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Quantum optical metrology – the lowdown on high-N00N states
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Quantum states of light, such as squeezed states or entangled states, can be used to make measurements (metrology),
produce images, and sense objects with a precision that far exceeds what is possible classically, and also exceeds what
was once thought to be possible quantum mechanically. The primary idea is to exploit quantum effects to beat the
shot-noise limit in metrology and the Rayleigh diffraction limit in imaging and sensing. Quantum optical metrology
has received a boost in recent years with an influx of ideas from the rapidly evolving field of optical quantum
information processing. Both areas of research exploit the creation and manipulation of quantum-entangled states
of light. We will review some of the recent theoretical and experimental advances in this exciting new field of
quantum optical metrology, focusing on examples that exploit a particular two-mode entangled photon state – the
High-N00N state.
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1. Introduction

In 1887 Albert Michelson and Edward Morley
pioneered the precision use of an optical interferom-
eter to measure the speed of light so accurately that
they disproved the existence of the luminiferous ether
(thought to be the medium in which light waves
propagated) [1]. This feat paved the way for Albert
Einstein’s Special Theory of Relativity [2]. The
Michelson interferometer (MI), depicted in Figure 1,
remains in use still today as a test bed for the theory
of relativity, but this time for Einstein’s General
Theory. The interferometer is a giant antenna that
searches the Heavens for gravity waves, which are
predicted by the theory of Einstein, but which have
never been directly observed. The Laser Interferom-
eter Gravitational Wave Observatory (LIGO) is
composed of two Michelson interferometers located
here in Louisiana and also in Washington State [3].
With a circulating laser power of about 100 kW,
and interferometer arms four kilometres long, these
L-shaped machines are capable of measuring length
displacements between the arms on the order of an
attometre (10718m) – a thousand times smaller than
the diameter of a proton! Surprisingly, the ultimate
sensitivity of this gigantic, classical-looking device is
limited by the quantum mechanical fluctuations of the
circulating photon field and, ultimately, the electro-
magnetic fluctuations of the vacuum – that is, empty
space itself. The newly emergent fields of quantum

metrology, imaging, and sensing seek to utilise some
of the same subtle effects exploited in quantum
information processing, particularly quantum entan-
glement, to push the sensitivity of LIGO and all
sorts of related interferometers to the ultimate
quantum limit of resolution. Quantum optical
metrology is a new field that specifically harnesses
these quantum effects to increase the signal-to-noise
ratio in an array of sensors from LIGO-like
interferometers to synchronised atomic clocks. Quan-
tum imaging exploits similar quantum ideas to, for
example, beat the Rayleigh diffraction limit in
resolution of an imaging system, such as used in
optical lithography. Quantum sensing is a new area
of quantum technology that seeks to exploit the
advances in quantum metrology and imaging in
practical remote sensors, such as laser Light Detec-
tion and Ranging (LIDAR) systems, with scientific,
commercial, and defense applications.

To understand the role of quantum mechanics in
optical interferometers, we first consider the proto-
typical Mach–Zehnder interferometer (MZI) as
shown in Figure 2. The MZI is an unfolded MI, in
that the circulating light makes one pass through
two separated beam splitters (BS), instead of two
passes through one BS, as was the case in the
Michelson machine of Figure 1. The two interfe-
rometers are mathematically equivalent. In the MI it
is a bit easier to align the laser beams and it is
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preferred in large interferometer applications such as
LIGO, but the MZI is a bit easier to draw and
analyse and is preferred by theorists and in small

experimental test beds. The results extracted from
the MZI apply as well to the MI.

So let us set our task to measure, as accurately as
possible, the path-length difference between the two
branches (or arms) of the interferometer using mono-
chromatic light of wavelength l. (In LIGO the
wavelength is about one micron.) In the standard
approach, used in LIGO, a laser beam is launched
into the first 50:50 beam splitter (50:50 BS) on the left
in port A, bounced off the two mirrors in the middle,
and recombined at the second 50:50 BS on the right.
Light then emerges from the top and bottom ports, C
and D, of the second beam splitter, and is then made
incident on two photodetectors C and D, as shown.
Typically the intensities in each port, IC and ID, are
measured at each detector and the result is combined
to yield the difference intensity, I ¼ ID – IC, which we
shall call the signal. To indicate the phase induced by
the path difference between the upper and lower
branches, we place an icon for a phase shifter j,
which in this example has the value j ¼ kx. Here x
is the path-length difference between the two arms,
which is the quantity to be measured. The wave
number, k ¼ 2p/l, is a predetermined constant, given
the optical wavelength l. (For a typical laser the
spread or uncertainty in the wavelength is very
small.) The idea is to use the light beam itself as a
ruler, with tick marks spaced by units of l, in order
to measure the path-length difference x. This can be
done by first balancing the interferometer, that is by
making x ¼ 0. In this balanced case the light travels
exactly the same distance via the upper and the
lower branch.

We adopt the convention that the light field always
picks up a p/2 phase shift upon reflection off a mirror
or off a BS, and also no phase shift upon transmission
through a BS [4]. Under these circumstances, the two
light fields emerging from the second BS out of the
upper port C are precisely p out of phase with each
other, and hence completely cancel out due to
destructive interference. (This is called the dark port.)
Consequently the two light fields recombine comple-
tely in phase as they emerge from the lower port D and
add up due to constructive interference. (This is called
the bright port.) Hence, for a balanced MZI all of the
energy that comes in port A emerges out of port D and
none out of port C. Clearly, any change in the path
difference x away from the x ¼ 0 balanced condition
will cause light to appear in the formerly dark port,
and in this way we can measure x by simply measuring
intensities at the detectors. This is in fact what LIGO
does. How precise a measurement of the path
difference x can we make?

It is straightforward to show, using classical optical
theory, that if the light intensity incident on port A is

Figure 2. A Mach–Zehnder interferometer is an ‘unfolded’
Michelson interferometer where two separated beam splitters
play the role of the single one. Laser light in port A is split by
the first 50:50 beam splitter, reflected off two mirrors, and
then accumulates a phase difference, that again is
proportional to the path difference between the upper and
lower arms. The light recombines at the second beam splitter
and emerges in ports C and D. Typically, for a balanced
interferometer, port C is the dark port. Hence, any light
emergent here is indicative of an arm displacement and can
be detected by the two detectors and the analyser.

Figure 1. In a Michelson interferometer, laser light is
incident on a 50:50 beam splitter and the two resultant beams
are launched into two perpendicular arms, which in LIGO
have a length of 4 km. On their round trips between the beam
splitter and the mirrors, the laser beams accumulate a phase
difference j, which is proportional to the displacement
between the two arms caused by a passing gravity wave. The
beams then recombine at the beam splitter and emerge from
the lower port to be detected. The detection port is typically
balanced to be ‘dark’ so that any light that is emergent here
indicates a non-zero arm displacement.

126 J.P. Dowling
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IA, then in terms of the phase shift j the output-port
intensities may be written as [4],

IC ¼ IA sin2ðj=2Þ; ð1aÞ
ID ¼ IA cos2ðj=2Þ: ð1bÞ

Energy is conserved as, from a simple trigonometric
identity, IC þ ID ¼ IA, for all values of j. It is typical
for the analyser in Figure 2 to compute the difference
intensity M ¼ ID 7 IC (where M stands for ‘minus’).
Again, using simple trigonometry, we can write,

MðjÞ � ID � IC ¼ IA cos ðjÞ; ð2Þ

where M can be thought of the ‘inversion’ of a ‘two-
level’ system. We plot M in Figure 3 as a function of j,
and we can see it varies periodically. Since j/2 ¼ kx/
2 ¼ px/l, from properties of sine and cosine, we
have that IC ¼ 0 and ID ¼ IA whenever x/l ¼
0,1,2,3, . . . . Hence, our ruler is the light wave itself
and the tick marks are spaced the wavelength l apart.
We may start with a balanced interferometer with
equal arm lengths, x ¼ 0 (and M ¼ IA), and then
slowly move the upper mirror upwards increasing x.
As we do we will break the balance and begin to see
light emerging from the formally dark port C (M
decreases in the plot). At the point j ¼ p/2, when
IC ¼ ID, then M ¼ 0. Eventually we will see port C
attain maximum brightness and port D will go dark
(M ¼ 7IA). As we continue the mirror displacement
this process will reverse, as sine and cosine are
periodic, and finally port C will go dark again (M is
maximum again with M ¼ IA). At this point we can
stop moving the upper mirror and we are assured that
now the path difference x has gone from 0 to l. If we
take l ¼ 1.0 mm (about what is used in LIGO) then it
would seem we have a machine capable of measuring
distances to an accuracy of about l ¼ 1.0 mm. This is
consistent with the Rayleigh diffraction limit, typically
invoked in classical optics, and so everything looks
great. But this is not the end of the story. Recall that I
mentioned above that gravity waves are expected to
cause displacements in the LIGO mirrors by 10718 m.
A micron is only 1076 m, and so we have come up
twelve orders of magnitude too short of our goal for
measuring gravity waves! We can actually do much,
much, much better than one micron, by exploiting the
quantum mechanical nature of light.

