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Abstract In this work, our prime focus is to study the one

to one correspondence between the conduction phenomena

in electrical wires with impurity and the scattering events

responsible for particle production during stochastic inflation

and reheating implemented under a closed quantum mechan-

ical system in early universe cosmology. In this connection,

we also present a derivation of quantum corrected version

of the Fokker–Planck equation without dissipation and its

fourth order corrected analytical solution for the probability

distribution profile responsible for studying the dynamical

features of the particle creation events in the stochastic infla-

tion and reheating stage of the universe. It is explicitly shown

from our computation that quantum corrected Fokker–Planck

equation describe the particle creation phenomena better for

Dirac delta type of scatterer. In this connection, we addition-

ally discuss Itô, Stratonovich prescription and the explicit

role of finite temperature effective potential for solving the

probability distribution profile. Furthermore, we extend our

discussion of particle production phenomena to describe the

quantum description of randomness involved in the dynam-

ics. We also present computation to derive the expression for

the measure of the stochastic non-linearity (randomness or

chaos) arising in the stochastic inflation and reheating epoch

of the universe, often described by Lyapunov Exponent. Apart

from that, we quantify the quantum chaos arising in a closed

system by a more strong measure, commonly known as Spec-

tral Form Factor using the principles of random matrix theory

(RMT). Additionally, we discuss the role of out of time order

correlation function (OTOC) to describe quantum chaos in

the present non-equilibrium field theoretic setup and its con-
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sequences in early universe cosmology (stochastic inflation

and reheating). Finally, for completeness, we also provide a

bound on the measure of quantum chaos (i.e. on Lyapunov

Exponent and Spectral Form Factor) arising due to the pres-

ence of stochastic non-linear dynamical interactions into the

closed quantum system of the early universe in a completely

model-independent way.
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1 Introduction

Quantum fields in an inflationary background [1–25] or dur-

ing reheating [26–32] gives rise to the burst of particle pro-

duction, which has been extensively studied in Refs. [33–35].

This has been studied to a great extent in the background of

the inflationary scenario of the universe in Refs. [36–38].

Such phenomena has been compared to that of the scatter-

ing problem in quantum mechanics with a specific effective

potential arising due to the impurity in the conduction wire,

which can approximately be solved using the well known

WKB technique [34,36].1 It is important to note that such par-

ticle production events are completely random (or chaotic)

when the evolution is non-adiabatic or tachyonic in nature.

A non-adiabatic change in the time dependent effective

mass profiles of the fields (which is actually coming from

integrating out the heavy degrees of freedom from the UV

complete theory and after path integration finally one gets the

time dependent effective coupling parameters between fields)

as the background evolution of the fields passes through spe-

cial points in field space produces these burst of particle cre-

ation in (quasi) de Sitter space time. There lies a physical

and mathematical equivalence between such cosmological

events to that of the stochastic random phenomena occur-

ring in mesoscopic systems where fluctuations in physical

quantities play a significant role of producing stochastic ran-

domness in the system under consideration. We also discuss

the cosmological systems which have been considered to

be rather non-linear and dissipative due to the significant

amounts of quantum fluctuations in the effective coupling

terms (or in the time dependent effective mass profile) of

the interactions between the fields. Important reviews on

the non-linear and dissipative effects arising in the context

of cosmology were put forward in the Refs. [9,39–41]. In

this paper we explicitly discuss bout the various non-linear

and dissipative effects in cosmological set up that arises in

(quasi) de-Sitter space with m2 > 0, where the term m2

represents the effective mass squared of the created parti-

cle in (quasi) de-Sitter background. In this connection it is

important to note that, the massless scalar field gets “ther-

malize” due to the effective time dependent interaction in the

(quasi) de-Sitter background. The cosmological events that

we talk about in this paper are identified with those of the par-

1 In the context of cosmology conformal time dependent effective mass

profile exactly mimics the role of impurity potential in electrical con-

duction wire. Due to such one to one correspondence the time evolution

equation (i.e. Klien Gordon equation) of the Fourier modes correspond-

ing to the quantum fluctuation in the context of primordial cosmology

can be described in terms of the Schrodinger equation in electrical con-

duction wire with specific impurity potential. We have investigated this

possibility in detail in this paper. Additionally, it is important to note

that such time dependent effective mass profiles are also important to

study the role of quantum critical quench and eigen state thermalization

[] during the reheating epoch of universe.
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Fig. 1 This schematic diagram shows the correspondence between the conduction phenomena in electrical wires with impurity to that of the

cosmological random particle-creation events during the non-adiabatic stage of the early universe

ticle production stochastic random events. In this paper, we

present the dynamical features of inherent chaos (stochas-

tic randomness) in the physical system and its connection

with the quantum mechanics in detail. The model is exactly

similar to that of “massless scalar field” interacting with a

scatterer in the background which are treated to be the heavy

fields and are mainly responsible for cosmological particle

production in (quasi) de-Sitter space (see [36]). In this con-

text, when the free massless scalar field interacts with the

heavy field in the background space time, it mimics the role

of thermalization phenomena of the field which occurs dur-

ing the epoch of reheating of the universe (Fig. 1). In Fig. 2

we have depicted the summary and future prospects of the

present work. The detail of the discussions on each topic will

be discussed elaborately in the next sections of the paper.

The specific problem we will discuss here is similar to

one presented in Ref. [42]. This problem is similar to that

of a scattering problem in presence of impurity in quantum

mechanics where the Schrödinger equation yields approx-

imate solutions to the wave-function of the particle which

encounters a effective impurity potential barrier V (x) of a

given strength. The similarity in the following model is drawn

between the current carrying electrons responsible for con-

duction in electrical wires to that of the particle creation in

cosmology as a result of the non-adiabatic random events

occurring in the early (inflation and reheating) stage of the

universe. In this present problem for the sake of simplic-

ity we consider an one dimensional conducting electrical

wire, which implies that the current carrying electrons in

the electrical wire has only a single propagating degree of

freedom. As mentioned earlier, this has been considered to

reduce clutter in our computation. But the similar problem

can be generalized to more complicated situation.2 Since, a

current carrying wire consists of a large number of impu-

rities, these act like the potential barriers V (x), which are

2 For an example, one can generalize the same prescription in three

space dimensions.

randomly distributed across the wire. Therefore, the motion

of the electrons while confronting these scatterers gets hin-

dered due to the presence of these randomly placed scatter-

ers. One of the most important outcome of such an event is

known as Anderson Localization as appearing in the context

of condensed matter systems. Usually this is characterized

by probability density of the localized wave-function:

|ψ(x)|2 ∼ exp (|x |/ξ), (1.1)

with ξ being the localization length of the quantum mechani-

cal wave-functionψ(x). This phenomena of Anderson Local-

ization usually occurs due to the interference of the waves

scattered from the impurities present in the conduction wire.

By formulating cosmological particle production as a random

scattering problem, it has been shown in [42] that Anderson

localization maps to a problem of estimating exponential

particle production, as given by:

|φk(τ )|2 ∼ exp (μkτ), (1.2)

where μk is the mean particle production rate which is char-

acterized by the conformal time dependent scalar field φk(τ ).

A striking similarity has been observed between such scat-

tering problems in conducting wires to that of the burst of

particle production in cosmological random events shown

in Ref. [42]. In such cases, it has been observed that the

solving a scattering problem in quantum mechanics using

Schrödinger equation is similar to solving a Klein–Gordon

equation for a massless scalar field in presence of a conformal

time-dependent effective mass squared coupling parameter

m2(τ ). In this context the scalar field with time-dependent

mass m2(τ ) mimics the role of coupling strength parame-

ter which characterizes the scattering to the massless scalar

field in (quasi) de Sitter background. For more details see

Refs. [43–45]. Moreover, such stochasticity in a cosmologi-

cal set up arises due to the stochastic time evolution of Hubble

parameter H(t), so that the inflaton (or the field participat-

123



320 Page 4 of 107 Eur. Phys. J. C (2019) 79 :320

Open 

Random

Sca�ering 

Events

Lyapunov 

Exponent

Quantum-

Corrected

Fokker Planck

Equa�on

Spectral Form 

Factor

Gaussian and 

Non-Gaussian 

Signatures

Cosmological 

System

Scalar Fields in 

De-Si�er Space

Quantum 

Master 

Equa�on

Non-linear and 

Dissipa�ve 

Effects In
te

ra
c�

on

Quantum 

System

Closed

Quantum 

System

Cosmological 

Par�cle

Crea�on

Fig. 2 Overview of the computational strategy of the whole paper and how different parts are inter-related

ing in reheating) evolves with time stochastically due to the

quantum fluctuations in the FLRW background. In the simi-

lar context the role of interacting scalar field has been studied

to a great deal in Ref. [43].

In this context, we have presented the amount by which

the quantum mechanical system deviates with respect to the

initial conditions. This means that more the value of this

exponent, more is the chaos or stochastic randomness in the

system under consideration in this paper. This exponent plays

a significant role in our scenario as the number of particles

produces in a given scattering event per unit time is ran-

dom in nature. In a system of randomly spaced scatterers

chaos emerges out of the random scattering events that an

electron encounters while drifting across the wire with some

drift velocity v within the conducting wire. The number that

quantifies this increase in stochastic randomness or chaos in

the system is the Lyapunov Exponent. In Refs. [42,43], par-

ticle production phenomena in cosmological non-adiabatic

events has been exclusively studied which yields the fact that

the particle occupation number depends on Floquet indices

μk , which finally control the number of produced particles

with the following number density:

nk(τ ) =
∫ ∞

0

dk k2 exp [2m(τ )μkτ ], (1.3)

as well as the variances in the field fluctuation. The quantum

fluctuations in the inflationary state of the universe results

in the randomization of these bursts of particle production.

The number density has been a random variable which is ren-

dered stochastic due to the scattering events in the context of

early universe cosmology. Our main objective in this paper

to quantify this characteristic number for the massless scalar

field having a conformal time-dependent mass coupling with

it. One of the prime reasons for finding a signature of chaos

in such a system is the well known thermalization phenom-

ena, which means that the FLRW background which embeds

the massless scalar field into it is being thermalized by the

massive field in interaction with the FLRW set up, which con-

stantly being giving rise to a burst of particle production in

the context of early universe cosmology. The scalar fields that

we considering in our paper are said to be massive or heavy

fields (m ≥ H ) which mimics the role of the scatterers in

the Schrödinger problem in quantum mechanics where the

strength of the effective potential or the scatterer is given by

the probability distribution function of the effective potential

function. We draw a picturesque landscape by considering

three distinct mass profiles:

m2(τ ) =

⎧
⎪⎪⎨
⎪⎪⎩

m2
0

2
[1 − tanh(ρτ)] , Profile I

m2
0 sech2(ρτ), Profile II

m2
0 �(−τ). Profile III

, (1.4)

which exactly mimics the role of cosmological scatterers in

early universe. We thereby investigate the momentum scale

dependent behaviour of the Lyapunov exponent. In this con-

text, the incoming momenta of the mode functions of the

quantized massless scalar field having random interactions

with the scatterer. In the following class of model, the Bogoli-

ubov coefficients arise due to the interaction between mass-

less scalar field with the heavy field. These Bogoliubov coef-

ficients gives the information about the transmission coef-

ficient viz.a.viz in similar problem to that of a scattering

problem in quantum mechanics, that we solve using the well

known WKB approximation technique.3 These WKB solu-

3 To find approximate solution of the Schrödinger equation (or in other

words the Klein–Gordon field equation) in presence of an arbitrary

impurity effective potential, (or the conformal time dependent mass

coupling parameter) WKB approximation method plays crucial role

[46,47].
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tions are extremely useful as it tell us the dynamical feature

of the particle production in cosmological scattering events.

In continuation with this, we discuss about the epoch of

reheating which occurs after the end of inflationary stage

of the universe which finally results in the stochastic random

burst of particle production. The dynamics of these stochastic

random bursts of particle production can be well understood

by using a Fokker–Planck equation, which gives us a statis-

tical interpretation of the number density of particles created

per scattering event. Since, the number of particles created in

a given non-adiabatic event is not discrete in nature but rather

its random, which means that there must be a probability dis-

tribution function associated with the particle number. The

various dynamical features of this type of probability distri-

bution and its physical consequences has been studied in Ref.

[42]. It has been phenomenologically proposed in Ref. [42]

that such probability density function would necessarily is

Gaussian one. The occupation number of the produced parti-

cles, nk , executes a drifting Brownian motion and a Fokker–

Planck (FP) equation that evolves the probability distribu-

tion, P(nk; τ), emerging out of this Brownian motion has

been studied in Ref. [42]. We further compute the analytical

expressions for the mean, variance and other higher order

moments which are commonly known as, skewness and kur-

tosis and such additional statistical higher order moments are

very useful to study the exact mathematical form and asymp-

totic limits of the probability distribution function. The evo-

lution of mean, variance, skewness and kurtosis finally gives

a coarse-grained analysis of the Fokker–Planck dynamics to

more corrected orders of magnitude in quantum regime. We

show in this paper explicitly that though Gaussianity is an

inherent part of the probability density function, but the con-

sideration of the higher order moments in the Fokker–Planck

equation tells us that the density function may not be a Gaus-

sian one but with some higher-order corrections entailed into

it due to the quantum mechanical origin. Therefore, to a

greater extent we extend the more corrected quantum version

of the Fokker–Planck equation used to describe the dynam-

ics of the probability distribution function used in Ref. [42]

that tells us the dynamics of the bursts of particle production

in these random scattering events. The more quantum cor-

rected version tells us that the probability amplitude of the

particle production in the scattering events is more than a Log

normal distribution. The distribution profile of the probabil-

ity distribution function depends largely on the profile of the

scatterer, i.e., the effective potential V (x) in the Schrödinger-

like equation. While calculating the Fokker–Planck dynamics

we observe that the skewness gives us a clue about the rate

at which the particle production occurs meaning that longer

the trailing part of the profile more is the number density

of particles in the scattering event for a given time in the

frame of the observer, whereas, kurtosis tells us the width

of the probability distribution function which is essentially

the amplitude with which the particle production phenomena

occurs, which more suggestively tells us about the standard

deviation of the density function from Gaussianity. This may

be a signature of non-Gaussianity that arises in various mod-

els in early universe cosmology.

