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Quantum oscillations from surface Fermi arcs in
Weyl and Dirac semimetals
Andrew C. Potter1, Itamar Kimchi1 & Ashvin Vishwanath1

In a magnetic field, electrons in metals repeatedly traverse closed magnetic orbits around the

Fermi surface. The resulting oscillations in the density of states enable powerful experimental

techniques for measuring a metal’s Fermi surface structure. On the other hand, the surface

states of Weyl semimetals consist of disjoint, open Fermi arcs raising the question of whether

they can be observed by standard quantum oscillatory techniques. Here, we find that the

open Fermi arcs participate in unusual closed magnetic orbits by traversing the bulk of the

sample to connect opposite surfaces. These orbits have anomalous features that are

impossible for conventional surface states, and result in quantum oscillations that contain

observable signatures of the topological character of the bulk Weyl semimetal. We also apply

our predictions to the compounds Cd3As2 and Na3Bi that were recently proposed to be three-

dimensional Dirac (doubled Weyl) semimetals, and propose experimental signatures of their

possible Fermi arc states.
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W
eyl semimetals (SMs) are three-dimensional materials
for which the bulk bandgap closes at an even number
of discrete points (Weyl nodes) in the Brillouin

zone1,2. Near the Weyl nodes, electrons have relativistic
dispersion ekE±u|k|. Each Weyl node acts as a monopole or
anti-monopole of Berry curvature (that is, a closed surface in
momentum space surrounding a node will be pierced by ±2p
Berry flux) and is associated with a positive or negative chirality,
respectively. Consequently, two-dimensional (2D) cross sections
of the Brillouin zone change Chern number by ±1 across each
Weyl node, implying that a generic surface will exhibit surface
states whose Fermi surfaces consist of a set of open line-
segments1–3.

These Fermi arcs connect pairs of bulk Weyl nodes with
opposite chiralities and cannot be removed without annihilating
the bulk Weyl nodes. Such unusual surface Fermiology would be
impossible in a purely 2D system, whose Fermi surface is
necessarily smooth, and cannot abruptly terminate at a point
within the Brillouin zone. Consequently, the Fermi arcs serve as a
surface fingerprint of the topological character of the bulk band
structure, and it is interesting to ask how they might be
experimentally observed.

Traditionally, the most powerful methods of mapping out a
material’s Fermi surface rely on periodic-in-1/B quantum
oscillations of the density of states in a magnetic field, B. Such
quantum oscillations require closed magnetic orbits for electrons
at the Fermi surface, which naively cannot arise from disjointed
Fermi arcs. This raises the interesting question: do Fermi arcs lead
to quantum oscillations?

We answer this question in the affirmative by noting that, in a
slab of Weyl SM of finite thickness, closed magnetic orbits can be
obtained by traversing the Fermi arc on the top surface and
returning along the corresponding arc on the bottom surface.
Using semiclassical methods, we find that such closed orbits can
indeed lead to periodic-in-1/B quantum oscillations of the density
of states. Since the orbits involved require an electron to traverse
the bulk to connect top and bottom surfaces, the oscillations only
occur up to a critical field strength, which depends on slab
thickness. For larger fields, the orbits no longer produce periodic
quantum oscillations, but are important for understanding the
fate of the bulk chiral Landau levels (LLs) and associated chiral
anomaly in finite systems. The semiclassical results are then
validated by direct numerical simulation of the spectrum of a
Weyl SM slab in a field.

Weyl SMs are theoretically predicted to occur in strongly
spin–orbit coupled systems like the iridates, certain spinels
and topological insulator (TI)–ferromagnet multilayers1,4–6. Yet,
despite promising indications7, there is currently no clear-cut
experimental candidate. However, two recently discovered
materials Cd3As2 (refs 8–10) and Na3Bi11–13 are thought to be
three-dimensional Dirac SMs14, close cousins of Weyl SMs. The
bulk band structure of these Dirac SMs consists of two
superimposed copies of Weyl SMs with opposite chiralities.
Ordinarily, when Weyl nodes of opposite chirality are not
separated in momentum, they can mix and gap each other out.
However, in Dirac SMs, intermixing is symmetry forbidden, since
the superimposed Weyl nodes belong to different representations
of the crystal symmetry (namely, discrete screw symmetries for
Cd3As2 and Na3Bi (refs 10–13)).