Let us then now consider a different strategy to
estimate the precision of the device. Let us balance the
interferometer such that we start at the point j ¼ p/2,
when IC ¼ ID, and hence M ¼ 0 in Figure 3. Note this
is where the curve crosses the horizontal axis and the
slope of the M-curve is steepest. Let us continue with

the analysis. If we call the horizontal displacement
change Dj, then we can see this is related to the
vertical intensity change DM. For small changes we
may approximate this relation using differentials, that
is, DM ¼ IADj, or,

DM
Dj
¼ @M
@j
¼ IA sin ðjÞ; ð3Þ

which may be written,

Dj ¼ DM
@M=@j

¼ DM
IA sin ðjÞ : ð4Þ

The quantity @M/@j is the slope of the curve, which is
largest at the crossing point, implying our minimum
detectable phase D j is smallest there, via Equation (4).
At the crossing point j ¼ p/2 and sin (p/2) ¼ 1, and
so this relation would seem to indicate that if we can
measure the intensity displacement DM with infinite
precision (DM ¼ 0), we can measure the phase (and
hence distance) with infinite precision (Dj ¼ 0).
Hence, it would appear with our new scheme that we
could detect any gravity wave no matter how small its
amplitude – or how far away its source! This is too
good to be true, of course. So we now have two
different, classical, estimates putting our length mea-
suring precision somewhere between zero and one
micron. The truth lies somewhere in between these two
extremes.

The problem is that the simple classical argument
we used above do not take into account the effects of
quantum mechanics. Specifically it does not take into
account the fact that the intensity of the light field is

Figure 3. In a typical classical Mach–Zehnder analyser, we
subtract the optical intensities at the detectors C and C. The
resultant plot is shown here as a function of the phase shift
j ¼ kx, where x is the arm displacement to be measured.
The difference intensity M is periodic with period 2p. The
minimal detectable displacement, Dx, is limited by the
fluctuations in the optical intensity, DM. These fluctuations
are quantum mechanical in nature.

Contemporary Physics 127
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not a constant, which can be measured with infinite
precision, but that it fluctuates about some average
value, and those fluctuations have their origin in the
vacuum fluctuations of the quantised electromagnetic
field. According to quantum mechanics, optical
intensity can never be measured with infinite precision.
Hence, the uncertainty in the red curve of Figure 3
always has some finite value, indicated by the box of
height DM. The intensity displacement M can never be
measured with infinite precision and has a fundamental
uncertainty DM, and therefore the consequent phase j
will always have its related uncertainty Dj, which is
the width of the box. (This immediately implies a
minimum detectable displacement Dx ¼ �lDj, where
�l � l=ð2pÞ.) These fundamental quantum intensity
fluctuations suggest that there is a Heisenberg un-
certainty principal at work, which in our example
implies that the intensity I and the phase j cannot both
simultaneously be measured with infinite precision.
There is indeed such an uncertainty relation, as we
shall see next.

For a quantum analysis of this phenomenon, we
introduce the mean number of photons in the laser
field as the dimensionless quantity n, and note that the
intensity I is then proportional to n for a steady-state
system. If we denote the fluctuation in the phase as Dj
and that in the intensity as Dn, we can then write down
the Heisenberg number-phase uncertainty relation as

DnDj � 1: ð5Þ

Paul Adrien Maurice Dirac first proposed this
uncertainty relationship between photon number and
phase [5]. It is closely related to the better know
energy–time uncertainty principal DEDt � �h, where DE
is the uncertainty in the energy, Dt is the uncertainty in
the time, and �h is Dirac’s constant (Planck’s constant
divided by 2p). Starting with the energy–time principal,
we can give a heuristic derivation of the number-phase
formula. For a standing, monochromatic, electromag-
netic wave we have E ¼ �hno, where o is the frequency.
(Recall, o ¼ k/c where c is the speed of light.) This is
just the energy per photon multiplied by the average
number of photons. Since there is no propagation for a
standing wave we have j ¼ ot as the accumulated
phase at any point. Approximating both of these
expressions with differentials, holding everything
except E and t constant, gives DE ¼ �hDno and Dj ¼ o
Dt. Inserting these two expressions into the energy–
time uncertainty relation yields the number-phase
relation, Equation (5).

For a laser beam, such as used in LIGO, the
quantum light field is well approximated by a coherent
state, denoted jai, where the complex number a ¼ jaj
exp (ij) is proportional to the electric field amplitude E

such that jaj2 ¼ n, the latter of which we recall is the
dimensionless field intensity. (This is the dimensionless
quantum version of the classical relation jEj2 ¼ I ¼
I0n. The full dimensional form is E ¼ E0n

1/2, where
I0 ¼ jE0j2 ¼ �ho/(e 0V), which in SI units, �h is Dirac’s
constant, e0 is the free-space permittivity, and V is the
mode volume for the electromagnetic field [4]. Hence,
I0 is the intensity of a single photon.) The fluctuations
are typically represented in a phasor diagram as shown
in Figure 4. Here the phase is the polar angle j
measured counter-clockwise off the horizontal axis.
The radius from the origin to the centre of the
coherent-state disc is R ¼ jaj2 ¼ n. The diameter of
the disc d is on the order of d ¼ Dn ¼ n1/2. From
simple geometry, we can then approximate d ¼ RDj,
where Dj is the uncertainty or fluctuation in the
angular j direction. Combining all this we arrive at the
fundamental relationships between number (intensity)
and phase uncertainty for a coherent-state laser beam,

DnDj ¼ 1; ð6aÞ
Dn ¼ n1=2; ð6bÞ

Dj
SNL
¼ 1

Dn
¼ 1

n1=2
: ð6cÞ

The first relation, Equation (6a), tells us that we have
equality in Equation (5); that is a coherent state is a

Figure 4. In this phase-space diagram, the major and minor
axes of the ellipses depict fluctuations of various states.
Fluctuations in the radial direction correspond to intensity
and those in the angular direction phase. A classical state is a
point and has no fluctuations. A coherent state, that of a
typical laser, is a disc and has fluctuations equal in intensity
and phase. Also shown is a phase squeezed state, which has
fluctuations decreased in the angular (phase) direction, at the
expense of increase fluctuation in the radial (intensity)
direction. Such a phase-squeezed state can be used to beat
the shot-noise limit.

128 J.P. Dowling
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minimum uncertainty state (MUS). Such a state
saturates the Heisenberg number-phase uncertainty
relation with equality. This is the best you can do
according to the laws of quantum mechanics. The
second relation, Equation (6b), describes the fact that
the number fluctuations are Poissonian with a mean of
n and a deviation of Dn ¼ n1/2, a well-known property
of the Poisson distribution and the consequent number
statistics for coherent-state laser beams [4]. Putting
back the dimensions we arrive at,

Dj
SNL
¼ I0

I

� �1=2

; ð7Þ

which is called the shot-noise limit (SNL). (The term
‘shot noise’ comes from the idea that the photon-
number fluctuations arise from the scatter in arrival
times of the photons at the detectors, much like
buckshot from a shotgun ricocheting off a metal plate.)
We can also import the SNL into our classical analysis
above. Consider Equation (4), where we now take
IA ¼ I0n, DM ¼ (I0n)

1/2, and j ¼ p/2. We again
recover Equation (6c) for the phase uncertainty.
Hence, quantum mechanics puts a quantitative limit
on the uncertainty of the optical intensity, and that
intensity reflects itself in a consequent quantitative
uncertainty of the phase measurement.

So now we can see, by exploiting quantum
mechanics, we can do much better than the one-
micron accuracy that Lord Rayleigh might have
expected, by simply increasing the power or intensity
of the light field. However, we can never have perfect
precision, as our second naı̈ve argument indicated,
because we would have to have infinite intensities in
the laser beam. If we recall that j ¼ kx then
approximating with differentials we have Dj ¼ kDx
(since k ¼ 2p/l is a constant) and we obtain the
minimum detectable distance as,

Dx
SNL
¼ �l

n1=2
¼ �l

I0
I

� �1=2

; ð8Þ

where �l ¼ l=ð2pÞ, as before. We can see from this
expression that we can do much, much, much better
than a Rayleigh length resolution (on the order
of l) by just cranking up the laser power. The LIGO
observatories currently have a circulating power in the
interferometer on the order of 100 kW. This corre-
sponds to a mean photon number of about n ¼ 1024

photons in the device at a time. Hence, we have an
enhancement factor in resolution of n1/2 ¼ 1012 over
the Rayleigh limit. Therefore, the minimal detectable
displacement of the mirrors is given by Equation (8) as
Dx ¼ (1076 m) (10712) ¼ 10718 m, which is right

about where the LIGO folks expect to start seeing
gravity waves. (The effect of a passing gravity wave is to
cause displacement between the two arms of the MI by
about this amount.) In fact, the LIGO interferometer is
already constrained by this shot-noise limit over an
appreciable range of interferometer oscillation frequen-
cies where gravity waves are expected. (None have been
seen yet.) While a length measurement accurate to one
attometre over four kilometres (about one part in 1020)
may seem astounding, and in fact LIGO is really one of
the most sensitive measuring devices ever built, what is
really surprising is that our bag of tricks is not
exhausted yet. It is possible to do even better still with
a bit more elaborate quantum magic.

