
ARTICLE OPEN

Quantum-optimal detection of one-versus-two incoherent
optical sources with arbitrary separation
Xiao-Ming Lu1,2, Hari Krovi3, Ranjith Nair2, Saikat Guha4 and Jeffrey H. Shapiro 5

We analyze the fundamental quantum limit of the resolution of an optical imaging system from the perspective of the detection
problem of deciding whether the optical field in the image plane is generated by one incoherent on-axis source with brightness ϵ
or by two ϵ=2-brightness incoherent sources that are symmetrically disposed about the optical axis. Using the exact thermal-state
model of the field, we derive the quantum Chernoff bound for the detection problem, which specifies the optimum rate of decay of
the error probability with increasing number of collected photons that is allowed by quantum mechanics. We then show that
recently proposed linear-optic schemes approach the quantum Chernoff bound—the method of binary spatial-mode
demultiplexing (B-SPADE) is quantum-optimal for all values of separation, while a method using image inversion interferometry
(SLIVER) is near-optimal for sub-Rayleigh separations. We then simplify our model using a low-brightness approximation that is very
accurate for optical microscopy and astronomy, derive quantum Chernoff bounds conditional on the number of photons detected,
and show the optimality of our schemes in this conditional detection paradigm. For comparison, we analytically demonstrate the
superior scaling of the Chernoff bound for our schemes with source separation relative to that of spatially resolved direct imaging.
Our schemes have the advantages over the quantum-optimal (Helstrom) measurement in that they do not involve joint
measurements over multiple modes, and that they do not require the angular separation for the two-source hypothesis to be given
a priori and can offer that information as a bonus in the event of a successful detection.
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INTRODUCTION
The influential Rayleigh criterion for imaging resolution,1 which
specifies a minimum separation for two incoherent light sources
to be distinguishable by a given imaging system, is based on
heuristic notions. As pointed out by Feynman [ref. 2, Sec. 30–4]:
“Rayleigh’s criterion is a rough idea in the first place…” and a
better resolution can be achieved “… if sufficiently careful
measurements of the exact intensity distribution over the
diffracted image spot can be made…” The fundamental
measurement noise is the quantum noise necessarily accompany-
ing any measurement. A more rigorous approach to the resolution
measure that accounts for the quantum noise in ideal spatially
resolved image-plane photon counting can be formulated using
the classical Cramér-Rao bound on the minimum estimation error
for locating the sources.3,4 Very recently, using methods of
quantum estimation theory,5,6 it was found that the estimation of
the separation between two incoherent sources below the
Rayleigh criterion can be drastically improved by measurements
employing pre-detection linear-optic processing of the collected
light, followed by photon counting.7–20

Besides the minimum error of estimating the separation of two
point sources, the resolving power of an imaging system can also
be studied via the paradigmatic detection problem of deciding
whether the optical field in the image plane is generated by one
source or two sources.21–25 This detection perspective is especially

relevant to the detection of binary stars and exoplanets23,26 and
the detection of protein multimers with fluorescence micro-
scopes.27 In a pioneering work,22 Helstrom obtained the
mathematical description of the quantum-optimal measurement
that minimizes the error probability for detecting one or two point
sources emitting quasi-monochromatic thermal light. Unfortu-
nately, in addition to having no known physical realization, his
method requires the separation between the two hypothetical
sources to be given, though this separation is usually unknown in
practice.
Here we investigate the performance of two practical quantum

measurements for the detection of weak incoherent quasi-
monochromatic point light sources. We assess the performance
of these measurements vis-a-vis direct imaging and the optimum
quantum measurement using the asymptotic error exponent (or
Chernoff exponent), which specifies the rate at which the error
probability decreases exponentially as the observation time or
number of received photons increases. We show that a binary
spatial-mode demultiplexing (B-SPADE) scheme7 is quantum-
optimal for all values of separations in the following two senses:
(1) the asymptotic error exponent attains the maximum allowed
by quantum mechanics, and (2) the error probability of a simple
decision rule based on the observations of the B-SPADE is close to
the quantum limit. We also show that the scheme of super-
localization by image inversion interferometry (SLIVER)8,10 is near-
optimal for sub-Rayleigh separations. The Chernoff exponents of
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both schemes are shown to be superior to that of ideal shot-noise-
limited continuum direct imaging in the sub-Rayleigh regime. In
addition to their superiority over direct imaging, our methods do
not require the capability to perform joint quantum measure-
ments, do not require the two-source separation to be known a
priori, can offer an accurate estimate of this separation in the
event of a successful detection,7–14 and rely on methods that have
been experimentally demonstrated in the context of parameter
estimation.17–20 These advantages over the Helstrom measure-
ment22 hold tremendous promise for practical detection applica-
tions in both astronomy23 and molecular imaging.27