We show that the known Dirac SM materials can have pairs of
surface arcs that meet at a sharp corner or ‘kink’ at the bulk Dirac
nodes. Such a kink would not be allowed in a purely 2D metal,
and is a special feature of the crystal symmetry-protected Weyl
structure of the Dirac SM. This result is not a priori obvious since
the surfaces of interest do not preserve the symmetry that protects
the bulk Dirac nodes. Despite this, we show that surface states

and kink feature are perturbatively stable to the symmetry-
breaking potential of the surface, and can exist so long as this
potential is not too strong. Applying the semiclassical results for
the Weyl SM, we describe the signatures of these unconventional
Dirac surface states in quantum oscillations experiments.

Results
Semiclassical analysis. To start, let us consider the simplest case
of a single pair of bulk Weyl nodes with chiralities ±1 located at
k¼±kWẑ and a magnetic field B along the y direction (the
extension to more complicated cases is straightforward). In an
infinite system, the magnetic field produces LL bands that dis-
perse only along the field direction. For kW‘B441, where ‘B ¼ 1ffiffiffiffi

eB
p

is the magnetic length, the ±-chirality Weyl nodes are effectively
decoupled, and the LL spectrum includes gapped, non-chiral

LL bands with energies e�n ðkyÞ � � u sgnðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j nj ‘� 2

B þ k2y
q

with n¼ 1, 2,y and gapless chiral modes with energies
e�0 ky

� �
¼ � uky , for the ±-chirality nodes, respectively.

Now consider a slab of Weyl SM that is infinite in the x̂- and
ẑ-directions and with finite thickness, L, along ŷ. Further, suppose
that the slab is sufficiently thick to neglect direct tunnelling
between states in the centre of the Fermi arcs on the top and
bottom surfaces. Initially, we focus at low energies near the bulk
Weyl node where the relevant states are those of the surface
Fermi arc and the bulk chiral LLs. Later, we will see that the
results extend to energies well above the Weyl node where the
bulk consists of two Fermi pockets connected at the surface by
Fermi arcs3.

In a semiclassical description, an electron at z momentum kz
along the Fermi arc of the top surface slides along the arc towards
the ‘� ’ chirality Weyl node according to:

@tk ¼ � evk�B ¼ euB t̂k ð1Þ

Here we have taken the velocity, u, on the Fermi arc to be
independent of k, and t̂k is the unit tangent vector to the arc (with
orientation on top and bottom surfaces indicated by the arrows in
Fig. 1a). As an electron sliding along the top-surface arc nears the
‘� ’ bulk Weyl node, the energy gap to bulk bands vanishes. This
necessarily leads to breakdown in the single-band semiclassical
description in which the electron is transferred from the surface
arc into the bulk (Supplementary Note 2). At low energies, the
only available bulk states are those of the gapless bulk chiral LL1

(Fig. 1b) propagating towards the bottom surface. This chiral
mode acts as a one-way ‘conveyor-belt’, transporting the electron
from the Fermi arc on the top surface to that of the bottom
surface. On reaching the bottom-surface Fermi arc, the electron
then slides to the ‘þ ’ Weyl node, where it connects with the
upwards moving chiral bulk LL, thereby returning to the top
surface and completing the orbit (see Fig. 1c).

Quantum energy levels can be approximately obtained from
semiclassical orbits that satisfy the condition: entE2p(nþ g) with
nAZ, where t is the semiclassical time associated with the orbit,
and g is a constant of order unity encoding low-n quantum
effects. Sliding along the top and bottom Fermi arcs takes time:
tarc � k0

euB where k0 is the arc length of the Fermi arc (generally k0
] kW, the linear distance between bulk Weyl nodes, due to non-
zero curvature of the arc). Propagation between top and bottom
surfaces via the bulk chiral LL’s takes time tbulk � L

u. Combining
these expressions gives:

en ¼
puðnþ gÞ
Lþ k0‘2B

ð2Þ

where zero energy corresponds to the Weyl nodes.
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These magnetic orbits involving Fermi arcs are distinguished
from conventional magnetic orbits in ordinary 2D systems or in
surface states of three-dimensional systems by the dependence on
the slab thickness, L. As explained below, this characteristic L
dependence can be extracted by analysing the dependence of
quantum oscillations on field direction. Another peculiar and
unconventional feature is that the real-space trajectory of these
orbits need not enclose any area perpendicular to the magnetic
field (as occurs when the Fermi arcs are straight lines).