2. Squeezed states of light and the Heisenberg limit

In 1981 Carlton Caves first proposed the idea of using
non-classical states of light – the so-called squeezed
states – to improve the sensitivity of optical inter-
ferometers to below even the shot-noise limit [6]. This
notion came as somewhat of a surprise to the
interferometer community, as it was thought at the
time that the shot-noise limit was the ultimate limit on
sensitivity as imposed by quantum mechanics. I like to
tell my students ‘There is no such thing as classical
mechanics!’ What I mean by this is that all physical
systems are quantum mechanical in nature; the only
question is if the classical theory is a sufficiently
accurate approximation to reality so that it can be used
instead of quantum theory. To use or not to use
quantum theory? – that is the question.

For example, one might guess for a four-kilometre
long optical interferometer with a circulating power of
100 kW, that a description based on classical theory
would be just fine. This guess would be wrong, as we
have shown in the previous section. The classical
argument implies a sensitivity of microns but the
simple quantum argument buys us down to attometres.
It is because LIGO is so precise, and because all
classical sources of noise have been eliminated, that we
are forced at the end to deal with the quantum nature
of the machine. Nevertheless, quantum opticians call
the coherent state of laser light ‘classical’, in spite of
the fact that it exhibits fluctuations which are quantum
mechanical in origin and that limit the sensitivity of
LIGO. A better description would be to say that a
coherent state of light is ‘as classical as you can get’. So
there is still some maneuvering room here in the
quantum game.

In classical electromagnetism, we can also represent
a monochromatic plane wave on the phasor diagram
of Figure 4 – but instead of a disc the classical field is
depicted as a point. The radial vector to the point is
proportional to the electric field amplitude E and the

Contemporary Physics 129
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phase angle corresponds to the classical phase of the
field. The phase-space point represents the idea that,
classically, we can measure number and phase simul-
taneously and with infinite precision. As we have seen
above, quantum mechanically this is not so. The
Heisenberg Uncertainty Principle (HUP) of Equation
(5) tells us that both phase and intensity cannot be
measured simultaneously with infinite precision. For a
minimum uncertainty state (MUS), such as a coherent
state jai, we have equality in the HUP, as given in
Equation (6a). Then, combined with the Poissonian-
statistical distribution of photon number for a
coherent state, Equation (6b), we arrive at the shot-
noise limit.

However, there are other minimum uncertainty
states besides the coherent state. The easiest way to see
this is to look again at the representation of the
coherent state as a disc in phase space (Figure 4). The
fact that it is a disc indicates that the fluctuations are
the same in all directions, and that the area of the disc
is a constant A. The pictogram and the HUP then tells
us that any quantum state must have an area greater or
equal to A, and that the MUS has an area equal to A.
This is, for a coherent state, equivalent to stating the
three conditions of Equations (6). However, as Caves
pointed out, we can relax Equations (6b) and (6c),
while still maintaining the HUP of Equation (6a). That
is, we can decrease Dj, at the expense of increasing Dn
at the same time, so that the product DjDn ¼ 1
remains constant and the area of the disc remains the
same value A. Pictorially this amounts to squeezing the
coherent-state disc in the angular direction, while
allowing it to expand in the radial direction, as shown
in Figure 4. The important point is that the area A of
the ellipse remains unchanged so that the HUP is
obeyed. However, we decrease phase uncertainty
(which we care a great deal about) at the expense of
increasing the number uncertainty (which we do not
care much about). What is truly amazing is, that it is
possible to produce such squeezed states of light in the
laboratory, using nonlinear optical devices and ordin-
ary lasers [7]. Without going through the details, which
are in most quantum optics textbooks and a nice
review article by Louden and Knight [4,7] let us
estimate how well we can do with this squeezing
approach.

Again, heuristically, we can ask the question – what
is the most uncertainty we can produce in photon
number, given that the mean photon number n is a
fixed constant, and that we still want to maintain the
MUS condition – namely that the area of the ellipse
remains a constant A? Intuitively one cannot easily
imagine a scenario where the fluctuations in the energy,
DE ¼ �ho Dn, exceeds the total energy of the laser beam,
E ¼ �hon. Hence, the best we can hope to achieve is

DE ¼ E or, cancelling out some constants, Dn ¼ n.
Inserting this expression in the HUP of Equation (6a),
we obtain what is called the Heisenberg limit:

Dj
HL
¼ 1

n
: ð9Þ

Putting back the dimensions we get

Dj
HL
¼ I0

I
: ð10Þ

This is exactly the limit one gets with a rigorous
derivation using squeezed light in the limit of infinite
squeezing. It is called the Heisenberg limit as it
saturates the number-phase HUP, and also because it
can be proven that this is the best you can do in a
passive interferometer with finite average photon
number n. Converting to minimum detectable displa-
cement we get,

Dx ¼ �l
n
¼ �l

I0
I
;

where I0 is the single photon intensity, defined above.
What does this mean? Well let us consider our previous
example for LIGO where n ¼ 1024 photons and
l ¼ 1.0 mm. The quadratic improvement (of infinite
squeezing) implies a boost in signal-to-noise by twelve
orders of magnitude! The minimum detectable displace-
ment is now an astonishingly low DxHL ¼ 10730 m.
This is just shy of the Planck length (10735 metres)
where classical notions of space and time break down
completely and quantum gravity rears its foamy head.
Now that is a precision measurement!

To understand a bit better why squeezing helps, let
us consider the MZI in Figure 2. Note that, hitherto,
we sent light in port A and analysed what came out
ports C and D. What about input port B? Classically
there is no light coming in port B, and hence it is
irrelevant. Not so quantum electro-dynamically! In his
1981 paper, Caves showed that no matter what state of
the photon field you put in port A, so long as you put
nothing (quantum vacuum) in port B, you will always
recover the SNL. Always! This was a surprise. In 1981
most interferometer experts thought the shot-noise was
coming from the statistics of the coherent-state photon
field itself – think of the buckshot off the metal plate.
What Caves showed was that the SNL arises from the
phase noise due to the quantum electrodynamic
vacuum fluctuations leaking in the unused port B,
regardless of what you put in port A. In quantum
electrodynamics, even an interferometer mode with no
photons in it experiences electric field fluctuations in
that mode. While the average intensity is zero for such

130 J.P. Dowling
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a vacuum mode, the fluctuations in the average
intensity are not zero, and such vacuum fluctuations
can be held responsible for a wide array of phenomena
such as the Lamb shift, atomic spontaneous emission,
and the Casimir force between two conducting mirrors
[8].

In the MZI these vacuum fluctuations have another
important effect; at the first BS they enter through port
B and mix with whatever is coming in port A to give
the SNL in overall sensitivity. It becomes clear then,
from this result, that the next thing to try would be to
plug that unused port B with something besides
vacuum. But plug it with what? You can show that if
you just put another coherent state jbi in port B, you
still just get the SNL of Equation (6c), but now with
the total intensity the sum of the two input intensities.
If jaj2 ¼ jbj2 ¼ n, you could have gotten the same
result by just doubling the power in port A and leaving
port B empty again – no real improvement beyond the
SNL. Hence, in addition to plugging port B with
something, to beat the SNL you must also plug it with
something non-classical. It was Caves’ idea to plug the
unused port B with squeezed light (squeezed vacuum to
be exact). That, with coherent laser light in port A as
before – and in the limit of infinite squeezing – then the
SNL rolls over into the HL and we would be
measuring not only the passing of gravity waves but
also the graininess of the space–time continuum itself.

Alas, in the laboratory, as might be expected;
infinite squeezing is awfully hard to come by. With
current technology [9], the expected situation is to sit
somewhere between the shot-noise limit (SNL) and the
Heisenberg limit (HL) but a lot closer to the former
than the latter. Recent analyses by a Caltech group, on
exploiting squeezed light in LIGO, indicates a poten-
tial for about a one-order-of-magnitude improvement
in a future LIGO upgrade. Not the twelve orders of
magnitude that was advertised above, but enough to
allow the observatory to sample about eighty times the
original volume of Space for gravitational-wave
sources. That, for LIGO, is a big deal. In addition,
the goal of reaching the true quantum (Heisenberg)
limit, which gives us another eleven orders of
magnitude to play with, has stimulated other ap-
proaches using entangled photon number states,
borrowing a trick or two from quantum information
theory. We’ll look at these digital approaches to
quantum optical metrology next.