RESULTS
One source versus two sources
The set-up considered in this work is illustrated in Fig. 1. Under
hypothesis H1, we have a single thermal source of brightness
(average photon number per temporal mode) ϵ imaged at the
origin of the image plane. Under hypothesis H2, we have two
thermal sources, each of strength ϵ=2, located a distance d apart
and imaged at the points ±d/2= (±d/2, 0) in the image plane. To
focus on the resolution power of an optical imaging system, the
total brightness is assumed to be identical under the two
hypotheses so that simple photon counting is ineffective as a
decision strategy. Similarly, the sources are presumed to have
identical frequency spectra so that spectroscopy cannot help to
distinguish the hypotheses. A strategy for accepting one or the
other hypothesis, known as a decision rule, is given by partitioning
the space of observations Z (which is determined by the choice of
measurement) into two disjoint regions Z1 and Z2; the one-
source hypothesis H1 is accepted if the observation belongs to Z1,
and H2 is accepted otherwise. The performed quantum measure-
ment can be described by a positive-operator-valued measure
(POVM) fEðzÞgz2Z , where z denotes the outcome, and the E(z)’s
are nonnegative operators resolving the identity operator asR
dμðzÞEðzÞ ¼ 1 with μ(z) being an appropriate measure on Z.5,6,28

Define E1 ¼
R
z2Z1

dμðzÞEðzÞ and E2 ¼
R
z2Z2

dμðzÞEðzÞ. Let ρ1 and
ρ2 be the density operators for the fields arriving at the image
plane per temporal mode under H1 and H2, respectively. Assuming
a flat emission spectrum over the bandwidth W, the probabilities
of the false-alarm (accepting H2 when H1 is true) and miss
(accepting H1 when H2 is true) errors for one-source-versus-two
testing are given by α � Tr E2ρ�M

1

� �
and β � Tr E1ρ�M

2

� �
, respec-

tively, where M ’ WT with T being the observation time is the
number of available temporal modes (also called the sample size).
Assuming prior probabilities p1 and p2 for the respective
hypotheses, the average probability of error is

Pe � p1αþ p2β; (1)

which is widely used to assess the performance of a quantum
decision strategy constituted by a quantum measurement and a
classical decision rule.5 The minimum error probability optimized
over all quantum decision strategies is given by the Helstrom
formula5

Pe;min ¼ 1
2

1� p2ρ
�M
2 � p1ρ

�M
1

�� ��
1

� �
; (2)

where Ak k1� Tr
ffiffiffiffiffiffiffiffi
AyA

p
is the trace norm. The minimum error

probability can be achieved by the Helstrom–Holevo test in which
E2 is taken to be the projector onto the eigen subspace of
p2ρ�M

2 � p1ρ�M
1 with positive eigenvalues.5,29 We refer to this

optimal measurement as the Helstrom measurement henceforth.
While the Helstrom formula Eq. (2) allows exact computation of

the optimum error probability in principle, it is difficult to
physically implement the Helstrom measurement for several
reasons. Firstly, the optimal measurement is a joint one over
multiple samples.28 Secondly, this measurement depends on the
separation between the two hypothetic point sources, which is
often unknown in the first place. Lastly, the optimal measurement
in general depends on the ratio of the prior probabilities of the
two hypotheses, whose determination is often subjective. To
circumvent these difficulties, we study the performance of two
realizable measurements: B-SPADE7 and SLIVER,8 originally intro-
duced in the context of estimating the separation between two
closely-spaced incoherent point sources.

B-SPADE
Spatial-mode demultiplexing refers to spatially separating the
image-plane optical field into its components in any chosen set of
orthogonal spatial modes.7 The binary version of spatial-mode
demultiplexing, B-SPADE, uses a device that separates a specific
spatial mode from all other modes orthogonal to it, and on–off
detectors (that can only distinguish between zero and one or
more photons) are placed at the two output ports. In our set-up,
the selected spatial mode is chosen to be that generated by the
point source at the origin of the object plane. Such a separation of
modes is always possible in principle for any given point-spread
function (PSF), and various linear-optics schemes can be
envisaged to realize it.30–32

SLIVER
The second practical measurement we consider is SLIVER, which
separates the optical field at the image plane into its symmetric
and antisymmetric components with respect to inversion at the
origin, followed by on–off photon detection in the respective
ports.8 Here, we assume that the PSF is reflection-symmetric in the
y-axis, i.e., ψ(−x, y)= ψ(x, y), and consider a modified SLIVER for
which the inversion operation is replaced by the reflection
operation about the y-axis—this modification corresponds to the
Pix-SLIVER scheme of ref. 10 with single-pixel (bucket) on–off
detectors at the two outputs. For simplicity, we refer to this
modified version as SLIVER henceforth. All photodetectors in both
B-SPADE and SLIVER are assumed free from dark counts, or at least
that the dark-count rate is so far below the signal-count rate as to
be negligible.

