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Quantum oscillation of magnetoresistance in tunneling junctions with a nonmagnetic spacer
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We make a theoretical study of the quantum oscillations of the tunneling magnetoresistance~TMR! as a
function of the spacer layer thickness. Such oscillations were recently observed in tunneling junctions with a
nonmagnetic metallic spacer at the barrier-electrode interface. We calculate the TMR ratio for disordered
tunneling junctions containing a spacer at which quantum well states are formed. A single-orbital tight-binding
model, the linear response theory, and the coherent potential approximation are used for the calculation. As a
function of the spacer thickness, calculated TMR ratio shows damped oscillation around zero with a single
period given by the Fermi wave vector of the spacer, which is consistent with observed results. It is shown that
momentum selection due to the insulating barrier and conduction via quantum well states in the spacer,
mediated by diffusive scattering caused by disorder, are essential features required to explain the observed
oscillation in the TMR ratio. We further show that calculated results can be reproduced by the stationary phase
approximation, which implies that obtained results hold qualitatively in more realistic band models.
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I. INTRODUCTION

Large magnetoresistance1,2 observed in ferromagneti
tunneling junctions, ferromagnetic metal~FM!/insulator
(I )/FM, currently attracts much interest due to technologi
applications such as magnetic sensors and magnetic ran
access memory elements. The tunneling current through
I /FM junctions is usually discussed in terms of the sp
polarized densities of states~DOS! in the ferromagnetic elec
trodes. The spin asymmetry of DOS gives rise to a differe
in currents between parallel~P! and antiparallel~AP! orien-
tations of the electrode magnetizations and results in the
nel magnetoresistance~TMR!.3–5 It follows from this model
that the interfacial electronic structure should be an imp
tant factor in TMR.6–9 To test this idea, attempts have be
made to alter the interfacial electronic structure by introd
ing nonmagnetic ~NM! metallic interlayers into the
junction.10–13 The observed TMR ratios10–13 of such FM/
I /NM/FM junctions showed an almost monotonic decrea
with increasing thickness of the inserted layers of Au, Cu
Cr. Zhang and Levy14 have explained this decrease of TM
in terms of the decoherence of electrons propagating acro
nonmagnetic layer.

The apparent agreement between the theory14 and the
early experiments on the junctions with nonmagnetic int
layers has been challenged by the recent observation of T
in high-quality NiFe/Al2O3 /Cu/Co junctions in which the
Cu/Co electrode is a single crystal.15 These experiments
show clear oscillations of the TMR as function of Cu thic
ness. Two characteristic features of the oscillations have b
observed:~i! the average TMR decays to zero with increa
ing Cu thickness;~ii ! the period of oscillations is determine
solely by the extremal wave vectorkF at the Cu Fermi sur-
face ~FS! belly. This is the same period that has been o
served in the photoemission spectra16 and oscillatory ex-
0163-1829/2003/68~17!/174421~9!/$20.00 68 1744
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change coupling~Ref. 17 and references therein!. The
experiments of Yuasaet al.15 pose some very fundamenta
questions concerning the effect of a nonmagnetic meta
interlayer on TMR. The fact that nonzero TMR has be
observed for a thick spacer layer is the first clear evidenc
coherent tunneling across the whole junction. This canno
understood within the classical theory3,4 which would predict
strictly zero TMR. Nonzero TMR can be explained with
the Kubo formalism applied to a junction with a vacuu
gap18 but the two principal features of the observed oscil
tions listed above cannot be understood within the exist
theories.

The properties of conductance and TMR oscillations o
served in epitaxial FM/I /Cu/FM junctions are quite differen
from those studied theoretically for metallic traylayers in t
ballistic limit.19,20 First, in contrast to the observed sing
period of oscillation, multiple oscillation periods have be
predicted for metallic junctions. In addition to FS perio
(kF), the theory predicts also periods (kcp) arising from a
sudden cutoff of the conductance which occurs when
component of the electron energy perpendicular to the lay
falls below the edge of a quantum well~QW! formed in the
NM layer. The theoretical results on TMR in FM/I /Cu/FM
junctions with a vacuum gap18 also predict multiple oscilla-
tion periods. Second, the theory for FM/vacuum/Cu/F
junction fails completely to explain the observed oscillati
of TMR about a zero average value.