3. Entangled states of light: the lowdown on high

N00N

I like to say that squeezing is an ‘analogue’ approach
to quantum optical interferometry, in that the average
photon number and the degree of squeezing are

continuous variables that can be tuned to any arbitrary
non-negative value. There is another approach, ex-
ploiting discrete photon number and path-entangled
optical states, where the photon number and the degree
of squeezing are fixed. This approach, using entangled
photon number states, I like to call ‘digital’. The
terminology is important since, due to its digital
nature, the entangled-number-state approach has
recently benefited tremendously from an influx of
ideas and experimental techniques originally developed
in the context of all-optical ‘digital’ quantum comput-
ing [10]. The idea is that an optical quantum computer
is a giant optical quantum interferometer with many
arms and a large but discrete number of entangled
photons flying through it, where the quantum en-
tanglement between photons is exploited to carry out
mathematical calculations, which are impossible on
any classical computer.

However, our proposed metrological device is also
a giant quantum interferometer with entangled
photons in it, but here the entanglement is exploited
not to solve impossible math problems, but to make
ultimate-precise measurements not possible with any
classical optical machine. The optical quantum com-
puter can be turned into an optical quantum inter-
ferometric measuring device, and vice versa.
Theoretical and experimental tricks, devised for the
former, can be exploited in the latter. Since, for over
the past ten years, incredible amounts of effort have
gone into the development of quantum computers, we
are now able to leverage this research for quantum
optical metrology, imaging, and sensing. In fact the
metrological applications are much more likely to be
realised in the near future. It will take a quantum
optical computer with thousands of modes and
millions of entangled photons to crack a 1024-bit
public crypto key, and hence be of use to the spy
agencies. However, a quantum optical interferometer,
with only tens of modes, and a few photons, would still
be very interesting and important and practical for
metrology, imaging, and sensing. The near-term
metrological applications will be the bridge technology
that will help transition the quantum computer from
the few to the millions of quantum bits, or qubits,
needed for the computing tasks. Somebody is always
willing to pay for a sensor that is an order of
magnitude better than the previous generation.

There is a large body of literature on using
entangled particles or photons in a Mach–Zehnder
interferometer in order to beat the shot-noise limit.
The first such proposal was by Bernard Yurke in the
context of neutron interferometry [11]. Much of the
literature is confusing, in that different researchers
exploit different entangled states of light or matter, put
these states into the interferometers at different points,
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and use different detection schemes and signal-to-noise
analyses to extract an estimate of the phase resolution.
All this confusion makes it difficult to compare the
schemes to each other. I have given a short review of
what was known prior to the invention of optical
quantum computing in my own paper [12], and Viktor
Dodonov has provided a more recent overview [13].

In 2001, Emanuel Knill, Raymond LaFlamme, and
Gerard Milburn proposed an all-optical, digital,
scheme for quantum computing that exploited discrete
entangled photon states distributed over the modes of
an optical interferometer [14]. This discovery ignited a
huge international collaborative research and develop-
ment programme on the optical quantum computer.
Not coincidentally, many of those interested in optical
quantum computing are also now pursuing quantum
optical metrology. It is in this context I would like to
discuss recent advances in quantum-entangled photon-
state metrology.

In Figure 5, we purposely redraw our prototype
MZI to look like a quantum computing circuit
diagram, in order to better exploit the connection to
quantum computing. (For a more detailed elaboration
on the connection between quantum computing and
quantum interferometry, see our paper on the Quan-
tum Rosetta Stone [15].) What we have done is moved
the first BS into the state-preparation device, or
entangled photon source, on the left, and moved the
second BS into the detection scheme on the right. (In
the recent literature there is a great deal of confusion
on whether the quantum state one is dealing with is
introduced before or after the first BS, and I hope to
avoid this confusion here with this convention. The
point is that, given any two-mode photon state, the
input–output BS transform is a simple linear transfor-
mation and so the BS does not need to be explicitly
discussed as part of the interferometer.)

For the sake of pedagogy, we will at first limit
ourselves to a two-mode, path-entangled, photon-
number state, a type of Schrödinger cat state, more
commonly called the N00N state. The idea, à la Figure

5, is that we have a fixed finite number of photons N
that are either all in the upper mode A or all in the
lower mode B, but we cannot tell – even in principle –
which is which. The state of all up and none down is
written jupi ¼ jNAj0iB and the state of all down and
none up is similarly jdowni ¼ j0iAjNiB. The notation
indicates a product state of N photons either in A or B
(but not both). There are a number of schemes, now
swept all into the entangled-photon source on the left,
for producing superpositions of these two states in the
form

jN00Ni � jupi þ jdowni ¼ jNiAj0iB þ j0iAjNiB;
ð11Þ

where a normalisation constant of 1/21/2 has been
dropped for convenience (and convention). This is the
high-N00N state, a moniker bestowed by our group
due to the happenstance of the notational convenience
of choosing the letter N to represent the total photon
number. The term ‘high’ indicates that the photon
number N is large – at least greater than two. The state
is also in the class of Schrödinger-cat states. If the up
state is ‘cat alive’ and the down state is ‘cat dead’ a
measurement of photon number in either branch A or
B will randomly collapse all the N photons into one or
the other arms, with a 50:50 probability. As N becomes
larger and larger, and the state becomes more and
more macroscopic, this becomes spookier and spook-
ier; the whole point of the business with the poor half-
dead cat. But all half-dead cats aside – the N00N state
has the interesting property that it is quantum
entangled between the two modes and rigorously
violates what is known as a Bell inequality for non-
classical correlations [16]. This non-locality notion
physically means that a measurement of photon num-
ber N in mode A, also collapses the photon number
in mode B to zero, even if detector A is on Alpha
Centauri and B is on Beta Pictoris. Entanglement is a
bookkeeping device that encodes quantum correlations
of a non-local nature. Mathematically, entangled states
are defined to be quantum states that cannot be written
as a product state, like the plain old up or down state
given above [17]. The N00N state was first discussed in
1989 by Barry Sanders, who was particularly interested
in the Schrödinger-cat aspect and how that affected
quantum decoherence [18]. (Big cat states decohere –
become dead or alive – more rapidly than small
kittens.) In 2000, my group, then at the NASA Jet
Propulsion Laboratory, rediscovered this state in the
context of quantum imaging – particularly for
quantum lithography [19]. We introduced the term
‘high-N00N state’, which first appeared as a footnote
in our group’s follow-on paper in quantum metrology
[15].

Figure 5. Here is a schematic depiction of a two-mode
optical interferometer as a source, phase shifter, and
detector.
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To understand why a N00N state has all the
magical properties we will attribute to in the upcoming
sections, super sensitivity and super resolution (in
particular), we need to understand one more point of
quantum interferometry – the difference in behaviour
between a number state jNi and a coherent state jai in
an MZI. When a coherent state passes through a phase
shifter j, such as depicted in Figure 2, it picks up a
phase of j. This is a property of a classical
monochromatic light beam that coherent states inherit
quantum mechanically. However, number states are
already highly non-classical states to begin with. Their
behaviour in the phase-shifter is radically different.
When a monochromatic beam of number states passes
through a phase shifter, the phase shift is directly
proportional to N, the number of photons. There is no
n-dependence in the coherent state, where recall n is the
average number of photons. In terms of a unitary
evolution of the state, the evolution for any photon
state passing through a phase shifter j is governed by

ÛðjÞ � exp ðijn̂Þ; ð12Þ

where n̂ is the photon number operator. The phase
shift operator can be shown to have the following two
different effects on coherent versus number states [4],

Ûjjai ¼ exp ðijÞjai; ð13aÞ
ÛjjNi ¼ exp ðiNjÞjNi: ð13bÞ

Notice that the phase shift for the coherent state is
independent of number, but that there is an N
dependence in the exponential for the number state.
The number state evolves in phase N-times more
rapidly than the coherent state. To the right of the
phase shifter, in Figure 5, the N00N state evolves into,

jNiAj0iB þ j0iAjNiB ! jNiAj0iB þ exp ðiNjÞj0iAjNiB;
ð14Þ

which is the origin of the quantum improvement we
are seeking. If one now carries out a simple measure-
ment scheme in the N-photon detecting analyser we
have,

MN00NðjÞ ¼ IAcos ðNjÞ; ð15Þ

which is the green curve in Figure 6. The N00N signal
(green) oscillates N times as fast as the coherent state
(red). Two things are immediately clear. The distance
between peaks goes from l ! l/N, which is the
quantum lithography effect – we now beat the
Rayleigh diffraction limit of l by a factor of N. This
sub-Rayleigh-diffraction-limit effect is now commonly

called ‘super-resolution’. Even better, the slope of the
curve at the horizontal axis crossing point gets larger,
also by a factor of N, and our minimal detectable
phase, given by Equation (4), consequently goes down.
However the signal M for this N00N state is not the
same as for the coherent state scheme, as we are now
counting photons N at a time. And it turns out then
that DMN00N ¼ 1 for the new scheme, and then
Equation (4) gives:

DjN00N ¼ 1=N; ð16Þ

which is precisely the Heisenberg limit of Equation (9).
This Heisenberg limit, or the beating of the shot-noise
limit, is now commonly called ‘super sensitivity’. To
see why N00N states have this property, without a
detailed analysis of the detection scheme [20], let us
make the same heuristic argument as before. For a
minimum uncertainty state, we expect the best
performance when the uncertainty in photon number
is largest, but here it is the uncertainty in number
distributed over the two-photon paths, A and B. In
N00N states we are completely uncertain if all N
photons are in mode A (and none in B) or if all the N
photons are in mode B (and none in A), where A and B
may be light years apart. It does not get any more
uncertain than that!