Asymptotic error (Chernoff) exponents
In realistic imaging situations, we usually deal with a large sample
size M � 1, which motivates using the asymptotic error exponent
as a useful metric for comparing the performance of different
measurement schemes against the Helstrom measurement. For
any specific quantum measurement performed on each sample, it

is known that the minimum error probability PðmeasÞ
e;min over all

decision rules decreases exponentially in M as

Fig. 1 Schematic of the imaging of incoherent point light sources
by a spatially-invariant imaging system. The images of two point
sources of equal brightness (blue) spaced closer than the width of
the point-spread function (PSF) of the imaging system are difficult to
distinguish from that of one point source of the same total
brightness (red) located midway between them
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PðmeasÞ
e;min � exp �Mξ measð Þ

� �
. The asymptotic error exponent

ξðmeasÞ ¼ �limM!1 1
Mlog P

ðmeasÞ
e;min can be given by the Chernoff

exponent (also known as Chernoff information or Chernoff
distance),33–35 namely,

ξðmeasÞ ¼ �log min
0�s�1

Z
dμðzÞΛ1ðzÞsΛ2ðzÞ1�s; (3)

where Λj(z)= Tr[E(z)ρj] is the probability of obtaining the outcome
z under the hypothesis Hj, and {E(z)} is the POVM for the
measurement. On the other hand, the error probability Pe,min of
the optimum quantum measurement (which is in general a joint
measurement on the M samples) scales with the exponent ξ
known as the quantum Chernoff exponent, which is given by:36–40

ξ � �log min
0�s�1

Tr ρs1ρ
1�s
2

� �
: (4)

Note that ξ is independent of the measurement and ξ ≥ ξ(meas)

holds for any measurement.
To calculate the Chernoff exponent, we need to know the

characteristics of the imaging system. Without essential loss of
generality, we suppose that the imaging system is spatially
invariant and of unit magnification41 and is described by its 2-D
amplitude PSF ψ(r), where r= (x, y) is the transverse coordinate in
the image plane I . We take the PSF to be normalized, i.e.,R
I dxdy ψðx; yÞj j2¼ 1. For thermal sources, we show that the exact

Chernoff exponents ξ(B−SPADE) and ξ(SLIVER) for B-SPADE and SLIVER
respectively and the quantum Chernoff exponent ξ are given by
(see the Methods)

ξðB�SPADEÞ ¼ ξ ¼ log 1þ ϵ�ð Þ 1þ ϵþ � μ2ϵþ
� �� 	

; (5)

ξðSLIVERÞ ¼ log 1þ ϵ�ð Þ � ξ; (6)

where the d-dependent quantities

ϵ± ¼ 1 ± δðdÞ
2

ϵ and μ ¼ δ
d
2


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ δðdÞ

s
(7)

are defined in terms of the overlap function of the PSF for
displacements along the x axis:

δðdÞ :¼
Z

I
dxdyψ�ðx; yÞψðx � d; yÞ: (8)

Moreover, we here assume that the overlap function (and hence
ϵ± and μ) is real-valued. This assumption is satisfied for inversion-
symmetric PSFs, i.e., ψ(x, y)= ψ(−x, −y), and y-axis reflection-
symmetric PSFs, i.e., ψ(x, y)= ψ(−x, y).10,11

It can be seen from Eq. (5) that the Chernoff exponent of the B-
SPADE is always equal to the quantum Chernoff exponent,
meaning that B-SPADE is asymptotically optimal. For SLIVER, the
Chernoff exponent is in general not quantum-optimal but is close
to quantum-optimal in the sub-Rayleigh regime of small d, where
μ is close to unity.
We consider three typical kinds of PSFs, corresponding to

Gaussian apertures, rectangular hard apertures, and circular hard
apertures. The PSFs can be, respectively, written as

ψgausðx; yÞ ¼ 1ffiffiffiffi
2π

p
σ
exp � x2þy2

4σ2

� �
;

ψrectðx; yÞ ¼ 1
π
ffiffiffiffiffiffiffi
σxσy

p sinc x=σxð Þsinc y=σy
� �

; and

ψcircðx; yÞ ¼ 1
2
ffiffi
π

p
σc
jinc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=σc

� �
;

(9)

where sinc(x)≡ sin(x)/x, jinc(x)≡ 2J1(x)/x, and J1(x) is the Bessel
function of the first kind. The “characteristic lengths” σ, σx, σy, and
σc are related to the features of apertures as follows. For a
Gaussian aperture, which is commonly assumed in fluorescence
microscopy,4 we have σ= λ/2πNA with λ being the free-space
center wavelength and NA the effective numerical aperture of the
system. For a Dx × Dy rectangular aperture, the characteristic
length along the x and y directions are given by σx= λF/πDx and
σy= λF/πDy, respectively, where F is the distance between the
aperture plane and the image plane in a unit magnification
system. For a D-diameter circular hard aperture, we have σc= λF/
πD. After some algebra, the overlap functions can be shown to be

δgausðdÞ ¼ exp �d2= 8σ2ð Þ½ 	;
δrectðdÞ ¼ sinc d=σxð Þ; and

δcircðdÞ ¼ jinc d=σcð Þ;
(10)

using which the Chernoff exponents can be readily obtained.
We plot in Fig. 2 the Chernoff exponents of B-SPADE and SLIVER

for the above three PSFs in Eq. (9). We can see that in the sub-
Rayleigh regime the Chernoff exponents are insensitive to which
PSF is used.

