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Quantum Optical Fredkin Gate

G. J. Milburn

Department of Physics, University of Queensland, St Luc. ia 4067, Brisbane, Australia
(Received 1 August 1988)

A simple optical model to realize a reversible, potentially error-free logic gate —a Fredkin gate —is

discussed. The device dissipates no energy and makes use of the Kerr nonlinearity to produce intensity-

dependent phase shifts. The analysis shows that quantum mechanics permits the operation of error-free

logic gates which dissipate no energy. However, even though the device is nondissipative, error-free per-

formance only occurs under particular operating conditions.

PACS numbers: 42.80.Vc, 42.50.Bs, 89.70.+c

Computers are constructed from physical devices and

as such are constrained by the laws of physics. Do these

laws place universal limitations on computation? Ap-

parently not, providing the computer is constructed from

so-called "reversible logic gates.
"

All current com-

puters are open dissipative systems requiring an energy

input to run. The physical elements which realize the

logical primitives of the computer are dissipative. How-

ever, it is not necessary that logical primitives be realized

by dissipative elements. An example will be given in this

Letter. A device which dissipates no energy is potential-

ly reversible. Thus we are led to consider reversible logic

gates. Such a device, however, need not be error free;

that is, its output may have been "1" when it should

have been "0."
Does quantum mechanics impose any fundamental

limits to computation, even for those performed by rever-

sible gates? The consensus appears to be that it does

not. 4 'o This conclusion is based on analyzing particu-

lar, rather idealized models for reversible computation,

according to quantum-mechanical principles. Benioff

discussed a quantum model for a standard Turing

machine. Feynman has proposed a model for a reversi-

ble logic gate based on a two-state quantum system, such

as spin. A somewhat more realistic, though less ideal

model based on an ac SQUID has been proposed by Li-

kharev, " while Obermayer, Mahler, and Haken' have

suggested a solid-state bistable device. These devices,

however, are not isolated from thermal or quantum fluc-

tuations in the environment. An optical Fredkin gate

has been proposed by Shamir et al. '

In this paper a reversible logic gate constructed from a

Mach-Zehnder interferometer and a crystal with an

intensity-dependent refractive index will be discussed.

The device may be operated at the "quantum level" with

single photons carrying the logical status, or at a macro-

scopic level with light pulses. The device is all optical.

By operating at optical frequencies it is essentially isolat-

ed from thermal noise and is thus the ideal device for

analyzing the ultimate quantum limits to reversible com-

putation. The conclusions can be described as follows.

A device realizing a logical primitive has a certain num-

ber of inputs and outputs. If it is dissipative, energy is

TABLE I. Logic table for a Fredkin gate.

Ct'

Input

a;

Output

bo a,

lost from some or all of the inputs and noise is necessari-

ly added to the corresponding outputs. Even at absolute

zero, dissipation on any input line leads quantum (zero-

point) noise to be added to the output.
' This is neces-

sary to preserve the commutation relations for the opera-

tors describing the output states and is essentially a

consequence of the Iluctuation-dissipation theorem. If
the device is nondissipative, noise may still be added to

the outputs (Iluctuations are not necessarily accom-

panied by dissipation). However, it is always possible to

conceive of a nondissipative device which adds no noise

to the output. Of course, energy may be dissipated in

reading the final output; however, this depends only on

the number of output lines and not on the number of
computation steps.

One particular logical primitive for reversible compu-

tation has been described by Fredkin and ToA'oli and

will be referred to here as a Fredkin gate. This is a de-

vice with three input lines and three output lines. One of
the lines is designated the control line and the logical

status of this line is left unchanged by the gate. If the

bit on the control line is zero, the logical status of the

other two lines is unchanged. If the bit on the control

line is one, the bits on the other two lines are inter-

changed. The logic diagram for the gate is shown in

Table I. The reader is referred to Ref. 3 for details on

how AND gates, flip-flops, etc., may be constructed from

Fredkin gates.