Hence, as before, we conclude DN ¼ N, and
plugging into the Heisenberg relation, Equation (6a),
we immediately arrive again at the Heisenberg limit,
Equation (9). This is the same argument we made for
squeezed states, in the limit of infinite squeezing, but
infinite squeezing is not required to demonstrate this
effect digitally with N00N states, at least up to about

Figure 6. Here is a comparison of the detection signal of a
coherent state (red) and a N00N state (green). The N00N
state signal oscillates N times as fast as the coherent state
(super resolution) and has maximum slope that is N times as
steep (super sensitivity). (Here we choose N ¼ 3.) The effect
is as if the N00N state was composed of photons with an
effective wavelength of l/N instead of l.
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N ¼ 4. We will discuss some of the recent experiments
in an upcoming section.

4. How to make a high-N00N state?

While there are other states besides N00N states that
exhibit super resolution (beating the Rayleigh dif-
fraction limit) and other states besides N00N states
that exhibit super sensitivity (beating the shot-noise
limit), the N00N state accomplishes both in a single,
easy to understand, quantum mechanical package.
For this reason much of the recent theoretical and
experimental work has revolved around these states.
For N ¼ 1 and N ¼ 2 (low-N00N) it is fairly easy to
make such states with non-classical sources of
photon number states of either the form j1iA j0iB
or j1iA j1iB, that is one photon in mode A and none
in B, or one photon in each of mode A and B. The
standard approach utilises spontaneous parametric
down-conversion (SPDC), where an ultraviolet (UV)
photon is down converted into a pair of number
states [13]. The effect of a simple beam splitter
transformation on these states [4], is to convert them
to low-N00N states, as follows,

j1iAj0iB�!
BS j1iA0 j0iB0 þ j0iA0 j1iB0 ; ð17aÞ

j1iAj1iB�!
BS j2iA0 j0iB0 þ j0iA0 j2iB0 ; ð17bÞ

where Equation (17a) shows that a single photon
cannot be split in two, and Equation (17b) is
illustrative of the more subtle Hong–Ou–Mandel effect
– if two single photons are incident on a 50:50 beam
splitter they will ‘stick’ and both photons will go one
way or both will go the other way, but you never get
one photon out each port [4]. The way to understand
this is that the probability of the transition
j1iAj1iB�!

BS j1iA0 j1iB0 completely cancels out due to
destructive interference, and the transition indicated by
Equation (17b) adds up, due to constructive inter-
ference. So it is relatively easy, once you have a source
of single photons, to create low-N00N states. The
challenge is then, how to go to high-N00N?

In the SPDC process, particularly if the UV pump
laser is very intense, the output produces, with high
probability, un-entangled number states of the form
jN/2iA jN/2iB, where we take N to be even for this
example. These states are called twin number states
and are the basis for a number of super-sensitivity
schemes. From the twin-number state, one can
produce number states of the form jN/2iA j0iB by
checking to see if N/2 is in mode B and then allowing
what is in mode A into the interferometer, in a process
called heralded number-state production. (None of

these things are particularly easy to implement in the
lab, but at least it is a start.) So, in a generalisation
of Equation (17b), we might guess the BS
transformation,

jN=2iAjN=2iB�!
BS? jNiA0 j0iB0 þ j0iA0 jNiB0 ð18Þ

and hence have an easy road to high-N00N. But, alas,
this idea is too good to be true. In what is now called
the generalised Hong–Ou–Mandel effect, the actual
50:50 beam splitter performs,

jN=2iAjN=2iB�!
BS

cNjNiA0 j0iB0 þ cN�2jN� 2iA0 j2iB0 þ . . .þ cN�2j2iA0
jN� 2iB0 þ cNj0iA0 jNiB0 ; ð19Þ

where the constants cn are probability amplitude
weight factors. We can see that at each end is the
desired N00N-state component, but there is much non-
N00N in the middle that is undesirable. Actually, the
N00N components at the two ends, remarkably, have
the highest probability of showing up. This state,
complete with the non-N00N components, can be
exploited to exhibit super-sensitivity, but only the pure
N00N state can actually hit the Heisenberg limit [20].
So to extract the pure N00N state at the two ends of
this distribution, we need to somehow get rid of the
non-N00N states in the middle. One approach is a
quantum filter; something that removes the non-N00N
states after the fact [21]. Another approach is make
sure the non-N00N is not there to begin with, but this
requires something besides an ordinary 50:50 beam
splitter – something we call a ‘magic’ beam splitter [15].
Much of the discussion that follows is devoted to this
magic BS.

One of the first proposals for making a magic BS
was introduced in 2002 by Gerry and Campos (GC),
motivated by the application of high-N00N states to
lithography and metrology [28]. The GC scheme is
shown in Figure 7. The idea is to make a kind of
quantum computing gate (a Fredkin gate) so that a
single photon in the upper MZI-1 controls the phase
shift in the lower MZI-2. A nonlinear material called a
cross-Kerr phase shifter couples the two MZIs. For
very, very, very good Kerr materials, the presence of
even a single photon in the upper MZI-1 can cause a
phase shift of p in the lower MZI-2.

Let us consider first the lower MZI-2 and assume
the box labelled ‘Kerr’ is an ordinary phase shifter. If
the phase shift is set to zero then one can show that if
N photons are incident from the left in mode A and
none in mode B then all N will exit out port D. This is
just the generalisation of the balanced MZI effect we
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discussed above, where D is still the bright port and C
the dark port, giving output state j0iC jNiD. Exactly as
before, if we put a p phase shifter in one arm then, all
N photons exit out the upper port C and none out port
D, giving output state jNiC j0iD.

OK, now here is where it gets weird. If I could
somehow engineer a phase shifter that could simulta-
neously be in a superposition of zero and p phase
shifts, I would get a superposition of jNiC j0iD and
j0iC jNiD, but that is the N00N state jNiC j0iD þ j0iC
jNiD. The idea of Gerry and Campos is to add the
Kerr material and the upper MZI-1 to make this
quantum, Jekyll and Hyde, phase shifter. The
(quantum) mechanics is as follows. In the upper
MZI-1 we send in one photon in port A. From
Equation (17a), we see that the single photon is either
in the upper path or the lower path in the MZI-1,
after the first beam splitter. If it is in the lower path
of MZI-1, the interaction with Kerr gives a p phase
shift for the lower machine, MZI-2. If the single
photon is in the upper path of MZI-1, then there is
no induced phase shift in the lower machine, MZI-2.
However, since the single photon in the upper MZI-1
is in an equal superposition of upper and lower paths,
it induces the requisite superposition of zero and p
phase shift in the MZI-2 – and we have our N00N
state. The two, Kerr-coupled, MZI interferometers
act as a single magic beam splitter!

However, we have a problem. The nonlinear Kerr
material that you buy at your local nonlinear crystal
shop has a very, very, very, very, . . . very, very small
response at the single photon level [22]. If N ¼ 10 this
scheme will produce a superposition of a zero and a
10–20p phase shift; that is it will come up 20 orders of
magnitude too short for making a good N00N
generator. There are two well-known ways to boost
the Kerr effect: put in an optical micro-cavity around
the atoms in the Kerr material [23], or coherently lock
the atoms together in an approach known as electro-
magnetically induced transparency (EIT) [24]. Both
roads have their complication and technical challenges.
There is, however, a third path.

Here is where the universe of quantum-optical
metrology took some hints from the world of
quantum-optical computing. I have mentioned that
the Gerry–Campos idea is based on an optical Fredkin
gate, a sort of a single photon transistor. If such a
device could be made easily, it would be a quick and
easy road to the all-optical quantum computer. In fact,
older optical approaches to quantum computing
typically involved boosted Kerr nonlinearities with
cavities [23] or with EIT schemes [24]. Enter, in 2001,
the all-linear optical approach to quantum computing
[14]. In this scheme, the Kerr nonlinearity is replaced
with additional, ancillary, mirrors, phase shifters,
beam splitters and – most importantly – detectors.
The idea is that the detection process in the ancillary
devices induces an effective Kerr nonlinearity [25].
While still not perfect, the effective Kerr produced this
way can be much stronger than the off-the-shelf block
of Kerr material. So instead of working one time in
1020, our new device works one time in 10, which is a
19-order-of-magnitude improvement. Our group, then
at the NASA Jet Propulsion Laboratory, proposed the
first high-N00N generation scheme based on all linear-
optical devices [26]. The scheme is shown in Figure 8.
The idea is to make the upper and lower mirrors into
additional beam splitters and to put detectors just past
them. We launch into the system from the left the twin-
number state j3ij3i, which can be generated from
highly pumped SPDC. (We drop the subscripts A and
B with the convention that the first state is in the upper
path and the second state is in the lower path.) After
the first 50:50 BS we have, from the generalised Hong–
Ou–Mandel effect, the coherent superposition of the
states j6ij0i, j4ij2i, j2ij4i, and j0ij6i. Now the trick!
We monitor the upper and lower detectors and check
for the case when both detect one (and only one)
photon. This is a heralded process – we will only
consider further processing on events where this joint
detection occurs. If both detectors click ‘one’ then we
know a total of two photons are missing from the
interferometer, one from the upper arm and one from

