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Quantum oscillations from generic 
surface Fermi arcs and bulk chiral 
modes in Weyl semimetals
Yi Zhang1, Daniel Bulmash1, Pavan Hosur1, Andrew C. Potter2 & Ashvin Vishwanath2

We re-examine the question of quantum oscillations from surface Fermi arcs and chiral modes in 

Weyl semimetals. By introducing two tools - semiclassical phase-space quantization and a numerical 

implementation of a layered construction of Weyl semimetals - we discover several important 

generalizations to previous conclusions that were implicitly tailored to the special case of identical 

Fermi arcs on top and bottom surfaces. We show that the phase-space quantization picture fixes an 
ambiguity in the previously utilized energy-time quantization approach and correctly reproduces 

the numerically calculated quantum oscillations for generic Weyl semimetals with distinctly curved 

Fermi arcs on the two surfaces. Based on these methods, we identify a ‘magic’ magnetic-field angle 
where quantum oscillations become independent of sample thickness, with striking experimental 

implications. We also analyze the stability of these quantum oscillations to disorder, and show that the 

high-field oscillations are expected to persist in samples whose thickness parametrically exceeds the 
quantum mean free path.

Weyl semimetals are three-dimensional quantum materials characterized by a band gap that closes at isolated 
points, Weyl nodes, in the Brillouin zone. Weyl nodes serve as sources of quantized monopole �uxes of ± 2π 
Berry curvature, whose sign de�nes a chirality χ =  ±1 for each node, and hence serves as an example of quantum 
topology in the absence of a band gap1,2. At a spatial surface, the bulk band topology produces unusual Fermi-arc 
surface states, whose Fermi “surface” consists of disjoint arc segments that pairwise connect surface projections 
of opposite chirality Weyl nodes1–4, and have been observed in photoemission experiments5,6 and band-structure 

calculations7 on crystalline materials. Moreover, in the presence of a magnetic �eld, 
��

B, Weyl nodes exhibit chiral 
Landau level (LL) modes8 with �eld-independent dispersion ε χ=

χ,0 v‖ k‖, where v‖, k‖ are respectively the veloc-

ity and momentum along 
��

B.
Recently, it was shown9 that an applied magnetic �eld perpendicular to the surface of a Weyl semimetal drives 

a novel kind of cyclotron orbit in which electrons slide along a Fermi-arc on the top surface from χ =  +1 towards 
χ =  − 1 Weyl nodes, transfers to the bulk chiral LL mode of the χ =  − 1 node on which they propagate to the bot-
tom surface, traverse the bottom Fermi-arc and return to the top surface via the mode with the opposite chirality. 
Ordinary cyclotron orbits around closed Fermi surfaces of metals are routinely studied via quantum oscillations, 
periodic-in-1/B modulations in the density of states that appear in various thermodynamic and transport prop-
erties, and help unveil the detailed structure of the underlying Fermi surface. Ref. 9 showed that the quantized 
energy levels arising from these mixed surface and bulk cyclotron orbits indeed exhibit periodic quantum oscil-
lations, whose phase exhibits a characteristic dependence on sample thickness that distinguishes them from con-
ventional cyclotron orbits, and hence o�ering a direct probe of the topological connection between surface Fermi 
arcs and bulk Weyl bands. Experimental evidence for such quantum oscillations was recently reported in the 
Dirac semimetal Cd3As2 

10. In addition, transport experiments were proposed based on the distinctive electronic 
properties of these cyclotron orbits11.

�e semiclassical quantization of these cyclotron orbits in ref. 9 was carried out through “energy-time” quan-
tization, by demanding that the product of the energy, ε, of the electron and the semiclassical time of the orbit, t, 
equals an integer multiple of 2π. Noting that = + t L k v(2 2 )/z B0

2 , where k0 is the k-space arc length of the Fermi 
arcs on the top and bottom surfaces, Lz is the sample thickness, v is the Fermi velocity, and = eB1/B  is the 
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magnetic length, the energy-time quantization condition states that the nth quantized level crosses the chemical 
potential, µ̃ at �eld B =  Bn:
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However, this approach leaves open a basic question: what is the overall zero of energy for µ̃? �is issue is 
experimental pertinent, as it e�ects the frequency, f, of the quantum oscillations. We will show that the nature 
choice of the energy of the bulk Weyl node corresponds to the special case, implicitly assumed in ref. 9, where the 
Fermi arcs on the top and bottom surfaces are identical. More generically, however, the Fermi arcs may have dif-
ferent shapes, and the zero of energy need not coincide with the Weyl node energy.

