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Abstract: In this paper, we first prove an identity for twice quantum differentiable functions. Then, by
utilizing the convexity of IbDj f| and IaDé fl, we establish some quantum Ostrowski inequalities for twice
quantum differentiable mappings involving g, and g?-quantum integrals. The results presented here are
the generalization of already published ones.
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1 Introduction

The study of various types of integral inequalities has been the focus of great attention for well over a century
by a number of mathematicians, interested in both pure and applied mathematics. One of the many funda-
mental mathematical discoveries of Ostrowski [1] is the following classical integral inequality associated
with the differentiable mappings:

Theorem 1.1. Let f: [a, b] — R be a differentiable mapping on (a, b) whose derivative f' : (a, b) — R is
bounded on (a, b), i.e., |f'le = sup |f'(t)| < co. Then, we have the inequality

te(a,b)
( a+b )2

1 2
4 (b - a)?

b
o) - rlajf(t)dt < b - DIF o

for all x € [a, b]. The constant% is the best possible.

Ostrowski inequality has applications in quadrature, probability and optimization theory, stochastic,
statistics, information, and integral operator theory. During the past few years, a number of scientists have
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focused on Ostrowski-type inequalities for function of bounded variation, see, for example, [2-11], [12,
pp. 468-484]. Until now, a large number of research papers and books have been written on Ostrowski
inequalities and their numerous applications.

On the other hand, many studies have recently been carried out in the field of g-analysis, starting
with Euler due to a high demand for mathematics that models quantum computing g-calculus appeared
as a connection between mathematics and physics. It has several applications in different mathematical
areas such as number theory, combinatorics, orthogonal polynomials, basic hypergeometric functions,
and other sciences, quantum theory, mechanics, and the theory of relativity [13-16]. Apparently, Euler was
the founder of this branch of mathematics, by using the parameter g in Newton’s work on infinite series.
Later, Jackson was the first to develop g-calculus that knows without limit calculus in a systematic way [13].
In 1908-1909, Jackson defined the general g-integral and g-difference operator [15]. In 1969, Agarwal
described the g-fractional derivative for the first time [17]. In 1966-1967, Al-Salam introduced a g-analogue
of the Riemann-Liouville fractional integral operator and the g-fractional integral operator [18]. In 2004,
Rajkovic et al. [19] gave a definition of the Riemann-type g-integral that generalized the Jackson g-integral.
In 2013, Tariboon and Ntouyas introduced the aDq—difference operator [20]. Recently, in 2020, Bermudo et al.

introduced the notion of qu derivative and integral [21].

Many well-known integral inequalities such as Holder inequality, Hermite-Hadamard inequalities,
Ostrowski inequality, Cauchy-Bunyakovsky-Schwarz inequality, Gruss inequality, Gruss-CebySev inequality,
and other integral inequalities have been studied in the setup of g-calculus using the concept of classical
convexity. For more results in this direction, the readers may refer to [8,13,14,22-38].

2 Preliminaries of g-calculus and some inequalities

In this section, we first present some known definitions and related inequalities in g-calculus. Set the follow-
ing notation (see [16]):

1-qg"
1-¢

[nl, = =1+g+@++ g, ge (0,1

Jackson [15] defined the g-Jackson integral of a given function f from O to b as follows:
b (o]
If(x)dqx =Q1-qb Zq”f(bq”), where 0 < g <1 2.1
0

n=0

provided that the sum converges absolutely.
Jackson [15] defined the g-Jackson integral of a given function over the interval [a, b] as follows:

iﬂMQX=}ﬂm%x—jﬂm@x
a 0 0

Definition 2.1. [20] Let f: [a, b] » R be a continuous function. The g,-derivative of f at x € [a, b] is
identified by the following expression:

aDgf(x) = feo (_1{(?;)((; (—1(1_) q)a)’ X #a. (2.2)

Since f: [a, b] — R is a continuous function, we can define

oDyf (@ = lim, D, f(x).
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The function f is said to be g,-differentiable on [a, b] if ,D,f(x) exists for all x € [a, b]. If we take a = 0
in (2.2), then we have 0qu(x) = Dyf(x), where D,f(x) is a known g-derivative of f at x € [a, b] (see [16])
given by

f(x) = flgx)

, Xx#0.
1-qx

qu(X) =

Definition 2.2. [21] Let f: [a, b] — R be a continuous function. The g?-derivative of f at x € [a, b] is
given by

bD,f(x) = flgx + A - @)b) - f()

, + b.
1-q)b-x X

Definition 2.3. Let f: [a, b] — R be a continuous function. The second g?-derivative of f at x € [a, b] is
given by
"D}f(ta + (1 - ©)b) = "D, (*D,f(ta + (1 - £)b))

_ f(g’ta+ (1 - tg*>)b) - (1 + q)f (qta + (1 — qt)b) + gf (ta + (1 - t)b)
- (1-q)%q(b - a)t?