Figure 7. Here we show a ‘magic’ beam splitter or a N00N
state generator. In the lower interferometer if N photons
enter upper port A they will always emerge in lower port D
for a balanced Mach–Zehnder. However, if we couple the
lower interferometer to the upper one, via a strong cross Kerr
nonlinearity, a single photon in the lower branch of the upper
interferometer causes a p phase shift, directing all N photons
to emerge out of port C. If the upper device is also an
interferometer, one can arrange a superposition of zero and
one photons in the Kerr box, giving rise to a superposition of
a 0 and p phase shift. This Kerr superposition results in the
number state superposition in modes C and D of the lower
interferometer, the N00N state.
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the lower arm. Hence, the contributions j6ij0i and
j0ij6i collapse out (vanish) from the state. The zero can
never give a click. Yet we still know two photons are
missing, one from each arm, so after the intermediate
detection we have only the contributions j3ij1i and
j1ij3i left. It is easy to show, in a reverse Hong–Ou–
Mandel effect, that when these are run through the
final BS, out comes the j4ij0i þ j0ij4i N00N state.
Now if we optimise the reflectivity of the beam
splitters – and everything is perfect – then the N00N
state only emerges about one time in 10. However, in
the Gerry–Campos scheme a N00N state emerged only
one time in 1020. Hence, our linear-optical scheme
represents a 19-order-of-magnitude improvement over
the original GC scheme and – even better – can be
executed in the lab with fairly simple equipment.

OurN00N-generating scheme can be concatenated –
or stacked – to produce N00N states of arbitrarily
high N [27]. However, at least initially, all such
schemes produced N00N states with a probability
that scaled exponentially badly as N increased. The
larger and larger you make N, the far more likely it is
that you get only non-N00N states. Recently there has
been a great deal of work on the development of
schemes which do much better – in quantum comput-
ing lingo – schemes that produce N00N ‘efficiently’
[21,29,30]. So we are well along the digital quantum-

computer-paved road to super resolution and super
sensitivity – at least in theory. But what about the
experiments? We shall talk about these next.

5. Showdown at high N00N: the experiments

Since the phase shift imparted in the single-photon
N00N state of Equation (17a) is identical to that of a
coherent state, the first interesting case comes about
when N ¼ 2. As discussed above, this can be generated
via the Hong–Ou–Mandel effect, indicated in Equation
(17b). The standard setup is to send a bright beam of
UV photons onto a w(2) nonlinear material, which is
typically a birefringent crystal that converts a UV
photon into two red daughter photons. By playing
tricks with the polarisation of the UV beam and the
orientation of the crystal, you can get the daughter
photons to emerge in two separate paths (or modes) as
shown in Figure 9. The output is effectively the
j1iA j1iB state, which is then transformed by the BS,
as per Equation (17b), into the low-N00N state with
N ¼ 2. A series of experiments illustrating this low-
N00N production appeared around 1990 [31–33].

In 1998, Kuzmich and Mandel provided an
experimental demonstration showing that such states
beat the shot-noise limit (super sensitivity) [34]. The
explicit demonstration of the doubling of the effective
wavelength (super resolution) was made in 1999 [35],
and a mockup demonstration of the super-resolving
application to sub-Rayleigh lithography was carried
out in the group of Yanhua Shih in 2001 [36]. Then in
2004 the N ¼ 2 barrier was breached in two back-to-
back papers appearing in Nature; the group of

Figure 9. It is in fact easy, experimentally, to produce an
N ¼ 2 N00N state using a spontaneous parametric
downconverter, which approximately produces the state
j1iA j1iB, as shown. Upon passage through an ordinary
50:50 beam splitter, this state is converted into the N00N
state via the Hong–Ou–Mandel effect. Parametric down
conversion occurs in special nonlinear crystals when, for
example, a single ultraviolet photon is converted into two
daughter photons, as show in the inset.

Figure 8. In the absence of strong Kerr nonlinearities,
adding ancillary beam splitters and detectors can generate an
effective Kerr. Particular outcomes, such as detecting one
and only one photon in the uppermost and lowermost
detectors generates an N ¼ 4 N00N state with the number-
state inputs j3iA j3iB as shown. The first beam splitter
produces the combination of number states indicated. The
projective measurement collapses these amplitudes into only
the j1iA j3iB and j3iA j1iB components, which upon passage
through the second beam splitter produces the 4004 N00N
state.
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Steinberg demonstrated super resolution for N ¼ 3,
and the group of Zeilinger did so for N ¼ 4 [37–39].
These 2004 experiments exploited our idea of inducing
effective Kerr nonlinearities extracted from the photo-
detection process, as shown in Figure 8. In fact, the
Zeilinger N00N experiment, and the Zeilinger linear
optical quantum computing experiment [40], were
performed with the same apparatus. This feat shows
the close connection between the fields of quantum
computing and quantum metrology, even in the
experimental realm.

While these 2004 experiments were very suggestive,
it was Steinberg’s group who pointed out very clearly
that super-resolution does not imply super-sensitivity
[38]. Just because the graph wiggles N times as fast
does not mean you can beat the shot-noise limit. The
issue is that, in any experiment, there are imperfect
photodetectors and other sources of loss, and the
visibility of the detection curves in Figure 6 is less than
one. Here the visibility is defined as

V ¼ Mmax �Mmin

jMmaxj þ jMminj
: ð20Þ

For a lossless system, which is what is calculated for
Figure 6, Mmax ¼ IA and Mmin ¼ –IA and so V ¼ 1.
However, as we shall see in Section 7 below, N00N
states are typically exponentially more susceptible to
loss than are coherent states. In Figure 10 we indicate
the same experiment as in Figure 6, except now with
3 dB (50%) loss in one arm of the interferometer. One

can see that the green N00N curve (N ¼ 3) still
exhibits the high-frequency wiggles (super resolution)
but now the maximum slope of the green curve at the
p/2 crossing point is only as steep as that of the
coherent state red curve, and we do about as bad – or
worse! – than the shot-noise limit, as per Equation (6c).
The visibility for the coherent state (red curve) is 50%
but that of the N ¼ 3 N00N state (green curve) is
(0.5)3 ¼ 0.125 or about 13%. Hence, it is possible to
have super resolution – without super sensitivity – if
the system has sufficiently high photon losses or,
equivalently, if the visibility is sufficiently small.

In 2007, a number of very interesting experiments
occurred in quantum optical metrology. First the
group of Andrew White in Australia demonstrated
N ¼ 6 super resolution in a process that used classical
photons with a nonlinear N-photon detection scheme.
While interesting, such an approach can never achieve
super-sensitivity due to its semi-classical nature, as the
authors themselves pointed out [41]. The first demon-
stration of both super sensitivity and super resolution
in a single experiment also appeared in late 2007 in a
collaborative Japanese and UK experiment [42]. This
was the first experiment to beat the shot-noise limit,
using N00N states, with N 4 2. However, the results
still were not quite at the mythical Heisenberg limit.
(You can be somewhere between the shot-noise limit
and the Heisenberg limit, and again this is a visibility
issue related to photon loss and detector inefficiency.)

At this point something came out of the sky like a
bolt from the blue at high noon. Another Australian
collaboration, of the groups of Geoffrey Pryde and
Howard Wiseman, produced an experiment that,
although not using N00N states per se, produced N
entangled single-photon states of the form of Equation
(17a), and recycled them through the MZI in a
feedback-loop implementation of a quantum comput-
ing protocol known as the Kitaev phase estimation
algorithm [43–45]. The effective N in this experiment,
in N00N-state currency, was a mind-boggling
N ¼ 378. The idea is that instead of making such a
large N00N state (cat), they make 378 passes through
the interferometer, with feedback, using the low N ¼ 1
N00N (kitten) state. Since all N00N states are equally
entangled and violate a Bell inequality for any non-
zero value of N [16], the trade-off is that of a
complicated N00N-state generating scheme with a
less complicated single-photon detection scheme with
some electronic feedback. Such a protocol is, surpris-
ingly, easier to implement than the high-N00N
approach, and arrives at the same performance in
sensitivity scaling, the Heisenberg limit. This Austra-
lian experiment, once again, illustrates the close
connection between quantum optical computing and
quantum metrology, as it achieves super sensitivity by

Figure 10. In this plot we reproduce the graph of M from
Figure 6, but now with 50% or 3 dB of loss introduced into
one arm of the interferometer. Due to the super-Beer’s law,
the visibility of the N00N state fringes (green) shrinks much
more rapidly than those of the coherent state (red). Note that
the maximum slope of the green and red curves is now about
the same, indicating the same shot-noise sensitivity.
Nevertheless, we can still observe the multiple fringes, and
so it is possible in the presence of loss for N00N states to
show super resolution without super sensitivity.
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running a quantum computational algorithm. A
quantum computer is nothing more than a quantum
sensor, and hence one can design a quantum sensor by
exploiting ideas from quantum computing.