The purpose of this work is to give a theoretical explan
tion for the characteristic features of the observed oscillat
in TMR,15 especially, the reasons for vanishing the avera
TMR and selection ofkF oscillation period. To achieve the
purpose, we include disorder21–29 in our calculation since
diffusive scattering is disregarded in previous theories.18,30

We calculate the spin-dependent conductance and the T
ratio by applying the linear response theory and the sing
©2003 The American Physical Society21-1
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site coherent potential approximation~CPA! to a simple
tight-binding model.

In this paper we show that the diffusive scattering~vertex
correction! is decisive for the transport properties in tunn
ing junctions containing quantum well and that the combin
effects of barrier thickness and disorder can explain all
essential features of experimental results. In particular,
will demonstrate that~i! increasing barrier thickness and di
order in the barrier increases the amplitude of thekF oscilla-
tion period relative to thekcp period, and~ii ! the disorder in
the barrier decreases the asymptotic value of the TMR r
to zero. We further show that the calculated results can
reproduced by the stationary phase approximation,20 which
implies that this technique is applicable to a realistic mult
rbital model of the tunneling junction. This clearly show
that the spanning vectorkF of the Cu FS is responsible fo
the observed oscillation period. In addition, we show that
amplitude of the oscillation becomes small with decreas
mean free path of the spacer.

This paper is organized as follows. In Sec. II, a simp
tight-binding model for ferromagnetic tunneling junction
containing a quantum well is presented. Then, a formula
of the conductance within a framework of the Kubo formu
and the single-site CPA with the vertex correction is given
Sec. III, numerical results obtained for both clean and dis
dered junctions are shown and the effect of the disorder
the quantum oscillation of TMR is clarified. Finally we sum
marize this paper in Sec. IV.

II. MODEL AND METHOD

A. Model

Let us consider a FM/I /NM/FM junction on a simple
cubic lattice with lattice spacinga, where FM, I, and NM
denote a ferromagnetic electrode, an insulating barrier,
a nonmagnetic metallic spacer, respectively~see Fig. 1!.
We choose~001! axis (z axis! as a stacking direction an
use (r i ,l ) representation wherer i is a positional vector in
x-y direction andl labels the layer inz direction. Initially we
adopt a single-orbital tight-binding Hamiltonian in ord
to model a Co/Al2O3 /Cu/Co junction ~analogous to
NiFe/Al2O3 /Cu/Co junction studied in Ref. 15!:

Ĥ5Ŵ1V̂ ~1!

Ŵ52t (
^(r i ,l ),(r i8 ,l 8)&,s

~cr i ,l ,s
† cr i8 ,l 8,s1H.c.!, ~2!

V̂5 (
r i ,l ,s

Vl ,s
r i cr i ,l ,s

† cr i ,l ,s , ~3!

wherecr i ,l ,s (cr i ,l ,s
† ) is the annihilation~creation! operator

of an electron with spins(5↑,↓) at site (r i ,l ), t the hop-
ping integral between nearest-neighbor sites, andVl ,s

r i the
on-site potential for an electron with spins at site (r i ,l ).
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Here, we chose the magnetization direction of left FM as
global spin quantization axis. InP ~AP! alignment, the mag-
netization of right FM is parallel~antiparallel! to that of left
FM. Since the majority spin band of Co is similar to the C
band, we set in the left FMVFM↑5VNM . The potential pro-
file of the system and the FS projected ontokx-ky plane for
both P and AP alignments are shown in Figs. 1~b!, 1~c!, and
1~d!, respectively, whereki5(kx ,ky) is the element of the
wave vector parallel to thex-y plane, or the lateral direction
It is clear that quantum well states are formed in NM lay
only for ↓-spin electrons inP alignment and↑-spin electrons
in AP alignment. Since the insulating Al2O3 barrier is amor-
phous in real junctions, we introduce disorder in the barr
by settingVl ,s