Definition 2.4. [20] Let f: [a, b] — R be a continuous function. Then, the g,-definite integral on [a, b] is
defined by

[f00adpx =0 - - @ Y af@ + - q)a) = b - @) [£(@ - O + )¢
n=0

Alp et al. [26] proved the following g,-Hermite-Hadamard inequalities for convex functions in the setting
of quantum calculus:

Theorem 2.5. If f: [a, b] — R is a convex differentiable function on[a, b] and O < q < 1, then we have

qa+b - 9(a) +f(b) f(b)
< 2.3
f[ph] ﬁuu o (2.3)

In [26] and [39], the authors established some bounds for the left- and right-hand sides of the inequa-
lity (2.3).

On the other hand, in [21], Bermudo et al. gave the following definition and obtained the related Hermite-
Hadamard-type inequalities:

Definition 2.6. [21] Let f: [a, b] — R be a continuous function. Then, the g?-definite integral on [a, b] is
given by

[retap=a-a®-aY araara-g-b-affasa-ond
n=0

Theorem 2.7. [21] If f : [a, b] — R is a convex differentiable function on|a, b] and 0 < q < 1, then, q-Hermite-
Hadamard inequalities are given as follows:

a+ gb f(@) + gf(b) y
f[[ j ﬁ < PO (2.4)

From Theorems 2.5 and 2.7, one can obtain the following inequalities:
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Corollary 2.8. [21] For any convex function f: [a, b] - R and 0 < q < 1, we have

f [(h[zz]+ b} if (a[;]qu ff (00 g dpx + Jf (00*dgx - < f(a) + f(b) @5)
q q
and
b (@ + f(b)
f(a ;— J < z(b - J-f(x) dqx + J‘f(x)bdqx < % (2.6)

Theorem 2.9. (Holder’s inequality, [40, p. 604]) Suppose that x > 0,0 < g <1, p; > 1. pri + ri =1, then

1

n

Ilf(X)g(X)ld X< j|f(x) 1P dgx jlg(x) I dx

In [34], Noor et al. proved the following lemma and related quantum Ostrowski inequality.

Lemma 2.10. If f: [a, b] ¢ R — R is a g-differentiable function on (a, b) such that ,D,f is continuous and
integrable on [a, b], then we have:

1

Jubyf e+ a-vadyt + g '[taqu(tx+ (1 - Ob)dgt,
0 0

(b X)2

f(x)——jf(t oyt = (’;‘ i

where 0 < g < 1.

Theorem 2.11. Let f : [a, b] c R — R be a g-differentiable function on (a, b), such that ,D,f is continuous
and integrable on [a, b]. If |, D,f| is convex on|a, b] and |,D,f| < M, then

B gM[(x - a)’ + (b — x)°]
0 —ff(t) <

where 0 < g < 1.

In this paper, we establish some quantum Ostrowski-type inequalities for twice g-differentiable
functions.

3 New Ostrowski-type inequalities for quantum integrals
In this section, we prove Ostrowski-type inequalities for twice quantum differentiable functions involving
the quantum integrals.

Let’s start with the following useful lemma.

Lemma 3.1. If f : [a, b] c R — R is a twice q-differentiable function on (a, b), such that bD;f and aD;f are
continuous and integrable on [a, b], then we have:

1
(x - @)*(b - x| (a - x)Itzangf(tx + (1 - t)a)dgt + (x - b) I 2P D f(tx + (1 - O)b)dgt | = 2L, (x), (3.1
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where
PL00 = %[(x ~ a)af(qx + (1 - q)b) + (b - )af(@x + (1 - 9)a@) - (@ + g - V(b - D X))
_ [_ 2 b 2
= { ~a) jft) dgt+ (b - ) jf(t) ]
and0<g<1.