However, there is one bone here I would like to
pick: this Australian paper claims that their single-
photon experiment hits the Heisenberg limit without
requiring entanglement [45]. That statement simply is
not true! The circulating single photons in the
interferometer have the form of Equation (17a), and
these are perfectly respectable entangled states, which
can even be shown to maximally violate a Bell
inequality for non-locality [16]. Perhaps the authors
meant to say that the single photons emitted from the
source – before the beam splitter – are not entangled;
but single photons are highly non-classical and become
entangled upon passing through an ordinary beam
splitter, as discussed above. (In the experiment, the
single photons are generated from spontaneous para-
metric down conversion – a notorious source of
entangled photons!) The role of quantum entangle-
ment and non-locality in experiments exhibiting super
sensitivity is not exactly clear; at least not to me.
However, all experiments to date that display super
sensitivity appear to require an entangled resource, and
I conjecture that entanglement is always a requirement
for super sensitivity. Super resolution is another
matter. The paper by Resch et al. [41] explicitly shows
super resolution can exist without sensitivity, and I will
not try to quibble and claim that there is entanglement
hidden in this experiment someplace. It would,
however, be very interesting to clarify this issue: does
super sensitivity always require entanglement and
quantum non-locality?

6. Quantum imaging and sensing

Quantum imaging is a new sub-field of quantum optics
that exploits quantum correlations, such as quantum
entanglement of the electromagnetic field, in order to
image objects with a resolution (or other imaging
criteria) that is beyond what is possible in classical
optics. Examples of quantum imaging are quantum
ghost imaging, quantum lithography, and sub-
Rayleigh imaging [46]. Of particular interest for this
article are lithography and sub-Rayleigh imaging and
sensing. In a 2000 paper on quantum lithography [19],
our group pointed out that N00N states had the
capability to beat the Rayleigh diffraction limit by a
factor of N. This super resolution feature is due to the
high-frequency oscillations of the N00N state in the
interferometer, as illustrated in Figure 6.

For the quantum lithography application, the idea
is to realise that if one has an N-photon absorbing
material, used as a lithographic resist, then these high-

frequency oscillations are written onto the material in
real space and are not just a trace on an oscilloscope.
Mathematically, the N-photon absorption and the N-
photon detection process have a similar structure, that
is,

hN00NjðâyÞNðâÞNjN00Ni ¼ 1þ cos ðNjÞ; ð21Þ

which is just one plus the expression of Equation (15),
with the intensity scaled out. From Figure 6, we see in
the green curve this oscillates N times faster than if we
were using single photons, or coherent light, as in the
red curve. Recall that, for our MZI, we have j ¼ kx
2px/l, where x is the displacement between the two
arms. For lithography x is also the distance measured
on the photographic plate or lithographic resist. If we
compare the classical resolution to the N00N resolu-
tion we may write, jN00N ¼ Njclassical, which we can
solve for,

lN00N ¼
lclassical

N
: ð22Þ

Written this way, we can say the effective wavelength
of the N photons bundled together N at a time into the
N00N state is N times smaller than the classical
wavelength. This is another way to understand the
super-resolution effect. The N entangled photons
conspire to behave as a single classical photon of a
wavelength smaller by a factor of N. Since the
Rayleigh diffraction limit for lithography is couched
in terms of the minimal resolvable distance Dx ¼
lclassical, then we have DxN00N ¼ lN00N ¼ lclassical/N.

So let us take an example. Suppose I want to do
lithography with red photons of wavelength 500 nm.
Then I am limited to image objects on the resist to a
separation of 500 nm. That means wires and transis-
tors can be no closer than 500 nm on the resultant
computer chip I make. But if I want to make my
computer chips faster with more memory, I need to put
more features on the chip. I can only do this if I can
make the features smaller and pack them closer
together. So it is advantageous to go to a 50 nm
separation, which classically would require light of
wavelength 50 nm, or x-rays. If I reduce the feature
size and spacing by a factor of 10 then I can put ten
times more circuits on the chip in the x direction and
another ten times more circuits in the y direction and
produce a chip with a 100 times more transistors on it.
This is in fact what the semiconductor industry
proposes: using light at ever-shorter wavelengths to
make features of ever-smaller sizes with ever-tinier
separations.

Current commercial lithography exploits extreme
ultraviolet light of around 100 nm and plans are to go
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to x-ray in the future. The problem is that the
lithography system for x-ray cannot use the same
lenses, mirrors, and other imaging devices as did the
optical system and so each reduction in wavelength
involves a huge cost in technology and hardware
investment. But what if I could etch 50 nm sized
features using 500 nm wavelength photons by exploit-
ing quantum entanglement? This is the promise of
quantum lithography. The idea is that we can keep all
the simple, inexpensive, optical imaging systems that
work fine at 500 nm and wave our quantum magic
wand, entangling the photons 10 at a time into N ¼ 10
N00N states, and produce quantum states that behave
as if they were photons of a 50 nm wavelength, without
all the extra trouble and cost. We have the equivalent
of a tabletop x-ray laser! The holdup with this
quantum approach, which may be insurmountable, is
that it has been very difficult to make N-photon
absorbing resists that are efficient and practical for
quantum lithography. So, currently, quantum litho-
graphy appears to be road kill on the semiconductor
road map, but there is still hope that we are not dead
yet and that some smart chemist will produce
lithographic resists optimised for the N-photon
absorption application. However, no real demonstra-
tion of quantum lithography has been had, so far, due
to the resist problem [47].

However, the pessimism of quantum lithography
aside, there is more to quantum imaging than just
lithography. Current experiments, mentioned above,
avoid the whole issue of the need for N-photon
absorbing materials by exploiting N-photon coinci-
dence detection. Such coincidence detection also gives
rise to Equation (22), but instead of some magical
designer molecule tailored to absorb N photons, we
now just need N, good, photocounters. These are much
easier to come by. A particular application of this more
general idea of quantum imaging has been seen in
quantum coherence tomography [48]. In this experi-
ment, they image a phase object placed in one arm of
the interferometer, using entangled photons in an
N ¼ 2 N00N state. They see not only the factor of two
improvement in resolving power, predicted by Equa-
tion (22), but also as a bonus they get a dispersion
cancellation in the imaging system due to frequency
entanglement between the photons. Scaling up to
higher N would require brighter sources of N00N
states, and more sensitive arrays of photo-detectors,
but no pesky N-photon absorbing substrate.

Current experiments on N00N states have to use
rather dim sources of entangled photons, from UV
pumped w(2) crystals in spontaneous parametric down
conversion set-ups, as indicated in Figure 9. For bright
sources of N00N states, one can turn to optical
parametric amplifiers (OPA), which is the same set-

up as Figure 9, but in which we crank up the pump
power. In this regime of high gain, the creation of
entangled photon pairs of the form of Equation (19)
occurs, but we have many, many, pairs and the output
can be written,

jOPAi ¼
X1
n¼0

anjniAjniB; ð23Þ

where the probability of a large twin-number state
jNiAjNiB is given by jaNj2, which can be quite large in
the limit of high pump powers. Passing the OPA state
through a 50:50 beam splitter, gives the generalised
Hong–Ou–Mandel effect, term by term, so that we get

jOPAi�!BS
X1
n¼0

Xn
m¼0

cnmj2n� 2mij2mi; ð24Þ

where again the coefficients cnm can be quite large for
high pump powers. Taking the term n ¼ 1 we
immediately get the N ¼ 2 N00N state from the
regular Hong–Ou–Mandel effect. For larger n � 1,
we find that there is always a large N00N component
squirrelled away among the non-N00N. A concern
might be that if we pump the heck out of the crystal
(increase the gain) then the non-N00N might over-
whelm the N00N and hence that as we increased the
output flux (good for lithography) the N00N oscilla-
tion visibility would disappear (bad for lithography).
Somewhat miraculously, this is not the case. For an
N ¼ 2 absorber, the visibility of the N ¼ 2 N00N
oscillations was predicted to saturate at a visibility of
20% [49,50], as opposed to the 0% that might have
been expected by the naı̈ve argument. This 20%
visibility is more than enough to exploit for lithogra-
phy and imaging, and has recently been measured in a
recent experiment in the group of Francesco DeMarti-
ni in Rome [51], in collaboration with our activity at
Louisiana State University (LSU). The moral of this
story is that bright sources for super-resolution
imaging are available and have performances that
can be exploited in a practical set-up.

7. Quantum remote sensing and photon loss

Improvements in optical metrology and imaging have
a natural application in the realm of optical remote
sensing. Our activity at LSU was the first to suggest
that, by exploiting entangled photon states, one could
engineer resolution and sensitivity breakthroughs over
classical optical sensors, such as in coherent optical
laser interferometric radar (LIDAR) or in sensor
miniaturisation [52,53]. Of course, when one thinks
of N00N states propagating over distances of kilo-
metres, through say the atmosphere, then photon
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scattering and loss and other issues such as atmo-
spheric turbulence become an issue that are not
apparent in a table top quantum interferometry
demonstration, where the environment is very well
controlled. In the past year a number of groups,
including our own, have been investigating the effect of
photon loss or absorption on the super-resolving and
super-sensitivity of N00N state interferometry.