To generalize the results of ref. 9 to include the generic case with arbitrarily curved Fermi arcs, we adopt an 
alternative phase-space quantization perspective in which the integral of momentum times spatial displacement 
is equal to π γ⋅ = +

�� �∮ p dr n2 ( ) for integer n and a constant quantum o�set γ. Comparison to the energy-time 
quantization transparently identi�es the zero of energy as where the surface arcs enclose zero k-space area using 
appropriate extrapolation from the chemical potential to lower energy. �is method also predicts an additional 
thickness dependent correction to Eq. 1, which is difficult to obtain from the energy-time quantization 
perspective.

We also discuss the experimental consequences of our results. First, we identify a special set of ‘magic’ angles 
of the magnetic �eld, for which the length-dependence of the phase of the quantum oscillations drops out. We 
explain how this e�ect enables a smoking gun signature of quantum oscillations from surface Fermi arcs in 
recently measured thin-�lm devices with non-parallel surfaces10. Second, we examine the e�ects of impurities, 
and �nd that these quantum oscillations are surprisingly resilient to disorder for su�ciently strong �elds. In con-
trast to conventional quantum oscillations, which are obscured by disorder unless the cyclotron orbit is smaller 
than the quantum mean free path Q, we �nd that for strong �elds, quantum oscillations from surface Fermi arcs 
and bulk chiral modes can persist in samples whose thickness substantially exceeds Q.

Finally, we construct a tight-binding model based on a layered construction4 of a Weyl semimetal, which ena-
bles the numerical simulation of Weyl semimetals with generic surface arcs. Using a recursive Greens function 
method, we numerically simulate the �eld dependence of the density of states in a magnetic �eld, and con�rm the 
semiclassical predictions of the phase-space quantization scheme.

Results
We �rst revisit the semiclassical quantization of cyclotron orbits, which generically demands that the phase di�er-
ence between successive Landau levels is equal to 2π. �e di�erence in phase accumulated between two successive 
levels for a �xed magnetic �eld can be expressed either in terms of the energy step and time or the di�erence in 
the product of momentum and displacement:

∫ ∫φ ε
ε

π∆ = ∆ =
∆

= ∆ ⋅ =
�� �∮dt

v
dr p dr 2

(2)F

where =
ε∂

∂
⊥

vF p
 is the Fermi velocity, p⊥ is the momentum perpendicular to the orbit, and the last integral is over 

the spatial trajectory of the semiclassical orbit. For a simple derivation via path integral, see Supplementary infor-
mation, Sec. I. Importantly, Eq. 2 is expressed through the di�erence in energy of neighboring Landau levels but 
makes no reference to their absolute position. While the overall energy scale is unimportant for, e.g. spectroscopy 
which probes only energy di�erences, quantum oscillations experiments are conducted by varying B at �xed 
chemical potential μ, such that the periodicity of quantum oscillations depends explicitly on the “zero of energy”.

Alternatively, the phase-space quantization framework o�ers an unambiguous reference to the energy, in 
which the momentum-displacement is integrated along the cyclotron orbit of constant energy contour at a spe-
ci�c chemical potential. In Supplementary information, we show how to reconcile these methods, however, in the 
mean time we proceed with the more transparent phase-space quantization approach.

For the semiclassical cyclotron orbits described in ref.  9, the phase-space quantization condition  
is π γ⋅ = ⋅ − ⋅ = +
�� �

�

�
��

�∮ ∮ ∮p dr k dr e A dr n2 ( ), where the integral is over the four segments of the orbit:  
two Fermi arcs on the surfaces and two chiral modes in the bulk parallel to the magnetic �eld, as illustrated in 
Fig. 1. �ere may exist additional phase contributions at the turning points connecting the surface and bulk 
orbits, which are presumably constant for large enough Lz and can be absorbed into the constant γ. �roughout, 
we choose the convention that chemical potential, μ, is measured from the energy of the Weyl nodes in the bulk.

