−nλ. Having deduced an expression for

λ, they proceed by applying a random hash function f from a two-universal family F ,
f ←$ F . This final step ensures that f (okSI1

) is statistically indistinguishable from uniform
(privacy amplification theorem [90–92]). The proof provided by Damgård et al. [9] was
extended by Unruh [86] to the quantum Universal Composable model, making use of ideal
commitments. Now, a natural question arises: which commitment schemes can be used to
render simulation-based security?

Commitment scheme. The work by Aaronson [67] presented a non-constructive proof
that “indicates that collision-resistant hashing might still be possible in a quantum setting”,
giving confidence in the use of commitment schemes based on quantum-hard one-way
functions in the ΠBBCS

Fcom
protocol. Hopefully, it was shown that commitment schemes can

be built from any one-way function [93–95], including quantum-hard one-way functions.
Although it is intuitive to plug in into ΠBBCS

Fcom
a commitment scheme derived from a

quantum-hard one-way function, this does not necessarily render a simulation-based
secure protocol. This happens because the nature of the commitment scheme can make the
simulation-based proof difficult or even impossible. For a detailed discussion see [31].

Indeed, the commitment scheme must be quantum secure. In addition, the simulator
must have access to two intriguing properties: extractability and equivocality. Extractability
means the simulator can extract the committed value from a malicious committer. Equivo-
cal means the simulator can change the value of a committed value at a later time. Although
it seems counter-intuitive to use a commitment scheme where we can violate both security
properties (hiding and biding properties), it is fundamental to prove its security. Extractabil-
ity is used by the simulator to prove security against the dishonest sender and equivocality
is used by the simulator to prove security against the dishonest receiver. In the literature,
there have been some proposals of the commitment schemes Fcom with these properties
based on:

• Quantum-hard one-way functions [31,32];
• Common Reference String (CRS) model [86,96];
• Bounded-quantum-storage model [97];
• Quantum hardness of the Learning With Errors assumption [9].

Composability. The integration of secure oblivious transfer executions in secure-multiparty
protocols [11] should not lead to security breaches. Although it seems intuitive to assume
that a secure OT protocol can be integrated within more complex protocols, proving this
is highly non-trivial as it is not clear a priori under which circumstances protocols can be
composed [98].
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The first step towards composability properties was the development of simulation
based-security, however, this does not necessarily imply composability (see Section 4.2
of [98] for more details). A composability framework is also required. In the literature, there
have been some proposals for such a framework. In summary, Fehr and Schaffner [79]
developed a composability framework that allows sequential composition of quantum
protocols in a classical environment. The works developed by Ben-Or and Mayers [99] and
Unruh [86,100] extended the classical Universal Composability model [101] to a quantum
setting (quantum-UC model), allowing concurrent composability. Maurer and Renner [102]
developed a more general composability framework that does not depend on the models
of computation, communication, and adversary behaviour. More recently, Broadbent and
Karvonen [66] created an abstract model of composable security in terms of category theory.
Up until now, and to the best of our knowledge, the composable security of the protocol
ΠBBCS
Fcom

was only proven in the Fehr and Schaffner model [79] by Damgård et al. [9] and in
the quantum-UC by Unruh [86].

4.3. BBCS in the Limited-Quantum-Storage Model

In this section, we review protocols based on the limited-quantum-storage model.
The protocols developed under this model avoid the no-go theorems because they rely
their security on reasonable assumptions regarding the storage capabilities of both parties.
Under this model, there are mainly two research lines. One was started by Damgård, Fehr,
Salvail and Schaffner [68], who developed the bounded-storage model. In this model, the
parties can only store a limited number of qubits. The other research line was initiated
by Wehner, Schaffner and Terhal [69], who developed the noisy-storage model. In this
model the parties can store all qubits. However, they are assumed to be unstable, i.e., they
only have imperfect noisy storage of qubits that forces some decoherence. In both models,
the adversaries are forced to use their quantum memories as both parties have to wait a
predetermined time (∆t) during the protocol.

4.3.1. Bounded-Quantum-Storage Model

Model. In the bounded-quantum-storage model or BQS model for short, we assume that,
during the waiting time ∆t, the adversaries are only able to store a fraction 0 < γ < 1 of
the transmitted qubits, i.e., the adversary is only able to keep q = nγ qubits. The parameter
γ is commonly called the storage rate.

Protocol. The protocol in the BQS model, ΠBBCS
bqs , is very similar to the BBCS protocol ΠBBCS

presented in Figure 1. The difference is that both parties have to wait a predetermined time
(∆t) after step 2. This protocol is presented in Figure 3.

Security. We just comment on the security against a dishonest receiver because the justifica-
tion for the security against a dishonest sender is the same as in the original BBCS protocol,
ΠBBCS (see Section 4.1).

Under the BQS assumption, the waiting time (∆t) effectively prevents the receiver from
holding a large fraction of qubits until the sender reveals the bases choices θS used during
the BB84 phase. This comes from the fact that a dishonest receiver is forced to measure a
fraction of the qubits, leading him to lose information about the sender’s bases θS.
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ΠBBCS
bqs protocol

Parameters: n, security parameter; F two-universal family of hash functions.
S input: (m0, m1) ∈ {0, 1}l (two messages).
R input: b ∈ {0, 1} (bit choice).

BB84 phase: Same as in ΠBBCS (Figure 1).

Waiting time phase:
3. Both parties wait time ∆t.

Oblivious key phase: Same as in ΠBBCS (Figure 1).

Transfer phase: Same as in ΠBBCS (Figure 1).

S output: ⊥.
R output: mb.

Figure 3. BBCS OT protocol in the bounded-quantum-storage model.

More specifically, Damgård et al. [91] showed that, with overwhelming probability, the
loss of information about the sender’s oblivious key (okSI1

) is described by a lower bound
on the min-entropy [37]

Hmin(ok
S
I1
|E) ≥ 1

4
n− γn− l − 1.

Similarly to the Fcom−hybrid model, the min-entropy value has to be bounded by a factor
proportional to the security parameter n. To render a positive bound, we derive an upper
bound on the fraction of qubits that can be saved in the receiver’s quantum memory, while
preserving the security of the protocol, i.e., γ < 1

4 .
The above upper bound was later improved by König et al. [70] to γ < 1

2 . The authors
also showed that the BQS model is a special case of the noisy-quantum-storage model.
Subsequently, based on higher-dimensional mutually unbiased bases, Mandayam and
Wehner [103] presented a protocol that is still secure when an adversary cannot store even
a small fraction of the transmitted pulses. In this latter work, the storage rate γ approaches
1 for increasing dimension.

Composability. The initial proofs given by Damgård et al. [68,91] were only developed un-
der the stand-alone security model [104]. In this model the composability of the protocol is
not guaranteed to be secure. These proofs were extended by Wehner and Wullschleger [104]
to a simulation-based framework that guarantees sequential composition. In addition, in a
parallel work, Fehr and Schaffner developed a sequential composability framework under
which ΠBBCS

bqs is secure considering the BQS model.