As discussed in Section 5, above, the primary issue
associated with photon loss is that the visibility of the
interference pattern decreases, and that of the N00N
state pattern decreases more rapidly than that of the
single photon or coherent state interferometer. Hence,
when the loss is sufficiently high, the slope of the N00N
oscillations in Figure 6 decreases to the point that, as
far as super-sensitivity is concerned, we do worse with
N00N states than with either single photons or
coherent states [54]. Let us see why this is so.

Consider Equations (13), describing how coherent
states and number states behave upon passing through
a phase shifter. It is typical to model loss in the phase
shifter by making the substitution j ! j þ i g, where
g is the rate at which photons are absorbed, say, by
impurities in the glass. For the sake of this discussion,
we assume that all of the loss in the system, including
detector inefficiency, is concentrated in this single
parameter. Immediately we see that the effect of this
loss in Equation (13) is to produce an exponential loss
factor that depends on N, for number states,

jai�! exp ð�gÞ exp ðijÞjai; ð25aÞ
jNi�! exp ð�NgÞ exp ðiNjÞjNi: ð25bÞ

Typically we have g ¼ gL, where g is the loss per unit
length and L the distance travelled through the lossy
medium. The exponential dependence of the loss in the
coherent (classical) state of Equation (25a) is called
Beer’s Law for optical absorption. We see that for N-
photon number states, Equation (25b), we have a
super-exponential behaviour, or what we call super-
Beer’s Law. Guinness stout notwithstanding, super
Beer is bad news for N00N states, as it implies that
they are much more fragile in a lossy environment than
a classical coherent state. The effect of super Beer’s law
is plotted in Figure 10, where we have chosen g ¼ ln 2,
which corresponds to 3 dB or 50% loss in one arm of
the interferometer. We can see that visibility for the
coherent state, plotted in red, decreases by a factor of
2. However, the visibility of the N ¼ 3 N00N state,
plotted in green, decreases by a factor of 23 ¼ 8. This is
close to the breakeven point where the sensitivity of the
N00N-state measurement rolls back to the old shot-
noise limit, which can be understood in that the
maximum slope of the green and red curves, at the
point j ¼ p/2, is about the same. As per the minimal

detectable phase estimator of Equation (4), this implies
the coherent and N00N state are about equal in
sensitivity for this amount of loss. Any more loss, and
the N00N state would actually do worse than the
coherent state!

What can we conclude from this analysis? When
the N00N state was first introduced in 2000, it became
an icon for quantum optical metrology. Here was a
simple, entangled, quantum state that, in a fairly
intuitive way, could be seen to give rise to super
resolution and super sensitivity all in one package. In
the year 2000, it was remarkable that there was any
photon state that could do these things, and nobody
was thinking about using N00N states in the context of
remote sensing at that time. Times have changed. The
US Defense Advanced Research Projects Agency
(DARPA) now has a programme that explicitly seeks
to answer the question: Can quantum states of light be
used to get super resolution and super sensitivity in a
remote sensing environment where losses can be
severe? Hence, understanding the quantum mechanical
underpinning of the super-Beer’s law becomes impor-
tant, as well as addressing ways to mitigate the loss but
maintaining super-quantum phase realistically ex-
tracted à la photons. In spite of the loss having such
an adverse effect on N00N states, we can imagine some
applications where the distances are not too large, and
the losses not too big, so that N00N (or related) states
could give a definite signal-to-noise advantage. Also,
although there are proofs that N00N states are optimal
for phase resolution in the absence of loss [20], these
proofs leave open the possibility that there are other
(possible mixed) states of light with super-resolving
and super-sensing capability that are more robust or
immune to loss. (This class of hypothetical states we
call the decoherence-free N00N space.)

8. Conclusions

There is much more to quantum optical metrology
than N00N states. So I may be faulted for not covering
enough. I felt, however, that I could not readily cover
everything in this review, so I focused on these N00N
states in part because I am most familiar with them,
and also in part because I think they provide a simple
and intuitive way to see how entanglement in quantum
optics can be exploited in metrology, with consequent
applications to imaging and sensing.

However, for completeness, I thought I should
mention some other things that have been going on in
the field of quantum optical metrology. For example,
Alan Migdall at the US National Institute of
Technology (NIST), has proposed and implemented
a quantum optical technique for calibrating the
efficiency of photo-detectors using the temporal
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correlations of entangled photon pairs [55]. This, to my
mind, was one of the first practical applications of
quantum optics to optical metrology, and has pro-
duced a technique to calibrate detectors without the
need for an absolute standard. In quantum imaging,
there is more going on than just super resolution with
N00N states. There are some nice reviews on the field
of quantum imaging [46,56], but I can touch on the
highlights. There has been a tremendous amount of
work in recent years on so-called ‘ghost imaging’ [57].
This effect exploits the temporal and spatial correla-
tions of photon pairs, also from spontaneous para-
metric down conversion, to image an object in one
branch of the interferometer by looking at correlations
in the coincidence counts of the photons. The cute
thing here is that there is no image in the single-photon
counts in either arm, but only in the double photon
counts in both arms. The image is in a sense stored
nonlocally. There is the quantum-coherence-optical-
tomography-microscope experiment at Boston Uni-
versity, which exploits the super-resolution effect we
have discussed, but also utilises the entanglement of
the photon pairs in frequency to mitigate dispersion
effects that typically limit the resolution of classical
optical tomography [48]. This dispersion cancellation
business goes back to the original work of James
Franson [58] and Aephraim Steinberg [59], from the
early 1990s. Quantum-entangled dispersion cancella-
tion has been harnessed, at least in theory, by the
group of Seth Lloyd at MIT, who proposed a quantum
optical clock synchronisation protocol that eliminates
the timing jitter of optical pulses that are transmitted
through a fluctuating atmosphere [60]. These atmo-
spheric fluctuations, similar to those that cause the
twinkling of the stars, are currently the limiting source
of noise in the Global Positioning System.

While not ‘optical’ metrology per se, there has been
a great deal of work on the more general field of
quantum metrology, which exploits maximally en-
tangled states of quantum bits or qubits. Particularly
interesting are entangled atomic states, called maxi-
mally entangled spin states, which have properties
much like N00N states in that they show super
resolution and super sensitivity. A nice review of this
approach by Jacob Dunningham appeared in 2006
[61]. In fact much of our work on the N00N state
approach was motivated by this spin-qubit work in
atoms. For example, most famous is the idea of
entangling atomic spin states of ions in an ion trap in
order to make a more sensitive atomic clock – one that
operates at the Heisenberg limit. This approach to
clock improvement has been championed by the group
of David Wineland, also at NIST [62,63]. The idea of
using entangled qubits has also been exploited recently
as a quantum sensor, particular as a magnetometer.

This was demonstrated with atomic spin qubits by the
group of Hideo Mabuchi, then at the California
Institute of Technology [64], and suggested by our
own group at LSU in the context of superconducting
qubits in a microwave cavity [65]. There is much more
that could be said about this quantum metrology
approach in atomic and condensed matter systems, but
that would be another review article [61], and so I
focused on the photonic set-up. A word of caution
needs to be said in comparing maximally entangled
atom spin states and the N00N states I presented here.
The N entangled spin qubits are individually addres-
sable atoms that span a 2N-dimensional Hilbert space,
and as such immediately form a system for also doing
quantum computing. The N00N state consists of N
indistinguishable photons in what is effectively a two-
dimensional Hilbert space. While clearly good for
quantum metrology, it is not immediately clear that
N00N states are of any use for quantum computing.
Without the huge Hilbert space, I doubt that they are.
While it is true that we use techniques from optical
quantum computing to create and manipulate N00N
states, they do not form a system of N distinguishable
qubits. They are entangled, but in a much smaller
Hilbert space. There is not a direct mapping from
linear optical quantum computing qubits to N00N
states and hence the work has been done in parallel.
Hence, the resource required for quantum computing,
the exponentially large Hilbert space, would not seem
at first to be the same resource required for super
resolution and sensitivity. I conjecture that entangle-
ment and non-locality are sufficient for quantum
metrology, but this is an ongoing topic of discussion.

My own philosophical take on quantum optical
metrology is to say that there is no such thing as
classical optics. All optical sensing and imaging
systems are quantum mechanical, in that photons
must be invoked and the quantum origins of signal to
noise considered, at least at some level of accuracy.
The question then is, at this level, what is the best you
can do according to the laws of quantum mechanics?
Re-looking at the whole field of optical metrology,
from a quantum point of view, opens up all sorts of
possibilities from the quantum bag of tricks that could
improve optical sensors. We are just beginning to
understand what role the quantum features play, and
how such features could be exploited, in theory and in
practice. Boy, has the fun just begun, or what!?
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