In this connection it is important to note that, such stochas-

tic approaches to the early universe scenario have been stud-

ied in details in [48,49], where the authors give an account

of how chaos arises in the context of eternal inflation. As

any rapidly oscillating classical field looses its energy by

creating pairs of elementary particles, these particles inter-

act with each other and comes to a state of showing thermal

behaviour at some temperature T . This implies that we must

eliminate the necessary assumption of the universe being in

thermal equilibrium. This means that the inflating universe

is rather thermal in the sense that the particle creation events

that occurs during the quantum fluctuation in the randomly

distributed scalar fields φ which results in a chaotic model

of the inflationary scenario of the universe thereby leading

to a generation of stochastic idea of the particle creation

events during the thermalization of the quantum states of the

field randomly distributed over the space-time. These parti-

cle creation events are more phenomenologically associated

with one of the fundamental ideas in out-of-equilibrium sta-

tistical mechanics known as Fokker–Planck equation which

gives the rate of the particle production during theses random

events in stochastically emerging space-time along with the

distribution function that this rate charts out. In Ref. [42],

such a phenomenon of particle creation events by the ran-

domly spaced scatterers in due context of cosmology has

been shown where the statistics of the produced particles

as a function of time which is the probability distribution

function P(nk, τ ) has been predicted to be following a Log-

Normal distribution. The entire process have been carried out

with the delta-scatterers which are localized in space-time.

Following Ref. [42], in this paper we give a more improved

quantum corrected version of the same approach to the prob-

ability density function of the particle production events and

our prediction from the results show that the higher order

quantum correction terms being included into the Fokker–

Planck equation introduces an approximation to the theory.

This tells us that the number of particles produced in a given

non-adiabatic event during the reheating stage of the universe

is quantized, which would mean that the rate of particle pro-

duction in a given event gives rise to a discrete set of occupa-

tion number nk . Furthermore, the quantum corrected terms

obtained by deriving the Fokker–Planck equation takes the

general form, which is linear in nk being the first order in τ .

Using this information we calculate further the leading order,

second and third order terms in the Fokker–Planck equation.

Hence, we derive the analytic expression of the quantum cor-

rected version of Fokker–Planck equation. We also calculate

the various higher moments in order to get an overview of
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the nature of the solution of the quantum corrected Fokker–

Planck equation which are - standard deviation, skewness and

kurtosis which gives the hint of how the probability density

function deviates from its Gaussian nature when the higher

order quantum corrections are taken into account in the com-

putation. This in turn may will be another indirect signature

of the primordial non-Gaussianity in cosmology other than

obtaining the signatures provided by the 3-point functions

from scalar fluctuations.

Apart from that, we discuss about spectral form factor

(SFF), which measures the random distribution of eigen val-

ues of the energy hamiltonian of a chaotic system. For this

computation of SFF we use the principles of random matrix

theory (RMT) in this paper. In the present context an upper

bound on SFF denotes the saturation of eigen value distribu-

tion hence supports the Ref. [50] for quantum chaotic system.

Within the framework of quantum physics, chaotic systems

can be characterized using only some additional constraints.

This theoretical approach is discussed in Refs. [51–55] and

the authors use the theory of random matrices to characterize

quantum mechanical system. In this method, any arbitrar-

ily complicated many-body Hamiltonian can be replaced by

matrix of random numbers drawn from a Gaussian statistical

ensemble. This random matrix approach towards quantum

mechanics help to characterize and understand the underly-

ing features of the chaotic random system. After studying

the behaviour of SFF with time one can further comment

that whether it is valid for a cosmological particle produc-

tion event (semi-classical) or not. For our purpose we discuss

generalized version of SFF for different even order poly-

nomial structure of random potential and then extend that

result to describe the cosmological particle production events

[56,57]. For any random potential we can use this method

of SFF and we can deal with scatterer of any arbitrary type.

For any such scatterer we can get a bound on randomness in

the chaotic system characterised by SFF. Also using specific

transfer matrix for different conformal time dependent effec-

tive mass profiles which are precisely known in this paper, we

can finally compute Lyapunov exponent which also measure

stochastic randomness.

Also it is important to note that in Ref. [42], the scatterers

were considered to be some localized potential functions in

space-time. On the contrary the choice of our specific time

dependent mass profiles mimics the role of thermalized fields

or effective potential functions, which are playing the role of

scatterers in this context. We see that the choice of these time

dependent mass profiles leads to particle production which is

chaotic in nature and therefore, to determine the rise of chaos

in such a system we quantify as well as analyse chaos by a

well known quantities known as the, Lyapunov exponent [58]

and Spectral Form Factor (SFF) [59]. Here fusing the princi-

ples of random matrix theory (RMT) we provide a general-

ized bound on randomness (or stochasticity) for any general

random scatterer whose potential can be expressed in terms

of an even polynomial. More precisely, we provide a possi-

ble method to compute the degree of randomness in a chaotic

system and from that one can check the bound on chaos.

The plan of the paper is as follows – In Sect. 2 we dis-

cuss about the model which is responsible for the quantum

description of chaos during the cosmological particle produc-

tion and have similarities with the quantum mechanical prob-

lem of electrical conducting wire with impurities. In Sect. 3,

we have presented the analytical expressions for the Bogoli-

ubov coefficients, transmission and reflection coefficients,

Lyapunov exponent, conductance, and resistance for differ-

ent time dependent mass profile. We have discussed the cor-

respondence between In Sect. 5 the specific role of Spectral

Form Factor (SFF) to quantify chaos in the context of particle

production rate is discussed. In Sect. 6 the particle produc-

tion event with quantum corrected Fokker–Planck equation

is discussed by taking contribution upto fourth order and also

different higher order moments from the quantum corrected

probability density function are explicitly computed. Finally,

in Sect. 7 we conclude with the future prospect and physical

impacts of our work.

Additionally it is important to note that, throughout this

paper, we use natural system of units, h̄ = c = 1.

2 Modelling randomness in cosmology

The background model which we consider in this section to

quantify quantum chaos in cosmology consists of a massless

scalar field interacting with coupled with a background scalar

field with conformal time dependent mass profile which in

principle have heavier or comparable to the Hubble scale

(m ≥ H ) [46,60,61]. It is important to note that such heavy

mass profiles play significant role in finding various cosmo-

logical correlation functions and also can be treated as an

additional probe to break the degeneracy between various

models of inflation from the perspective of implementing

cosmological perturbation theory in (quasi) de Sitter back-

ground. We know that in usual set up of primordial cosmo-

logical perturbation such heavy fields are not appearing in

the low energy effective field theory action. For that case in

the simplest situation we actually start with an one field set

up where the kinetic term is canonical in nature and the field

is minimally coupled with the background gravity which is

treated to be classical usually. Also such field has an effec-

tive structure of the interaction potential which play crucial

role to study the time dynamics in FLRW cosmological back-

ground. Here specifically the field is treated to be massless

compared to the Hubble scale (m ≪ H ). However, this is

not the complete story yet. To explain this let us start with a

Ultra Violet (UV) complete set up of quantum field theory

(QFT) such as string theory in higher dimensions. There are
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various examples of string theory from which one can start

the computation, which are - Type II A, Type II B, Heterotic,

M - theory etc. Also the low energy extension of such theo-

ries (supergravity) are also useful for the computation in the

context of cosmology. Here it is important to note such all

such theories contain massive (m ≫ H ), intermediate mass

(m ≈ H ) and massless (m ≪ H ) fields in the matter multi-

plet. To write down an effective field theory (EFT) one need

to integrate out all such heavy degrees of freedom from the

UV complete version of the action.4 After doing dimensional

4 Important notes:

Here we note the following points which are very useful to study the

consequences from EFT set up:

1. In this context, one can construct an EFT by utilizing the under-

lying symmetries appearing in the field theoretic set up. In such

a generalized description where EFT is constructed by following

the top down approach, we really don’t care about the exact UV

completion of the parent theory i.e. detailed quantum field theory

origin at high energy scale of such effective constructions are not

important in this case. See Refs. [4,24] for more technical details.

2. In a more generalized prescription of EFT one can construct the set

up which requires to correctly account for all relevant self interac-

tions of adiabatic modes around and after the cosmological horizon

crossing. Specifically the adiabatic mode contains all types of EFT

relevant operators, including transient reductions in the effective

sound speed cS each time the background field undertakes non-

geodesic motion in background target space. In an EFT framework

with single field setting, where heavy directions are such that the

mass of the field under consideration is heavy compared to the

Hubble scale i.e. m ≫ H , one gets transient drops in the effective

sound speed cS during slow roll if the potential is such that the

field traverses a bend even if the parent theory consists of canoni-

cally normalized scalar fields. So for general consideration one can

allow many more possibilities without following any restriction to

time dependent mass profile. However, these three specific types of

time dependent mass profiles are very popular in the context of the

study of quantum critical quench in a analytical fashion. We have

considered these profiles particularly as our future objective is to

apply the idea of quantum quench in the context of De Sitter space

to quantify randomness during reheating phase. It is important to

note that, using a simple field redefinition at the level of quantum

fluctuation to the Mukhanov–Sasaki variable which results in a

time dependent mass for the rescaled variable appearing with addi-

tional contributions of the mathematical form, ċS/cS ∼ SH . Here

S = ċS/HcS is the associated slow roll parameter with the effective

time dependent sound speed cS and H is the Hubble parameter and

it is associated with the changes in the radius of curvature of the

inflaton trajectory. In this case the effective sound speed is given

by, c−2
S ≡ 1 + 4φ̇2/κ2 M2, where κ is the radius of curvature of

the background inflaton (φ) trajectory and M is the effective cut-off

scale of the EFT at high energy (UV) regime. Equivalently, it refers

to the degree to which effective sound speed cS is reduced, which

actually quantify the distance from the adiabatic minimum of the

potential in the background inflaton trajectory is forced by its evo-

lution. Each of these possibilities has different applications in the

low energy limiting region of EFT. When the effective sound speed

cS ≪ 1 and ċS ∼ 0 is fixed over few e-folds of expansion then it is

extremely difficult to maintain a meaningful derivative expansion

without considering other types of special symmetries appearing in

the set up. However, as mentioned earlier, within certain limits one

can consider an adiabatic region where the effective sound speed

cS ≪ 1 and ċS ∼ cS H and S = ċS/HcS ∼ 1 is fixed over a

reduction along with applying various compactification tech-

niques one can derive various types of UV complete effective

field theories at cosmological scale where the effective cou-

plings of various relevant and irrelevant Wilsonian operators

have time dependent profile in FLRW background and in

such a case from the relevant quadratic operator one can also

get the time dependent effective mass which is in general

heavy (m ≥ H ). It is further important to mention here that,

such heavy fields can give rise to non vanishing one point

function for scalar (curvature) perturbation in cosmology,

which carries the signature of Bell’s inequality violation in

primordial universe [46,61–66]. Also it is important to note

that such Bell violating set up can be explained using the

theory of quantum entanglement in (quasi) de Sitter back-

ground and can give rise to non-vanishing quantum infor-

mation theoretic measure i.e. Von Neumann entropy, Rényi

entropy, quantum discord, logarithmic entangled negativity

[67–70] etc. Additionally, one can get correct expression for

two point function and also the three point function from

scalar (curvature) perturbation, which will show significant

effect in estimating primordial non-Gaussianity from single

field models of inflation. Apart from this one can consider a

simplest situation in four space-time dimensions where the

cosmological dynamics is explained in terms of two interact-

ing scalar fields. The light field (m ≪ H ) is participating in

inflation and the other heavy field (m ≫ H ) is participating

to explain the dynamics of reheating. If we path integrate

out the reheating degrees of freedom then we get an effec-

tive field theory of inflation which is exactly same as we

have explained earlier. But here one can consider the other

possibility as well in which one can path integrate out the

light inflaton degrees of freedom and write down an effec-

Footnote 4 continued

very small e-fold of expansion and this in turn generate all possible

consistent transient strong coupling parameters without violating

perturbative uniterity and these terms are explicitly appearing in the

derivative expansion in the EFT. Consequently, the nature of these

two types of features in the effective sound speed cS give rise to

distinctive contributions to the physical observables studied in the

EFT set up. The positive detection of these physical observables

in different experiments allow to extract the underlying non-trivial

physics from the EFT set up. In the technical ground the adiabatic

mode is identified with the Goldstone boson, which is appearing due

to spontaneously broken time translational symmetry prior to the

path integration of the heavy fields. In this context, the invariance

of the parent theory completely fixes the entire non-perturbative

structure of all possible Wilsonian EFT operators and the associ-

ated coupling parameters can be expressed entirely by the effective

sound speed cS of adiabatic perturbations, where the adiabaticity

conditions cS ≪ 1 and ċS ∼ cS H are respected. In principle, cS

can be computed in terms of the parameters of the parent theory.

Thus the additional contributions appearing in the adiabatic limit

cS ≪ 1 and ċS ∼ cS H directly justifies the validity of our treat-

ment in this paper. For further technical details of this EFT set up

see Refs. [71–73].

.
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tive field theory to describe reheating in terms of the heavy

fields (m ≥ H ). In such a description this reheating field

have mass and in the effective field theory description one

can write down some time dependent coupling in terms of

the integrated inflaton degrees of freedom and the mass of

the reheating field appearing in the coefficient of the relevant

quadratic operator. In this description such time dependent

coupling is treated to be the time dependent effective mass

parameter profile which is considered in the present discus-

sion. So it is evident from this discussion that using both the

effective field theory of inflation and reheating one can actu-

ally explain the origin of such time dependent effective mass

profiles in four dimensions. However, in this paper since our

objective is to study the cosmological particle production

phenomena, we will mostly focus on the reheating epoch of

the universe.