Proof. From Definition 2.2, we have
"D}f(ta + (1 - t)b)
= "D,("D,(f(ta + (1 - O)b)
_ [ f(gta + (1 - qt)b) - f(ta + (1 - t)b)J

1-q9)b - a)t
_ 1 {f(qzta + (1 - tg®)b) - f(gta + (1 - gt)b)
-0 -at (1-q)qb - a)t (3.2)
_ flgta+ (1 - gt)b) - f(ta + (1 - t)b)}
1-qb-at
_ f(@’ta+ (1 -tg>)b) - f(gta + 1 - qgt)b)  f(qta + (1 - qt)b) — f(ta + (1 - t)b)
(1 - q)*q(b - a)’t? (1-q7*Db-ayt?

f(g*ta + (A - tg®)b) — 1 + ¢)f (gta + 1 — qt)b) + gf (ta + (1 - t)b)
(1 - q)*q(b - a)*t?

Applying the notions of Definition 2.6, we obtain

1
f (P2 (tx + (1 - £)b)d,t

0

j F@tc + (L~ tg)b) ~ (1 + @ftatx + (L~ gOb) + aftx + L) , |
(1- qrqb - x)? !

~ S qn+2f(qn+zx +(1- n+2)b)
1-q)b- X)nz0 b — X

O n+l n+1 _ An+l
SA- U+ @b - x>z S T

n=0

~ v 4f(@x+ (- gMb)
+ g1 -q)(b X)r; 0 —aPal =0
1

b
ST [If(t)bdqt - (- @b - 0f() - (1 - )b - N)af(gx + (1 - q)b)} (3:3)

b
_ (2]4 T 1 )
T )B{If(t)dt (- @)+ - X)f(X)J T _[f(x) d,x

1+q _f(qX+(1 q)b)
- xP’¢ -[f( )’ ( f( : - Qg4 b - x)?’

Similarly, from Definitions 2.1 and 2.4, we have

2 X +q-1 _flgx+ (1 -qa)
x - a)’q? !f(t)“d"t - - a)zf ) 1-q9q¢x-ay? G4

1
jtz D2 (tx + (1 - Ha)d,t =

0
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By multiplying the equalities (3.3) and (3.4) by (b - x)*>(x — a)? and (b — x)*(x — a)>, respectively, and adding
the resultant equalities we get the required identity (3.1). Thus, the proof is completed. O

Remark 3.2. If we take the limit ¢ — 1° in Lemma 3.1, then we obtain [41, Lemma 2.1 for a = 1].

Theorem 3.3. If the assumptions of Lemma 3.1 hold, then we have the following inequality provided that
IbDéfl and |, D;fl are convex on [a, b]

1 3
PL,00l < (x - a)(b - x){(x - a)(@ W D2f 0O + [315[ i |aD§f(a)|j
(3.5)
1

[4]q

3
+(b—x>[ PD2f 0] + —2 IbDjf(b)lﬂ,

(3]q[4]q

where 0 < g < 1.

Proof. On taking the modulus in Lemma 3.1, applying the convexity of Ing fland |, D; fl, we obtain that

1 1
L0 < (x = @)X(b - x| (x - a)jt2|aD;f(tx + (- ta)ldgt + (b - x) j 2PD2f(tx + (1 - H)b)|dgt
0 0

1
< (x - a)*(b - x?| (x - a>jt2(t|aD§f(x)| + (1 - t)|,Df(a)])dgt
0

1
+ (x—a)’(b - x?| (b - x)jtZ(ﬂbD;f(xn + (1= "D f(b)])d,t
0

1

=(x - a3 - x){(x - a)([4]q

2 q 2
WD3f 0] + D@ |J

a1 b2 ¢ by
+ (b X)([‘*]q "D f(0l + B3, (41, Iqu(b)Iﬂ,
which completes the proof. O

Corollary 3.4. (Quantum Ostrowski inequality) In Theorem 3.3, if we set |bD§ Jin D;f | < M, then we obtain
the following quantum Ostrowski-type inequality for twice quantum differentiable functions:
M (x — a)’(b - x)*(b - a)

314 '

L, (0] < (3.6)

Remark 3.5. In Corollary 3.4, if we take the limit g — 1-, then we obtain [41, Theorem 2.1 for a = 1].