The more desirable quantum-UC framework was extended by Unruh and combined
with the BQS model [97]. In Unruh’s work, he developed the concept of BQS-UC security
which, as in UC security, implies a very similar composition theorem. The only difference is
that in the BQS-UC framework we have to keep track of the quantum memory-bound used
by the machines activated during the protocol. Under this framework, Unruh follows a
different approach as he does not use the protocol ΠBBCS

bqs (Figure 3). He presents a BQS-UC

secure commitment protocol and composes it with the ΠBBCS
Fcom

protocol (Figure 2) in order
to get a constant-round protocol that BQS-UC-emulates any two-party functionality.
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4.3.2. Noisy-Quantum-Storage Model

Model. The noisy-quantum-storage model, or NQS model for short, is a generalization of
the BQS model. In the NQS model, the adversaries are allowed to keep any fraction ν of
the transmitted qubits (including the case ν = 1) but their quantum memory is assumed
to be noisy [70], i.e., it is impossible to store qubits for some amount of time (∆t) without
undergoing decoherence.

More formally, the decoherence process of the qubits in the noisy storage is described
by a completely positive trace preserving (CPTP) map (also called channel) F : B(Hin)→
B(Hout), whereHin/out is the Hilbert space of the stored qubits before (in) and after (out)
the storing period ∆t and B(H) is the set of positive semi-definite operators with unitary
trace acting on an Hilbert space H. F receives a quantum state ρ ∈ Hin at time t and
outputs a quantum state ρ′ ∈ Hout at a later time t + ∆t.

With this formulation, we can easily see that the BQS model is a particular case of
the NQS. In BQS, the channel is of the form F = 1⊗νn, where the storage rate ν is the
fraction of transmitted qubits stored in the quantum memory. The most studied scenario is
restricted to n−fold quantum channels, i.e., F = N⊗νn [69,70,105], where the channel N is
applied independently to each individual stored qubit. In this particular case, it is possible
to derive specific security parameters.

Protocols. The protocol from BQS model ΠBBCS
bqs is also considered to be secure in the NQS

model [105]. However, the first proposed protocol analysed in this general NQS model
was developed by König et al. [70]. This protocol draws inspiration from the research line
initiated by Cachin, Crépeau and Marcil [106] about classical OT in the bounded-classical-
storage model [107,108]. Similar to these works [106–108], the protocol presented by König
et al. [70] uses the following two important techniques in its classical post-processing
phase: encoding of sets and interactive hashing. The former is defined as an injective
function Enc : {0, 1}t → T , where T is a set of all subsets of [n] with size n/4. The latter is
a two-party protocol between Alice and Bob with the following specifications. Bob inputs
some message Wt and both parties receive two messages Wt

0 and Wt
1 such that there exists

some b ∈ {0, 1} with Wt
b = Wt. The index b is unknown to Alice, and Bob has little control

over the choice of the other message Wt, i.e., it is randomly chosen by the functionality.

In this review, we only present the naïve protocol presented in the original paper [70]
as it is enough to give an intuition on the protocol. Although both ΠBBCS

bqs and ΠBBCS
nqs

protocols are different, we keep a similar notation for a comparison purpose. The protocol
ΠBBCS

nqs (Figure 4) goes as follows. The first two phases (BB84 and Waiting time) are the same
as in ΠBBCS

bqs (Figure 3). Then, both parties generate a very similar resource to oblivious keys,
named weak string erasure (WSE). After this WSE process, the sender also holds the totality
of the key okS, while the receiver holds a fourth of this key, i.e., the tuple (I, okR := okSI )
where I is the set of indexes they measured in the same basis and its size is given by
|I| = n

4 . Then, along with a method of encoding sets into binary strings, both parties use
interactive hashing to generate two index subsets, I0 and I1, where the sender plays the role
of Alice, and the receiver plays the role of Bob. The two subsets (I0 and I1) together with
two 2–universal hash functions are enough for the sender to generate her output messages
(m0, m1) and the receiver to get his bit choice along with the corresponding message (b, mb).
For more details on the protocols for encodings of sets and interactive hashing, we refer to
Ding et al. [107] and Savvides [108].
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Naïve ΠBBCS
nqs protocol

Parameters: n, security parameter; F two-universal family of hash functions.
S input: ⊥.
R input: ⊥.

BB84 phase: Same as in ΠBBCS (Figure 1).

Waiting time phase: Same as in ΠBBCS
bqs (Figure 3).

Weak String Erasure phase: Similar to Oblivious key phase of ΠBBCS (Figure 1).

4. S reveals to R the bases θS used during the BB84 phase and sets his oblivious
key to okS := xS.

5. R computes eR = θR ⊕ θS. Then, he defines I = {i : eRi = 0} and sets
okR := xRI .

6. If |I| < n/4, R randomly adds elements to I and pads the corresponding
positions in okR with 0s. Otherwise, he randomly truncates I to size n/4, and
deletes the corresponding values in okR.

Interactive hashing phase:
7. S and R execute interactive hashing with R’s input W to be equal to a descrip-

tion of I = Enc(W). They interpret the outputs W0 and W1 as descriptions of
subsets I0 and I1 of [n].

Transfer phase:
5. S generates random f0, f1 ←$ F and sends them to R.
6. S computes the pair of messages (m0, m1) as mi = fi(ok

S
Ii
).

7. R computes b ∈ {0, 1} by comparing I = Ib and computes mb = fb(ok
R
I ).

S output: (m0, m1) ∈ {0, 1}l (two messages).
R output: (b, mb) where b ∈ {0, 1} (bit choice).

Figure 4. BBCS OT protocol in the noisy-quantum-storage model.

Security. Based on the original BQS protocol (Figure 3), the first proofs in the NQS model
were developed by Schaffner, Wehner and Terhal [69,109]. However, in these initial works,
the authors only considered individual-storage attacks, where the adversary treats all
incoming qubits equally. Subsequently, Schaffner [105] was able to prove the security of
ΠBBCS

bqs against arbitrary attacks in the more general NQS model defined by König et al. [70].

In this more general NQS model, the security of both protocols ΠBBCS
bqs and ΠBBCS

nqs
(Figures 3 and 4) against a dishonest receiver depends on the possibility to set a lower-
bound on the min-entropy of the “unknown” key okSI1−b

given the receiver’s quantum
side information. His quantum side information is given by the output of the quantum
channel F when applied to the received states. More formally, one has to lower-bound
the expression Hmin

(
okSI1−b

|F (Qin)
)

, where Qin denotes the subsystem of the received
states before undergoing decoherence. It is proven [70] that this lower-bound depends on
the receiver’s maximal success probability of correctly decoding a randomly chosen n-bit
string x ∈ {0, 1}n sent over the quantum channel F , i.e., PFsucc(n). This result is given by
Lemma 1.
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Lemma 1 (Lemma II.2. from [70]). Consider an arbitrary ccq-state ρXTQ, and let ε, ε′ > 0 be
arbitrary. Let F : B(HQin) → B(HQout) be an arbitrary CPTP map, where HQin and HQout are
the Hilbert space corresponding to the subsystem Qin and Qout, respectively. Then,

Hε+ε′
min (X|TF (Q)) ≥ − log PFsucc

(⌊
Hε

min(X|T)− log
1
ε

⌋)
,

where Hε denotes the smooth min-entropy.

For particular channels F = N⊗ν, König et al. [70] concluded that security in the NQS
model can be obtained in case

CN · ν <
1
2

,

where CN is the classical capacity of quantum channels N satisfying a particular property
(strong-converse property).