Fig. 2 Chernoff exponents for the B-SPADE and SLIVER measurements as a function of the separation d. The quantum Chernoff exponent
always equals the Chernoff exponent for the B-SPADE measurement. Here, the total strength ϵ of the thermal sources is set to be 0.1
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Weak-source model
To compare the performance of B-SPADE and SLIVER with that of
direct imaging, we introduce the weak-source model. In most
applications in optical microscopy and astronomy, the source
brightness ϵ 
 1 photons per temporal mode.7,42–44 Then, ρ1 and
ρ2 may be considered with high accuracy to be confined to the
subspace consisting of zero or one photons, i.e.,

ρi ’ ð1� ϵÞ vacj i vach j þ ϵηi (11)

for i= 1, 2, where vacj i denotes the vacuum state and ηi are the
corresponding one-photon states obtained by neglecting O ϵ2ð Þ
terms. This approximation enables us to simplify the theory in
comparison with ref. 22 and still obtain similar results. Moreover, it
will enable us to treat the case in which the sources in the two-
source hypothesis have different brightnesses while demonstrat-
ing the advantages of B-SPADE and SLIVER over direct imaging.
Denote the brightnesses of the two point sources under H2 by ϵ1
and ϵ2, satisfying ϵ1 þ ϵ2 ¼ ϵ. The one-photon state for two
hypothetical sources can be expressed as

ηðdÞ ¼ ϵ1
ϵ Ψðd=2Þj i Ψðd=2Þh j þ ϵ2

ϵ Ψð�d=2Þj i Ψð�d=2Þh j;
Ψ x0ð Þj i � R

I dxdyψ x � x0; yð Þ x; yj i; (12)

where x; yj i are the one-photon Dirac kets satisfying 〈x, y|x′, y′〉=
δ(x− x′)δ(y− y′), and

R
I dxdy x; yj i x; yh j ¼ 11 with 11 being the

identity operator on the one-photon subspace in the image plane
field.7 We then have η1= η(0) and η2= η(d).
For the specific cases of rectangular and circular hard apertures,

Helstrom has derived expressions for the minimum error
probability for thermal light sources.22 However, these expressions
are very complicated. Our weak-source model allows us to simplify
the minimum error probability to

Pe;min ¼
XM
L¼0

M

L


 �
ð1� ϵÞM�LϵLPe;minjL; (13)

Pe;minjL � 1
2
� 1
2

p2η
�L
2 � p1η

�L
1

�� ��
1: (14)

Here,
M
L


 �
ð1� ϵÞM�LϵL is the probability of L photons arriving at

the imaging plane and Pe,min|L is the minimum probability of error
conditioned on detecting L photons in the image plane. The form
of Eq. (13) is due to the fact that the distinguishability between ρ1
and ρ2 lies in the one-photon sector and the zero-photon event is
uninformative. It is implicitly assumed in Eq. (13) that the source
flux is low enough that the on–off detectors’ recovery time is short
compared to the average interarrival time of the photons. Either
the conditional error probability of Eq. (14) or the unconditional
one of Eq. (13) can be used as a figure of merit, depending on
whether or not the number of the photons arriving at the image
plane is measured. Helstrom in ref. 22 took the latter approach, and
the performance was studied with respect to the average total
number of photons N ¼ Mϵ detected over the observation
interval. On the other hand, in fluorescence microscopy it is
common practice to compare the performance of imaging
schemes for the same number of detected photons L.3,4

We can define a conditional Chernoff exponent ξðmeasÞ
c satisfying

PðmeasÞ
e;minjL � exp �LξðmeasÞ

c

� �
, which is given by Eq. (3) with Λj(z)

replaced by the probability of measurement outcomes condi-
tioned on a photon being detected, i.e., Λj(z)= Tr[E(z)ηj]. Similarly,
the optimum conditional error probability Pe,min|L decays expo-
nentially with L multiplied by the conditional quantum Chernoff
exponent given by ξc � �logmin0�s�1Tr ηs1η

1�s
2

� �
. It follows from

Eq. (13) that the (unconditional) Chernoff exponents can be
obtained via the relation e�ξ ¼ 1� ϵþ ϵe�ξc and

e�ξðmeasÞ ¼ 1� ϵþ ϵe�ξ
ðmeasÞ
c . This implies that the (unconditional)

Chernoff exponent is monotonically increasing with the condi-
tional one. Particularly, we have ξmeas ’ εξmeas

c when ξmeas 
 1.
Therefore, we can use either ξmeas or ξmeas

c to compare the
performance of quantum measurements.
The conditional Chernoff exponents are readily calculated in the

weak-source model using Eq. (12):

ξðB�SPADEÞ
c ¼ ξc ¼ �2 logδðd=2Þ; (15)

ξðSLIVERÞc ¼ �log
1þ δðdÞ

2
: (16)

Note that as d decreases, the SLIVER result converges to the B-
SPADE result, which can also be seen in Fig. 3.
The SLIVER measurement is independent of the PSF, while the

B-SPADE is adapted according to the PSF. It is remarkable that in
the context of estimating the separation of two point optical
source, Rehacek et al.13 showed there exist complete sets of
modes that are optimal for any real symmetric PSF; nevertheless,
the PSF-adapted optimal measurement behaves much better than
others when fewer modes are measured. In this work, with only
two photon detectors, the PSF-adapted B-SPADE is optimal, while
the SLIVER is sub-optimal. It remains open whether there exists a
complete set of modes that is optimal for the hypothesis-testing
scenario considered here, regardless of the details of the PSF.
However, similarly to the estimation scenario, the performance of
the SLIVER can be definitely enhanced when more modes in the
symmetric port are sorted out and measured. This is because the
quantum Chernoff exponent is monotonically non-decreasing
under quantum operation,40 so that sorting out more modes to
measure must result a Chernoff exponent not less than that for
the SLIVER.