a;b, then we obtain the following

Remark 3.6. In Corollary 3.4, if we assume the limit ¢ — 1~ and x =
inequality:

b
a+b 1 M - a)?
557 5oa [row] s M2

which is offered by Meftah et al. in [41, Corollary 2.1] and it can be found in [42, Theorem 2.2 for x = 2 ; b }
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Theorem 3.7. We assume that the conditions of Lemma 3.1 hold. If the mappings IbD; flPrand|, D;Il"1 (p1 =1
are convex, then, the following inequality holds:

) (x—a)[iwzf(x)vﬁ T |aDZf<a>|P1T
Bl 4], e B4l ¢

oL, 001 < (x - aP(b - x)Z[
N (3.7)
v (b- x)(i PD2F 01 + —L— PD2f(b) |Plj“ ,
(4, Blgl4l, °

where 0 < g < 1.

Proof. Taking the modulus in Lemma 3.1 and applying the well-known power mean inequality, we have

1 1
|5Lq(x)| < (x —a)®b - x)? (x - a)J‘tzlaDgf(tx +(1-ta)ldst + (b - X)J‘t2|bD§f(tX + (1 - t)b)ld,t
0 0

1

1 i1 7
< (x - a)(b - x| (x - a) Itqut jtz WD (b + (1 - a) P dyt
0 0

1

1 Lpif 1 »
£ 00— @b - 0| (b - x)UtqutJ [Itz PD2f (tx + (1 - £)b) [P dth .

0 0

By the convexity of IbD§ fIPr and |, D§|P1, we have

1-L 1
b JERCYPSRC I I S NS S \ ¢ 2 s
oLy 00| < (x = @)*(b - x) [(X a)[mq] [[ al, la DgfOO P + 3L, Iaqu(a)IpJ ]

_1

1 1 p 1 b q3 b I’LI
— 2(h — x)?2 _ - _ 2 1 2 1
+(x — a)*(b - x?| (b X)(B]qj [[% "D;f(x) 1P + 51,4, |qu(b)|PJ ,

which completes the proof. O

Theorem 3.8. We assume that the conditions of Lemma 3.1 hold. If IbD; flPrand|, D; f|Pr are convex on [a, b]

1 1
for some p; > 1 and o+ o 1, then we have,
1 1

b — 2(h — )2 1 "
PL, (0] < (x = @)*(b - x) ([Zrl " Hq]

(3.8)

2 1 2 1 pll b2 1 bn2 i l}1
« |- a l. Daf () 1Pt + q |, Dy f (@) b0 PD2f ()1 + g "D (b) 1P |
2, 21,

where 0 < g < 1.

Proof. Taking the modulus in Lemma 3.1 and applying well-known Hélder’s inequality, we obtain

1 1
PL,001 < (x — @)2(b - x)?|(x ~ a)J.tzlaDéf(tx + (- ta)ldgt + (b - X)It2|bD§f(tx + (1~ t)b)|dt
0 0
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1 1
1 (1 p1

< (x - a)*(b - x)?| (x - a) .[tz’ldqt anDl?f(tx + (1 - ta)lPrdgt
0 0

1 1
1 nl1 p1

+ (b -x) Itzrldqt _[|aD§f(tx + (1= t)b)[Prdyt
0

0

Using the fact that Ing fIPr and |, D} f|P are convex, we have

b — 2(h — )2 1 "
laLy (01 < (x = @)*(b - x) {[Zrl " HJ

2 P1 2 )21 Pll bn2 n b2 I’l Pil
o D @P + aLDif@I ) (PDf GO + g PDfBIP |
(24 2],

which completes the proof. O

Corollary 3.9. In Theorem 3.8, if we set Ing fF®ll, D; fl < M, then we obtain the following quantum Ostrowski-
type inequality for twice quantum differentiable functions,

1

|an(X)| < M(X a) (b X) (b a)[[zrl + qu '

Remark 3.10. In Corollary 3.9, if we take the limit ¢ — 1°, then we obtain [41, Corollary 2.3 for a = 1].

4 Conclusion

We conclude our work by mentioning that here, we proved some new quantum integral inequalities of
Ostrowski-type for twice quantum differentiable functions by using the notions of quantum derivatives and
quantum integrals. It is important to mention that our results transformed into some new and known results
by considering the limit g — 1" in our main results. We strongly believe that it is an interesting and new
problem for the upcoming researchers who can obtain similar inequalities via quantum fractional calculus
in their future work.
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