4.4. Device-Independent QOT in the Limited-Quantum-Storage Model

In addition to the presented assumptions (e.g., existence of a commitment scheme or
limited-quantum-storage model), the corresponding protocols also assume that dishonest
parties cannot corrupt the devices of honest parties. In other words, the protocols’ security
depends on the guarantee given by the parties that their quantum devices behave as
specified during the protocol execution. However, quantum hacking techniques pose a
security threat to these protocols. Santos et al. [19] gave a brief description of how two
common techniques (faked-state and trojan-horses attacks) break the security of assumption-
based BBCS protocols (ΠBBCS

Fcom
, ΠBBCS

bqs and ΠBBCS
nqs ). In summary, a faked-state attack allows

the receiver to avoid the security guarantees enforced by the assumptions and effectively
receive both messages m0 and m1. More shockingly, both attacks allow the sender to find
the receiver’s bit choice b, which is proved to be unconditionally secure with trusted devices.
Nevertheless, to the best of our knowledge, a more detailed study on the effects of quantum
hacking techniques on QOT protocols is lacking in the literature. For a more in-depth
review of quantum hacking techniques applied to QKD systems, we refer to Sun and
Huang [40] and Pirandola et al. [38].

There is a research line focused on the study of security patches for each technological
loophole [110]. However, this approach pursues the difficult task of approximating the
experimental implementations to the ideal protocols. It would be more desirable to develop
protocols that already consider faulty devices and are robust against any kind of quantum
hacking attack. This is the main goal of device-independent (DI) cryptography, where we
drop the assumption that quantum devices cannot be controlled by the adversary and we
treat them simply as black-boxes [111,112]. In this section, we give a general overview
of the state-of-the-art of DI protocols. For a more in-depth description, we refer to the
corresponding original works.

Kaniewski-Wehner DI protocol [113]. The first DI protocol of QOT was presented in
a joint work by Kaniewski and Wehner [113] and its security proof was improved by
Ribeiro et al. [114]. The protocol was proved to be secure in the noisy-quantum-storage
(NQS) model as it uses the original NQS protocol ΠBBCS

nqs (Figure 4) for trusted devices. It
analyzes two cases leading to slightly different protocols.

First, they assume that the devices behave similarly every time they are used (mem-
oryless assumption). This assumption allows for testing the devices independently from
the actual protocol, leading to a DI protocol in two phases: device-testing phase and protocol
phase. Under this memoryless assumption, one can prove that the protocol is secure against
general attacks using proof techniques borrowed from [70]. Then, they analyse the case
without the memoryless assumption. In that case it is useless to test the devices in advance
as they can change their behaviour later. Consequently, the structure of the initial DI
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protocol (with two well-separated phases) has to be changed to accommodate this more
realistic scenario. That is, the rounds for the device-testing phase have to be intertwined
with the rounds for the protocol phase.

As a common practice in DI protocols, the DI property comes from some violation
of Bell inequalities [115], which ensures a certain level of entanglement. This means that,
in the protocol phase, the entanglement-based variant of ΠBBCS

nqs must be used. Here, the
difference lies in the initial states prepared by the sender, which, for this case, are maximally
entangled states |Φ+〉〈Φ+| where |Φ+〉 = 1√

2
(|00〉+ |11〉). The Bell inequality used in this

case comes from the Clauser-Holt-Shimony-Horne (CHSH) inequality [116].

Broadbent-Yuen DI protocol [117]. More recently, Broadbent and Yuen [117] used the
ΠBBCS

bqs (Figure 3) to develop a DI protocol in the BQS model. Similar to Kaniewski and
Wehner’s work, they the protocol to be secure under the memoryless assumption. How-
ever, they do not require non-communication assumptions that ensure security from Bell
inequality violations. Instead of using the CSHS inequality, their work is based on a re-
cent self-testing protocol [118,119] based on a post-quantum computational assumption
(hardness of Learning with Errors (LWE) problem [120]).

Ribeiro-Wehner MDI protocol [121]. Ribeiro and Wehner [121] developed an OT protocol
in the measurement-device-independent (MDI) regime [122] to avoid the technological
challenges in the implementation of DI protocols [123]. In addition, this work was moti-
vated by the fact that, so far, there is no security proof in the DI setting. Furthermore, many
attacks on the non device-independent protocols affect the measurement devices rather
than the sources [124]. The presented protocol follows the research line of König et al. [70]
and start by executing a weak string erasure in the MDI setting (MDI-WSE phase). For this
reason, it is also proved to be secure in the NQS model.

The initial MDI-WSE phase goes as follows. Both the sender and receiver send random
states

∣∣∣xS〉
θS

and
∣∣∣xR〉

θR
, respectively, to an external agent that can be controlled by the

dishonest party. The external agent performs a Bell measurement on both received states
and announces the result. The receiver flips his bit according to the announced result to
match the sender’s bits. Then, both parties follow the ΠBBCS

nqs protocol (Figure 4) from the
waiting time phase onward. A similar protocol was presented by Zhou et al. [125] which
additionally takes into account error estimation to improve the security of the protocol.

4.5. Otm in the Isolated-Qubits Model

One-Time Memory. A One-Time Memory (OTM) is a cryptographic device that allows
more generic functionalities such as One-Time Programs [126]. Its definition is similar to
1-out-of-2 Oblivious Transfer: the sender writes two messages m0 and m1 into the OTM and
sends the OTM to the receiver. The receiver can then run the OTM only once and choose
one of the messages, mb, while staying oblivious about the other message, m1−b. The main
difference between OT and OTM is that in OT the sender learns whether the receiver has
received the message mb, while in OTM, the sender does not receive any confirmation
about that. This difference comes from the identifying feature of one-way communication
in OTM [39]: after the sender handles the OTM device to the receiver, there is no more
communication between the parties.

Model. In the isolated-qubits model, we assume that qubits cannot be entangled and can
only be handled through single-qubit measurements. More specifically, this model only
allows dishonest parties to perform local operations and classical communication while
preparing the OTM device (sender) or reading it (receiver). As Liu [71] comments in his
original article about quantum-based OTM, the isolated-qubits model complements the
limited-quantum-storage models. Indeed, the isolated-qubits model does not allow the
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parties to perform entanglement and assumes the existence of long-term memories. On the
other hand, the limited-quantum-storage models allow the existence of entanglement but
assume qubits cannot be stored for a long time.

Protocol [71]. Liu presented the first protocol [71] for quantum OTM, which is also based on
the standard idea of conjugate coding. In this protocol, the sender uses the computational
and hadamard bases to prepare the states (grey lines in Figure 5) and the receiver uses

the bases B0 =

{∣∣∣β π
8

〉
,
∣∣∣β 5π

8

〉}
and B1 =

{∣∣∣β− π
8

〉
,
∣∣∣β 3π

8

〉}
to measure the received qubits

(red lines in Figure 5).

10

00

01
11

|1〉×

∣∣∣β− π
8

〉

∣∣∣β π
8

〉
|0〉×

∣∣∣β 3π
8

〉∣∣∣β 5π
8

〉

|0〉+

|1〉+

Figure 5. Quantum states used in the ΠOTM
iq protocol.

So, the protocol goes as follows. The sender prepares a string of isolated qubits,
∣∣αaibi

〉
for i ∈ [n], using the computational and hadamard bases according to the following encoding:

|α00〉 = |0〉+
|α11〉 = |1〉+
|α01〉 = |0〉×
|α10〉 = |1〉×.

The choice of ai and bi in αaibi
depends on the sender’s messages (m0, m1) and two random

functions set as protocol parameters C, D : {0, 1}l → {0, 1}n, which, with high probability,
are good error correcting codes. More specifically,

ai = C(m0)i

bi = D(m1)i.