Direct imaging
Direct imaging (DI) using a charge-coupled device (CCD) camera is
a standard detection technique in microscopy and telescopy.4 To
compare our schemes to direct imaging, we make the con-
servative assumption of an ideal noiseless photodetector with
infinite spatial resolution and unity quantum efficiency placed in
the image plane. In the weak-source model, and conditional on a

Fig. 3 Conditional Chernoff exponents in the weak-source model as
functions of the normalized two-source separation d for the
Gaussian PSF of Eq. (9). The Chernoff exponent for B-SPADE (solid)
achieves the quantum limit for all values of d, while the Chernoff
exponent for SLIVER (dashed) is near-quantum-optimal for sub-
Rayleigh separations. In this regime, both schemes outperform
direct imaging—whose Chernoff exponent is calculated numerically
(dash-dotted), as well as by using the small-separation approxima-
tion (dotted) given by Eq. (18)—by more than an order of
magnitude
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photon being detected in a given temporal mode, the observation
consists of its position of arrival ðx; yÞ 2 I . Using Eq. (12), the
resulting probability densities for the observation are Λ1(x, y)=ϒ
(x, y;0) and Λ2(x, y)=ϒ(x, y;d) under H1 and H2, respectively, where

ϒðx; y; dÞ � ϵ1
ϵ

ψðx � d=2; yÞj j2þ ϵ2
ϵ

ψðx þ d=2; yÞj j2: (17)

We show in the Methods that the conditional Chernoff exponent
for ideal DI in the weak-source model scales as d4 in the
interesting regime of small d:

ξðDIÞc ’ d4

32

Z
I0
dxdy

1
ϒðx; y; 0Þ ϒð2Þðx; y; 0Þ

h i2
; (18)

where ϒ(n)(x, y;d) denotes the n-th order partial derivative of ϒ(x, y;
d) with respect to d, and I0�fðx; yÞjϒðx; y; 0Þ>0g. In contrast, the
conditional Chernoff exponents of B-SPADE and SLIVER in the
weak-source model are of order d2, which can be seen by using
Eqs. (15) and (16) and ∂δ(d)/∂d|d=0= 0.
The conditional Chernoff exponents for different measurements

in the case of the Gaussian PSF are given in Table 1. Here, we have
used a Taylor series expansion of Eq. (16) in d for SLIVER, and used
Eq. (18) for estimating the Chernoff exponent for direct imaging.
The characteristic scalings with respect to d of the conditional
quantum Chernoff exponent and that of the three measurement
schemes are shown in Fig. 3. We see that the Chernoff exponent
of SLIVER agrees with the quantum limit for all practical purposes
in the sub-Rayleigh regime d ≤ 1.

Decision rule
In order to choose a hypothesis based on a sequence of B-SPADE/
SLIVER observations, we need to fix a decision rule. If the
separation d is known, the optimal decision rule is given by the
likelihood-ratio test:34 For a given observation record (z1, z2, …,
zM), we choose H2 if

QM
j¼1 Λ2 zj

� �
=Λ1 zj

� �
>p1=p2, where p1 and p2

are the prior probabilities of H1 and H2, respectively, and choose
H1 otherwise. If the separation is unknown, one can use the
generalized-likelihood-ratio test,45 which first estimates the
separation and then does the likelihood-ratio test with the
estimated value.
Here, we propose a simplified decision rule that does not

require the separation to be known or estimated. Observe that if
the detector corresponding to the modes orthogonal to the first
mode in the three-mode basis (see Eqs. (23)–(25) in Methods)
clicked for any sample, we can infer with certainty (in either source

model) that two point sources are present, i.e., H2 is true. The
simplified decision rule is then given by accepting H1 only if this
detector does not click during the entire observation period.
From Table 2 in the Methods, under the simplified decision rule,

the false-alarm probability for M samples is clearly α= 0 for both
the B-SPADE and SLIVER measurement. The miss error probability
is the probability that the detector corresponding to H2 does not
click, i.e.,

β ¼ Λ2ðoff; offÞ þ Λ2ðon; offÞ½ 	M; (19)

where Λ2(·,·) is the probability of the measurement outcome under
H2. It then can shown that β(meas)= exp(−Mξ(meas)) for both the B-
SPADE and SLIVER measurement.

DISCUSSION
We have examined the problem of discriminating one thermal
source from two closely separated ones for a given diffraction-
limited imaging system. Using the exact thermal state of the
image-plane field, we have derived the quantum Chernoff
exponent for the detection problem. We also have used the
weak-source model of the image-plane field, which is very
accurate in the optical regime due to the low brightness of a
thermal source in each temporal mode, to obtain simple
expressions for the Chernoff exponent. The per-sample B-SPADE
measurement that separates light in the PSF mode from the rest
of the field was shown to attain the quantum-optimal Chernoff
exponent for all values of two-source separation. Remarkably, it
does so without the need for prior knowledge of the value of d,
joint measurement over multiple modes, or photon-number
resolution in each mode. These properties are not shared by the
quantum-optimal measurement elucidated by Helstrom,22 which
is not a structured receiver. These advantages also adhere to the
SLIVER measurement, which is near-quantum-optimal in the sub-
Rayleigh regime. Moreover, the experimental design of SLIVER is
independent of the particular (reflection-symmetric) PSF of the
imaging system.
In fact, the simplified decision rules proposed here for B-SPADE