r i 5VI1DVI or VI2DVI randomly depending
on the site in equal probabilities. We also introduce disor
in NM by settingVl ,s

r i 5VNM1DVNM or VNM2DVNM . Alto-
gether, the on-site potential is

FIG. 1. ~Color online! Schematic representation of DOS~a!,
potential profile~b!, and projected Fermi surface~FS! in P ~c! and
AP ~d! alignments of a FM/I /NM/FM junction. In AP alignment, the
magnetization of right FM is opposite to that of left FM. In~b!,
on-site potentials for↑ and↓ spins are shown by dashed and dott
lines, respectively. In~c! and ~d!, projected FS of↑ and ↓ spin
states in FM are regions inside of dashed and dotted loops, res
tively. NM FS is shown by solid loop and dash-dotted circles in N
FS of ~c! and ~d! give the cutoff wave vectorkcp for ↓ and↑ spin
states, respectively.
1-2
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V~r i ,l !55
VFM

s , l P left FM

VI6DVI , l PI

VNM6DVNM , l PNM

VFM
s(s̄) , l Pright FM in P~AP!.

~4!

The tunneling conductance fors-spin electron inP ~AP!
alignment is given by

GP(AP)
s 5

e2

h (
ki ,k8i

tP(AP)
s ~ki→k8i!, ~5!

where tP(AP)
s (ki→ki8) is the transmission coefficient for a

electron incident from the left FM withki and scattered into
the right FM with ki8 . TMR ratio is defined by TMR[1
2(GAP

↑ 1GAP
↓ )/(GP

↑1GP
↓).

B. Formulation of the conductance

In this subsection, we formulate the electrical condu
tance for layered system including disorder mentioned
preceding subsection by using the linear response theory
the CPA.

In the Kubo formula,31 the conductance is expressed
current-current correlation functions. ConductanceG for the
currents perpendicular to the layers (z direction! per spin
channel is given as32

G5
p\

~2pai !2
^Tr@ Ĵz~m!@ ĝ~z2!2ĝ~z1!#

3 Ĵz~n!@ ĝ~z2!2ĝ~z1!##&, ~6!

where the bracket̂•••& denotes the configurational avera
of the quantity ‘‘••• ’’ over the disorder. We omit the spin
index s for simplicity in this subsection. The local curren
operatorĴz( l ) in the z direction and the Green’s functio
ĝ(z) are given by

Ĵz~ l !5
ieta

\ (
r i

~cr i ,l 11
† cr i ,l2cr i ,l

† cr i ,l 11!, ~7!

ĝ~z6!5~z612Ĥ !21, ~z65EF6 i0!, ~8!

whereEF is the Fermi energy.
In order to calculate the conductance, we need to eval

the configurational average of the product of two Gree
functions such aŝĴz(m)ĝ(z1) Ĵz(n)ĝ(z2)&.

The configurational average can be evaluated by sev
methods, for example, numerical simulation and mean-fi
approximation. In the numerical simulation, the conducta
is calculated for a cluster whose size is finite in late
direction.24 The average value of the conductance is obtai
by statistical averaging over clusters which have differ
configuration of disorder. The formulation is straightforwa
and the conductance is expressed in terms of fully real-sp
Green’s functions which can be obtained numerically by
ing the recursion method.32
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In the mean-field approximation, the configurational av
age of the product of two Green’s functions is divided in
two parts as~see Fig. 2!

^Ĵz~m!Ĝ~z1!Ĵz~n!Ĝ~z2!&

5 Ĵz~m!Ĝ~z1!Ĵz~n!Ĝ~z2!

1 Ĵz~m!Ĝ~z1!L̂„z1 ,Ĵz~n!,z2…Ĝ~z2!. ~9!