The intuition behind the correctness of the protocol is that this qubit encoding allows
the receiver to get a noisy version of either C(m0) or D(m1) when he uses basis B0 or B1 to
measure all qubits, respectively. We can check this is the case based on Figure 5. Consider
the case where the receiver chooses to read message b = 0. This case means he will measure
all the qubits in the B0 basis. Imagine the receiver obtains the state

∣∣∣β π
8

〉
after measuring

the i-th qubit. Consequently, the receiver will set C(m0)i = 0, since, with higher probability,
the initial qubit state was prepared in one of the adjacent vectors, i.e., |0〉× (encoding 01) or
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|0〉+ (encoding 00). However, this guess may came with some error, as the states |1〉× and

|1〉+ are not orthogonal to the obtained state
∣∣∣β π

8

〉
. The protocol is described in Figure 6.

ΠOTM
iq protocol

Parameters: Random functions C, D : {0, 1}l → {0, 1}n.
S input: m0, m1 ∈ {0, 1}l .
R input: b ∈ {0, 1}.

Preparation phase:
1. S prepares isolated qubit states given by

|E(m0, m1)〉 =
n⊗

i=1

∣∣∣αC(m0)i D(m1)i

〉
where |α00〉 = |0〉+, |α11〉 = |1〉+, |α01〉 = |0〉× and |α10〉 = |1〉×. Sends them
to R.

Measurement phase:
2. If b = 0:

(a) R measures each qubit in the basis
{∣∣∣β π

8

〉
,
∣∣∣β 5π

8

〉}
and obtains a “noisy”

copy of C(m0).
(b) Decodes C(m0) and obtains m0.

3. Otherwise:

(a) R measures each qubit in the basis
{∣∣∣β− π

8

〉
,
∣∣∣β 3π

8

〉}
and obtains a

“noisy” copy of D(m1).
(b) Decodes D(m1) and obtains m1.

S output: ⊥.
R output: mb.

Figure 6. OTM protocol in the isolated-qubits model [71].

Security. The LOCC assumption (local operations and classical communication) is crucial
to ensure the security of the protocol because there is a joint measurement that allows
recovering both messages m0 and m1. In the original paper [71], Liu proved that the state
prepared by the sender can be distinguished almost perfectly by a measurement that uses
entanglement among the n qubits. This distinguishability is achieved using the common
technique of “pretty good measurement” [127].

The security proof of the ΠOTM
iq protocol is presented with some caveats that fostered

some subsequent work [128,129]. Most importantly, the adversary can obtain partial
knowledge of both messages as it is not clear how the parties can engage in a privacy
amplification phase without communication. This led to the definition of a weaker notion
of OTM where the possibility of having partial knowledge of both messages was included.
Intuitively, the definition states that a leaky OTM is an OTM with the additional property
of having min-entropy of both messages m0 and m1 approximately lower-bounded by the
length of one message, l, i.e., Hmin(m0, m1|E) ≥ (1− δ)l for δ > 0.

Further work. In the original paper, [71], the leaky security of ΠOTM
iq was only proved

using a weaker entropy measure (Shannon entropy) and assuming only one-pass LOCC
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adversaries, i.e., adversaries that can only measure each qubit once. Subsequently, Liu [128]
was able to improve on the previous work and proved a modified version of ΠOTM

iq to be a
leaky OTM, which is stated secure in terms in terms of the (smoothed) min-entropy. Finally,
Liu [129] proposed a variant of privacy amplification which uses a fixed hash function
F. This allows to building a protocol for (not leaky) single-bit OTM that is secure in the
isolated qubits model.

4.6. Qot in a Relativistic Setting

In this section, we present two variants of oblivious transfer that take into account
special relativity theory. These two variants do not exactly follow the OT definition as it
was proved that it is impossible to construct unconditionally secure OT even under the
constraints imposed by special relativity [48,130–133].

Model. In the relativistic setting, we consider protocols that take into account the causality
of Minkowski space-time, limiting the maximum possible signalling speed (no-superluminal
principle) [72].

4.6.1. Spacetime-Constrained Oblivious Transfer

The cryptographic task of spacetime-constrained oblivious transfer (SCOT) is mo-
tivated by the following scenario. The sender has two computers C0 at x = −h and C1
at x = h, which can only be accessed within regions of space-time denoted by R0 and
R1 using passwords m0 and m1, respectively (Figure 7). This setup can be applied to
spacetime-constrained multiparty computation [72].

ct

x

θ, t0 θ, t1

|x〉θ

P

Q0 Q1

Q

R0 R1

S, RS0, R0 S1, R1

0

h

h + v

2h

0−h h

Figure 7. Representation of the ΠSCOT protocol in the reference frame F in Minkowski spacetime
where the receiver chooses b = 1. In this scenario, the receiver obtains message m1 at point Q1. Note
that the receiver can retrieve the message m0 at point Q. This event does not compromise the SCOT
security definition because it only demands that m0 is not known at space-time region R0. More
specifically, at point Q, the receiver can use the key x to compute m0 from the encrypted value t0

he received at point Q0. Blue arrows represent the information sent by the sender’s agents. Yellow
arrows represent the information sent by the receiver’s agents. Adapted from the original article [72].

Definition. In SCOT, the sender inputs two messages m0 and m1 and the receiver one-bit
choice b. The receiver obtains message mb within some space-time region Rb (Figure 7) and
the sender stays oblivious about his bit choice b. Furthermore, the receiver is not able to
know anything about the other message m1−b at space-time region R1−b. The fundamental
difference between the standard 1-out-of-2 OT and SCOT is related to the space-time
regions in which the receiver is allowed to know messages m0 and m1. In the standard OT,
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the receiver can never deduce the message m1−b, whether in SCOT the receiver is allowed
to find the message m1−b outside region R1−b.

Protocol [72]. In the first proposed SCOT protocol [72], both the sender and receiver have
three representatives (called agents) who take part in the protocol at different spacetime
locations. The sender’s agents are denoted by S0, S and S1 and the receiver’s agents by
R0, R and R1, which are located at x = −h, x = 0 and x = h, respectively (Figure 7). The
protocol is also based on the standard idea of conjugate coding and it goes as follows. The
agent S prepares a string of qubits using conjugate coding and sends them to the receiver’s
corresponding agent R at spacetime point P. Then, S sends the bases θ used to prepare
these states and masked messages ti to the agents Si at Qi, for i = 0, 1 (blue arrows in
Figure 7). Then, the receiver’s agent R sends the received qubits |x〉θ to the agent Rb located
at Qb according to his bit choice b. In Figure 7, it is depicted the case where the receiver’s
bit choice is b = 1, meaning R sends the string of quibits to R1 (yellow arrow) at Q1. Upon
receiving the tuple (θ, ti), the agent Si sends them to the corresponding receiver’s agent
Ri. At this stage, Rb has all the necessary elements to decode tb and retrieve the desired
message mb. Check the protocol in Figure 8 for more details.

ΠSCOT protocol

Parameters: Reference frame F in Minkowski spacetime.
S input: (m0, m1) ∈ {0, 1}n (two messages) generated in the past cone of P, and
stored securely in the computer Ci in the past light cone of Qi, for i = 0, 1.
R input: b ∈ {0, 1} (bit choice).

BB84 phase:
1. Agent S generates random bits x←$ {0, 1}n and random bases θ←$ {+,×}n,

in the past light cone of P. Gives the states |x〉θ to agent R at P.
2. Agent S sends the bases θ and ti = x⊕mi to Si (located at Qi) using a secure

classical channel, for i = 0, 1.

Key phase:
3. Agent Si gives θ and ti to agent Ri at Qi.
4. Agent R sends the received states |x〉θ to agent Rb.
5. Agent Rb measures the received states in the bases θ, obtaining the string x.