and SLIVER do not require resolving the arrival time of the
detected photon or photons. To wit, only a single on–off detector
without temporal resolution placed in the output corresponding
to the modes orthogonal to the PSF (for B-SPADE) or to the
antisymmetric component (for SLIVER) is sufficient for achieving
the error probability behavior derived here. Hypothesis H2 is
accepted if and only if this detector clicks at any time during the
observation period. If we need to simultaneously know the
conditional error probability, then at least two photon-number-
resolving detectors (or gated on–off detectors with sufficient
temporal resolution) are required such that the total number of
the photons arriving on the image plane can be obtained from the
observation.
Although sophisticated optical microscopy techniques can help

resolve multiple sources better than direct imaging,46 the

Table 1. Conditional Chernoff exponents for the Gaussian PSF

Scheme Chernoff exponent

B-SPADE/Quantum limit d2/16

SLIVER d2/16− d4/512+O(d6)

Direct imaging d4/256+O(d6)

Table 2. Probability distributions of single-sample outcomes for the two on–off detectors used in the B-SPADE and SLIVER measurement

Measurement Hypothesis Probability of event

(off, off ) (on, off ) (off, on) (on, on)

B-SPADE H1
1

1þϵ
ϵ

1þϵ 0 0

H2
1

1þϵþð Þ 1þϵ�ð Þ
μ2ϵþ

1þϵþð Þ 1þϵ�ð Þ 1þϵþ�μ2ϵþð Þ
1

1þμ2ϵþ
� 1

1þϵþð Þ 1þϵ�ð Þ *

SLIVER H1
1

1þϵ
ϵ

1þϵ 0 0

H2
1

1þϵþð Þ 1þϵ�ð Þ
ϵþ

1þϵþð Þ 1þϵ�ð Þ
ϵ�

1þϵþð Þ 1þϵ�ð Þ
ϵþϵ�

1þϵþð Þ 1þϵ�ð Þ

The first entry in each outcome refers to detection of the filtered PSF mode for B-SPADE and the symmetric field for SLIVER. The probability represented by *
can be obtained by the normalization of the probability distribution
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manipulation of the source emission that they require is
impossible in astronomical imaging for which the dominant
detection technique is direct imaging. Our proof that the linear-
optics schemes proposed here can yield Chernoff exponents that
are orders of magnitude larger than that of direct imaging,
coupled with the rapid recent experimental progress on similar
schemes,17–20 holds out great promise for applications in
astronomy and molecular imaging analysis in the near future.
Some remarks on the assumptions used in this work deserve to

be mentioned here. First, the assumption of unit magnification of
the imaging system is solely for omitting an irrelevant magnifica-
tion factor in mathematical expressions and thus does not limit
the validity of our result.41 Second, we assume the two sources has
the same frequency spectra so that we can focus on the resolution
power of an imaging system; otherwise, spectroscopy can also be
used to distinguish the hypotheses. Third, we assume the
brightness of the two sources are identical. For different bright-
nesses, calculating the quantum Chernoff exponent will become
much more difficult, as the symmetric and antisymmetric field are
no longer statistically independent, see Methods. However, with
the weak-source approximation, we have showed that the
Chernoff exponents of the B-SPADE and the SLIVER, as well as
their quantum limit, are the same as that for two equal-strength
sources, if the optical axis of apparatus is perfectly aligned to the
average position of the two point sources. Last, we assume that
the optic axis of the devices are perfectly aligned such that the
sources are symmetrically located about the optic axis. This may
be the biggest potential issue for the practical application of the B-
SPADE/SLIVER scheme. Some of us have investigated a two-step
hybrid scheme, where some of the collected photons are used for
the centroid estimation by direct imaging, followed by the B-
SPADE/SLIVER measurement for the hypothesis testing. A similar
scheme was studied for the scenario of estimating the separation
of two sources.7,8 Such a hybrid configuration is sensible,
considered from the following three aspects of direct imaging:
(i) it is easy to implement; (ii) it is known to achieve a good
centroid estimate; and (iii) it may utilize prior images, e.g., those
generated by previous astro-observation. The preliminary simula-
tions, which will be published in elsewhere, show that the hybrid
scheme still gives a substantial enhancement for hypothesis
testing if half of the photons are employed for centroid estimation
and alignment. Besides these assumptions, another possible
source of imperfection is dark counts in the photodetectors; this
may affect the performance of the B-SPADE and SLIVER schemes,
especially those using the simplified decision rules. To improve
the robustness against dark counts or extraneous background
light, we may use feedback strategies, like those developed in the
context of distinguishing between optical coherent states.47,48

The quantum Chernoff method used in this work can be
possibly extended to multiple sources. For multiple point sources,
our method can be generalized in two ways, depending on testing
binary or multiple hypotheses. In the first way, we can investigate
the resolution power by testing whether there is a weak point
light source between two strong point light sources or not. In such
a case, the binary hypothesis testing and the Chernoff bound are
still applicable. In the second way, we can consider the case where
a set of light sources can have several possible configurations and
we need to decide which configuration it is. For this problem, we
must resort to the multiple Chernoff distance derived in the ref. 49.