Quantum oscillations. Having established the existence of
quantized magnetic orbits involving Fermi arcs, we now turn to
the question of whether these orbits produce quantum oscilla-
tions. Suppose we fix the chemical potential, m, and vary magnetic
field, B. Equation (2) dictates that the nth energy level crosses
m when:

1
Bn

¼ ek� 1
0

pu
m
ðnþ gÞ� L

� �
ð3Þ

where the solution is defined only for sufficiently large n such
that the right-hand side is positive. States cross m at regularly
spaced intervals in 1

B of size OB� 1 � epu
mk0

. Each time a level passes
through m, a peak occurs in the density of states, giving rise to
periodic-in-1/B oscillations in many measurable quantities like
conductivity and magnetization. These oscillations are analogous
to those of an ordinary 2D metal with quadratic dispersion with
effective mass meff ¼ k0

pu (though, of course, the bulk Weyl elec-
trons are massless and meff is just an effective parameter with
dimensions of mass), and momentum space area Aeff¼ 2k0m/u.
The periodic train of peaks persists only up to fields of order

Bsat ¼ k0
L

dmLpu� ge
mL
pu� g

� 1
� �� 1

� k0
L where Jxn denotes the smallest

integer that exceeds x.

For fields of order a few Tesla, ‘BE10’s of nm, whereas k0 is
expected to be an atomic scale distance of order 0.1 Å� 1. Hence,
quantum oscillations should be observable in slabs a few hundred
nm, not too stringent a requirement. Another practical issue is
that of impurities. Observation of coherent quantum oscillations
requires electrons to complete a magnetic orbit before scattering
off an impurity: oct441 where oc � euB

2k0
and t is the elastic

scattering time. Together with the condition that BoBsat, this
requires that the sample thickness does not greatly exceed the
mean-free path: L � ‘ � u

t. We note that in high-mobility
materials, like the Dirac SM candidate Cd3As2, mean-free paths
can be a several hundred nm long in which case Loo‘ is not a
stringent condition.

For B4Bsat, the majority of the magnetic orbit takes place in
the bulk, and the energy levels saturate to the field independent
values: enðB � BsatÞ � pun

L . Since, the bulk level structure of a
thermodynamically thick slab cannot depend on particular choice
of boundary conditions, to understand this result, it is useful to
compare with a large system with periodic boundary conditions
in y. There we expect two sets of B-independent energy modes
associated with the ± bulk chiral LL’s, each with quantized
energies uky;n ¼ 2pn

L . The factor of two difference between the
quantization scale periodic and open boundary conditions can be
understood as follows: in the periodic boundary-condition case,
the chiral LL’s from the ± Weyl nodes are independent leading
to a doubly degenerate tower of modes. In the finite slab, the ±
chiral LL’s are no longer separately quantized, since an electron
propagating in the ‘þ ’ Weyl nodes necessarily reflects into the
counter-propagating chiral LL of the ‘� ’ Weyl node via a detour
through the surface states. However, in the L-N limit, such
distinctions become unimportant.

Distinguishing surface and bulk contributions. As essential
ingredients for the existence of bulk chiral LLs in a thick but finite
slab, these magnetic orbits must persist to all energies where the
bulk chiral LLs are present, even when bulk Weyl nodes are
doped to form two Fermi pockets. This expectation is indeed
borne out by numerical simulations (see below and
Supplementary Note 3). We now describe how surface and bulk
contributions can be distinguished in a doped Weyl SM.

For chemical potential, m, below the first bulk LL, ð mj jo e�1
		 		Þ,

only surface arcs contribute to quantum oscillations. For higher
doping where the bulk FS consists of two disconnected pockets,
the surface arc contribution coexists with bulk quantum
oscillations. The surface and bulk contributions can be separated
due to their different 1

B periodicity (see Supplementary Fig. 2). In
surface-sensitive probes like tunnelling, both have similar
magnitudes and the surface oscillations can readily be isolated.