An optical model for a Fredkin gate is indicated
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bo
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FIG. 1. Schematic outline of an optical system to realize a

Fredkin gate. See text for details.

schematically in Fig. 1. Essentially it is a Mach-

Zehnder interferometer. A substance with an intensity-

dependent refractive index (optical Kerr effect' ) is

placed in both arms. In such a medium the field en-

counters a refractive index which changes according to

the field intensity and thus undergoes an intensity-

dependent phase shift. The possibility of using this effect

as an optical switch was demonstrated many years ago. '

It will be assumed that this effect can be adequately de-

scribed quantum mechanically in terms of a phenomeno-

logical third-order nonlinear susceptibility, g, with

quantized fields. This approach has been successfully

applied to a number of experiments such as squeezed-

state generation' and quantum nondemolition detec-

tion ' ' in which quantum effects are exhibited. The ap-

propriate interaction Hamiltonian for the two-field Kerr

effect is given in Ref. 17. The device couples three

traveling-wave modes of the electromagnetic field. Two

input fields represented by annihilation operators a; and

b; are coupled by the input beam splitter. A third field,

represented by the annihilation operator c;, is the control

field and is coupled to the field in one arm of the inter-

ferometer, by the nonlinear substance. This field does

not pass through the interferometer. In the absence of a

control field, the field in each arm of the interferometer

undergoes a self-induced intensity-dependent phase shift.

When the control field is present, however, it causes an

induced phase shift in that arm of the interferometer. It

is this phase shift which enables the field e; to control the

output state of the device. The annihilation operators

representing the output fields are denoted a, b, and c .
For fields at optical frequencies, the mean thermal

proton number in the input fields may be taken as zero.

If we further stipulate that mirrors Ml and M2 (see Fig.

1) are lossless and that the nonlinear substance itself is

lossless and contributes no spontaneously emitted pho-

tons, the three traveling-wave modes are completely

decoupled from fluctuations (zero-point or thermal) in

(1)

(2)

(3)

(4)

V=
2 [exp[i(g/2)a ja2] —exp[i@(c; c;+ —,

'
a lpga i) +i 8]j,

(5)
with

al =(1/J2)(a;+b;), a2=(1/J2)(a; —b;) .

The operators a~ and a2 describe the fields in arms 1

and 2, respectively. The phase 0 accounts for any linear

phase shift between the two arms of the interferometer

and g is the nonlinear coupling constant proportional to

g . ' These transformations are derived from the

Hamiltonian discussed in Ref. 17. It is easily verified

that the commutation relations for the output fields are

the same as those of the input.

The mean and variance of the photon number in each

of the three output modes may now be determined for

various input states. As an example, consider first the

case where mode a; is in a one-photon state and all other

inputs are in the vacuum state. The mean and variances

in each of the output fields are

(a, a, ) =1 —(b b, ) =
2 (I+cosO), (6)

&c,c,) =(c; c;& =0,

V(a, a, ) = V(b, b, ) = —,
'

sin 8,

V(c.'c. ) =O.

(7)
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any other field mode. These assumption will be reexam-

ined towards the end of this Letter.

The device works as follows. The interferometer is ad-

justed so that there is maximum transmission in the out-

put mode a„when a nonzero field is present at a; and

vacuum states for the fields b; and c;. If a; happens to be

in a one-photon state, a photon will be transmitted with

certainty in mode a, . If the input control field contains a

field just sufficient to cause a phase change of n in one

arm of the interferometer, the intensity in mode a, falls

to zero and the photon is never transmitted in that mode.

In a macroscopic version of the gate it is not necessary to

operate between the absolute minimum and absolute

maximum of the interference pattern, so long as the

change in intensity is resolvable above the noise level.

However, as will be shown, the single-photon version of

the device performs without error, only if operated be-

tween 0 and 1 in the interference pattern.

The quantum analysis of the device consists in finding

the unitary (nonlinear) transformation connecting the

operators a;, b;, and c; to a„b„and c,. If we assume

50/50 beam splitters, the required transformation is

found to be

a, =Ua; —Vb;,

b, =Va;+Ub;,

c, =exp [(i/2) gc; c; +i@a ~
a ~ 1c;,

where

U= —,
' {exp[i(g/2)aja21+exp[ig(c; c;+ 2 ala~)+i&]l,
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If the device is operated at 8=2nx (i.e., at the max-

imum transmission in mode a, ), the photon is transmit-

ted with certainty in mode a, [as indicated by

V(a, a, ) =0 at this point]. If both modes a; and c; are in

one-photon states then

(a, a, & =1 —(b, b, &
= —,

' [I+cos(@+8)],

(c,c,) =(c; c;) =1,

V(a,'a, ) =V(b,'b, ) = —,
' sin'(g+ 8),

V(c, c, ) =0.