The first term is the product of the two effective Green
functions which include the effective media, or self-ener
The second term is the vertex correction which should
estimated consistently with the self-energy to satisfy the c
rent conservation law. In simple alloy systems, the ver
correction vanishes due to the symmetry of the system. H
ever, in tunneling junctions, the correction does not van
because of the layered structure of the system and desc
diffusive scattering processes where electron momen
along layers is not conserved.

We adopt the single-site CPA~Ref. 33! as a mean-field
approximation and outline below how the effective Gree
function Ĝ(z) and the vertex functionL̂„z1 ,Ĵz(n),z2… are
determined.24 In the CPA, the effective Green’s function i
obtained by replacing random potentialV̂ with an effective
media,33

Ĝ~z!5@z12Ŵ2Ŝ~z!#21. ~10!

where Ŝ(z) is the coherent potential. In the single-site a
proximation, the coherent potential becomes site diago
and depends on the layer index in a layered system,

Ŝ~z!5(
r i ,l

S l~z!cr i ,l
† cr i ,l . ~11!

The potentialS l(z) is determined so that the average of t
single-sitet matrix vanishes, i.e.,

FIG. 2. ~Color online! Feynman diagrams for conductance.~a!
and ~b! denote the first and second terms of right-hand side of
~9!, respectively.~c! represents the ladder approximation for t
vertex function in Eq.~15!. Solid line with an arrow, dashed line
open circle, and shaded area are the effective Green’s function
single-sitet matrix, the local current operator, and the vertex fun
tion, respectively.
1-3
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^t l
r i~z!&50, ~12!

t l
r i~z![@Vl

r i2S l~z!#$12G l l
r ir i~z!@Vl

r i2S l~z!#%21.
~13!

Here, sinceŜ, then,Ĝ has the translational invariance in th

x-y directions,G
l l 8

r ir i8 is rewritten in (ki ,l ) representation as

G
l l 8

r ir i8~z!5
1

Nxy
(
ki

eiki•(r i2r8i)^ki ,l u$~z2Wki
!1

2Ŝ~z!%21uki ,l 8&, ~14!

whereWki
522t@cos(kxa)1cos(kya)#. The coherent potentia

is a complex number at layers with disorder reflecting
effect of scatterings whereas it is the only on-site potentia
layers without disorder. Therefore, by solving self-consist
equations~12!–~14!, we can obtainS l(z) and the effective
Green’s function as long as the number of disordered lay
is finite.

Next we evaluate the vertex correction term in Eq.~9!.
The vertex correction should be calculated consistently w
the coherent potential~self-energy! in order to satisfy the
current conservation law. We apply the ladder approximat
and calculate Feynman diagrams in Fig. 2~c!. In this approxi-
mation, the vertex function becomes site diagonal asL̂
5( r i ,lL lcr i ,l

† cr i ,l andL l satisfies the following equation:34

L l„z1 ,Ĵz~n!,z2…

5^t l
r i~z1!t l

r i~z2!&H K l l
r ir i@z1 ,Ĵz~n!,z2#

1 (
(r i8 ,l 8)
Þ(r i,l )

G
l l 8

r ir i8~z1!L l 8„z1 ,Ĵz~n!,z2…Gl 8 l

r i8r i~z2!J , ~15!

K l l
r ir i@z1 ,Ĵz~n!,z2#5$Ĝ~z1!Ĵz~n!Ĝ~z2!% l l

r ir i . ~16!

Equation~15! is a simultaneous equation forL l , which can
be solved sinceL l is nonzero only at layers with disorder.

In the present formalism, the conductance is expresse
quantities which recover the translational invariance in
eral direction. Therefore, mixed (ki ,l ) representation is use
in the calculation. The procedure to calculate the cond
tance is summarized as follows. We first calculate the lay
dependent coherent potentials$S l% by solving Eqs.~12!
–~14!. Once the coherent potentials are determined, any
trix elements of the effective Green’s function in Eq.~14!
can be easily calculated because the effective Green’s f
tion is ki diagonal.24 We use the recursion method32 for the
calculation. The surface Green’s function of electrod
which is required for the method, is given in an analy
way35 in our simple model. Next, we calculate the laye
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dependent vertex functions$G l% by solving Eqs.~15! and
~16!. Then we calculate the conductance by using Eqs.~6!
and ~9!.