For bulk-sensitive probes like magnetization or conductivity,
surface arc oscillations may be obscured by the bulk signal in
thick or highly doped samples. In fact, contrasting surface and
bulk-sensitive probes could directly confirm the surface character
of the arc oscillations. The ratio of bulk to surface amplitudes for
a slab of thickness L is roughly given by the ratio of bulk to 2D

surface density of states nbulk
narcs

� k2FL
k0

(we note for a Weyl SM kF
k0
o1).

Hence, to directly detect surface arc oscillations with bulk
measurements, the bulk contributions can be suppressed by
reducing either doping or film thickness.

Direction dependence of field. So far, we have considered field
along the y direction, normal to the surface. For generic field
direction B, the bulk chiral LL’s propagate parallel to the field,
and only the y component of B drives motion of k along the arc.
Ignoring the arc curvature, one can then simply replace L ! L

ŷ	B̂j j

B

B

E
�(�)
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Figure 1 | Quantum oscillations from Weyl Fermi Arcs. (a) Semiclassical

orbit in a magnetic field along ŷ, involving surface states that gives rise to

quantum oscillations in a finite thickness slab (shown in mixed real space in

y and momentum space in x, z directions; inset shows corresponding real-

space trajectory); (b) bulk LL spectrum for a ‘þ ’chirality Weyl node, k8
denotes momentum along the direction of the field; (c) periodic-in-1/B

features in the density of states resulting from quantizing the orbits shown

in (a). The train of peaks ends at a saturation field Bsat, which scales

inversely with the sample thickness L.
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and k0 ! k0
ŷ	B̂j j inequations (2) and (3). Notably, the field-scales 1

Bn

of equation (3) extrapolate to the residual n¼ 0 value:
epu?g
k0m

ŷ 	 B̂
		 		þ ek� 1

0 L. The constant piece, eL/k0, encodes the
deviation of the orbit from a purely 2D orbit and can be extracted
by fitting the angle or energy dependence.

Deviations from adiabaticity. In the above treatment, we
assumed that electrons slide all the way to the end of the surface
arc before transitioning into the bulk. A more careful analysis
(Supplementary Note 2 and Supplementary Fig. 1) shows that the
electron jumps off the arc before reaching the end when its
momentum is within � ‘� 1

B of the bulk Weyl node. This amounts
to replacing k0 ! k0 � a‘� 1

B in equation (2), where a is a
numerical constant of order unity. This effect is negligible at
low fields k0‘Bc1, and gives a fractional correction in the
quantum oscillation period dOB� 1 � 1

k0‘B
for high fields. The

high-field stretching of dOB� 1 is maximal near BEBsat where
dOB� 1 � 1ffiffiffiffiffi

k0L
p .

Numerical validation of semiclassical approximations. We
validate the semiclassical treatment by directly obtaining the
spectrum of a Weyl SM slab in a magnetic field. Representative
results are shown in Fig. 2. Figure 2a shows the magnetic field
dependence of energy levels corresponding to mixed surface/bulk
orbits, and their intercept with a line of fixed energy as a function
of inverse-field. The crossings are regularly spaced for small fields,
and saturate to B-independent values at large fields. For moderate
fields, we observe the predicted stretching of the 1

B � period, due
to departures from adiabaticity (Supplementary Note 2). More-
over, when plotted as a function of slab thickness, L, the energy
levels en collapse to the predicted semiclassical form of
equation (2) (Fig. 2b). The good agreement with numerics vali-
dates the semiclassical approach, which we now extend to treat
quantum oscillations from surface states in Dirac materials.

Quantum oscillations from Dirac surface arcs. Dirac SMs
consist of two superposed copies of a Weyl SM, denoted R and R0,
which transform differently under crystal symmetry preventing
them from mixing. Viewed as a doubled Weyl SM, one expects
Dirac SM surfaces to exhibit two sets of Fermi arcs that gener-
ically curve in opposite directions, and join at the bulk Weyl
nodes without mixing (Fig. 3a,b). This results in a sharp corner or
‘kink’ in the shape of the surface states’ Fermi surface (Fig. 3b).