METHODS
Density operators
To calculate the Chernoff exponent and error probabilities, we need to
express the density operators ρ1 and ρ2 in an appropriate basis. We focus
on a single temporal mode χ(t) of the image-plane field satisfyingR T
0 χðtÞj j2dt ¼ 1 on the observation interval [0, T]. The two mutually

incoherent sources at ±d/2 under H2 are described by statistically

independent zero-mean circular complex Gaussian amplitudes A1 and A2
with the probability density

Pr A1; A2ð Þ ¼
Y2
j¼1

1
πϵj

exp � Aj
�� ��2=ϵj� �

; (20)

where ϵ1 and ϵ2 are the brightnesses of the two point sources. The image-
plane field conditioned on (A1, A2) is described quantum-mechanically as a
coherent-state, i.e., an eigenstate ϕA1 ;A2

�� 
of the positive-frequency field

operator ÊðþÞðr; tÞ in the image plane:
ÊðþÞðr; tÞ ϕA1 ;A2

��  ¼ EA1 ;A2 ðrÞχðtÞ ϕA1 ;A2

�� 
, where EA1 ;A2 ðrÞ is given by

EA1 ;A2 ðrÞ ¼ A1ψ r� d=2ð Þ þ A2ψ rþ d=2ð Þ (21)

and ψ(r) is the normalized PSF. The density operator under H2 is formally
given by

ρ2 ¼
Z

C2
d2A1d

2A2 Pr A1; A2ð Þ ϕA1 ;A2

�� 
ϕA1 ;A2

� ��: (22)

Note that ρ2 depends on the separation d and is reduced to ρ1 when
setting d= 0. Moreover, it can be seen from Eq. (21) that under H1 we have
EA1 ;A2 ðrÞ ¼ A1 þ A2ð ÞψðrÞ. Thus, it is evident that, while the relevant
coherent states are defined on a complete set of transverse-spatial modes
on I , only three orthonormal modes are in excited (non-vacuum) states.
These may be chosen as

ϕ1ðrÞ ¼ ψðrÞ; (23)

ϕ2ðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� μ2
p ψðr� d=2Þ þ ψðrþ d=2Þ

2
ffiffiffiffiffi
λþ

p � μψðrÞ
" #

; (24)

ϕ3ðrÞ ¼
ψðr� d=2Þ � ψðrþ d=2Þ

2
ffiffiffiffiffi
λ�

p ; (25)

where λ±≡ (1 ± δ(d))/2 and μ is given by Eq. (7). Using {ϕ1(r), ϕ2(r), ϕ3(r)} as
a spatial-mode basis, we have

EA1 ;A2 ðrÞ ¼ Aþ μϕ1ðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p
ϕ2ðrÞ

h i
þ A�ϕ3ðrÞ; (26)

where Aþ ¼ ffiffiffiffiffi
λþ

p
A1 þ A2ð Þ and A� ¼ ffiffiffiffiffi

λ�
p

A1 � A2ð Þ are two complex
random variables. When ϵ1 ¼ ϵ2 ¼ ϵ=2, the random variables A+ and A−
are statistically independent.8 In such a case, we get

ρ1 ¼ ρth ϵð Þ � 0j i 0h j � 0j i 0h j; (27)

ρ2 ¼ U ρth ϵþð Þ � 0j i 0h j½ 	Uy � ρth ϵ�ð Þ; (28)

where ρthðϵÞ ¼
P

n ϵn=ðϵþ 1Þnþ1� 	
nj i nh j is the single-mode thermal state

with ϵ average photons,50,51 U is a unitary beamsplitter transformation with
transmissivity μ acting on the first two modes. The d-dependent quantities
ϵ± and μ are given by Eq. (7). The transmissivity μ takes values in the range
[−1, 1] and equals unit when d= 0. The beamsplitter implements the
transformation

U αj i � βj i ¼ μα�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p
β

��� E
� μβþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p
α

��� E
(29)

for input coherent states αj i and βj i, while for a number state-vacuum
input nj i 0j i, we have

U nj i � 0j i ¼
Xn
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
n

k


 �s
μk 1� μ2
� �n�k

2 k; n� kj i: (30)

Quantum Chernoff exponent
The quantum Chernoff exponent is given by ξ ¼ �logmin0�s�1Qs with
Qs � Tr ρs1ρ

1�s
2

� �
. Using Eqs. (27), (28) and (30), we get after some algebra:

Qs ¼ 1
aps 1� bqsð Þ ; (31)

where the coefficients are

a ¼ 1þ ϵþð Þ 1þ ϵ�ð Þ; b ¼ ϵþ
1þϵþ

μ2;

p ¼ 1þϵ
1þϵþð Þ 1þϵ�ð Þ ; q ¼ ϵ 1þϵþð Þ

ϵþð1þϵÞ :
(32)

It follows from 0 � ϵ± � ϵ and ϵþ þ ϵ� ¼ ϵ that p ≤ 1 and q ≥ 1. Thus, Qs
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takes its minimum at s= 0, i.e.,

min
0�s�1

Qs ¼ Q0 ¼ 1
1þ ϵ�ð Þ 1þ ϵþ � μ2ϵþð Þ ; (33)

from which we obtain the quantum Chernoff exponent in Eq. (5).