Because of the current conservation law, the layer indi
m andn of local current operators in Eq.~6! are arbitrary. We
have confirmed that the conductance does not depend on
choice ofm andn in our calculation. When we takem andn
surface layers of left and right leads, respectively, the exp
sion for conductance is reduced to Eq.~5!.36

In order to confirm the results obtained by the CPA, w
have also performed numerical simulations23 for finite-size
clusters. In the numerical simulations, a 24324 sites super-
cell with 32332 supercellki points in two-dimensional Bril-
louin zone was used. The results obtained by the CPA
the numerical simulation agree satisfactorily. The CPA cal
lation, however, has advantages over the numerical sim
tion in computational time and memory.

The method of the single site CPA with the vertex corre
tion has been applied to metallic multilayers,37 ordinal tun-
neling junctions,24 and also tunneling junctions containin
manganites.38 It has been shown that the method is app
cable even to rather strongly disordered systems,39 although
the single site CPA neglects the correlation between sca
ings.

III. RESULTS

In our numerical calculations, we use in the left F
VFM↑5VNM52.382t and VFM↓55.382t. The barrier poten-
tial and and the Fermi energy are set asVI59.0t and EF
50, respectively. The barrier thickness is five atomic lay
unless specified. Such a choice of parameters reproduce
proximately the observed TMR ratio for a junction witho
the nonmagnetic spacer and the oscillation period origina
from Cu FS belly.

We show calculated results for clean junctions (DVI
5DVNM50), junctions with disorder in the insulating ba
rier (DVIÞ0,DVNM50), and junctions with disorder in both
the barrier and the spacer (DVIÞ0,DVNMÞ0) in Secs. III A,
III B, and III C, respectively.

A. TMR in clean junctions

First, the spin-dependent conductances and TMR ratio
junctions without disorder (DVI5DVNM50) are shown in
Figs. 3~a! and 3~b!, respectively. It can be seen thatGP

↓ and
GAP

↑ oscillate with the NM layer thicknessLNM due to inter-
ference of electrons in the spacer quantum well. The osc
tions are a superposition of two periods: the FS period de
mined by the Fermi wave vectorkF and a period given by the
cutoff wave vectorkcp. The Fermi wave vector, which origi
nates from the state withki50, is given by 2tcos(kFa)
5VNM2EF24t. The cutoff period originates from sudde
cutoff of the conductance atki points shown by dash-dotte
curve in NM FS of Figs. 1~c! and 1~d!, and the cutoff wave
vector is given by 2t cos(kcpa)5VNM2VFM↓12t.19

For the potential parameters chosen, the FS and cu
periods, corresponding tokF54p/5a and kcp52p/3a, are
5a and 3a. The situation here is analogous to that of CP
1-4
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GMR in a Co/Cu/Co trilayer.20 The TMR ratio shown in Fig.
3~b! oscillates with the same periods as the conductance
has a finite asymptotic value for large NM thicknesses. Th
results are consistent with those of Ref. 18 where the ef
of disorder was ignored.

Figure 4 shows the dependence of oscillations inGP
↓ and

FIG. 3. ~Color online! Conductance~a! and TMR ratio~b! of
clean junctions. Conductances for↑ and ↓ spin electrons are de
noted bym (n) andd (s), respectively, forP ~AP! alignment of
magnetizations. Dashed lines are guide to the eye.