The dynamics of this fluctuating scalar field5 in FLRW

cosmological background with a time-dependent coupling

obeys the following Klein–Gordon equation6:

[
d2

dτ 2
+
(

k2 + m2(τ )
)]

φk(τ ) = 0, (2.1)

where m2(τ ) is the time dependent mass of the scalar field

with which is originating from the effective field theory

(EFT) of massless scalar field coupled with other heavy

degrees of freedom by following the two possibilities:

1. In EFT time dependent couplings are appearing after

path integrating out the massive degrees of freedom. This

prescription is usually used to construct a most generic

EFT of inflation.

2. In EFT time dependent couplings are appearing after path

integrating out the massless degrees of freedom. This

prescription is usually used to construct a most generic

EFT of reheating.

Here φk(τ ) is the associated Fourier mode of the fluctuating

scalar field with momentum k, where it plays the role of wave

number in the present context.

5 Here it is important to note that, for inflation this scalar field is actually

massless and in the effective field theory description one can construct

the time dependent effective mass profile. On the other hand, in the

context of reheating the scalar field is massive and in the effective field

theory description one can construct time dependent effective mass in

terms of the original mass of the reheating field and other degrees of

freedom which are integrated out from the original theory.

6 Here we have assumed that the effective sound speed parameter, cS =
1, which indirectly implies the fact that for background time evolution

we are considering a single scalar field with canonical kinetic term

minimally coupled to the gravity. Effective mass of the scalar field is

m(τ ), which has time dependent profile. However, one can generalize

this prescription for any general non-canonical single field (i.e.P(X, φ)

theory) theoretic framework where the effective sound speed parameter

cS 	= 1.

In this paper, our prime objective is to find a precise equiv-

alence between the dynamics of this scalar field resulting in

stochastic particle production in cosmological events during

reheating and the similarity with the dynamics of the elec-

tron transport in conduction wires. To establish this equiva-

lence we start with the fact that the above mentioned Klein–

Gordon equation for the fluctuating scalar field in (quasi) de

Sitter background shows a striking similarity with the time-

independent one dimensional Schrödinger equation appear-

ing in the context of quantum mechanical system which

describes the space evolution of electron inside a wire in

presence of impurity as given by:

[
d2

dx2
+ E − V (x)

]
ψ(x) = 0, (2.2)

where, V (x) corresponds to the time-dependent potential

which is appearing as an outcome of impurity in the electrical

wire and plays the similar role of negative of the square of

time-dependent mass profile as appearing in the context of

cosmology i.e. −m2(τ ). Also E represents the energy eigen

value which mimics the role of the wave number squared

i.e. k2. Finally, ψ(x) represents the wave function of the

quantum mechanical system under consideration which is

similar to the Fourier modes of the time dependent fluctuat-

ing scalar field in the context of cosmology i.e. φk(τ ). The

above set up can be re-expressed in terms of solving a transfer

matrix problem since the scatterers can be thought as poten-

tial profiles in Schrödinger problem in quantum mechanics

with the incoming and outgoing modes of the scalar field

related to each other with the Bogoliubov coefficients. A

complete overview of the connection between the variables

that quantify the scattering problem in the context of quantum

mechanics to the one in the cosmological particle production

problem has been shown in Table 1.

It is very well known fact that the conductance of the

electrical wire is related to the transmission probability of

electrons across the wire and this can be obtained by explic-

itly solving the time-independent Schrödinger equation (see

Eq. (2.3)) in the presence of the impurities. Before going

to the further details of the computation here we begin by

reviewing the scattering problem by a single impurity local-

ized at the position x = x j . To the left (L) and the right (R)

of the impurity potential, the wave-function can be written as

a linear combination of right-propagating waves (exp (ikx))

and the left-propagating waves (exp (−ikx)) as:

ψ	(x) = β	 exp (ikx) + α	 exp (−ikx)

where 	 = L , R. (2.3)

This is essentially a scattering problem in the context of

quantum mechanics in which the impurities act as interac-

tion potentials or scatterers across which the electrons get

transmitted within the conduction wire. The map between
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Table 1 A brief overview of the

connection between the

scattering problem in quantum

mechanics to that of

cosmological particle creation

events

Scattering in conduction wire Cosmological particle creation

Symbol Physical interpretation Symbol Physical interpretation

x Distance τ Conformal time

V(x) Potential −m2(τ ) Time dependent mass parameter

�(x) Wave function φk(τ ) Mode function in Fourier space

Ns No. of scatterers Ns No. of non-adiabatic events

	x Distance between scatterers 	τ Time between non-adiabatic events

ξ Localization length μk Mean particle production rate

ρ(x) Resistance nk(τ ) Particle occupation number

E Energy eigen value k2 Wave number of Fourier modes

Nc Number of channels N f Number of fields

the Bogoliubov coefficients (βR, αR) from the right (R) side

and the Bogoliubov coefficients (βL , αL) from the left (L)

side can be expressed in terms of the following Bogoliubov

transformation equation as:

BR = M j BL , (2.4)

where we define:

B	 =
(

β	

α	

)
where 	 = L , R, (2.5)

and in this context the transfer matrix for the j-th scatterer

M j is given by the following expression:

M j =

⎛
⎜⎜⎜⎝

1
t∗j

−r∗
j

t∗j
−r j

t j

1
t j

⎞
⎟⎟⎟⎠ , (2.6)

which is essentially an unitary matrix related the incom-

ing and the outgoing wave functions and their normalization

coefficients.

Ultimately, using this methodology our objective is to con-

nect several impurities together. This is particularly very easy

to describe in terms of the transfer matrix approach, since the

total transfer matrix across Ns number of scatterers is simply

given by the simple matrix multiplication of the individual

transfer matrices as given by the following expression:

M ≡ M(Ns) =
Ns∏

j=1

M j

= MNs ⊗ MNs−1 ⊗ · · · ⊗ M3 ⊗ M2 ⊗ M1. (2.7)

For our choice of convenience of symbols we will drop the

term Ns for the Ns number of scatterers and hence we will

be considering this to be equal to M. In Fig. 3 we show the

electron(wave) encounter a potential(impurity or scatterer).It

transmit and reflect through it. From similarity of Klein–

Gordon equation and the time-independent one dimensional

Schrödinger equation we calculate R and T for particle pro-

duction event. Further, let us consider the simplest possibility

Fig. 3 This diagram shows that incoming wave of electron encounter

a scatterer and it partially passes through it with T (transmission prob-

ability) and partially reflected back with R (reflection probability)

of having two (Ns = 2) scatterers across which the transmis-

sion probability can be written as:

T = T1T2

|1 −
√

R1 R2eiθ |2
, (2.8)

where the transmission and reflection coefficients for the j-th

scatterer can be expressed as:

T j = t∗j t j , R j = r∗
j r j ∀ j = 1, 2, (2.9)

and additionally eiθ is the overall phase factor which

describes the shift in phase between the reflecting waves

across the scatterers due to the presence of impurities. If

the distance between the two impurities is random in nature

and uniformly distributed over a region with the assumption,

k	x ≫ 1 (where 	x = x2 − x1 is the distance between the

scatterers), then the phase θ is also uniformly distributed over

the interval 0 < θ < 2π . Using this fact explicitly we take

logarithm on both sides of the above equation and further
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doing average over the phase within the interval 0 < θ < 2π

we finally get7:

〈log T 〉θ = log T1 + log T2 + 2〈log |1 −
√

R1 R2eiθ |〉θ︸ ︷︷ ︸
=0

= log

⎛
⎝

2∏

j=1

T j

⎞
⎠ =

2∑

j=1

log T j . (2.11)

The phase-averaged logarithm of the total transmission prob-

ability across Ns number of scatterers then further simply can

be written as:

〈log T 〉θ = log

⎛
⎝

Ns∏

j=1

T j

⎞
⎠ =

Ns∑

j=1

log T j = −Nsγ, (2.12)

where γ is known as the Lyapunov exponent, which is defined

as:

γ = −N−1
s

Ns∑

j=1

log T j = −N−1
s log

⎛
⎝

Ns∏

j=1

T j

⎞
⎠

= −N−1
s 〈log T 〉θ . (2.13)

This actually determines the rise of chaos in the system.

Using this information the typical transmission probability

is defined as:

Tt yp ≡ exp (〈log T 〉θ ) =
Ns∏

j=1

T j = exp (−Nsγ )

= exp(L/ξ), (2.14)

which corresponds to the most probable transmission proba-

bility in the ensemble of random potentials. Also it is impor-

tant to note that,

L ≡ Ns	x = Ns(xNs − x1), (2.15)

represents the total length of the conduction wire. Here the

localization length is defined as:

ξ ≡ 	x

γ
= −L

⎛
⎝

Ns∑

j=1

log T j

⎞
⎠

−1

= −L

⎛
⎝log

⎛
⎝

Ns∏

j=1

T j

⎞
⎠
⎞
⎠

−1

= −L (〈log T 〉θ )−1 . (2.16)

In one spacial dimension, the localization length is of the

same order as the transport mean free path as pointed in

Refs. [74,75]. If the mean distance between scatterers, 	x ,

7 Following this discussion, one can generalize this statement for Ns

number of scatterers as:

〈log T 〉θ = log

⎛
⎝

Ns∏

j=1

T j

⎞
⎠ =

Ns∑

j=1

log T j . (2.10)

and the average logarithm of the transmission probability per

scattering, γ , are fixed, then the total transmission probability

decays exponentially with the length L of the conduction

wire.8 This is commonly known as Anderson localization

[76].

Naturally, it is well known that the resistance of the con-

duction wire scales inversely with the total transmission prob-

ability. At zero temperature, all one-dimensional conduction

wire are therefore can be treated as an insulator, which is

independent of the strength of the impurities appearing in

the wire. However, the mathematical structure of the total

transmission probability T is preserved for Ns number of

such scatterers and this can be shown as:

M =

⎛
⎜⎜⎜⎝

1
t∗Ns

−r∗
Ns

t∗Ns

−rNs

tNs

1
tNs

⎞
⎟⎟⎟⎠⊗ · · · ⊗

⎛
⎜⎜⎝

1
t∗3

−r∗
3

t∗3
−r3

t3

1
t3

⎞
⎟⎟⎠

⊗

⎛
⎜⎝

1
t∗
2

−r∗
2

t∗
2

−r2
t2

1
t2

⎞
⎟⎠⊗

⎛
⎜⎝

1
t∗
1

−r∗
1

t∗
1

−r1
t1

1
t1

⎞
⎟⎠ . (2.17)

For a one-dimensional non relativistic electron in con-

duction wire under the influence of certain potential V (x)

evolution of the wave function ψ(x, t) is given by:

[
d2

dx2
+ E − V (x)

]
ψ(x) = 0, (2.18)

with the Hamiltonian for this particle is given by:

H = p2

2m
+ V (x). (2.19)

If we consider the particle is initially prepared in presence

of potential V (x) wave-packet take the specific form of

ψ(x, t). The final stationary density distribution |ψ(x, t)|2 at

long time carries important information both in their average

and fluctuations. The quantum mechanical wave can tunnel

through potential hills and reflect for by small fluctuations.

So the initial wave packet split on each potential fluctuations

into a transmitted and a reflected part. After huge number

of scattering instances this reduce to a random walk prob-

lem and on average the motion at long times will have the

diffusion constant in it. This is exactly the case of electron

is propagating in a conduction wire. At long times average

dynamics [77] of the wave packet freeze and it takes the shape

as given by the equation

|ψ(z, t)|2 ∝ exp

(
−|z|

ξ

)
. (2.20)

Here, ξ is the localization length as discussed in Eq. 2.16. An

electron in random potential is normally studied using statis-

8 Equivalently, here one can say that it exponentially decays with the

number of scatterers.
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tical ensemble of random one-electron matrix Hamiltonians.

Using Tight Binding approximation in orthogonalized lattice-

site basis representation. The diagonal matrix elements are

chosen from a flat probability distribution of width W,the

strength of disorder. The off-diagonal hopping matrix ele-

ments for every pair of nearest-neighbour sites and repre-

sented by 2 × 2 matrix where potential take the form,

V = t0 · I + iμt · σ = t0 · I + iμ(t x · σx + t y · σy + t z · σz)

(2.21)

where, I, σx , σy, σz are identity and Pauli spin matrices

forming the complete basis set. Here μ is the random

spin-orbit coupling strength, t x , t y, t z are independent ran-

dom variables taken from uniform distribution on interval

[−1/2, 1/2]. The metal-insulator transformation occur at

specific values. Below that mobility edges appear in band

separating localised states near edges from extended states

near band center.

The tight-binding random matrix ensembles (TBME)

classified scheme is possible on symmetry. Orthogonal

Ensemble in random potential. Localisation and mobility

occur in all 3-D tight-binding ensembles and in 2-D for sym-

plectic and unitary classes. From this distinction one found

striking similarities with symmetry classification of Gaussian

random matrix ensemble. The Gaussian ensemble belongs to

high dimensionality limit of TBME and always metallic. So

the metallic phase is well approximated by Gaussian ran-

dom matrix theory. From our discussion on RMT we use the

Nearest Neighbour Spacing Distribution function [P(ω) see

Eq. 5.1] and measure it in units of mean level spacing 	.

Around the mobility edge and intermediate law from P(ω)

can be obtained. Anderson localization in this context mimics

quantum chaotic transition. The fluctuations for the density

of states are partially responsible for the conductance fluc-

tuations. Although average density of states is insensitive to

Anderson transition its higher order moments are sensitive to

it. On an other approach we can relate Anderson localization

to RMT using Lyapunov Exponents. Equations 2.13 and 2.16

relates Anderson localization to Lyapunov exponents. Now

statistical property of the Lyapunov spectrum with large num-

ber of degrees of freedom can be described universally by

RMT [78]. As described in [78], the spectrum of Lyapunov

exponents is well approximated by the following expression:

ρ(λ, t) = 3

4λ
3
2
max

√
λmax − |λ|. (2.22)

Here λmax is the time independent parameter which approxi-

mately equals to bound of Lyapunov exponent. This equation

shows striking similarity with Wigner law (Eq. 5.146). In this

approach we can also show the connection between Ander-

son localization and RMT. But there is a striking difference

too. Random matrix theory takes all its entries from Gaus-

sian random variables but for electronic models [Scattering

matrix theory] matrix ensemble have short-ranged and sparse

random matrix with most of the matrix elements having main

diagonal non-zero.