B-SPADE and SLIVER
To calculate the Chernoff exponents as well as the error probabilities for B-
SPADE and SLIVER, it will be convenient to only focus on the effective
action of the measurement on the relevant Hilbert subspace. Figure 4
illustrates the effective actions of B-SPADE and SLIVER on the mode
subspace spanned by ϕ1(r), ϕ2(r), and ϕ3(r). The B-SPADE measurement
discriminates the first mode from the other two, while the SLIVER
measurement discriminates the first two modes from the third, which is
the sole excited antisymmetric mode. We emphasize that our schemes are
very different from a detector that resolves each of the modes ϕ1(r), ϕ2(r),
and ϕ3(r), since implementing such a detector would require knowledge of
d. Our schemes, on the other hand, work for any d. Using Eqs. (27) and (28)
and the effective action of the measurements shown in Fig. 4, the
probability distribution of measurement outcomes can be easily obtained
as given in Table 2, on which the calculation of the Chernoff exponents is
based.
For B-SPADE, we get

QðB�SPADEÞ
s ¼ 1þ ~b~qs

aps
; (34)

where a and p are given in Eq. (32), ~b ¼ μ2ϵþ= 1þ ϵþ � μ2ϵþð Þ, and
~q ¼ ϵ 1þ ϵþ � μ2ϵþð Þ=μ2ϵþ � 1. It follows that Qs is minimized over [0, 1]
by taking s= 0, leading to the result of ξ(B−SPADE) in Eq. (5). In the weak-
source model, the probability distribution of a detected photon being at
the two output ports is {1, 0} under H1 and {δ(d/2)2, 1− δ(d/2)2} under H2.
Thus, one can easily obtain the result of ξðB�SPADEÞ

c as shown in Eq. (15).
For SLIVER, the structure of ρ1 and ρ2 implies that the two detectors fire

independently under both hypotheses. From these equations, the Chernoff
exponent of SLIVER can be calculated (and corresponds to s= 0 as for B-
SPADE) with the result of Eq. (6). In the weak-source model, the probability
distribution of a detected photon being at the two output ports is {1, 0}
under H1 and {[δ(d)+ 1]/2, [1− δ(d)]/2} under H2. Thus, one can easily
obtain the result of ξðSLIVERÞc as shown in Eq. (16).

Leading term of Chernoff exponent
For a given measurement scheme, let ϒ(z;d) be the resulting probability
density of a measurement outcome z, where d is the distance between the
two hypothetic point sources. The Chernoff exponent of Eq. (3) for testing
H2 (d > 0) against H1 (d= 0) can be written as ξðdÞ ¼ �logmin0�s�1QsðdÞ
with QsðdÞ �

R
dμðzÞϒðz; 0Þ1�sϒðz; dÞs . Let us now focus on the leading

term of ξ(d) for small separations d ≈ 0, where the optimal measurement
performs much better than direct imaging. We expand Qs(d) in a Taylor
series as

QsðdÞ ¼ 1þ
X1
k¼1

dk

k!
Qs;k ; (35)

Qs;k �
Z

I0
dμðzÞϒðz; 0Þ1�s∂

kϒðz; dÞs
∂dk

�����
d¼0

; (36)

where I0 � fzjϒðz; 0Þ>0g. These coefficients Qs,k are independent of d.
Although in our model the separation d is nonnegative, the PSFs in Eq. (9)

can be easily extended to real numbers and meanwhile assured to be
smooth at d= 0. It then follows from Eq. (12) that ϒ(z;d)=ϒ(z; −d) and
thus all odd derivatives of ϒ(z;d) with respect to d at d= 0 vanish for an
arbitrary z. As a result, we have

Qs;1 ¼ Qs;3 ¼ 0; Qs;2 ¼ sgð2Þð0Þ;
Qs;4 ¼ 3sðs� 1ÞK þ sgð4Þð0Þ; (37)

where g(k) denotes the k-th derivatives of gðdÞ�R
I0 dμðzÞϒðz; dÞ and

K �
Z

I0
dμðzÞ 1

ϒðz; 0Þ
∂2ϒðz; dÞ

∂d2

� �2
d¼0

: (38)

For the ideal direct imaging scenario in the weak-source model, the
measurement outcome z is the coordinates of a detected photon in the
image plane, i.e., z ¼ ðx; yÞ 2 I . Suppose that the two point sources are
aligned along the x axis, ϒ(z;d) is then given by Eq. (17) with z= (x, y). For
all three typical kinds of PSFs considered in this work, we have g(d)= 1 for
direct imaging. In such a case, the leading d-dependent term in the Taylor
series of Qs(d) is of fourth order. It then follows that ξðDIÞc ’ d4

32K, which is
Eq. (18). On the other hand, for B-SPADE and SLIVER, it can be seen from
Table 2 that g(d)= Λ2(off, off)+ Λ2(on, off), so that g(2)(0) is nonzero and
the leading term in Qs(d) is second-order in d.
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