Transfer phase:
6. Agent Rb computes x⊕ tb and outputs mb at Qb.

S output: ⊥.
R output: mb at Qb.

Figure 8. SCOT protocol [72].

Security. Regarding security, the general no-go theorems do not apply to this SCOT
protocol because of the Minkowski causality. The causality implies that any nonlocal
unitary applied within both spacetime regions R0 and R1, can only be completed in the
future light cone of point Q. In other words, the attack cannot be achieved within both
spacetime regions R0 and R1.

Further work. The protocol ΠSCOT was improved in a subsequent work [134], allowing
more practical implementation of SCOT. This improved protocol does not require quantum
memories and long-distance quantum communications. Then, the protocol presented by
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Garcia and Kerenidis [134] was extended to one-out-of-k SCOT, where the sender owns k
messages and the receiver gets just one of the messages without letting the sender know
his choice [135].

4.6.2. Location-Oblivious Data Transfer

Location-oblivious data transfer (LODT) was the first cryptographic task with classical
inputs and outputs proven to be unconditionally secure based on both quantum theory
and special relativity. For the sake of clarity, throughout this section, we focus on the case
where the parties agree on just two spacetime points. However, as noted in the original
work [73], the LODT protocol can be easily extended to an arbitrarily higher number of
spacetime points.

Definition. In LODT, both parties agree on two spacetime points, Q0 and Q1, and the
receiver defines some Q2 ∈ L(Q0) ∩ L(Q1), where L(X) denotes the future light cone of
spacetime point X. The sender inputs just one message m, and the receiver has no input. At
the end of the protocol, the receiver obtains the message m at some random location Qb for
b = 0, 1, 2, while the sender stays oblivious about the spacetime point Qb. Note that this is
fundamentally different from SCOT. In SCOT, the receiver wants to hide his bit choice b,
whether in LODT he wants to hide the location where he obtains the sender’s message m.

Protocol [73]. The ΠLODT protocol assumes the sender and the receiver can independently
and securely access all the points P, Q0, Q1 and Q2, and instantaneously exchange informa-
tion there. Theoretically, we achieve this through the concept of representatives (or agents)
located at the relevant space-time points (P, Q0, Q1 and Q2). Although the author [73] does
not differentiate between agents, for the sake of coherence with SCOT exposition, here
we simplify and refer to the sender’s agents as S0, S and S1 and to the receiver’s agents
as R0, R and R1, which are located at x = −h, x = 0 and x = h, respectively (Figure 9).
Moreover, in the beginning of the protocol, the parties agree on a maximally entangled
orthonormal basis ofHS

d ⊗H
R
d that encodes the possible messages owned by the sender,

i.e., ψi
SR for i = 1, . . . , d2. HS

d (HR
d ) is the d–dimensional Hilbert space initially used by the

sender (receiver).
The protocol goes as follows. Instead of preparing a string of qubits based on conjugate

coding, the agent S prepares a maximally entangled state encoding her message m ∈ [d2],
i.e., ψm

SR. At point P, she sends the second subsystem ψm
R to R. Then, each party choose

randomly to which point (Q0 or Q1) they send their subsystem. If they happen to choose the
same point Qj, the agent Rj is able to obtain message m at that point, for j = 0, 1. Otherwise,
both receiver’s agents R0 and R1 have to send the corresponding subsystems ψi

S and ψi
R

to some point Q2 defined by the receiver. Since we are bounded by the laws of special
relativity, the defined point Q2 must be accessible from both Q0 and Q1. In other words, Q2
must be in the intersection of their future light cones, i.e., Q2 ∈ L(Q0) ∩ L(Q1). Then, the
receiver agent at Q2 is able to make a joint measurement and obtains the integer m. Check
the protocol in Figure 10 for more details.
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ψm
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R

ψm
S ψm
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Q2
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0
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0−h h

Figure 9. Representation of the ΠLODT protocol in the reference frame F in Minkowski spacetime
where the sender randomly chooses j = 0 and the receiver randomly chooses k = 1. In this scenario,
the receiver is only able to obtain message m at point Q. Blue arrows represent the information sent
by the sender’s agents. Yellow arrows represent the information sent by the receiver’s agents.

ΠLODT protocol

Parameters: Reference frame F in Minkowski spacetime. Points Q0 and Q1. Pre-
agreed orthonormal basis ofHS

d ⊗H
R
d labeled by i = 1, . . . , d2.

S input: m ∈ [d2].
R input: ⊥.

Preparation phase:
1. Agent S prepares maximally entangled state ψm

SR according to input message,
m, in the past cone of P.

Distribution phase:
2. Agent S gives the second subsystem to agent R at spacetime point P.
3. Agent S generates random bit j ←$ {0, 1} and sends her subsystem ψm

S to
agent Sj at Qj.

4. Agent R generates random bit k ←$ {0, 1} and sends his subsystem ψm
R to

agent Rk at Qk.

Transfer phase
5. Agent Sj gives her subsystem to agent Rj at point Qj.
6. Now, if j = k:

(a) Agent Rj carries out a joint measurement at Qj and obtains the integer
m.

7. Otherwise, agents R0 and R1 sends both qudits from Q0 and Q1 to some
point Q2 in the intersection of their future light cone, L(Q0) ∩ L(Q1). Then, R
measures both qubits and obtains the integer m.

S output: ⊥.
R output: (m, b) at location Qb for b = 0, 1, 2.

Figure 10. LODT protocol [73].
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5. Weak OT

In Section 3, we drew two research paths about quantum OT protocols that try to miti-
gate the impact of the impossibility results on the field of two-party quantum cryptography.
In the previous section, we saw how the research community developed protocols based
on some additional assumptions. In this section, we review some of the most important
protocols that relax the definition of quantum OT, which we refer to as Weak OT (WOT).
Similarly to the definition put forward by He [136], in WOT, both the sender and the
receiver are allowed to cheat with some fixed probability. In other words, the sender has a
specific strategy that allows her to find the receiver’s bit choice b with probability p?S, and
the receiver has some strategy that allows him to obtain both messages m0 and m1 with
probability p?R. The values p?S and p?R are commonly referred to as cheating probabilities
and, ideally, should be strictly less than 1. The main aim of this line of research is to
understand the physical limits of important cryptographic primitives based on protocols
with no additional assumptions other than those imposed by the laws of quantum me-
chanics [136–138]. Consequently, these protocols “may not be well-suited for practical
cryptography”, as stated by Chailloux et al. [137].

In this section, the two presented protocols are random OT. The sender does not define
her messages, m0 and m1, and the receiver does not input his bit choice, b. Instead, they
receive these elements as outputs. This feature is not a limitation of Weak OT protocols
because “chosen” OT protocols can be reduced to random OT versions based on one-time-
pad encryption [139].

On bounds. We already know that it is impossible to have an unconditionally secure
QOT. However, the literature about WOT thrives to have a deeper understanding of
these impossibility results by studying both upper and lower bounds on the cheating
probabilities, p?S and p?R. The Holy Grail of this research endeavour is to find protocols
where both bounds meet, i.e., optimal protocols with tight cheating probabilities. The same
endeavour was carried out successfully for quantum bit commitments [3] and quantum
coin flipping [4]. However, at the time of writing, there has not been proposed an optimal
protocol with tight cheating probabilities for OT under malicious adversaries. At present,
only Chailloux et al. [138] presented a protocol that achieves the lower-bound cheating
probability. However, it assumes the parties are semi-honest, i.e., the cheating parties do
not deviate from the prescribed protocol.