FIG. 4. ~Color online! ConductanceGP
↓ for various thicknesses

of clean insulating barrier normalized to the asymptotic value
tained atLNM→`. Dashed lines are guides to the eye.
17442
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GAP
↑ on the barrier thicknessL I with all the conductances

being normalized to the asymptotic valuesGP
↓` andGAP

↑` for
LNM→`, respectively. The oscillation period ofGP

↓ clearly
tends to 5a with increasing barrier thickness. This result
explained as follows. Since the wave vectorki parallel to the
interface is conserved in the system without disorder,
transmission probabilityTP(AP)

s (ki) for an electron incident
from the left FM with momentumki on the barrier is given
as TP(AP)

s (ki)5tP(AP)
s (ki→ki). In Fig. 5, the transmission

probabilities are plotted as functions ofki in a logarithmic
scale. Here,TP

↑ takes a finite value in wider range ofki
plane than the others because of large FM FS of↑-spin elec-
tron and the momentum conservation. The transmiss
probability depends strongly on the angle of incidence
electrons on the barrier, and the normal incidence@ki
5(0,0)# contributes most to the conductance. It follows th
as the barrier thickness increases, the oscillation due to cu
k points, i.e.,kiÞ(0,0), becomes progressively weaken
compared to that of the FS oscillation, i.e.,ki5(0,0). For
GAP

↑ , the increase in oscillation period from 3a to 5a is only
seen for largerL I . This may be due to the fact tha
TAP

↑ @ki5(0,0)#/(ki
TAP

↑ (ki) is smaller than TP
↓@ki

5(0,0)#/(ki
TP

↓(ki), i.e., the contribution of normal inci-

dence to the conductanceGAP
↑ is smaller than that toGP

↓ . As
a result, the oscillation period of the TMR ratio is not qui
5a for the present barrier thickness.

B. TMR in disordered junctions

Next, we introduce disorder into the insulating barri
(DVI50.5t,DVNM50) and show the corresponding calc
lated results of spin-dependent conductance and TMR r
in Figs. 6~a! and 6~b!. The conductanceGAP

↑ is clearly en-
hanced by disorder whereas all the other conductancesGP

↑ ,
GP

↓ , andGAP
↓ are hardly affected.GAP

↑ now oscillates almost
exclusively with period 5a ~i.e., kF period! about GP

↑ @see
Fig. 6~a!#. This results in a TMR ratio which now oscillate
around zero with the period 5a. This should be contraste
with the ordered case in which the TMR ratio oscillates w
two periods about a constant background@cf. Fig. 6~b! and
Fig. 3~b!#. The asymptotic values of the TMR ratio asLNM
→` are shown in the inset of Fig. 6~b! as functions of the
barrier thickness. Both the cases with and without disor
are shown. The asymptotic value of the TMR ratio for jun
tions without disorder decreases slowly with increasingL I ,
whereas that for junctions with disorder decreases rap
and becomes zero for largeL I .

To gain a better understanding of the effects of disor
on the magnitude ofGAP

↑ , and on the period of oscillations
we have calculated the dependence of the transmission p
ability on ki . Figure 7 shows the transmission probabiliti
TP(AP)

s (ki) for an electron incident from the left FM with
momentumki on the barrier. In disordered junctions, sinceki
is not necessarily conserved,TP(AP)

s (ki) is given as
TP(AP)

s (ki)[(ki8
tP(AP)
s (ki→ki8). In the absence of disorde

the contribution toTAP
↑ in the momentum space is conce

trated nearki5(0,0) as shown in Fig. 5~c!. However, disor-
-

1-5
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FIG. 5. ~Color! ki dependence of transmission probabilities for clean junctions. Transmission probabilities of↑ and ↓ spin electrons
incident from left FM withki are plotted in~a! and ~b! for P alignment, and~c! and ~d! for AP alignment.
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der opens up additional channelski outside this area contrib
uting toTAP

↑ in Fig. 7~c!. This is becauseki is not conserved
in diffusive scattering. In the absence of disorder, onlyki
points on the FS satisfying theki conservation contribute to

FIG. 6. ~Color online! Conductance~a! and TMR ratio~b! of
disordered junctions. Notation is same as in Fig. 2. Solid lines
obtained by the stationary phase approximation. Dash-dotted cu
in ~b! denote 1/LNM dependence. Inset of~b!: Asymptotic values of
TMR ratio obtained atLNM→` for clean (s) and disordered (d)
junctions.
17442
the conductance. For diffusive scattering, on the other ha
the entire set ofki points on the FS contributes to transpo
More precisely,ki points corresponding to quantum we
states contribute now to the conductance. Theseki points
appear as sharp peaks in Fig. 7~c! and they fall on concentric
rings in theki space.