(io)

(12)

(13)

If it can be arranged that g+ 8 =n, the photon is never

transmitted in mode a„ that is, it is transmitted with

certainty in mode b, . Continuing in this fashion, one

verifies that the device realizes a Fredkin gate with a

photon carrying the logical status "1"and that further-

more the device operates without error under these con-

ditions.

Needless to say, it would be extremely dificult to

make the device operate at the one-photon level. Huge

third-order susceptibilities would be required for the

stated phase shifts. The point of the model, however, is

that it can in principle be operated in this way. Howev-

er, some words of caution must be added. The unitary

transformations which describe the operation of the de-

vice make no reference to the quantum state of the vari-

ous beams. In this Letter these states are taken to be n-

photon pure states. This is at best only a crude idealiza-

tion of the sort of states appropriate to digital signals. A

more complete description would need to consider quan-

tum pulse states, in which case the unitary transforma-

tion method could be generalized aiong the lines of Ref.
20. This extension is currently under way. One may

also question the validity of a description in terms of a

nonlinear polarizability with beams so weak. The known

conditions for the validity of such a description specify

that the fields be detuned from a resonance and suf-

ficiently far from saturation, but make no mention of
how low the field intensity may be made. It must be ad-

mitted that there is some uncertainty in this aspect.

Despite these misgivings the model of this paper is

offered as a reasonably simple way to explore in more

detail possible general quantum limits to computation

and as a basis for further work.

It would appear at first sight that the device would

operate at the macroscopic level for any sort of input

fields. This is not the case. Any intensity fluctuations,

quantum or classical, on the control beam will cause

phase fluctuations in one arm of the interferometer.

These fluctuations lead to a decrease in fringe visibility

at the output, preventing one from operating in an

error-free mode (see Ref. 21). Number eigenstates of
course have zero-intensity fluctuations and thus enable

error-free operation. However, in a real device some er-

ror in the output may be tolerable. A real problem

might be phase noise added by the nonlinear medium it-

self. Such a noise source has been identified in certain

nonlinear fibers. '

To model the effect of loss in the interferometer

modes, we insert into each arm of the interferometer a

beam splitter with transmittivity g, just before the out-

put mirror. The required mode transformations now be-

come
A

a, =ULa; —VLb;+R,

b, = Vga; —ULb;+R,

(i4)

(is)

where

&a.'a. &
= —,

' g(I+ cos8),

V(a,ta, ) =
& ri sin 8+ —,

'
ri(1 —q)(1+cos8) .

(2o)

(2i)

When ri =1, these equations reduce to Eqs. (6) and (8).
When one photon is present in mode a; and the control

field,

(a, a, &
= —,

' ri[1+cos(8+@)], (22)

2

V(a, a, ) = sin (8+@)++(1—q)[1+cos(8+@)].
4 2

(23)

At the ideal operating conditions (8=0, g =+) error-free

operation is now no longer possible. Certainly in the
case of Eqs. (22) and (23) the photon is never transmit-
ted in mode a„. however, it is not always transmitted in

the case of Eqs. (20) and (21). Thus the absence of a
photon at mode a does not necessarily imply a photon in

the control beam.

The simple model discussed in this Letter shows that
quantum uncertainties need place no limit on the accura-

cy of a Fredkin gate. However, even this nondissipative

model can produce errors if not operated in the most ad-

vantageous way. If losses are included, the device must

necessarily make mistakes from time to time; the greater
the loss the more frequent the mistakes.

UL =JgU,

VI =A)V,
J%

and R is a reservoir equation given by

R = [(i —q)/2] '"(R,+R,),
where R ~ and R2 are independent reservoir operators
describing fluctuations added by each beam splitter.
These operators satisfy

[R;,R)~] =6;~ .

We further assume the reservoirs are at absolute zero (a
reasonable assumption at optical frequencies) so that

(R; R;)=0. When there is one photon in mode a;, and

all other modes are in the vacuum state, we find
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