For the Fermi arcs, ∫ ⋅ = Φ
�� �

p dr e z, where Φ z is the magnetic �ux contained within the real-space orbit of area 
SR in the x −  y plane12. �e semiclassical equations of motion imply

Φ = = =B S B S
S

e B (3)
z z R z k B

k

z

4
2

where Sk is the k-space area enclosed by the two Fermi arcs combined and Bz is the ẑ  component of the magnetic 

�eld 
��

B. On the other hand, the chiral modes in the bulk are parallel to the magnetic �eld, so ∫ ⋅ =
��

�

A dr 0 and:
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where θ is the tilting angle of 
��

B from the surface normal, 

kW is the wave vector from +  to −  chirality Weyl nodes, 

and ±
µ

v
 are the Fermi wave vectors of their respective chiral modes with velocity v‖ parallel to 

��

B, at chemical 

potential μ. Adding the contributions, phase-space quantization implies that quantum oscillations occur at �elds:
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Eq. 5 is the main result of this paper.

Discussion
Comparison with and generalization to previous conclusions. When μ is close to the Weyl nodes 
and the Fermi velocity vs is approximately constant along the surface Fermi arcs, we can expand 

µ= +S S k v/k k
T

s,0 0 , where Sk,0 and k T
0  are the enclosed k-space area and total length of the combination of the 

two Fermi arcs from both surfaces for μ at the Weyl nodes. �e frequency of the quantum oscillations = ∆( )f 1/
B

1  

is
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where µ = S v k/k s
T

0 ,0 0 . We see that our results reduce to those of ref. 9, under the special conditions: Sk(μ =  0) =  0, 

⋅ =


^k B 0W , and vs =  v‖. However, the phase-space quantization method reveals two important generalizations:

(1) �e µ̃ de�ned in Eq. 1 is generically not measured from the energy of the bulk Weyl nodes. In particular, if we 
require that μ is measured from the Weyl nodes, Eq. 1 should be modi�ed by an o�set µ µ µ= +˜

0
. �is 

reconciles the quantum oscillations from phase-space quantization and energy-time quantization: the contri-
bution from the area Sk,0 enclosed by the Fermi arcs at μ =  0 is re�ected in μ0 while the contribution from the 
area change µ− =S S k v/k k

T
s,0 0  is re�ected in μ. For cases where the area Sk,0 is large in comparison with the 

area change, the inclusion of μ0 is necessary for the correct interpretation of the quantum oscillations.
 It is natural that μ0 should depend only on linearized Fermi-surface properties such as the area enclosed and 

the Fermi velocity, as the quantum oscillations generically encode only these low-energy universal features. 
We note that since vs can in principle depend on chemical potential, μ, so does μ0 as de�ned above. For a 
quadratic surface dispersion, − μ0 can be interpreted as the energy (relative to the bulk Weyl nodes) at which 
the surface arcs enclose zero area perpendicular to the magnetic �eld. More generally, as we show in Supple-
mentary information, the appropriate way to reconcile energy-time quantization is to set the zero of energy 

− μ0 at µ =
µ∂ ∂

S

S0 /

k
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(2) �e thickness of the Weyl semimetal slab Lz contributes to the quantum oscillations through the phase o�set 

of φ =



 ⋅ +
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^L k B( )z W v

2  Lz sec θ, which shi�s the 1/B positions of the quantum oscillation peaks. Compar-

ing to ref. 9, we see that the thickness dependent phase receives a contribution not only from the time 

=

θ
t

L

vbulk
secz  taken to traverse the bulk via the chiral mode, but also from the momentum-space separation 

Figure 1. Schematic plot of a semiclassical orbit of a Weyl semimetal slab in a perpendicular magnetic 
�eld. �e electrons traverse the Fermi arc on the top surface, travel through the one-dimensional chiral mode 
parallel to the magnetic �eld in the bulk, traverse the corresponding Fermi arc on the bottom surface, and then 
return along the opposite chiral mode through the bulk. Note that the real-space orbit in the x −  y plane is 
rotated by 90°.
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of the Weyl nodes projected onto 
��

B. Interestingly, for �xed chemical potential μ, there exists a special cone of 

angles of 
��

B, de�ned by: ⋅ = −

µ


^k BW v

2 , for which the phase vanishes, φ(Lz) =  0, for all Lz, such that the oscil-

lations become independent of sample thickness.