The study of bounds on the cheating probabilities has two different approaches. On
the one hand, more theoretical and non-constructive work has been done to find universal
lower bounds, i.e., lower bounds on all possible QOT protocols. On the other hand, the
search for stronger upper bounds follows a protocol-based approach, where each cheating
probability is studied.

On lower bounds. It is common to look for the maximum value of the cheating probabilities
when studying lower bounds. This is motivated by the fact that it is possible to develop a
QOT protocol unconditionally secure against the sender (p?S = 1

2 ) and completely insecure
against the receiver (p?R = 1) [6,47]. Therefore, the research community has been focused on
finding general lower bounds on the maximum of the cheating probabilities, i.e., p?max :=
max(p?S, p?R). At the time of writing, the known general lower bounds are presented in
Table 1.

Table 1. General lower bounds on p?max.

Ref. [140] [137] [141] [138] 1 [142]

p?max ≥ 0.52 0.59 0.61 0.67
1 In this work, the authors restrict the analysis to semi-honest QOT protocols.
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Next, we present two protocols proposed by the works [137,142] achieving a cheating
probability p?max of 0.75.

Chailloux-Kerenidis-Sikora protocol [137]. The first WOT protocol ΠCKS
wot (Figure 11)

was presented in a joint work by Chailloux, Kerenidis and Sikora [137]. This protocol is
structurally different from BBCS-inspired protocols because it is a two-quantum-message
protocol, i.e., the receiver sends some quantum system to the sender, and the sender returns
the same quantum system to the receiver after applying some operation. Additionally, both
parties work in a three-dimensional Hilbert space and do not use the standard conjugate
coding technique. It is proved in the original work that both cheating probabilities are
equal to 0.75, i.e., p?S = p?R = 0.75.

The protocol is described in Figure 11 and goes as follows. The receiver starts by
preparing an entangled state |φb〉 that depends on his random bit choice b. Consequently,
he saves one of the qutrits to himself and sends the other to the sender. After receiving
the subsystem from the receiver, the sender applies a unitary operation according to her
chosen random bit messages m0 and m1, and sends her subsystem back to the receiver.
At this point in the protocol, the receiver owns a state |ψb〉 that is either orthogonal to
the initial entangled state |φb〉 or the same. Therefore, he can perform a measurement
to perfectly distinguish these two cases. Since the message mb is encoded in the phase
of the state |φb〉, the receiver can conclude that mb = 0 when he obtains the initial state
(i.e., no phase change) and mb = 1 when he obtains the corresponding orthogonal state∣∣φ′b〉 = 1√

2

(
|bb〉 − |22〉

)
(i.e., a phase change was applied).

ΠCKS
wot protocol

S input: ⊥.
R input: ⊥.

1. R prepares the state |φb〉 = 1√
2

(
|bb〉 + |22〉

)
according to random bit b ←$

{0, 1}. He sends the first qutrit to S.
2. S randomly chooses m0, m1 ←$ {0, 1} and applies the unitary |a〉 → (−1)ma |a〉

on the received qutrit, where x2 := 0.
3. S sends her qutrit back to R. Now, R state is |ψb〉 = 1√

2

(
(−1)mb |bb〉+ |22〉

)
.

4. R performs the measurement {Π0 = |φb〉〈φb|, Π1 =
∣∣φ′b〉〈φ′b∣∣, I −Π0 −Π1} on

the received state |ψb〉, where
∣∣φ′b〉 = 1√

2

(
|bb〉 − |22〉

)
.

5. R assigns mb := i if the outcome is Πi for i ∈ {0, 1}. Otherwise, aborts.

S output: m0, m1 ∈ {0, 1}.
R output: mb, b.

Figure 11. WOT protocol by Chailloux et al. [137].

Amiri at al. protocol [142]. More recently, Amiri et al. [142] proposed a protocol ΠASR+
wot

along with its experimental realization, that allows performing a batch of random WOT.
The central technique used in this protocol is unambiguous state elimination (USE) mea-
surements. Succinctly, unambiguous measurements aim to unambiguously distinguish a
set of states ρx for x ∈ X with prior probabilities px. USE measurements are a particular
type of unambiguous measurements that only guarantee some state parameter x does
not belong to a subset Y of X . In other words, these measurements decrease the set of
possible states to which the measured state belongs. This protocol improves on the previous
presented protocol ΠASR+

wot , as the receiver’s cheating probability is slightly decreased to
p?R = 0.73.
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The protocol is described in Figure 12 and goes as follows. In the first phase of the
protocol, the sender starts by preparing a string of pairs of qubits of the form |xixi〉θi

,
where xi ∈ {0, 1} and θi ∈ {+,×}. This string of qubits encodes the random elements
mi

0mi
1 ←$ {00, 01, 10, 11} generated by the sender that will lead to the final messages

m0, m1 ∈ {0, 1}n−
√

n. The encoding is presented in the first step of the protocol ΠASR+
wot .

Note that, for each qubit i, the encoding mapping is designed in such a way that both the
elements mi

0mi
1 encoded in the same basis θi and the corresponding encodings |xixi〉θi

have
opposite bits, i.e.,

00→ |00〉+ 01→ |00〉×
11→ |11〉+ 10→ |11〉×.

This separation is the key ingredient that allows a USE measurement to be carried out. After
sending this string of qubits to the receiver, both parties engage in a cut and choose phase,
where the receiver checks a subset of qubits, giving him confidence in the sender’s honesty.
In the last phase, for each pair of qubits, the receiver performs one USE measurement
on each qubit belonging to it. The USE measurements simply consist in measuring each
qubit on a different basis. This will allow him to discard one element from the set of
strings encoded by the computational basis, Y+ = {00, 11}, and from the set of strings
encoded by the Hadamard basis Y× = {01, 10}. He will discard the elements by comparing
the quantum state obtained in his measurements with the quantum states encoded in
the corresponding basis. Now, the receiver takes as his message mi

bi
the bit that the

remaining elements from both Y+ and Y× have in common and the choice bit bi the
corresponding index.

As an example, imagine the sender uses the encoding of 00 to prepare the pair of
qubits |00〉+ in round i. When measuring the first qubit on the computational basis, the
receiver obtains yi

0 = 0. In addition, he obtains randomly some yi
1 when measuring the

second qubit in the Hadamard basis. For the sake of exposition, let the element be yi
1 = 1.

Then, he discards the element 11 (encoded as |11〉+) from Y+ because the state |0〉+ was
obtained when the first qubit was measured on the computational basis. Similarly, he
discards the element 01 (encoded as |00〉×) from Y× because the state |1〉× was obtained
when measuring the second qubit in the Hadamard basis. The remaining strings are
yi
+,0yi

+,1 = 00 and yi
×,0yi

×,1 = 10. By comparing both elements, the receiver outputs
mi

bi
= 0 and bi = 1.
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ΠASR+
wot protocol

S input: ⊥.
R input: ⊥.

Preparation phase:

1. S random elements mi
0mi

1 ←$ {00, 01, 10, 11} for i ∈ [n] and generates quantum
states according to the following encoding:

00 → |00〉+
01 → |00〉×
10 → |11〉×
11 → |11〉+

2. S sends these n states to R.

Cut and choose phase:

3. R asks S to reveal a random subset T of states |xx〉θ , where |T| =
√

n, x ∈ {0, 1}
and θ ∈ {+,×}.