Such a kink would not be allowed in a purely 2D metal, and is a
special feature of the crystal symmetry-protected Weyl structure
of the Dirac SM.

Then, in a magnetic field normal to the surface, one expects
two sets of energy levels corresponding to the unconventional
magnetic orbits described above. Exactly as for the Weyl case
described above, these two sets of orbits would produce quantum
oscillations for fields below Bsat � k0

L , and the non-trivial mixed
surface-bulk character of these magnetic orbits can be observed
by extrapolating 1/Bn to n¼ 0 and extracting the angle and
chemical potential independent piece 
 eL

k0
. In the remain

sections, we show that such doubled Weyl arc type quantum
oscillations can indeed occur. However, there are additional
complications that must be considered.

Effects of reduced symmetry at the surface. The first such
complication is that, in Cd3As2 and Na3Bi, the bulk Dirac nodes
are protected by a discrete rotation symmetry around the axis
connecting the bulk nodes. This symmetry is broken at all sur-
faces that could host Fermi arcs (that is, surfaces for which the
bulk Dirac nodes project on to different points, leaving room for
Fermi arcs to connect them). Hence, the R and R0 Fermi arcs can
hybridize at the surface. Naively, this would immediately gap out
the sharp ‘kink’ feature resulting in conventional surface states.
However, this is not the case, since where the arcs approach each
other at the bulk Dirac nodes, the arc wave functions spread into
the bulk where the crystal symmetry is intact. In Supplementary
Note 4, we show that the ‘kink’ feature is perturbatively stable to
the symmetry-breaking potential of the surface. Hence when this
potential is not too strong, the surface arcs survive and their
Fermi surface retains the unconventional ‘kink’ discontinuity. In
this regime, one can observe doubled copies of the Weyl quantum
oscillations described above (see, however, the subsequent section
on the symmetry-breaking effects of the magnetic field).

On the other hand, a sufficiently strong surface potential can
destroy the sharp corner, resulting in ‘conventional’ (see,
however, the discussion in the following section) 2D surface
states (Fig. 3c). However, as we will now show, for Cd3As2 and
Na3Bi, there is a non-trivial bulk topological structure which
guarantees the existence of an odd number of non-degenerate
surface states. Hence, the surface symmetry breaking cannot
entirely remove the surface states.

Bulk topology and its implications for surface states. The Dirac
SM materials Cd3As2 and Na3Bi can be obtained from a trivial
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Figure 2 | Numerical simulations of Weyl slab in a magnetic field. Energy levels with partial surface-bound state character, obtained from numerical

solution of equation (4). (a) shows 1
B � dependence of energy levels with parameters k0L¼ 15 and u>¼0.2uz. The levels cross (red crosses) a fixed

reference energy (horizontal blue line), with nearly equal spacing for
k0‘

2
B

L � 1 (corresponding to periodic-in-1/B quantum oscillations), then stop crossing

for
k0‘

2
B

L � 1. (a) (corresponding to BE1 T for typical expected value of k0E0.1 Å� 1). (b) shows that n40 levels collapse to expected semiclassical form.

Only the lowest energy level deviates from the expected semiclassical form, (the jaggedness of this line is a numerical artifact).
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insulator by inverting s- and p- bands with opposite parity
eigenvalues at the G point. This inversion results in a surface of
band crossings where the bands hybridize producing a gap
everywhere except along the high-symmetry axis ẑ, resulting in
two Dirac points. Suppose we weakly break the axial crystal
symmetry, this makes each Dirac point massive, producing a full

bandgap at the Fermi level and the system becomes a strong
TI10,15,16. Importantly, the system becomes a TI regardless of the
type of Dirac mass introduced so long as time-reversal (TR)
symmetry is preserved and the Dirac points remain at generic
non-time-reversal invariant momenta (TRIM) points in the bulk
Brillouin zone.