Experimental consequences. �e new features revealed by the phase-space quantization treatment have 
several implications for experiments. As an example, the angle and thickness dependence of φ(Lz), observable 
by tracking individual quantum oscillation peaks as a function of �eld orientation, can be used to quantitatively 
determine the k-space separation of the Weyl nodes from quantum oscillation measurements, which can be chal-
lenging to accurately extract from other probes such as photoemission.

Magic Angles. Moreover, the existence of a special set of angles for which the quantum oscillations become 
independent of sample thickness enables the following test: In recent experiments10, Moll et al. observed surface 
state oscillations in the Dirac semimetal Cd3As2 in thin �lm devices with parallel surfaces, which were absent in 
triangular devices with non-parallel top and bottom surfaces. �e absence of oscillations in the latter triangular 
samples can be attributed to the destructive interference of orbits with di�erent Lz, due to the variation of device 
thickness along the triangle. �e above computations predict that this geometric interference e�ect would be 
quenched for �elds along the set of angles for which φ(Lz) =  0, resulting in a reemergence of quantum oscillations. 
In contrast to the negative signature of not observing quantum oscillations in a triangular device, which could 
potentially arise from other extrinsic e�ects, such an observation would provide a clear positive signature of the 
non-local nature of the Weyl orbits. We note that observing this e�ect requires the �eld angle to be controlled to 
angular precision δθ k L1/ W z, which may require thin devices.

Disorder and �ickness Dependence. As a �nal application, the phase-space quantization formulation above 
naturally reveals the e�ect of bulk disorder on dephasing the quantum oscillations associated with Weyl orbits. 
See Supplementary information, Sec. IV for a detailed discussion of disorder e�ects. For conventional magnetic 
orbits, any scattering from impurities strongly suppresses quantum oscillations, requiring ≫ ℓB k /F Q where Q is 
the quantum mean-free path (distinct from the transport mean-free path, tr , which only includes 
large-momentum transfer scattering) and kF is the Fermi wave vector. As the surface-arc portion of the Weyl 
orbits is locally identical to conventional cyclotron motion, observing oscillations in the presence of disorder 
requires: ≫ ℓB k /T

Q0 . Naively, phase coherence along the bulk part similarly requires samples thinner than the 
quantum mean-free path, ≫ ℓLz Q, a potentially stringent condition since while typical Weyl materials have large 

tr, Q is typically much shorter13. However, the chiral nature of the bulk orbit along with the spatially correlated 
nature of disorder in low-density semimetals makes the bulk portion of the orbit more resilient to disorder e�ects.

Namely, for an electron traveling along a bulk chiral LL, a random potential V 

r( ), produces a local shi� in the 

wave vector: δ = −
⊥

� �
�

˜k r V r z v( ) ( , )/ , where Ṽ  is the matrix element of the disorder potential in the chiral mode 

localized within ≈B of transverse position 
⊥


r  in the xy-plane. �e total phase accumulated in this fashion is  

given by: ∫δφ δ δ= − +⊥ ⊥
  

dz k r z k r d z( ( , ) ( , ))
L

0

z
, where the �rst term represents the random phase acquired 

traveling from bottom to top surface along the +  chiral mode, and the second represents that of the return jour-
ney on the counter-propagating chiral mode of the opposite Weyl node. Between these two bulk legs of the orbit, 
the electron travels a spatial distance ≈ d k T

B0
2  as it slides along the top surface Fermi arc. �e typical disorder for 

low-density Weyl semimetals is poorly screened Coulomb impurities, which produce a potential that is spatially 

correlated over characteristic length scale ξ ≈ − −

≫
ℓ

ℓ
k kF F

1 1tr

Q

. For low-�eld, ξd , the two bulk legs of the orbit 

sample uncorrelated V , and dephasing indeed kills the quantum oscillations for > Lz B. However, for higher 
�elds ξeB k /T

0 , ξd  and the top-to-bottom and bottom-to-top legs accumulate nearly canceling random 

phases, which leads to the much weaker requirement on sample thickness, <
ξ
ℓ ≫ ℓ( )Lz d Q Q

2
. For example, in 

Cd3As2, we estimate that the high-�eld regime is obtained for relatively low �elds on the order of a few Tesla, in 
reasonable agreement with the observed field-scale at which surface-state oscillations onset in recent 
experiments10.