It is clear from Fig. 7~c!, and examination of the↑-spin
FM FS, that the number of openki channels contributing to
TAP

↑ , is now the same as that contributing toTP
↑ . This ex-

plains the increase in the constant part of the conducta
GAP

↑ to a value of approximatelyGP
↑ . In addition, the intro-

duction of diffusive scattering has almost eliminated t
sharp momentum cut off seen in Fig. 7~c!, which explains
why thekcp oscillation period ofGAP

↑ is weakened by disor-
der. The other transmission probabilities are not greatly
fected by the introduction of disorder@Figs. 7~a!, 7~b!, and
7~d!# since scattering cannot open newki channels in these
cases. This explains why the introduction of disorder h
negligible effect on the conductancesGP

↑ , GP
↓ , andGAP

↓ . It
is worth noting that the vertex correction is decisive for t
transport properties in tunneling junctions containing a qu
tum well since most of the change inGAP

↑ and TMR ratio is
brought about by the vertex correction.

We therefore expect that in the presence of disorder,
oscillatory part of the conductance is derived entirely fro
states in the region ofki5(0,0). In order to check this hy
pothesis, we have used the stationary phase method~see Ref.
20 and references therein!, which is able to determine the
oscillatory contributions from isolated regions of the Br
louin zone, for thick spacers. The results, depicted by so
curves in Figs. 6~a! and 6~b!, are in excellent agreement wit

re
es
1-6
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FIG. 7. ~Color! ki dependence of transmission probabilities for disordered junctions. Transmission probabilities of↑ and↓ spin electrons
incident from left FM withki are plotted in~a! and ~b! for P alignment, and~c! and ~d! for AP alignment.
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the numerical calculations forLNM*5. This indicates that
the oscillation period observed in the experiment may
determined in the stationary phase approximation for a fu
realistic model of the junction. The experimental finding15

that the oscillation period is determined bykF of the Cu
spacer FS is thus naturally explained.

The physical interpretation of our results is as follow
The observed vanishing average of the TMR ratio is
plained by disorder in the barrier which opens up newki
channels in the conductance of↑-spin electrons in AP align-
ment. The number of open channels for↑-spin electrons
coming from a large FS of the left magnetic electrode
restricted, by the conservation ofki in the ordered junction,
to the number of available channels on the FS of the ri
electrode, which is small since its relevant↓ FS is small.
Hence a spin asymmetry in transmission betweenP and AP
alignments in the ordered junction arises. In a disorde
junction, this restriction is removed and all the states fr
the large FS of the left electrode can now be scattered
the small FS of the right electrode. Hence the spin asym
try is removed, and with it the average TMR.~Simple argu-
ments along these lines show that the other transmis
probabilities are not so affected by disorder.!

The selection of a single oscillation period~among many
possible! is due to two factors. Periods corresponding
sharp cutoffs occur in an ordered junction because of a m
match between the sizes of the FS of the FM and NM lay
The sharp cutoffs are ‘‘softened’’ in a disordered juncti
~the same argument as above!. Periods coming from extrem
17442
e
y

.
-

s

t

d

to
e-
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of the spacer FS atkiÞ(0,0) are removed because perpe
dicular tunnelingki5(0,0) is favored in real junctions~pe-
riod selection by barrier thickness!.

C. Amplitude of TMR oscillation

In the preceding subsection, we have shown that the
tionary phase approximation may well explain the TMR ra
obtained for junctions with disorder in the barrier~see Fig.
6!. We can see from the result that the amplitude of
oscillation is inversely proportional toLNM .20 The experi-
mental results, however, indicate a much faster decreas
the oscillation amplitude.15 We, therefore, introduce disorde
in the NM layer as well as in the barrier (DVI50.5t,DVNM
Þ0) and study how the amplitude of TMR oscillation
affected by the scattering in the spacer. By changing
disorder potentialDVNM , we calculate the conductance fo
several values of mean-free pathlNM in the spacer. We esti
mated the mean-free path simply aslNM5\vF /(2ImS0)
wherevF andS0 are the Fermi velocity of bulk NM and the
coherent potential in bulk NM, respectively.