3 Randomness from conduction wire to cosmology:

dynamical study with time dependent protocols

In this section, our objective is to explain the various fea-

tures from the time dependent effective mass profiles which

are related to the quantum mechanical scattering problem

in conduction wire as mentioned earlier. These features are

appended bellow:

1. Lyapunov exponent: It actually quantify the amount of

chaos appearing in the quantum mechanical systems that

we are studying in the context of early universe cosmol-

ogy. In our discussion it tells us the degree of random-

ness in the stochastic particle production. In our case,

the chaos emerges due to the random scattering events

which are non adiabatic and we call these as cosmolog-

ical scattering events leading to particle production. In

this section, we discuss about Lyapunov exponent and try

to discuss their behaviour for the different time depen-

dent mass profiles. In thus context, Lyapunov exponent

is defined as [42,79]:

λ = −log T, (3.1)

where, T is the transmission coefficient given by the fol-

lowing expression:

T = t∗t = |t |2, (3.2)

with t and t∗ being the transmission amplitude of the

incoming and the outgoing wave. In the present discus-

sion, the transmission coefficient can be expressed as:

T = |t |2 = 1

|α|2 , (3.3)

where β and α are the Bogoliubov coefficients. Also, it

is important to note that, in the present context one can

define the reflection coefficient as:

R = r̃∗r̃ = |r̃ |2 = |β|2
|α|2 , (3.4)

where r̃ and r̃∗ being the reflection amplitude of

the incoming and the outgoing wave. Finally from

Eqs. (6.176) and (3.4), we get the following conserva-

tion equation:
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R + T = |r̃ |2 + |t |2 = 1 + |β|2
|α|2 = 1, (3.5)

where we have used the following normalization condi-

tion for the Bogoliubov coefficients, as given by:

|α|2 − |β|2 = 1. (3.6)

2. Conductance: It quantify the degree of support of the

flow of electron inside an electrical conduction wire. this

is exactly reciprocal of resistance. In the present context,

conductance refers to the ability of the massless scalar

fields to transmit through the massive fields which are

the specific heavy mass profiles that we have discussed

above. This may be more suggestive in telling us about

the interaction of the massless scalar field with the mas-

sive fields. More value of conductance refers to the larger

transmitivity of the background fields through the scat-

terers and vice-versa. Thus, conductance also carries a

valuable information about the transmission coefficient

of the scalar field interacting with the scatterer. In this

context, the conductance can be expressed as:

G = exp (−2λ) = T 2 = |t |4 = 1

|α|4 , (3.7)

where λ is the Lyapunov exponent, T is the transmis-

sion coefficient, |t | is the transmission amplitude of the

incoming/outgoing wave and β, α are the Bogoliubov

coefficients as mentioned above.

3. Resistance: It quantify the degree of oppose of the flow

of electrons inside an electrical conduction wire. It is

the property by the virtue of which the scatterers (which

are the time dependent mass profiles in our case) resist

the massless scalar field to tunnel through them. In other

words, it is the same Schrödinger formulation in quan-

tum mechanics where the incoming wave interacts with a

potential barrier and the strength of the barrier is the mea-

surement of resistance to the tunneling of the incoming

particle through it. This means that more the resistance to

the incoming wave, more is the lower is the transmission

probability across the barrier. Resistance is defined as the

reciprocal of conductance G(k), which gives:

r(k) = 1

G(k)
= exp (2λ) = 1

T 2
= 1

|t |4 = |α|4. (3.8)

We will discuss details of these features for three different

mass profiles as mentioned in Eq. (1.4). All of these mass

profiles that we choose here mimics the role of scatterers

inside the conduction wire. Such scatterers provide the way

for scattering events to occur resulting in random particle

production in cosmological space-time.

To study the cosmological particle creation problem dur-

ing early epoch of universe (specifically during reheating)

we use the analogy with the quantum mechanical scattering

problem inside an electrical conduction wire in presence of

time dependent effective mass profile we will perform the

computation in (quasi) de Sitter space using FLRW spatially

flat metric.

Here we consider a massive free scalar field with time-

dependent mass9:

S = −1

2

∫
d4x

√
−g(gμν∂μχ ∂νχ − m2(τ )χ2)

= 1

2

∫
d3x dτ a2(τ )

[(
∂χ(x, τ )

∂τ

)2

−a2(τ )
{
(∇χ(x, τ ))2 + m2(τ )(χ(x, τ ))2

}]

= 1

2

∫
d3k

(2π)3
dτ a2(τ )

×
[∣∣∣∣

dχk(τ )

dτ

∣∣∣∣
2

− a2(τ )(k2 + m2(τ ))|χk(τ )|2
]

, (3.9)

where the scalar field satisfies the following constraint:

χ(−k, τ ) = χ∗(k, τ ), (3.10)

and the Fourier transform of the field is defined as:

χ(x, τ ) =
∫

d3k

(2π)3
χk(τ ) eik.x. (3.11)

Also in the (quasi) de Sitter background the scale factor a(τ )

can be expressed in terms of conformal time as10:

a(τ ) =
{

− 1
Hτ

, De Sitter

− 1
Hτ

(1 + ǫ) , Quasi De Sitter
, (3.13)

where ǫ is the slow-roll parameter in quasi de Sitter space,

which is defined as:

ǫ = − 1

H2

d H

dt
= − 1

a(τ )H2

d H

dτ
≈ ǭ

a(τ )
= −H ǭτ. (3.14)

Here, we define a new slow-roll parameter with respect to

the conformal time:

ǭ = − 1

H2

d H

dτ
. (3.15)

9 Here it is important to note that our approach is similar to that of used

in Refs. [58,80] to explain the time dynamics of quantum quench.

10 In de Sitter and quasi de Sitter space one can compute the relation

between the conformal time (τ ) and the physical time (t) as given by

the following expressions:

τ =
∫

dt

a
=

⎧
⎨
⎩

− 1
Ha

= − 1
H

exp(−Ht) , De Sitter

− 1
Ha

(1 + ǫ) = − 1
H

(1 + ǫ) exp(−Ht) , Quasi De Sitter

,

(3.12)
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Now we use the following field redefinition in Fourier space:

φk(τ ) ≡ a(τ ) χk(τ ). (3.16)

Consequently, the scalar field action as stated in Eq. (3.17)

can be recast in terms of the newly defined field φk(τ ) as:

S = 1

2

∫
d3k

(2π)3
dτ

(∣∣∣∣
dφk(τ )

dτ
− 1

a(τ )

da(τ )

dτ
φk(τ )

∣∣∣∣
2

− (k2 + m2(τ ))|φk(τ )|2
)

. (3.17)

Further, varying the above action with respect to the redefined

field φ∗
k (τ ) we get the following equation of motion:

[
d2

dτ 2
+ 1

a(τ )

da(τ )

dτ

d

dτ

+
(

k2 + m2(τ ) −
(

1

a(τ )

da(τ )

dτ

)2
)]

×φk(τ ) = 0. (3.18)

Further, Eq. (3.18) can be simplified for de Sitter and quasi

de Sitter space as:

De Sitter:
[

d2

dτ 2
− 1

τ

d

dτ
+
(

k2 + m2(τ ) − 1

τ 2

)]
φk(τ ) = 0.

(3.19)

Quasi De Sitter:
[

d2

dτ 2
− 1

τ

(
1 − 2ǫ2

1 + ǫ

)
d

dτ

+
(

k2 + m2(τ ) − 1

τ 2

(
1 − 2ǫ2

1 + ǫ

)2
)]

φk(τ ) = 0.

(3.20)

It is important to note that, the main contribution to parti-

cle production is originating from the excitations of the field

with k/a ≫ m ≫ H , at the stage of oscillations. Therefore,

in the first approximation we can neglect the expansion of

the Universe, taking the scale factor a(τ ) as a constant dur-

ing reheating. We call it reheating approximation11 Con-

11 Important note: In the present context, the analysis is perfectly

valid for the highly localized particle production events after neglect-

ing the cosmological expansion during reheating approximation. But

this approximation fail for the events that are sufficiently spaced out. If

we don’t neglect the cosmological expansion in this computation then

the conformal time dependent mass term of the form 2τ 2 is restored

from the background cosmological background. This actually implies

that the scattering problem is being performed on a conformal time

dependent potential of the form 1/r2 (inverse square), which makes

the analytic computations of the Bogoliubov coefficients and all the

other derived physical quantities to quantify quantum randomness from

the present set up extremely difficult. Here it is important to note

Fig. 4 This diagram shows that ground state fluctuations from the past

can in future be amplified which can be measured by the coefficient α

whereas particle excitation from ground state can be measured by β

sequently, one can approximately write Eq. (3.18) in the fol-

lowing simplified form12:
[

d2

dτ 2
+
(

k2 + m2(τ )
)]

φk(τ ) = 0. (3.22)

The Fourier modes of the scalar field follow the equation of

motion in as stated in Eq. 3.22, with every Fourier mode sat-

isfying the Schrödinger equation where −m2(τ ) playing the

role of a potential. In Fig. 4 the particle produced show fluctu-

ation from ground state and from calculating the Bogoliubov

coefficients we predicted all its properties. For the solution

we refer to Ref. [36], for the field φk(τ ) can be expressed in

two distinctive ways, as given by:

φk(τ ) = ain(k)uin(k, τ ) + a
†
in(−k)u∗

in(−k, τ )

= aout (k)uout (k, τ ) + a
†
out (−k)u∗

out (−k, τ ), (3.23)

where uin,in(k, τ ) and uin,out (k, τ ) are the ‘ingoing’ and

‘outgoing’ wave-functions. Also, the in- and out- oscillators

are related to each other through the Bogoliubov coefficients

α(k) and β(k)

ain(k) = α∗(k)aout (k) − β∗(k)a
†
out (−k),

Footnote 11 continued

that, for long wavelength cosmological observables particle production

appears more than an e-fold apart and consequently the corrections

appearing due to the cosmological expansion seem certainly relevant in

the computation as the incoming and outgoing wave functions depart

from plane waves. Although for localized particle production events,

the reheating approximation considered in this paper perfectly holds

good. In the present context this approximation breaks when we con-

sider the particle production events for a sustained period of time or

may be separated by times approaching an e-fold expansion.

12 Here it is important to note that, since the scale factor a(τ ) is approx-

imately a constant during reheating (reheating approximation), then

conformal time (τ ) and the physical time (t) is related through the fol-

lowing coordinate rescaling transformation:

τ =
∫

dt

a
= t

a
. (3.21)
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aout (k) = α(k)ain(k) + β∗(k)a
†
in(−k). (3.24)

Now, we calculate the various electrical properties and also

the expression for the Lyapunov exponent to quantify quan-

tum chaos for the various time dependent effective mass pro-

files which are equivalent to the impurity potential term in the

time Independent Schrödinger Equation describing a scatter-

ing problem inside a conduction wire.

3.1 Protocol I: m2(τ ) = m2
0(1 − tanh(ρτ))/2

Here we start with the following mass profile:

m2(τ ) = m2
0(1 − tanh(ρτ))/2. (3.25)

The corresponding Schrödinger problem for this potential

function can be solved by using the potential function as

given bellow:

V (τ ) = −m2(τ ) = −m2
0(1 − tanh(ρτ))/2. (3.26)

In Fig. 5a, b, we have explicitly shown the conformal time

dependent behaviour of the mass profile under considera-

tion and also the corresponding potential used in Schrödinger

scattering problem.

We can find the following explicit solutions for uin(k, t)

and uout (k, t), as given by:

uin(k, τ ) = e−iωinτ

√
2ωin

2 F1

×
(

iω−
ρ

,− iω+
ρ

; 1 − iωin

ρ
;−e2ρτ

)
, (3.27)

uout (k, τ ) = e−iωout τ

√
2ωout

2 F1

×
(

iω−
ρ

,
iω+
ρ

; iωout

ρ
+ 1;−e−2ρτ

)
, (3.28)

where we define ω±, ωin and ωout in the following:

ωin =
√

k2 + m2
0, ωout = |k|,

ω± = 1

2
(ωout ± ωin). (3.29)

3.1.1 Bogoliubov coefficients

For this specific mass profile the Bogoliubov coefficients can

be expressed as:

α(k) =
√

ωout

ωin

Ŵ
(
− iωout

ρ

)
Ŵ
(

1 − iωin

ρ

)

Ŵ
(
− iω+

2ρ

)
Ŵ
(

1 − iω+
2ρ

) ,

β(k) =
√

ωout

ωin

Ŵ
(

iωout

ρ

)
Ŵ
(

1 − iωin

ρ

)

Ŵ
(

iω−
2ρ

)
Ŵ
(

1 + iω−
2ρ

) . (3.30)

In Fig. 6a, b, we have shown the variation of the Bogoli-

ubov Coefficients with wave number k.
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Fig. 5 Conformal time dependent behaviour of the mass profile I and its corresponding potential used in Schrödinger scattering problem is explicitly

shown here. Here we fix ρ = 1
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Fig. 6 Wave number dependence of the Bogoliubov coefficients from the mass profile I is shown here. Here we fix ρ = 1

3.1.2 Optical properties: reflection and transmission

coefficients

For this specific mass profile the transmission and reflection

coefficients can be expressed as:

T = 1

|α(k)|2 = ωin

ωout

|Ŵ
(
− iω+

2ρ

)
Ŵ
(

1 − iω+
2ρ

)
|2

|Ŵ
(
− iωout

ρ

)
Ŵ
(

1 − iωin

ρ

)
|2

, (3.31)

R = |β(k)|2
|α(k)|2 =

|Ŵ
(

iωout

ρ

)
|2

|Ŵ
(
− iωout

ρ

)
|2

×
|Ŵ
(
− iω+

2ρ

)
Ŵ
(

1 − iω+
2ρ

)
|2

|Ŵ
(

iω−
2ρ

)
Ŵ
(

1 + iω−
2ρ

)
|2

. (3.32)

In Fig. 7a, b, we have shown the variation of the transmis-

sion and reflection coefficients with wave number k.