4. R measures both qubits in the θ basis. They abort if any measurement result
does not match S declaration. Otherwise, they discard subset T of qubits and
proceed.

OT phase:
5. For every other remaining states, R performs two USE measurements:

(a) Measures the first qubit in the computational basis (+-basis). Let yi
0 ∈

{0, 1} be the result obtained;
(b) Measures the second qubit in the Hadamard basis (×-basis). Let yi

1 ∈
{0, 1} be the result obtained.

6. According to the tuples yi
0yi

1, R can rule out with certainty one element from
the set Y+ = {00, 11} and another from the set Y× = {01, 10}. Let yi

+,0yi
+,1 be

the tuple kept from Y+ and yi
×,0yi

×,1 be the tuple kept from Y×.
7. R compares yi

+,0yi
+,1 with yi

×,0yi
×,1. Consequently, assigns bi := j for j such

that yi
+,j = yi

×,j and mi
bi

:= yi
+,j.

S output: m0, m1 ∈ {0, 1}n−
√

n.
R output: mb, b ∈ {0, 1}n−

√
n.

Figure 12. WOT protocol by Amiri et al. [142].

6. Weak Private Database Query

The concept of private database query (PDQ) was introduced by Gertner et al. [143]
under a different name (private information retrieval), which is very similar to 1-out-of-N
OT. The name is directly influenced by the following use case. One user is allowed to query
just one database item without letting the owner of the database know which item was
queried. The first quantum protocol for PDQ (also known as quantum database query) was
proposed by Giovannetti et al. [144] and followed by additional works [145,146]. However,
these protocols were not experimentally driven, and their implementation is rather difficult.
The first experimentally feasible protocol was presented by Jakobi et al. [80].

In this section, we briefly review the work initiated by Jakobi et al. [80]. For the sake of
consistency with previews sections, the user is called receiver (R) and the database owner
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is called sender (S). As this is a secure two-party quantum protocol, its security is affected
by the aforementioned impossibility results [47]. Consequently, since Jakobi et al. protocol
ΠPDQ (Figures 13 and 14) is not based on any assumption model, the definition of PDQ
has to be relaxed in order to allow its realization. Therefore, PDQ protocols fall into the
category of 1-out-of-N Weak OT and, for this reason, we call it Weak PDQ. This line of
research follows a more pragmatic approach as it is mainly focused on developing protocols
(Table 2). In fact, to the best of our knowledge, the work by Osborn and Sikora [140] is the
only one that studies theoretical bounds on the cheating probabilities of both parties for
general two-party secure function evaluation, including 1-out-of-N OT.

ΠPDQ protocol (first part)
Parameters: k, security parameter.
S input: X ∈ {0, 1}N .
R input: b ∈ [N].

SARG04 phase:

1. S generates random bits xS ←$ {0, 1}n and random bases θS ←$ {+,×}n,

where n = k× N. Sends the state
∣∣∣xS〉

θS
to R.

2. R randomly chooses bases θR ←$ {+,×}n to measure the received qubits. We
denote by xR his output bits.

Oblivious key phase:

3. S reveals to R a pair of states
{∣∣∣x̃0,S

i

〉
θ̃0,S

i

,
∣∣∣x̃1,S

i

〉
θ̃1,S

i

}
, ∀i ∈ [n] drawn from these

four possibilities:
{
|0〉+, |0〉×

}
,
{
|0〉×, |1〉+

}
,
{
|1〉+, |1〉×

}
or
{
|1〉×, |0〉+

}
,

where one state has actually been sent and the other is a random element
belonging to the other basis.

4. S sets her oblivious key to okS := θS, with the encoding +→ 0 and × → 1.
5. R interpret the result and builds his oblivious key as follows:

(a) eRi := 0 and okRi := θ̃l−1,S
i if xRi 6= x̃l,S

i whenever θRi = θ̃l,S
i .

(b) eRi := 1 and okRi can be set to a random value.
. . .

Figure 13. First part of the PDQ protocol by Jakobi et al. [80].

Protocol [80]. The first presented PDQ protocol ΠPDQ (Figures 13 and 14) is very similar in
structure to the BBCS ΠBBCS protocol [6]. Indeed, it is a one-quantum-message protocol
that generats an oblivious key used by the sender to encode her database and by the receiver
to obtain the desired item. In PDQ, we use the same definition of oblivious key (Definition 4)
as given in Section 4.1. Besides the similarities between ΠPDQ and ΠBBCS, the following
differences are worth stressing.

Although the BBCS ΠBBCS protocol is insecure for a dishonest receiver, the ΠPDQ

protocol guarantees that he only has a limited possibility of cheating. This improvement
comes from the fact that ΠPDQ is based on the SARG04 Quantum Key Distribution (QKD)
protocol [147] instead of the standard BB84 QKD protocol, which resists memory attacks
to some extent. In fact, in the SARG04 protocol, the sender’s bases are never revealed to
the receiver. Consequently, if the receiver postpones the measurement of the states, he is
faced with a quantum discrimination problem, preventing him from having full knowledge
of the photons’ state. Another distinctive feature of the SARG04 protocol is that it uses
a modified version of quantum conjugate coding: BB84 states encode the key bits on the
bases θ instead of encoding them on the vector elements x. This approach is adopted by
Jakobi et al. [80] for the case of PDQ.
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ΠPDQ protocol (second part)
. . .

Privacy amplification phase:

6. Each key of the created oblivious key
(
okS, (eR, okR)

)
must be of length n =

k× N (k as the security parameter). Both parties cut them into k substrings,
i.e., substrings

(
okj,S, (ej,R, okj,R)

)
each of length N for j ∈ [k].

7. Both parties apply a bitwise XOR operation to their ok part and R apply a
bitwise OR operation to his e part, i.e., rename

(
okS, (eR, okR)

)
accordingly:

okR :=
k⊕

j=1

okj,R

eR :=
∨k

j=1e
j,R

This reduces R information on the key to roughly one bit.
8. Restart the protocol if eRi = 1 for all i ∈ [N].

Transfer phase:
9. Let j be such that eRj = 0. R announces s = j− b.

10. S encodes the database by bitwise adding okS cyclic shifted by s, i.e., C =

X⊕ okSs .
11. R can read Cb = Xb ⊕ okSj and obtains Xb.

S output: ⊥.
R output: Xb ∈ {0, 1}.

Figure 14. Second part of the PDQ protocol by Jakobi et al. [80].

The full protocol is presented in both Figures 13 and 14. It goes as follows. Similarly
to the BBCS ΠBBCS protocol, the sender randomly prepares a string of qubits in randomly
chosen bases, and the receiver measures the received qubits in random bases. Then, instead
of revealing the sender’s bases θS, for each index i the sender reveals a pair of states{
|ai〉ui

, |bi〉vi

}
drawn from four possibilities. Her choice is designed in such a way that

one of the states in the pair is the one sent by her, and the other is in a random element
on a different basis. Then, both parties are in a position to define their part of the shared
oblivious key. The sender defines her oblivious key okS as the bases choices θS and the
receiver defines okR based on the information given by the pair

{
|ai〉ui

, |bi〉vi

}
and his

measurements. At this stage, the receiver has around 1/4 of the elements of his oblivious
key okR correlated with the sender’s oblivious key okS. However, in PDQ, the receiver
can only obtain one bit from the database. As such, they initiate a classical post-processing
method that aims to reduce the receiver’s knowledge of the sender’s oblivious key okS to
approximately one bit. Finally, the receiver tells the sender the required shift to be applied to
the database, allowing him to decode the wanted database element through his oblivious key.