In Fig. 8~a!, we show calculated results of the condu
tanceGAP

↑ for several values oflNM . We can see that the
conductanceGAP

↑ decreases, i.e., the resistance increases
decreasinglNM , and that the amplitude of the oscillation
suppressed. Since we changelNM , the resistance in the
spacer changes. In the inset of Fig. 8~a!, we plot the resis-
tance 1/G0 of the NM layer itself which is estimated for th
system NM electrode/disordered NM layer/NM electrod
1-7
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The resistance 1/G0 is too small to explain the change in th
resistance 1/GAP

↑ if we consider that the total resistance
given in series of the tunneling resistance and the sp
resistance. One explanation for large change inGAP

↑ could be
that the disorder breaks quantum interference of the w
function caused by the quantum well at NM and makes
conductance smaller as compared with that with clean
spacer. In Fig. 8~b!, we show calculated results of the TM
ratio. It can be seen that the amplitude of the oscillation
the TMR ratio becomes small with decreasinglNM as well as
that in the conductance. We found that the amplitude of
TMR oscillation can be described well by the form
a/LNMexp(2LNM /lNM) except for thin NM layer region. By
fitting experimental data15 using this expression, we est
mated the mean-free path of Cu in the junction to be;20 Å,
which is consistent with a theory based on the Boltzma
equation.40

FIG. 8. ~Color online! ConductanceGAP
↑ ~a! and TMR ratio~b!.

In ~a!, open circles, solid, dashed, and dash-dotted curves are re
for lNM5`, 78a, 7.8a, and 2.6a, respectively. In~b!, open squares
and triangles are results forlNM515.6a and 2.6a, respectively.
Dash-dotted curves denote6a/LNM exp(2LNM /lNM). Inset of~a!:
Resistance calculated for a system of NM electrode/disordered
layer/NM electrode. Solid, dashed, and dash-dotted curves ar
sults forlNM578a, 7.8a, and 2.6a, respectively.
ys

le
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IV. CONCLUSION

We have shown that the observed period of TMR osci
tions and the oscillation of the TMR ratio around an av
aged value close to zero are explained by the combined
fects of tunneling barrier and disorder. Disorder introduc
new conductance channels via quantum well states, wh
are confined at the nonmagnetic spacer in clean junctio
The new conduction channels increase the conductanc
AP alignment to approximately that ofP alignment, and av-
erage TMR ratio decreases to almost zero. Selection of
pendicular transmission due to the barrier and elimination
the sharp FS cutoff due to the disorder remove the cu
oscillation period, and, only the FS period of the spacer
mains.

Since the diffusive scattering caused by disorder is ess
tial to explain experimental results, we can say that the v
tex correction is decisive for the transport properties in tu
neling junctions containing quantum well.

It has been also shown that the stationary phase appr
mation reproduces results obtained for junctions with dis
der in the barrier quite well. The fact shows that the obser
oscillation period in experiments can be explained in ter
of the spanning vectorkF of the Cu spacer FS.

In addition, we have shown that disorder in the spa
breaks the interference occurred at the quantum well
suppresses the amplitude of the TMR oscillation. This is c
sidered to be an origin of the rapid decrease in the amplit
of the TMR oscillation observed in experiments.15

We have used a rather simple tight-binding model in t
paper since we intend to give qualitative explanation for
quantum oscillation of TMR. More realistic band calcul
tions, however, showed that interfacial electronic structur
such as p-d bonding,9,41 partially oxidized aluminum
ion,42,43 and hot-spot due to surface resonant states,7,44,45are
important for TMR and the bias dependence. Station
phase approximation enables to include both the more r
istic electronic structures and the effect of disorder in cal
lations. Such fully realistic calculations of TMR are i
progress.
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