3.1.3 Chaotic property: Lyapunov exponent

For this specific mass profile the Lyapunov exponent can be

expressed as:

λ(k) = − log T = 2 log |α(k)|

= 2 log

∣∣∣∣∣∣

√
ωout

ωin

Ŵ
(
− iωout

ρ

)
Ŵ
(

1 − iωin

ρ

)

Ŵ
(
− iω+

2ρ

)
Ŵ
(

1 − iω+
2ρ

)

∣∣∣∣∣∣
. (3.33)

In Fig. 8, we observe that with increase in wave num-

ber k the Lyapunov exponent decreases. This shows that

the Lyapunov exponent is dependent on the momenta val-

ues of the fields interacting with the massive field acting as

a scatterer. Furthermore, we discover that for the mass pro-

file I, the chaos in the event reduces with increase in the

wave number. This suggests that lesser the number of fields

interacting with the massive field more is the chaos in the

quantum system considered in this paper. Since, a negative

value of Lyapunov Exponent pulls a system out of chaos,

this further tells us that the Lyapunov exponent is inversely

related to the number of background fields interacting with

the scatterer or the massive field. This may be interpreted

in the following way in the context of Schrödinger problem

in quantum mechanics that a higher value of wave number

k of the incoming wave would be able to cross a potential

barrier of a given strength and would be able to get transmit-

ted through the barrier and the pulse won’t damp easily than

that of a wave with lower k value. This means that the scat-

terer acts as a definitive medium which allows only certain

wave numbers to pass through thus reducing the chaos in the

system.

3.1.4 Conduction properties: conductance and resistance

For the given mass profile the expression for conductance

and resistance can be expressed as:

G(k) = exp(−2λ(k))

= 2 log

∣∣∣∣∣∣

√
ωin

ωout

Ŵ
(
− iω+

2ρ

)
Ŵ
(

1 − iω+
2ρ

)

Ŵ
(
− iωout

ρ

)
Ŵ
(

1 − iωin

ρ

)

∣∣∣∣∣∣
(3.34)

123



320 Page 16 of 107 Eur. Phys. J. C (2019) 79 :320

m0=1

m0=2

m0=3

0.0 0.1 0.2 0.3 0.4 0.5

0

50

100

150

200

250

k

T
(k

)
Transmission coefficient

(a) T (k) vs k plot.

m0=1

m0=2

m0=3

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

k

R
(k

)

Reflection coefficient

(b) R(k) vs k plot.

Fig. 7 Wave number dependence of transmission and reflection coefficients for the mass profile I is shown here. Here we fix ρ = 1

Fig. 8 Wave number

dependence of Lyapunov

exponent is shown for mass

profile I. Here we fix ρ = 1
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r(k) = exp(2λ(k))

= 2 log

∣∣∣∣∣∣

√
ωout

ωin

Ŵ
(
− iωout

ρ

)
Ŵ
(

1 − iωin

ρ

)

Ŵ
(
− iω+

2ρ

)
Ŵ
(

1 − iω+
2ρ

)

∣∣∣∣∣∣
. (3.35)

In Fig. 9a we have shown the variation of conductance

with wave number k. This figure shows that with increase in

the momenta value of the massless scalar field, the conduc-

tance also increases. Now, accounting for m0 values, we see

that for m0 = 1 the conductance shoots up at a much lower k

value than that of m0 = 2 and m0 = 3. This suggests that for

m0 = 1 the field has a much higher transmission probability

than that of m0 = 2 and m0 = 3. An increase in transmission

probability gives a direct evidence of the conductance value.

Therefore, we conclude that for m0 = 1 the field has more

conductance value in comparison to m0 = 2 and m0 = 3.

We also conclude that larger the momenta value, more is the

transmission coefficient and thereby shoots up the conduc-

tance of the system. This means that an incoming wave with

large momenta value would eventually cross a barrier poten-

tial field thereby increasing the conductance of the system as

the transmission probability would be much higher than an

incoming wave with lower momenta value.
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Fig. 9 Wave number dependence of conductance and resistance for the mass profile I is shown here. Here we fix ρ = 1

In Fig. 9b we have shown the variation of resistance with

wave number. We observe that with an increase in the value

of k the resistance starts decreasing which suggests that with

an increase in momenta value the transmission probability

across the scatterer. This may be viewed in accordance with

the potential barrier in the Schrödinger equation in quantum

mechanics also starts increasing thereby allowing the incom-

ing wave to tunnel through the barrier thereby increasing the

transmission probability and hence,reducing the resistance.

We also observe that with an increase in k value the resis-

tance reduces less rapidly for m0 = 1 than that of m0 = 3

and m0 = 2. Whereas, it reduces more rapidly for m0 = 3

suggesting that higher the value of the constant m0 lower is

the value of resistance offered.

3.2 Protocol II: m2(τ ) = m2
0 sech2(ρτ)

Here we consider the following mass profile:

m2(τ ) = m2
0 sech2(ρτ). (3.36)

The corresponding Schrödinger problem for this potential

function can be solved by using the potential function as

given bellow:

V (τ ) = −m2(τ ) = −m2
0 sech2(ρτ). (3.37)

In Fig. 10a, b, we have explicitly shown the conformal time

dependent behaviour of the mass profile under considera-

tion and also the corresponding potential used in Schrödinger

scattering problem.

Now using the coordinate transformation y = e2ρτ [58,

80] one can recast the equation of motion, analogous to the

time independent Schrödinger equation takes the following

form:

φ′′
k (y) +

φ′
k(y)

y
+
(

k2

4ρ2 y
+ m2

0

ρ2(1 + y)2

)
φk(y) = 0.

(3.38)

The solution of this equation is given by:

u(k, τ ) = e−ikτ (1 + e2ρτ )α

×
[

C1 e2ikτ
2 F1

(
α,

ik

ρ
+ α, 1 + ik

ρ
,−e2ρτ

)

+ C2 2 F1

(
α,− ik

ρ
+ α, 1 − ik

ρ
,−e2ρt

)]
,

(3.39)

where we define a parameter α as:

α = 1

2
+ 1

ρ

√
4m2

0 + ρ2. (3.40)

3.2.1 Bogoliubov coefficients

Now we fix C1 = 1 and C2 = 0, which gives the incom-

ing solution uin(k). Further taking the t → +∞ limit and

using Bogoliubov transformation we can express incoming

solution in terms of the outgoing solution as given by:

uin(k) = α(k)uout (k) + β(k)u∗
out (k), (3.41)
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Fig. 10 Conformal time dependent behaviour of the mass profile II and its corresponding potential used in Schrödinger scattering problem is

explicitly shown here. Here we fix ρ = 1

where α(k) and β(k) are the Bogoliubov coefficients, which

are defined as:

α(k) =
Ŵ( ik

ρ
+ 1)Ŵ( ik

ρ
)

Ŵ( ik
ρ

− α + 1)Ŵ( ik
ρ

+ α)
,

β(k) = i sin(πα)cosech

(
πk

ρ

)
. (3.42)

In Fig. 11a, b, we have shown the variation of the Bogoli-

ubov coefficients with wave number k.

3.2.2 Optical properties: reflection and transmission

coefficients

For this specific mass profile the transmission and the reflec-

tion coefficients can be expressed as:

T (K ) = 1

| Ŵ( ik
ρ

+1)Ŵ( ik
ρ

)

Ŵ( ik
ρ

−α+1)Ŵ( ik
ρ

+α)2
|2

,

R(k) =
|i sin(πα)cosech

(
πk
ρ

)
|2

| Ŵ( ik
ρ

+1)Ŵ( ik
ρ

)

Ŵ( ik
ρ

−α+1)Ŵ( ik
ρ

+α)
|2

. (3.43)

In Fig. 12a, b, we have shown the variation of the trans-

mission and reflection coefficients with wave number k.

3.2.3 Chaotic property: Lyapunov exponent

The Lyapunov exponent for this case may be given as:

λ = − log T = 2 log |α(k)|

= 2 log

∣∣∣∣∣
Ŵ( ik

ρ
+ 1)Ŵ( ik

ρ
)

Ŵ( ik
ρ

− α + 1)Ŵ( ik
ρ

+ α)2

∣∣∣∣∣ . (3.44)

In Fig. 13, we have shown the wave number dependence

of Lyapunov exponent. Here we observe that with increase in

k value the Lyapunov exponent decreases. This implies that

the Lyapunov exponent is dependent on the momenta values

of the fields interacting with the massive field acting as a

scatterer. Furthermore, we also discover that for this mass

profile II, the chaos in the event reduces with increase in the

k value.

3.2.4 Conduction properties: conductance and resistance

For this specific mass profile the expression for the conduc-

tance and resistance can be computed as:

G(k) = exp(−2λ(k)) =
∣∣∣∣∣

Ŵ( ik
ρ

+ 1)Ŵ( ik
ρ

)

Ŵ( ik
ρ

− α + 1)Ŵ( ik
ρ

+ α)2

∣∣∣∣∣

4

,

(3.45)

r(k) = exp(2λ(k)) =
∣∣∣∣∣
Ŵ( ik

ρ
− α + 1)Ŵ( ik

ρ
+ α)2

Ŵ( ik
ρ

+ 1)Ŵ( ik
ρ

)

∣∣∣∣∣

4

.

(3.46)
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Fig. 11 Wave number dependence of the Bogoliubov coefficients are shown here for mass profile II. Here we fix ρ = 1
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Fig. 12 Transmission and Reflection Coefficient for mass profile m2(t) = m2
0sech2(ρτ)

In Fig. 14a we have shown the wave number dependence

of conductance. We observe that for m0 = 1 conductance

starts increasing at a larger value of k than that of m0 = 2

and m0 = 3. But, in contrast to the variation of conductance

with momenta k in the above figure, here the conductance

starts increasing rapidly for m0 = 3 than that for m0 = 1

which suggests that the transmission probability for m0 = 3

is much higher than m0 = 1 and m0 = 2, thereby making it

more conductive than the other two.

In Fig. 14b, we have shown the wave number dependence

of resistance. Here like the first mass profile the resistance for

m0 = 3 falls more rapidly than that of m0 = 2 and m0 = 1.

This suggests that for the given mass profile II, as the value

of m0 increases, the value of resistance also decreases. But
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Fig. 13 This shows the

variation of Lyapunov exponent

with momenta values for mass

profiles with m0 = 1, m0 = 2

and m0 = 3
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Fig. 14 Wave number dependence of conductance and resistance for the mass profile II is shown here. Here we fix ρ = 1

unlike the first mass profile, the resistance for m0 = 3 falls

more rapidly suggesting that for m0 = 3 this specific mass

profile offers more resistance than the first one. Therefore,

we conclude that for the same values of m0 this mass profile

offers less resistance in comparison to the first mass profile.

3.3 Protocol III: m2(τ ) = m2
0 �(−τ)

Here we consider the following time dependent mass profile:

m2(τ ) = m2
0 �(−τ). (3.47)

This � function in τ makes the mass profile a quenched one.

The corresponding Schrödinger problem for this potential

function can be solved by using the potential function as given

bellow:

V (τ ) = −m2(τ ) = −m2
0 �(−τ). (3.48)

In Fig. 15a, b, we have explicitly shown the conformal time

dependent behaviour of the mass profile under considera-

tion and also the corresponding potential used in Schrödinger

scattering problem.
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Fig. 15 Conformal time dependent behaviour of the mass profile II and its corresponding potential used in Schrödinger scattering problem is

explicitly shown here

3.3.1 Bogoliubov coefficients

For this specific mass profile the Bogoliubov coefficients can

be expressed as:

α(k) = 1

2

|k| + ωin√
|k|ωin

, β(k) = 1

2

|k| − ωin√
|k|ωin

, (3.49)

with the solution of the incoming and the outgoing waves are

given by the following expressions:

uin(k, t) = e−iωin t

√
2ωin

, uout (k, t) = e−iωout t

√
2ωout

. (3.50)

In Fig. 16a, b, we have shown the variation of the trans-

mission and reflection coefficients with wave number k.

3.3.2 Optical properties: reflection and transmission

coefficients

For this specific mass profile the transmission and the reflec-

tion coefficients can be computed as:

T (k) =
∣∣∣∣
2
√

|k|ωin

|k| + ωin

∣∣∣∣
2

, R(k) =
∣∣∣∣
2
√

|k|ωin

|k| − ωin

∣∣∣∣
2

. (3.51)

In Fig. 17a, b, we have shown the variation of the trans-

mission and reflection coefficients with wave number k.

3.3.3 Chaotic property: Lyapunov exponent

The Lyapunov in this case is written as:

λ = −2 log T = 2 log |α(k)| = 2 log

∣∣∣∣
1

2

|k| + ωin√
|k|ωin

∣∣∣∣ .