In conclusion, we have compared quantum oscillations with respect to the inverse magnetic �eld 1/B or chem-
ical potential μ. �e accurate de�nition of chemical potential and its reference point is vital for correctly con-
verting between and reconciling di�erent semi-classical quantization perspectives. For the quantum oscillations 
from the surface Fermi arcs and bulk chiral modes in Weyl semimetals, the general reference point of μ does not 
necessarily coincide with the Weyl points in the bulk. We derived the quantum oscillations using phase-space 
quantization conditions and proposed essential generalizations to previous conclusions and experimental conse-
quences for generic Weyl semimetals. In the next section, we verify our claims numerically following the layered 
prescription.

Methods
To verify the semiclassical predictions from the phase-space quantization approach we study a simple lattice 
model of Weyl semimetal following the layered prescription in ref. 4 and numerically calculate the density of 
states ρ µ

��

B( , ) in a slab geometry. In the absence of the magnetic �eld, the Weyl semimetal is characterized by the 
following Hamiltonian:
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where =

k k k( , )x y  and the total number of layers Lz is odd so that the Fermi arcs on the top and bottom surfaces 

can be different4. We consider an in-plane dispersion ε ε= − − +
 k k2 cos 2 cosk x y 0 that represents 

nearest-neighbor hopping of amplitude − 1 and an on-site energy of ε0. 
hk z,  represents nearest-neighbor interlayer 

hopping with = − −
h t k tsink z y, 0 if z is odd and λ= +

h t k tsink z y, 0 if z is even. We choose λ >  1, which 
ensures | | > | | h hk k,2 ,1  if ky >  0 and vice versa. �is model generates two Weyl nodes at ±k( , 0, 0)x

0  where kx
0 is the 

in-plane Fermi wave vector of εk along the x̂ direction. By de�nition =


^k k x2W x

0 . �e surface Fermi arcs and the 
bulk chiral modes following the Weyl nodes are schematically consistent with the geometry in Fig. 1.

In the presence of a magnetic �eld 
��

B, the translation symmetry in the ŷ direction is preserved in the Landau 

gauge = Φ − Φ −Φ
��

A x z x(0, , )z x y , where Φ i is the �ux per plaquette perpendicular to the î  direction in units of 

the magnetic �ux quantum, Φ =
h

e0 , i =  x, y, z. �e Hamiltonian becomes:
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where πy(x, z) =  ky −  Ay(x, z).
�e properties of this Hamiltonian such as the density of states ρ µ µ= − ∑

π
G x z x z( ) Im ( , ; , ; )

L L x z
1

,
x z

 at 

the chemical potential μ can be calculated with the recursive Green’s function method where the real space 
degrees of freedom in the ̂x direction are treated recursively14–16. For an incommensurate �ux Φ , physical proper-
ties of Hk y

 between di�erent choices of ky are equivalent in the thermodynamic limit15,16 and the summation over 

ky can be neglected.
We choose parameters ε0 =  3.0, t =  1.0, t0 =  2.0, λ =  2.0, and a small imaginary part δ =  0.001 in addition to 

the chemical potential μ as the level broadening. In this model, although the chemical potential is at the Weyl 
nodes, the Fermi arcs enclose a k-space area of 8.515% of the surface Brillouin zone. We �rst consider a magnetic 
�eld purely in the ẑ  direction. Eq. 1 would predict no quantum oscillations if one assumed µ =˜ 0, while Eq. 5 
predicts quantum oscillations with a period Δ(Φ 0/Φ z) =  11.74. �e numerical results of the density of states ρ(μ) 
versus the inverse magnetic �eld 1/B and various slab thickness Lz, shown in Fig. 2, show clear signatures of quan-
tum oscillations whose period is in quantitative agreement with our formula.