This is easiest to see in the presence of inversion symmetry,
where the strong TI topological invariant depends only on parity
eigenvalues at TRIMs17, and cannot be effected by perturbations
to the Dirac nodes that occur at generic points in the Brillouin
zone. Alternatively, the Dirac mass of each Dirac cone can be
parameterized by an axion angle y, which appears in a
magnetoelectric term18 y

8p2 E 	 B in the presence of electric and
magnetic field E and B. Since y is odd under TR and the two
Dirac nodes are related by TR, any TR invariant Dirac masses
satisfying the discussed conditions give cancelling contributions
to the total y angle of the system and cannot change the system
from a TI with ytot¼ p to a trivial one with ytot¼ 0.

Hence, at the surface of Cd3As2 and Na3Bi with a weak bulk
crystal symmetry-breaking perturbation, there are an odd number
of non-degenerate (that is, spin–momentum locked) surface
states. If we then restore the bulk rotation symmetry, the
topological surface state cannot be removed by deforming it
inside the bulk node without breaking TR symmetry (so long as
the Dirac points occur at generic non-TRIM points).

This is an interesting new example of symmetry-protected
topology in a zero-bandgap system. A novel feature of the surface
arcs in scenario Fig. 3a, is that the surface-state Berry curvature is
no longer precisely quantized to p. Rather, a non-universal
amount of Berry curvature can be ‘hidden’ inside the bulk node as
illustrated in Fig. 3b. Such topological features of Dirac SMs are
also discussed in ref. 16. The bulk topology constrains the
possible surface state structures. Interestingly, if the scenario
shown in Fig. 3c is realized at zero doping, then at some finite
doping before the bulk, Fermi pockets merge into a single Fermi
sea, the surface arcs will interesect the bulk Fermi pockets (see
Fig. 3d) and enable the quantum oscillations described above.

Reduced symmetry in a magnetic field. A final complication to
viewing the quantum oscillations of Dirac surface arcs as two
copies of those of a Weyl SM is that, for Cd3As2 and Na3Bi,
an applied magnetic field along any axis besides z—breaks
the discrete rotation symmetry protecting the Dirac nodes.
Consequently, the bulk chiral LLs for the two sets of overlapping
Weyl nodes are mixed by the field, and develop a gap
DB � CeB½1�ðB̂ 	 ẑÞ2�, where C is a material parameter
(Supplementary Note 5). Henceforth, we will refer to this effect as
RR0-mixing. States with energies e4DB are unaffected by this
gap, and the magnetic orbits proceed as two independent copies
of the Weyl orbits.

For eoDB, the RR0-mixing can backscatter electrons between
segments 2230 and 3220 of the orbits in Fig. 3a, characterized
by the length scale ‘M � u

2DB
. If the distance travelled through

the bulk is much less than ‘M, that is, L
B̂	ŷj j � ‘M , then the

RR0-mixing does not typically occur before the electron traverses
the bulk. In this case, the mixing is ineffective and the magnetic
orbits for each Weyl copy occur essentially independently.

On the other hand, if L
B̂	ŷj j � ‘M , then, ignoring potential

magnetic breakdown effects (see Supplementary Note 4 and
Supplementary Fig. 3), the electrons penetrate only distance ‘M
into the bulk before returning to the same surface (but switching
copies). Then, the orbits occur separately on each surface. The
time to traverse such a semiclassical orbit is t � 2k0

euðB	ŷÞ þ
2‘MðBÞ

u

where the second term accounts for the time virtually spent in the
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Figure 3 | Surface states and quantum oscillations in Dirac SMs. Viewing

the Dirac SM as two superposed copies of a Weyl SM with opposite

chiralities suggests two sets of surface arcs, labelled R (blue) and R0 (red),

that curve in opposite directions and meet at the bulk Weyl nodes with a

discontinuous kink (a,b). Crystal symmetry-breaking perturbations mix R

and R0 , but the corner/‘kink’ feature in (b) is perturbatively stable against

this effect (vertical dashed lines). A sufficiently strong surface potential

may reconstruct the surface arcs into a ‘conventional’ surface state (c), but

cannot remove it entirely due to bulk topological contraints. Then for

sufficient bulk doping, a surface state initially near the G point will intersect

the bulk Fermi pockets as shown in (d) for two different bulk Fermi

wavevectors kF and k0Fðk0F4kFÞ. The surface states exhibit spin–momentum

locking as indicated schematically by the small black arrows in (b–d).