(3.52)

From Fig. 18 we observe that with increase in wave num-

ber the Lyapunov exponent decreases more like a rectangular

hyperbolic fashion. In comparison to the other two mass pro-

files where the reduction in the value of the Lyapunov expo-

nent is much less rapid in comparison to this mass profile

discussed here. This suggests that since, the mass profile is a

heavy side theta function, which is a quenched mass protocol,

the Lyapunov exponent also gives a similar like profile. This

shows that the Lyapunov exponent is dependent on the wave

number of the fields interacting with the massive field acting

as a scatterer. Furthermore, we discover that for this given

mass profile, the chaos in the event reduces with increase in

the k value. So, in this case the Lyapunov exponent decays

much rapidly than the first two mass profiles. Next, we will

try to find an upper bound of Lyapunov exponent using the

definition of [81].
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Fig. 16 Wave number dependence of Bogoliubov coefficients for mass profile II is shown here
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Fig. 17 Wave number dependence of the transmission and reflection coefficients for mass profile III is shown here

3.3.4 Conduction properties: conductance and resistance

For this specific mass profile the expression for the conduc-

tance and resistance can be written as:

G(k) = exp(−2λ(k)) =
∣∣∣∣
2
√

|k|ωin

|k| + ωin

∣∣∣∣
4

, (3.53)

r(k) = exp(2λ(k)) =
∣∣∣∣
1

2

|k| + ωin√
|k|ωin

∣∣∣∣
4

. (3.54)

In Fig. 19a, we have shown the wave number dependence

of conductance. This figure shows that with increase in the

wave number of the massless scalar field, the conductance

also increases. Now, accounting for m0 values, we see that

for m0 = 1 the conductance shoots up at a much lower k
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Fig. 18 Variation of Lyapunov

exponent is shown with respect

to the wave number
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Fig. 19 Wave number dependence of conductance and resistance for the mass profile III is shown here

value than that of m0 = 2 and m0 = 3. This suggests that

for m0 = 1 the field has a much higher transmission prob-

ability than that of m0 = 2 and m0 = 3. An increase in

transmission probability gives a direct evidence of the con-

ductance value. Therefore, we conclude that for m0 = 1 the

field has more conductance value in comparison to m0 = 2

and m0 = 3.

In Fig. 19b, unlike the mass profile I the resistance for

m0 = 1 falls more rapidly than that of m0 = 2 and m0 = 3.

This suggest that for the given mass profile, as the value of m0

increases, the value of resistance also increases suggesting

that heavier the field gets lesser is the transmission probabil-

ity of the incoming wave to tunnel through it thereby reducing

the value of conductance for this specific mass profile.
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4 Quantum chaos from out of time ordered correlators

(OTOC)

4.1 Chaos bound in out-of-equilibrium quantum field

theory (OEQFT) and its application to cosmology

We know that in the context of quantum field theory it is possi-

ble to achieve the following universal bound on the Lyapunov

exponent [50]13,14:

Universal chaos bound in OEQFT:

λ ≤ 2πkB T

h̄
= 2π

h̄β
, (4.2)

where kB is the Boltzmann constant and T is the temperature

associated with the dynamical system. This upper bound of

the Lyapunov exponent is treated as the saturation bound of

chaos.15 Our aim is to establish this bound in the context of

cosmology and study its further consequences. This bound

was first proposed in the context of quantum information the-

ory of black hole [82–85]. Additionally it is important that,

the bound on the Lyapunov exponent saturates in the context

of Sachdev–Ye–Kitaev (SYK) model [56,57,86–92], which

describes the quantum features of Majorana fermions in pres-

ence of infinitely long range disorder. Saturation of the Lya-

punov exponent implies that SYK model mimics a quantum

description of black hole via AdS/CFT correspondence. In

the strict classical limit h̄ → 0 the Lyapunov exponent take

any values, which is consistent with the requirement.

13 For this specific discussion only we keep the Planck’s constant h̄ and

the Boltzmann constant kB in our computation. But for the rest of the

paper we fix h̄ = 1 and kB = 1 for which the parameter β can be written

as, β = 1/T . In such a situation chaos bound is given by, λ < 2π/β.

14 In the context of weakly coupled gauge theory one can introduce ’t

Hooft coupling λT which is independent of N and in such a theory the

Lyapunov exponent is given by the following expression:

Lyapunov exponent in gauge theory: (4.1)

λG = λT

β
= λT kB T = h̄λT

2π

2πkB T

h̄
< λ.

15 Considering the bulk contribution weakly coupled with string the-

ory with large radius of curvature one can show that the perturbative

stringy correction to the Einstein gravity computation of the scram-

bling can give rise to the following first order corrected expression for

the Lyapunov exponent []:

Stringy correction: (4.3)

λ = 2π

β

⎡
⎢⎢⎢⎣1 − μ2

2
L2

s + · · ·
︸ ︷︷ ︸

Stringy correction

⎤
⎥⎥⎥⎦ ,

where Ls is the stringy length scale and μ2 is a specific constant which

is appearing in the shock wave equation propagating along the horizon.

To give an explicit derivation of the chaos bound on Lya-

punov exponent in the context of cosmology let us follow the

steps appended below:

1. Let us start with a completely mathematical problem

described by a time dependent function g(τ ), which sat-

isfy the following set of properties:

(a) In the complex plane g(τ + iT ) is analytic in the half

strip described within τ > 0 and −β
4

≤ T ≤ β
4

. In

this context, τ and T represent the real and imaginary

part of the complex number τ + iT after analytical

continuation in complex plane.

(b) The function g(τ ) is completely real at T = 0.

(c) After analytical continuation the function in the com-

plex plane satisfy the following constraint:

|g(τ + iT )| ≤ 1, (4.4)

which is perfectly valid in the complete half strip.

(c) Next, we actually conformally map the entire half strip

to a unit thermal circle in the complex plane, which can

be done using the following Möbius transformation:

Möbius transformation: z = 1 − 	β(τ + iT )

1 + 	β(τ + iT )
,

(4.5)

where 	β(τ + iT ) is the temperature dependent func-

tion in the complex plane, described by the following

expression:

	β(τ + iT ) := sinh

(
2π

β
(τ + iT )

)
. (4.6)

In Fig. 20a, we have shown the behaviour of the amplitude

of the complex number z with respect to the parameters

(τ, T ) in 3D plot. Finally, to check the consistency with

Schwarz–Pick inequality we have plotted the complex

number z at T = 0 in Fig. 20b.

3. Further using Eq. (4.4) one can further say that the com-

plex function g(z) is an analytic function from one to one

conformal map from unit disk to unit disk.

4. A variant of the Schwarz lemma can be represented as a

invariant contribution under analytic automorphisms on

the unit disk, which implies the bijective holomorphic

mappings of the unit disc to itself. This specific variant

is known as the Schwarz–Pick theorem.

5. Now the hyperbolic metric in complex plane is defined

as:

ds2 = 4
dzdz̄

(
1 − |z|2

)2 =
(

2|dz|(
1 − |z|2

)
)2

. (4.7)

123



Eur. Phys. J. C (2019) 79 :320 Page 25 of 107 320

|z| with β = 1.

=1

=10

=100

=1000

=10000

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

1.0

z
(

,T
=

0
)

Time dependence of z at different temperatures (with T=0)

z with β = 1 and T = 0.(a) (b)

Fig. 20 Parametric dependence |z| and z(T = 0) at different temperatures

Further using this metric and applying Schwarz–Pick the-

orem one can write:

Schwarz-Pick inequality:

|dg|(
1 − |g(z)|2

) ≤ ds = 2|dz|(
1 − |z|2

) . (4.8)

6. Further applying the fact that the function g(τ ) is real at

T = 0 and using Eq. (4.8) we get the following simplified

result:

1

1 − g2(τ )

∣∣∣∣
dg(τ )

dτ

∣∣∣∣ ≤
[

1

1 − |z|2

∣∣∣∣
dz

dτ

∣∣∣∣
]

T =0

= π

β
coth

(
2πτ

β

)
. (4.9)

7. Further, rearranging Eq. (4.9) we get the following final

result:

1

(1 − g(τ ))

∣∣∣∣
dg(τ )

dτ

∣∣∣∣

≤ 1

2
(1 + g(τ ))

2π

β
coth

(
2πτ

β

)
, (4.10)

which is the outcome of Schwarz-Pick inequality and

very very useful to prove the universal chaos bound in

OEQFT.

Now it is important to note that in this context,

1

2
(1 + g(τ )) coth

(
2πτ

β

)

≤ 1 + β

2π
O

(
exp

(
−4πτ

β

))
. (4.11)

This further implies that:

1

(1 − g(τ ))

∣∣∣∣
dg(τ )

dτ

∣∣∣∣ ≤ 2π

β
+ O

(
exp

(
−4πτ

β

))
.

(4.12)

Now at very large time scale (τ → ∞) or at very high

temperature (β = 1/T → 0) one can neglect the contri-

bution from the second sub-leading term. As a result we

get the following inequality:

1

(1 − g(τ ))

∣∣∣∣
dg(τ )

dτ

∣∣∣∣ ≤ 2π

β
, (4.13)

8. Further, we take the following phenomenological func-

tion:

g(τ ) = 1 − k exp[h̄λτ ], (4.14)

where k is constant and λ is the Lyapunov exponent. This

function satisfy all the requirements that we have men-
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tioned earlier explicitly. Further substituting this function

in the result obtained in Eq. (4.10) we get the following

simplified result16:

λ ≤ 2π

h̄β
, (4.15)

which proves the Universal chaos bound in OEQFT.

9. This bound on the Lyapunov exponent is an unique fea-

ture of all classes of OEQFT set up. It has a very strong

impact in the context of early universe cosmology, specif-

ically during reheating epoch. By knowing specific time

dependent couplings in the context of effective field the-

ory (EFT) it is possible to give an estimate of Lyapunov

exponent in such OEQFT set up. We will show this fea-

ture in the next section for three known model of interac-

tions appearing in EFT. In such a situation one can give

an estimate of the upper bound on reheating temperature

using this bound, which is again obviously an universal

bound itself. The earlier study in the context of reheat-

ing actually predicts a very crude estimate of reheating

temperature which is based on the assumption that reheat-

ing is extremely model dependent. It actually means that

to write an EFT of reheating we need to know the all

interacting relativistic degrees of freedom in a specific

model. In this framework the total energy density during

reheating can be expressed in terms of total number of

relativistic degrees of freedom by the following expres-

sion:

ρreh = π2

30
g∗(Treh)T

4
reh. (4.16)

Using this expression of energy density during reheating

epoch one can able to express the reheating temperature

as:

Treh =
(

30

π2g∗(Treh)

)1/4

ρ
1/4
reh ≈

(
30

π2g∗(Treh)

)1/4

V
1/4
reh ,

(4.17)

where g∗(Treh) is the effective number of total relativistic

degrees of freedom present in the thermal bath at temper-

ature T = Treh and Vreh is the scale of reheating which

can be obtained by fixing the field value at φ = φreh for

a specific model. Counting all the degrees of freedom

in the particle physics model one can fix g∗(Treh) in the

present context. To find the reheating constraint from the

prescribed set up let us further introduce the number of

e-foldings at the epoch of reheating, which is defined as:

16 Henceforth we set h̄ = 1 for which the bound is translated to λ ≤ 2π
β

,

which we will use for the further application purposes.

Nreh =
∫ te

treh

H dt

= Ntotal − 	̃N ≈ − 1

M2
p

∫ φe

φreh

V (φ)

V ′(φ)
dφ, (4.18)

where Ntotal is the total number of e-foldings which is

defined as:

Ntotal =
∫ te

ti

H dt− 1

M2
p

∫ φe

φi

V (φ)

V ′(φ)
dφ ∼ O(60 − 70)︸ ︷︷ ︸

From Planck observation

.

(4.19)

Here te, ti and treh are the representative time to specify

end of inflation, starting of inflation and time scale at

the end of reheating respectively. Similarly φe and φreh

are the field values at the end of inflation and reheating

respectively, which can be computed for a given known

model of inflation. Also it is important to note that in this

context, 	̃N is defined as:

	̃N = Ntotal − Nreh = 	N − (Nreh − Ncmb)

�⇒ 	N − 	̃N = (Nreh − Ncmb) . (4.20)

Here 	N is defined as:

	N = Ntotal − Ncmb. (4.21)

From different models of inflation one can explicitly

compute e-foldings at horizon exit, which is given by

the following expression:

Ncmb =
∫ te

tcmb

H dt ≈ − 1

M2
p

∫ φe

φcmb

V (φ)

V ′(φ)
dφ

∼ O(8 − 10)︸ ︷︷ ︸
From Planck observation

. (4.22)

Consequently, the value of 	N from observation can be

estimated as:

	N ∼ O(52−60). (4.23)

Now, to give a numerical estimate of the reheating tem-

perature let us consider the following simplest monomial

model:

eV (φ) = V0

(
φ

Mp

)p

, (4.24)

where V0 fix the overall scale of the potential and p is the

degree of the monomial which depends on the character-

istic of the model. For this model the field value during

reheating can be expressed as:

123



Eur. Phys. J. C (2019) 79 :320 Page 27 of 107 320

φreh =

√
2pNreh +

(
φe

Mp

)2

Mp. (4.25)

The reheating scale is quantified in terms of the number

of e-foldings as:

V (φreh) = V0

(
φreh

Mp

)p

= V0

[
2pNreh +

(
φe

Mp

)2
]p/2

.

(4.26)

Consequently, for the monomial model the reheating tem-

perature can be quantified as:

Reheating bound from model:

Treh =
(

30

π2g∗(Treh)

)1/4

V
1/4
0

[
2pNreh +

(
φe

Mp

)2
]p/8

< V
1/4
inf . (4.27)

Here Vinf is the scale of inflation which is quantified by

the following expression:

Upper bound on inflationary scale:

V
1/4
inf ≤ 1.67 × 1016 GeV

(
r(k∗)

0.064

)1/4

. (4.28)

As a result, we get the following bound on the reheating

temperature:

Upper-bound on reheating temperature from inflation:

Treh ≤ 1.67 × 1016 GeV

(
r(k∗)

0.064

)1/4

, (4.29)

which is true for any models of inflation. From the

Planck 2018+BICEP2/Keck Array BK14 data the upper

bound on the tensor-to-scalar ratio (primordial gravita-

tional waves) is restricted to:

r(k∗) < 0.064, (4.30)

where k∗ ∼ 0.05 Mpc−1 is the pivot scale of momentum.

This implies that the upper bound of reheating temper-

ature from the Planck 2018+BICEP2/Keck Array BK14

data is given by:

Treh ≤ 1.67 × 1016 GeV. (4.31)

Here to writing down this expression for reheating tem-

perature it is important to consider the following assump-

tion:

(a) Contribution from the kinetic term of the field which

is mainly responsible for reheating is neglected.

(b) We also assume that reheating is described by scalar

field.