To verify that the semiclassical orbit contains components in the bulk as well as on both of the top and bottom 
surfaces, we calculate the local density of states distribution ρ µ µ= −

π
x z G x z x z( , , ) Im ( , ; , ; )

1  in the x −  z 
plane with the x coordinate replaced by x +  ky/Φ z. �e result for Φ 0/Φ z =  311.40, μ =  0 and Lz =  103 is shown in 
Fig. 3. �e Fermi arcs are at ky >  0 and ky <  0 for the top and bottom surfaces as well as the chiral modes in the 
bulk are clearly visible.

In addition, Eq. 5 suggests that the thickness of the slab Lz changes the phase of the quantum oscillations, and 

thus the actual locations of the ρ(μ) peaks in Φ 0/Φ z. For a magnetic �eld in the ẑ  direction and μ =  0, ⋅ =


^k B 0W , 

Figure 2. �e density of states ρ(μ) versus the inverse magnetic �eld 1/Bz (in unit of Φ0/Φz) for a Weyl 
semimetal slab of various thickness Lz shows clear quantum oscillations. �e chemical potential μ =  0 is at 
the Weyl nodes. �e characteristic quantum oscillation period is Δ(Φ 0/Φ z) =  11.74.
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we expect no Lz dependence, which is con�rmed in Fig. 2. For a �nite μ and a �eld in the ̂z  direction, however, the 
shi� δ(1/B) of the peak positions is given by

δ
µ δ
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where ∆
Φ

Φ( )
z

0  is the period of the quantum oscillations. We numerically observe this shi� in the locations of the 

quantum oscillation peaks at μ =  − 0.1 in Fig. 4, where the location of one of the peaks is tracked as Lz is varied. 
�e deviation from Eq. 9 at small Lz is due to the �nite extent of the edge states (Fig. 3). At relatively large Lz where 
the physics in the center of the slab can be approximately treated as in the bulk, Eq. 9 gives an accurate description 

Figure 3. �e local density of states distribution in the x − z plane at Φ0/Φz = 311.40, μ = 0 and Lz = 103 is 
consistent with the cyclotron orbit illustrated in Fig. 1 and clearly consists of components from the Fermi 
arcs on both Fermi surfaces and chiral LL modes in the bulk.

Figure 4. Symbols mark the location of one of the density of states peaks as a function of the slab thickness 
Lz at di�erent chemical potential μ and magnetic �eld tilting angle θy or θx. �e lines are the asymptotic 
expression in the large Lz limit derived from the positions of and the Fermi velocity around the Weyl nodes in 

the bulk: = . + ⋅ ⋅ ∆
µ

π

Φ

Φ

− Φ

Φ( ) ( )Lconst z t
peak

2z z

0

0

0  for a magnetic �eld in the ẑ  direction, and refer to 

Supplementary information for the expressions in the presence of a tilted magnetic �eld. While the peak 
positions typically show strong Lz dependence, notably, for particular ‘magic’ angles (blue circles), the peak 
positions asymptotically become nearly independent of sample thickness.
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of the Lz dependence of the quantum oscillation phenomena. �e above conclusions also hold true for a magnetic 
�eld that is tilted in the ŷ direction, e.g. θ= +


^ ^B B z y( tan )z y , where only the Lz coe�cient is modi�ed, see 

Fig. 4.
In comparison, the magnetic field tilted in the x̂ direction gives qualitatively different behavior, since 

⋅ ≠


^k B 0W  along θ= +


^ ^B B z x( tan )z x . First, there exists Lz dependence δ δ θ π= − ⋅ ⋅ ∆

Φ

Φ

Φ

Φ( ) ( )L k tan /z x x
0

z z

0 0  

for chemical potential μ =  0 at the energy of the Weyl nodes. Interestingly, for a given chemical potential μ, such 
Lz dependence vanishes at a special tilting angle θx

(0), which satis�es

θ
µ

µ= − −

−

t
k ktan [4( ) /sin ( )]

(10)
x x x
(0)

0

0 2 2 2 0 1/2

Numerical results for μ =  0 and μ =  − 0.1 con�rm these expectations at tilting angle θ ≈ .0 024x
(0)  as in Eq. 10 

for μ =  − 0.1 (Fig. 4). Derivations and further discussion on the Lz dependence of the peak positions in a tilted 

magnetic �eld 

B are in Supplementary information.
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