Strong magnetic fields mix the R and R’ chiral LLs in the bulk, and lead to a

crossover from magnetic orbits through the bulk at low fields to orbits

confined near each surface at high fields with two possible intermediate

crossover behaviours (e,f).
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bulk chiral LLs. Applying the semiclassical quantization condition
leads to the corresponding energy levels:

en ¼ ðnþ gÞ eB

meff
c ðB̂Þ

ð4Þ

where we have defined an effective cyclotron mass:

meff
c ðB̂Þ ¼ 2k0

pu j B̂ 	 ŷ j
þ 1

2pC½1�ðB̂ 	 ẑÞ2�
ð5Þ

The density of states at fixed energy, m, has periodic-in-1/B
oscillations with period OB� 1 ¼ e=mmeff

c .
The behaviour in the intermediate regime, L

jB̂	ŷj � ‘M , is shown
in Fig. 3e,f. Depending on the relative size of Bsat and

Bmix ¼ ujB̂	ŷj
eCL½1�ðB̂	ẑÞ2�, the quantum oscillations show re-entrant

behaviour (Bsat4Bmix, Fig. 3e) or interference between two
oscillations periods (BsatoBmix, Fig. 3f). The crossover can be
continuously probed in a single sample by varying the field
direction.

Discussion
To summarize, by a combination of semiclassical analysis and
direct numerical solution, we have demonstrated that up to a
critical field strength that is inversely proportional to sample
thickness, the surface Fermi arcs of Weyl SMs contribute
periodic-in-1/B quantum oscillations in the density of states.
Similar quantum oscillations can occur from arc-like surface
states in Dirac SMs. In the Dirac SM case, there are additional
complications due to the reduced crystal symmetry of the surfaces
and the symmetry-breaking effects of the magnetic field, that
interplay with additional symmetry-protected bulk topology. In
both cases, density of states oscillations in a field provide
experimentally testable fingerprints of the unconventional
Fermiology of the Weyl and Dirac surface states.

Methods
Numerical simulations. Numerical simulations were performed by modelling a
Weyl SM slab by H¼HyþH> where:

Hy � � iu?@ysy

H? � � 1
8
uzk0 1� 2p̂z=k0ð Þ2


 �
sz þ u?p̂xsx

ð6Þ

and A¼Bzŷ is the vector potential in the Landau gauge corresponding to a
uniform magnetic field along ŷ. In this gauge, x momentum is a good quantum
number, which just sets the location of the guiding centre for the Landau orbits,
and can be taken as zero without loss of generality. Then, we introduce LL raising
and lowering operators via:

px ¼
1ffiffiffi
2

p
‘B

ay þ a
� �

pz ¼
� iffiffiffi
2

p
‘B

ay � a
� �

ð7Þ

which satisfy canonical commutation relations [a, aw]¼ l.
Eigenstates of Hy are eisky sy

		 ¼ s0 ¼ � 1i, with corresponding to eigenvalue
ey¼ ss0u>ky. Eigenstates of H> with eigenvalue en were obtained numerically by
truncating the oscillator basis awa|nS¼ n|nS to keep a finite number of |nS with
noNmax. This truncation breaks the canonical commutation relations of a and aw

for states near the cutoff, Nmax, producing additional spurious low-energy
solutions, which are removed by adding a regulator term that energetically
penalizes |NmaxS.

Eigenstates of full Hamiltonian are of the form:

Cðs; s0 Þ
E; k;m ¼ eisu?k

ðEþ su?kÞ fmðx; zÞ
s0e?; mgmðx; zÞ

� �
ð8Þ

where s, s0 ¼±. Only certain superpositions of such eigenstates will satisfy the
boundary conditions at the bottom (y¼ 0) and top (y¼ L) surfaces of the slab. The

proper boundary conditions can be identified by treating the vacuum (yo0 and
y4L) as an ordinary band-insulator with large gap. Equivalently, we can add a
mass term to equation (4) of the form M(y)sz, where M(y)¼ 0 inside the slab, and
M(y)¼M040 outside the slab. Continuity of the wave functions at the slab
boundaries, on taking the limit M0-N, require that C(y¼ 0, L) be eigenstates of
sx with eigenvalues ±1, respectively. Further details are available in
Supplementary Notes 1 and 3.
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