This further implies that depending on the background

particle physics model reheating temperature actually

varies in a wide range and one cannot able to determine

exactly its value as there is no such universal bound avail-

able earlier in this context. This is the main shortcoming

of the phenomenological prediction of reheating temper-

ature in the context of early universe cosmology.

On the other hand, just only considering the dynamical

details of quantum chaos one can express the reheating

temperature in terms of the Lyapunov exponent:

Universal lower-bound‘on reheating temperature:

Treh ≥ λ

2π
, (4.32)

which is an universal lower bound on reheating tempera-

ture in the present context of discussion as it is not involve

any model dependence from the background theory. This

implies that the universal bound on quantum chaos in

OEQFT restrict us to fix an universal model indepen-

dent lower bound on reheating temperature. Combing

the obtained bound in this paper and the upper bound

obtained from inflation one can restrict the reheating

temperature within a specified range. Additionally, the

present analysis helps us put an unique upper bound on

the Lyapunov exponent in terms of the scale of inflation

(or tensor-to-scalar ratio) as:

λ ≤ V
1/4
inf = 1.67 × 1016 GeV

(
r(k∗)

0.064

)1/4

. (4.33)

4.2 Out of time ordered correlators (OTOC) in OEQFT

4.2.1 What is OTOC?

Now it is important to note that the universal bound on

quantum chaos can be achieved by computing the out of

time ordered correlators (OTOC), which in general can be

expressed in terms of commutators. In the study of quan-

tum chaos, specifically in the context of Butterfly effect one

can introduce two time dependent operators W (τ ) and V (τ ′)
from which one can define a commutator, [W (τ ), V (0)],

where the operators are in general Hermitian in nature and

they have introduced with time separation 	τ = τ − τ ′ = τ

with τ ′ = 0. This commutator actually captures the effect

of perturbation by the operator V (0) on the later time mea-

surement on the operator W (τ ) and the converse statement is

also true. The time dependence of the operator W (τ ) in this
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context of discussion can be expressed in the Heisenberg

representation as:

W (τ ) = exp [i Hτ ] W (0) exp [−i Hτ ] . (4.34)

The strength of such chaotic effect is characterised by the

following measure:

Quantum OTOC:

C(τ ) := −〈 [W (τ ), V (0)]2

︸ ︷︷ ︸
Four point quantum operator

〉, (4.35)

where the expectation value is in general the thermal aver-

aged,17 which is defined as:

C(τ ) = −〈[W (τ ), V (0)]2〉

= − 1

Z
Tr {exp(−βH) [W (τ ), V (0)]} . (4.36)

Here Z is the partition function which is defined as:

Z = Tr {exp[−βH ]} , (4.37)

and H is the Hamiltonian of the chaotic system under con-

sideration. Here it is important to note that to construct the

chaotic OTOC measure instead of using the two point opera-

tor, [W (τ ), V (0)] (commutator), here we have actually used

the four point quantum operator, [W (τ ), V (0)]2 (square of

the commutator). The specific reason for such choice is fol-

lowing. To describe this let us first assume that we replace

the commutator bracket by the Poisson bracket by consid-

ering the semi-classical limiting situation. In such a case

the Poisson bracket shows typically an exponential growth,

exp[λτ ], where λ is the Lyapunov exponent. But the signa-

ture of its coefficient can be anything, either positive or neg-

ative. Now further if we take the thermal averaging over this

two point operator then both the contributions are cancelled

each other in the semi-classical limit and will not contribute

to describe chaos. From the quantum mechanical perspec-

tive, the two point thermal averaged operator, 〈[W (τ ), V (0)]〉
actually captures the description of correlation between the

quantum Hermitian operators W (τ ) and V (0), which decays

in the large time limit (τ → ∞) and cannot describe the

chaotic behaviour. On the other hand, the four point quan-

tum operator after transforming it to the Poisson bracket in

the semi-classical picture don’t show any ambiguity in the

signature of the co-efficient as it takes only positive value.

After taking thermal average we get non vanishing result

using which one can describe quantum chaos. In the quan-

tum mechanical picture the four point thermal averaged oper-

ator, 〈[W (τ ), V (0)]2〉 not decays exponentially at the leading

order in the large time limit (τ → ∞).

17 Thermal averaging is a very important concept in the context of

AdS/CFT correspondence as the dual description of the quantum field

theory of black holes can be treated as a thermal bath which have Hawk-

ing temperature.

Now, in the quantum mechanical description of the But-

terfly effect predicts the following result:

C(τ ) ∼ 2〈V (0)V (0)W (τ )W (τ )〉
= 2〈V (0)V (0)〉〈W (τ )W (τ )〉 for τ → ∞, (4.38)

for any mathematical structure of the operators V (0) and

W (t). Here it is important to note that, V (0)W (τ )W (τ )V (0)

contribution is not directly effected by the quantum chaos.

Also it is important to note that, in the present context for

the sake of simplicity we additionally assume that:

〈V (0)〉 = 0, (4.39)

〈W (τ )〉 = 0, (4.40)

i.e. both the one point function or the thermal averaged expec-

tation values of these operators vanishes.

4.2.2 Estimation of scrambling and dissipation time scales

from OTOC

In the context of quantum chaos two important time scales

are associated:

1. Scrambling time:

Here the associated time scale where the operator C(τ ) is

relevant is known as the scrambling time scale τ∗. Some-

times in literature this is known as the Ehrenfest time

scale. A possible distinction between the classical and

quantum description of chaos can be described by the

Ehrenfest time scale in which the previously mentioned

OTOC don’t grow with respect to the associated time

scale and saturates at the same scale. In the next section

we have provided a alternative chaos bound on OTOC

(i.e. SFF in our case) from which we have further give an

estimate of the bound on the Ehrenfest time scale.

2. Dissipation time:

Another time scale for chaos is the exponential decay

time scale τd in which the two point thermal correlation

function behaves like 〈V (0)V (τ )〉. Sometimes in this lit-

erature it is known as the dissipation time scale or the

collision time scale. In the context of strongly coupled

quantum field theories at finite temperature it is expected

that the dissipation time scale τd ∼ β. It is also expected

that for large time limit the more general form of the

OTOC during this time scaled as:

〈V (0)V (0)W (τ )W (τ )〉 ∼ 〈V (0)V (0)〉〈W (τ )W (τ )〉
+O(exp[−τ/τd ]) + · · · , (4.41)

where · · · represent higher order terms which are more

suppressed by the dissipation time scale τd .
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In the present context, additionally one can predict the con-

nection between the quantum mechanical operator C(τ ) and

quantum chaos by considering the semi-classical limit of a

chaotic system which involves a single particle. To demon-

strate this argument one can consider semi-classical billiards

as a toy example. In the semi-classical limit one can take,

V (0) = p(0), W (τ ) = q(τ ), where p and q is the gen-

eralized momentum and coordinate respectively. As a result

in the semi-classical limiting approximation one can map

the previously defined commutator bracket to the Poisson

bracket, as given by:

[q(τ ), p(0)] �⇒ i h̄ {q(τ ), p(0)}PB = i h̄
∂q(τ )

∂q(0)
, (4.42)

which can be treated as the classical analogous version of the

quantum mechanical Butterfly effect. It is also expected that

for such a system the nearby dynamical trajectories scale as,

q(τ ) ∼ q(0) exp [λτ ] , where λ is the Lyapunov exponent. It

is in principle divergent in nature for large time limiting situ-

ation. Now at the dissipation time scale τd it is also expected

that, τd ∼ 1/λ, for which the nearby trajectory is convergent

and is of the order of e. On the other hand, the prescribed

OTOC can approximately expressed in semi-classical limit

as18:

Semi-classical OTOC:

C(τ ) ∼ h̄2

(
∂q(τ )

∂q(0)

)2

= h̄2 exp [2λτ ] . (4.47)

In Fig. 21a, b, we have shown the variation of the time

dependent behaviour of semi-classical and classical OTOC

for billiards, which show they are different in both the cases.

Now at the scrambling time scale, τ∗ and dissipation time

scale, τd the OTOC approximately in the semi-classical limit

scaled as:

C(τ∗) ∼ 1, C(τd) ∼ h̄2e2, (4.48)

18 Classical result: Here one can perform the exact classical computa-

tion of OTOC to check whether the quantum and classical descriptions

give the same result or not. In the case of billiards, the Poisson bracket is

given by, {q(τ ), p(0)}PB ∼ exp[λτ ].One can explicitly show that in this

context the Lyapunov exponent can be expressed as, λ ∼ v√
A

= p(0)√
A

,

where A = π R2 + 4a R is the area of the stadium and v is the velocity

of the particle. Then the classical OTOC can be expressed as:

C(τ ) = 1

Zcl

∫
d2q

2π

d2 p(0)

2π
exp

[
−βp2(0) + 2p(0)√

A

]
(4.43)

= 1

Zcl

∫ ∞

0

dp

2π
p exp

[
−β

(
p(0) − τ

β
√

A

)2

+ τ 2

β2 A

]

=
{

1 +
√

πτ√
Aβ

exp

[
τ 2

Aβ2

](
erf

(
τ

2
√

Aβ

)
+ 1

)}
,

where Zcl is the classical partition function defined as:

from which the scrambling time scale, τ∗ can be estimated

as:

τ∗ ∼ 1

λ
ln

1

h̄
. (4.49)

This further implies that, in the semi-classical limit the

scrambling time scale, τ∗ and dissipation time scale, τd are

related by the following expression:

τ∗ ∼ τd ln 1
h̄
, (4.50)

which explicitly shows that both the time scales for quantum

chaos is different from each other and the fractional differ-

ence is given by the following expression:

τd − τ∗
τd

= 1 − ln
1

h̄
= ln h̄, (4.51)

which is actually a large amount of hierarchy at the semi-

classical limit as h̄ → 0.

Now, the OTOC in the present context actually quantify

the temporal growth of the Hermitian quantum mechanical

operator W (τ ) is introduced earlier in this section. In the

general prescriptions of quantum field theory (QFT) such

OTOC can be expressed in terms of the addition of simple

type of operators, which span the quantum basis. Now, if

the OTOC is large19 then in such a situation with non-local

interactions the scrambling time scale, τ∗ can be estimated

as:

t∗ ∼ ln Nbit for C(τ ) → ∞, (4.52)

Footnote 18 continued

Zcl =
∫

d2q

2π

d2 p(0)

2π
e−βp2(0) (4.44)

=
∫ ∞

0

dp

2π
p exp

[
−β (p(0))2

]
= 1

4πβ
.

Further taking A = 1 for simplicity we get:

Classical OTOC: (4.45)

C(τ ) =
{

1 +
√

πτ

2
√

β
exp

[
τ 2

4β2

](
erf

(
τ

2
√

β

)
+ 1

)}

Further taking the limit t ≫ √
β we get the following simplified answer

for classical OTOC for billiards:

Classical OTOC: (4.46)

C(τ ) =
√

πτ√
β

exp

[
τ 2

4β2

]
for t ≫

√
β .

This result implies that in classical OTOC and in semi-classical (or

quantum) OTOC the time dependence is completely different. In the

case of classical OTOC it shows faster growth with respect to the result

obtained for quantum OTOC.

19 In the present context large OTOC (C(τ ) implies that the quantum

operator for chaos W (τ ) completely destroy the effect of the initial fac-

tor exp[i Hτ ] and the final factor exp[−i Hτ ] to cancel their contribution

in the definition of the operator W (τ ).
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Fig. 21 Time dependent behaviour of semi-classical and classical OTOC for billiards

where Nbit is the number of qubits. Similarly for local inter-

actions he scrambling time scale, τ∗ can be estimated by

computing the separation between the quantum operators W

and V . Additionally it is important to note that, quantiza-

tion of a classical chaotic system may accommodate positive

Lyapunov exponent from the OTOC mentioned earlier. To

quantify quantum chaos also the nearest neighbour distribu-

tion (NDD) for the spectrum of the energy is alternatively

used.20 Except Lyapunov exponent, in the present context of

discussion OTOC (in our discussion it is SFF) play crucial

role to quantify quantum chaos to explain dynamical features

in the early epoch of universe.

5 Quantum chaos from RMT: an alternative treatment

in cosmology

In this section, we will try to generalize spectral form factor

(SFF) for any order of even polynomial potential. To serve

this purpose, one can create such ensemble, such that all pos-

sible interaction between energy levels of many-body Hamil-

tonian would be accounted for by various matrices in the

ensemble. If the Hamiltonian is time-reversal symmetric the

required distribution will be invariant under orthogonal trans-

formation. Else, it is invariant under unitary transformation.

20 In the context of integrable and non-integrable quantum mechanical

system nearest neighbour distribution (NDD) is described by Poisson

and Wigner functional.

In the thermodynamic limit (N → ∞) eigen value of den-

sity of random matrices showed a universal behaviour char-

acterised by Wigner’s Semicircle law. The results seemed

to be applicable to a varied class of quantum system dis-

playing chaotic behaviour. Chaos was also a hallmark of a

few-body Hamiltonian (N finite), but better diagnostic for

quantum systems was devised in which nearest neighbour

spacing distribution (NNSD) of eigenvalues of the system

will be chaotic if distribution is Wigner Dyson type:

P(ω = En+1 − En) = Aβωβe(−βω). (5.1)

Here it is important to note that, here β is fixed at, β = 1 for

Gaussian orthogonal ensemble and β = 2 for Gaussian uni-

tary ensemble. In the present context of discussion Spectral

Form Factor (SFF) is a tool for characterising spectrum ( i.e.

discreteness of energy spectrum) of quantum system under

consideration and defined by the following expression:

SFF = |Z(β + iτ)|2 =
∑

m,n

e−β(Em+En)e−i t (Em−En). (5.2)

Here Z(β) is the partition function of the quantum system and

β = 1/T . For β = 0, the expression pick out contribution

only form the difference between nearest neighbour energy

eigenvalues at very late times. SFF when averaged over Gaus-

sian random matrices, has very particular behaviour at large

N with initial decay followed by a linear rise and then after a

critical point saturation.This approach can relate a saturation

limit for large N which can be treated as bound on chaos.