Further work. The above protocol ΠPDQ inspired the development of more efficient and
flexible protocols for PDQ. In Table 2, we present a list of PDQ/OT protocols based on
oblivious keys. Note that the term oblivious transfer (OT) is equivalent to private database
query (PDQ), and QKD-based PDQ is equivalent to QOK-based OT. In addition, most of
the protocols presented in Table 2 rely their security on the SARG04 protocol.
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Table 2. Summary of PDQ research line.

Year Author Brief Description

2012 Gao et al. [148]
Generalized the ΠPDQ [80] protocol by adding a parameter
θ that regulates the average number of bits known by the
receiver.

2013 Rao et al. [149] Improved the communication complexity of ΠPDQ [80]
from O(N log N) to O(N).

2013 Zhang et al. [150] Designed a PDQ protocol based on counterfactual QKD.

2014 Wei et al. [151]
Developed a generalization of the ΠPDQ [80] protocol that
allows to retrieve a block of bits from the database with
only one query.

2014 Chan et al. [152]
Developed a practical fault-tolerant PDQ protocol that can
cope with noisy channels and presented an experimental
realization.

2015 Gao et al. [153]
Presented an attack on the common dilution method of
the oblivious key and introduced a new error-correction
method for the oblivious keys.

2015 Liu et al. [154]

Introduced a PDQ protocol based on Round Robin Differ-
ential Phase Shift (RRDPS) QKD which limits the number
of items an honest receiver is able to know to just one and
with zero failure probability.

2015 Yang et al. [155] Proposed the first PDQ protocol based on semi-QKD.

2015 Yu et al. [156] Pointed that the Yang et al. [155] semi-QKD based PDQ
protocol can be attacked and presented a fully quantum PDQ.

2016 Wei et al. [157]
Proposed a two-way QKD based PDQ protocol that is loss
tolerant and robust against both quantum memory and
joint measurement attacks.

2016 Yang et al. [158]

Proposed a PDQ protocol based on one-way-six-state QKD
with security against joint-measurement attacks given by a
new design for the classical post-processing of the oblivious
keys.

2017 Maitra et al. [159] Proposed a Device-Independent Quantum Private Query.

2018 Wei et al. [160]

Examined the security of Liu et al. [154] RRDPS protocol
under imperfect sources and presented an improved proto-
col based on a technique known as low-shift and addition
(LSA).

2018 Zhou et al. [161] Proposed a new PDQ protocol based on two-way QKD that
ensures the privacy of both sender and receiver.

2019 Chang et al. [162] Suggested a PDQ protocol based on a two-way QKD with
improved privacy.

2019 Du and Li [163] Proposed a robust High Capability QKD-Based PDQ proto-
col.

2020 Ye et al. [164] Developed a Semi-QKD based PDQ protocol such that any
kind of evasion can be detected.

7. Further Topics

The research field of quantum oblivious transfer is already quite extensive and, in this
review, but we only focus this review on a particular type of OT, namely 1-out-of-N OT.
We briefly mention some topics that can be included in an extended version of this work.

All-or-nothing OT. The first proposal of OT was put forward by Rabin [10] in a flavour
different from 1-out-of-2 OT, named all-or-nothing OT or 1/2 OT. In this flavour, the sender
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only has one message m, and the receiver receives it with probability 1/2, without the sender
knowing whether or not the receiver has received her message. In the classical setting,
both 1-out-of-2 OT and all-or-nothing OT are proved to be equivalent [165]. However,
these classical reductions cannot be applied in the quantum setting as it was proved by
He and Wang [166] that these two flavours are not equivalent in the quantum setting. The
first all-or-nothing QOT was proposed by Crépeau and Kilian [82] and later extended
by Damgård et al. [68] in the bounded-quantum-storage model. In general, 1-out-of-2
OT protocols can be adapted to achieve all-or-nothing OT [167,168]. Moreover, He and
Wang [169] presented an entanglement-based all-or-nothing OT protocol that claims to be
secure despite the impossibility results of two-party function evaluation. Their claim is
based on the fact that, in the all-or-nothing variant, the receiver does not unambiguously
obtain the message m, which is an implicit assumption in Lo’s impossibility result [47].

XOR OT. The concept of XOR oblivious transfer was presented in the classical setting by
Brassard et al. [170]. In this variant of OT, the sender inputs two messages, m0 and m1, and
the receiver obtains one of these three elements: m0, m1 or m2 = m0 ⊗m1. In the quantum
setting, there are currently only two proposed protocols that achieve this task [171,172].

OT of qubits. The vast majority of quantum oblivious transfer protocols focus on a classical
input-output setting, i.e., both the messages input by the sender and the elements obtained
by the receiver are classical. More recently, Zhang et al. [173] proposed the concept of
OT with qubit messages. In their work, they present a variant of the all-or-nothing OT
with an unknown qubit message. The main tool used to achieve this task is a probabilistic
teleportation protocol.

Experimental protocols. Experimental realizations of quantum communication proto-
cols have to take into account sources of errors (loss of photons and error in measure-
ments) which are not considered by more theoretical protocols. In practice, it is desir-
able to design loss-tolerant and fault-tolerant protocols. This study was initiated by
Schaffner et al. [105,109] and followed by Wehner et al. [174], where they analyse the im-
pact of both loss and error on the security of the protocol. Based on this work, two indepen-
dent practical experiments implemented OT in the noisy storage model. Erven et al. [175]
implementation was based on Discrete Variables and generated a 1366-bit random oblivious
transfer string in ∼3 min. Furrer et al. [176] implementation was based on Continuous
Variables and achieved a generation rate of around 1000 oblivious bit transfers per second.
In addition, experimental implementations of PDQ protocols have been reported in the
literature [152] as well as Weak OT protocols [142].

8. Conclusions

Since the first proposal of quantum OT 40 years ago, active and fruitful research
around this topic deepened our understanding of the limits and advantages of quantum
cryptography. It was first proved that two fundamental primitives, bit commitment and
oblivious transfer, are equivalent in the quantum setting, a relation that does not hold
classically. Unfortunately, it was also proved that both primitives cannot be unconditionally
secure in the quantum setting, matching the impossibility results in the classical setting.
However, this equivalence in the quantum setting implies that quantum OT requires weaker
security assumptions than classical OT. Quantum OT can be implemented solely with
quantum-hard one-way functions and classical OT requires at least one-way functions with
trapdoors, i.e., some sort of asymmetric cryptography. This makes classical OT potentially
more vulnerable to quantum computer attacks and tendentiously less computationally
efficient. Additionally, some quantum OT implementations benefit from an important
feature, known as everlasting security, that does not have a classical counterpart. It states
that even if the security assumptions lose validity after the protocol execution, the security
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of the protocol is not compromised. In other words, quantum OT implementations are
considered unconditionally secure after the protocol execution.

We went through some of the most common assumptions used to implement secure
quantum OT. Hybrid approaches are based on both quantum physical laws and computa-
tional complexity assumptions. These can offer practical and secure solutions, with gains
both in terms of security and efficiency, when compared with classical implementations.
Limited-quantum-storage approaches offer secure solutions as long as the technological
limitations are met during the protocol execution. In addition, two primitives inspired by
OT are shown to be unconditionally secure under relativistic effects. Interestingly, these
are not possible in the classical setting. Protocols solely based on the laws of quantum
mechanics lead to protocols where the parties can cheat with some fixed probability. These
protocols are commonly explored in the subfields of weak OT and private database query.
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