Additionally, it is important to note that quantifying chaos

through finding SFF is very useful when one cannot have
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Table 2 Properties of Gaussian matrix ensemble in random matrix theory (RMT)

Element of matrix Type of ensemble Relation

Elements are real Gaussian orthogonal ensemble Time reversal symmetric Hamiltonian

Elements are complex Gaussian unitary ensemble Broken time reversal symmetric Hamiltonian

Elements are quaternion Gaussian symplectic ensemble –

a specific time dependent mass profile during cosmological

particle production. In terms of scattering problem in the

conduction wire if we don’t know precisely the structure of

interaction potential, then one can quantify chaos in terms of

SFF rather than using Lyapunov exponent, as we have used in

the previous section. Here we will discuss general approach

to find SFF to quantify chaos for various even polynomial

potential.

5.1 Quantifying chaos using RMT

Gaussian matrix ensemble is a collection of large number

of matrices which are filled with random numbers picked

arbitrarily from a Gaussian probability distribution. See refs.

[93,94] for more details.

In Table 2, we have explicitly mentioned the properties of

the each elements of the Gaussian matrix ensemble in random

matrix theory (RMT).

Further, the joint probability distribution of such random

matrix, which is characterized by the Gaussian potential is

given by the following expression:

P(M)d M = exp

(
−1

2
tr M2

)
d M

= exp

(
−1

2

N∑

i=1

x2
i i

)
exp

⎛
⎝−

N∑

i 	= j

x2
i i

⎞
⎠

N∏

i� j=1

dxi j , (5.3)

where N represents the rank of the matrix M . If we consider

any ensemble of matrices to keep this measure invariant under

similarity transformation:

M → U−1 MU, (5.4)

such that it satisfies the following constraint:

P(U−1 MU ) = P(M). (5.5)

Here U being an orthogonal or unitary matrix. Then for most

generalized ensemble one can implement the concepts of

time independent random matrix theory [95] in the present

context of discussion. Now here integrating over the random

matrix measure one can construct the following expression

for the partition function for the Gaussian matrix ensemble,

as given by:

–Z =
∫

d M e−Tr(V (M). (5.6)

Further, using similarity transformation one can diagonalize

the random matrix M as:

M = U−1 DU. (5.7)

On the other hand, ensemble in basis of eigenvalues of the

matrix the partition function can be written as:

–Z =
N∏

i=1

∫
dλi e−N 2 S(λ1,...,λN ) (5.8)

where the action S(λi ) is defined as21:

S(λ1, . . . , λN ) = 1

N

N∑

i=1

V (λi ) + β

N∑

i< j

log |λi − λ j |. (5.9)

Here we fix β = 1 for GOE and β = 2 for GUE. The overall

1/N come from scaling of eigenvalues by factor
√

N . To find

a solution we need to extremize the action w.r.t λi , such that

we get:

d S

dλi

= 0 ⇐⇒ V ′(λi ) = 2

N

∑

j 	=i

1

λi − λ j

. (5.10)

Now we need the method of resolvents to derive the expres-

sion for the partition function (Z(β)) in the present context.

In continuum limit of eigenvalues we can use density of states

(eigen values) ρ(λ), which gives the number of eigen values

lying in between λ and λ + dλ. Therefore, saddle point of

V ′(λi ) is given by the following expression:

V ′(λi ) = 2Pr

(∫
du

ρ(u)

λ − u

)
. (5.11)

21 This formalism is very useful when we can’t able specify the particle

interaction in the effective action. More precisely, in this situation when

we really don’t have any information about the particle interaction one

can’t able to define the action in terms of the usual language. Addi-

tionally it is important to note that, in our computation we consider

that gravitational background is classical and non dynamical. How-

ever it will not explicitly appearing in the action for the distribution

of eigen values of random matrices. Also during reheating since one

can neglect the contribution from the expansion of our universe, then

considering only the representative action for random distribution is suf-

ficient enough for our discussion when we don’t have any knowledge

about the particle interactions at the level of action. In such a situation

gravitational background is treated to be not evolving with time during

reheating.
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Here Pr represents the principal part of the integral. Solution

of the principal part of the integral Eq. (5.11) gives the eigen

value density ρ(u) at large N limit.

Now, we can define resolvent as given by:

ω(x) = 1

N

N∑

i=1

1

x − λi

(5.12)

further, using Eq. (5.12) we compute the following function:

ω2(x) + 1

N
ω′(x) = 1

N 2

[
N∑

i=1

1

x − λi

]2

− 1

N 2

N∑

i=1

1

(x − λi )2

= 1

N 2

⎡
⎣

N∑

i=1

1

x − λi

N∑

i 	= j=1

λ j − λi

(x − λi )(x − λ j )

⎤
⎦

= 1

N 2

⎡
⎣

N∑

i=1

1

x − λi

N∑

i 	= j=1

1

(λi − λ j )

⎤
⎦ . (5.13)

Next, we use the following resolvent identities for our com-

putation performed in this paper:

R(Z; A) − R(ω; A) = (Z − ω)R(Z; A)R(ω; A), (5.14)

R(Z; A) − R(Z; B) = R(Z; A)(B − A)R(Z; B). (5.15)

Here R denotes the resolvent and A, B both defined over

same linear space. Consequently, Eq. (5.13) can be recast

into the following simplified form:

ω(x)2 + 1

N
ω′(x) = 1

N

N∑

i=1

V ′(λi )

x − λi

+ 1

N

N∑

i=1

V ′(x) − V ′(λi )

x − λi

= V ′(x)ω(x) − ρ(x). (5.16)

Here we define:

ρ(x) =
N∑

i=1

V ′(x) − V ′(λi )

x − λi

,

ω = 1

N

N∑

i=1

1

x − λi

= 1

N

� ′

�
, (5.17)

which implies that, here ω′ can be expressed as:

ω′ = 1

N

(
� ′′

�
− � ′

�2

)
. (5.18)

Finally, in terms of newly defined function � as stated in

Eq. (5.17), one can further recast Eq. (5.16) as:

1

N 2

� ′2

�2
+ 1

N 2

(
� ′′

�
− � ′

�2

)
= V ′(x)

1

N

� ′

�
− ρ(x).

(5.19)

Further, comparing the two equivalent definition of ω(x) we

get the following differential equation for � in terms of the

eigen values of the random matrix, as given by:

� ′

�
=

N∑

i=1

1

x − λi

. (5.20)

Therefore, the solution for �(x) is given by the following

characteristic polynomial :

�(x) =
N∏

i=1

(x − λi ) = det(x I − M). (5.21)

Here it is important to note that, the solution obtained in large

N limit can be compared with the solution obtained using

WKB approximation in Schrödinger equation. Then we can

neglect the term 1
N

ω′(x) in Eq. 5.16 and write down the

following approximated algebraic equation of ω(x), given

by:

ω2(x) − V ′(x)ω(x) + ρ(x) = 0 (5.22)

where we have introduced two new quantities ω(x) and ρ(x),

which are defined as:

ω(x) = lim
N→∞

ω(x), (5.23)

ρ(x) = lim
N→∞

ρ(x). (5.24)

Then solution of ω(x) is given by the following expression:

ω(x) ≡ ω±(x) = 1

2

[
V ′(x) ±

√
(V ′(x))2 − 4ρ(x)

]
.

(5.25)

Here for our discussion ω+(x) is redundant and only accept-

able solution for our purpose is given by the following

expression:

ω(x) ≡ ω−(x) = 1

2

[
V ′(x) −

√
(V ′(x))2 − 4ρ(x)

]
.

(5.26)

Additionally, it important to mention that in large N limit

we can write, ρ(x) = ρ(x) = V ′′(x), where ρ(x) is the

density of eigen values from Wigner’s semi-circle law. Con-

sequently, the solution obtained in Eq. (5.26) can be recast

in the following simplified form in the large N limit as:

ω̂(x) ≡ lim
N→∞

ω(x) ≡ lim
N→∞

ω−(x)

= 1

2

[
V ′(x) −

√
(V ′(x))2 − 4V ′′(x)

]
. (5.27)

This implies that, just by knowing the even polynomial struc-

ture of the potential V (x) one can able to find out the solution
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Fig. 22 Schematic

representation of Wigner

semicircle law for Gaussian

random matrices
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for the distribution of ω(x) in terms of the random variable

x . In this context, which further implies that the Wigner’s

semicircle law is defined as the probability density function

of eigen values of many random matrices is a semi-circle

as N → ∞. On the other hand, for finite N , Schrödinger

equation gives the corrections comparing with calculated

result obtained in Eq. (5.27), which is given by the following

expression:

ω(x) ≡ ω−(x) = 1

2
√

2

√
4ω̂(x) + 1

×

⎡
⎣1 −

√
16((ω̂(x))2 + V ′′(x))

(4ω̂(x) + 1)

⎤
⎦

1
2

×

⎡
⎢⎢⎢⎣1 −

√√√√√1 − 4ρ(x)

(4ω̂(x) + 1)

[
1 −

√
16((ω̂(x))2+V ′′(x))

(4ω̂(x)+1)

]

⎤
⎥⎥⎥⎦ .

(5.28)

In Fig. 22 density function ρ(λ) for quadratic or Gaus-

sian potential is plotted against λ with scaling factor 1
2a

. The

semicircle nature predicted from Eq. (5.146).
Consequently, one can write:

S[ρ] =
∫

R
dx ρ(x)V (x) −

∫

R2
dx dx ′ ρ(x) ρ(x ′) log |x − x ′|

+ L

(
1 −

∫

R
dx ρ(x)

)
, (5.29)

where, L is the Lagrange multiplier and 1 denotes the total

density.

Now, we can generalize it to normal matrix model whose

eigen value belongs to Vi (union of contours). To characterize

this here we introduce filling functions, which are described

by the symbol ǫi and consider the contours as:

γ −n−1 =
d∏

i=1

ǫ
ni

i . (5.30)

Here

d∑

i=1

= N , (5.31)

where d = dimension and ni eigen values are integrated over

γi .

Further, we define

ǫi = ni

N
. (5.32)

Consequently, from Eq. (5.30) one can write:

γi =
∑

i, j

Ci, jγ j ⇐⇒ ǫi =
∑

i, j

Ci jǫ j . (5.33)

–Z

(
∑

n

Cnγ n−1

)
=
∑

n

Cn –Z(γ n−1

) where Cn ∈ C,

(5.34)

which will be helpful for further computation.

Now, for a contour, which is represented by:

γ =
d∑

i=1

Ci γi ǫ H1(e
−V (λ)dλ) (5.35)

one can write:

1

N !
–Z(γ N ) =

∑

n

∏d
i=1 C

ni

i∏d
i=1 ni !

–Z(γ −n−1

). (5.36)
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Consequently, Eq. (5.29) can be recast into the following

simplified form:

S[ρ] =
∫

γ
dx ρ(x) V (x) −

∫

γ 2
dx dx ′ ρ(x) ρ(x) log |x − x ′|

+
∑

i

Ci

(
ǫi −

∫

γi

dxρ(x)

)
. (5.37)

Now the Fourier transform of the density function ρ(x) can

be written as:

ρ̃(k) =
∫

R

dx eikx ρ(x), (5.38)

using which the second term of Eq. (5.37) can be written in

Fourier space as:

−
∫

R×R

dx dx ′ ρ(x) ρ(x ′) log |x − x ′|

=
∫

R

dk

|k| ρ̃(k) ρ̃(−k) = 1

2

∫ ∞

0

dk

k
|ρ̃(k)|2. (5.39)

Now we know that the saddle points can be computed by

imposing the following condition:

δS

δρ̃(x)
= 0. (5.40)

During this computation one can further define the effective

random potential, which is given by the following expression:

Veff(x) = L = V (x) − 2

∫

R

dx ′ ρ(x ′) log |x − x ′|. (5.41)

Then one can recast Eq. (5.37) in terms of the effective poten-

tial as:

S[ρ] =
∫

R

dx ρ(x) Veff(x)

+
∑

i

Ci

(
ǫi −

∫

γi

dxρ(x)

)
. (5.42)

Further imposing the saddle point condition we get:

V ′(x) = 2

∫

R

dx ′

x − x ′ ρ(x ′), (5.43)

which can be further written in terms of the eigen values of

the random matrices as:

V ′(λi ) =
∑

j

1

λi − λ j

. (5.44)

Therefore within supp of ρρ one can write:

ω(x) =
∫

supp ρ

dx ′

x − x ′ ρ(x ′) (5.45)

V ′(x) = ω(x + i0) + ω(x − i0). (5.46)

On the other hand outside the supp of ρ since ρ(x) → 0,

then in the large N limit one can write:

ω̂(x) ≡ lim
N→∞

ω(x) = 1

x
+ O

(
1

x2

)
. (5.47)

Therefore jump (discontinuity) on real line along the support

ρ(x) is given by the following expression:

	ω(x) = ω̂(x) − ω(x) = 1

x
+ O

(
1

x2

)

−
∫

suppρ

dx ′

x − x ′ ρ(x ′). (5.48)

Then using Eq. (5.48), we get the following simplified

expression for the jump (discontinuity)

ω(x + i0) − ω(x − i0) = 1

(x + i0)
+ O

(
1

(x + i0)2

)

−
∫

supp ρ

dx ′

x − i0 − x ′ ρ(x ′) = 2π i ρ(x − i0).

(5.49)

Now one can introduce a new function P(x) of random vari-

able x as:

P(x) = V ′(x)ω(x) − ω(x)2 (5.50)

which is analytic on C as it gives zero value of the jump. This

is explicitly shown in the following:

P(x + i0) − P(x − i0) = V ′(x + i0)ω(x + i0)

−ω(x + i0)2 − V ′(x − i0)ω(x − i0) + ω(x − i0)2

= V ′(x)[ω(x + i0) − ω(x − i0)]
−[ω(x + i0) − ω(x − i0)][ω(x + i0) + ω(x − i0)]

= 0 on support of ρ. (5.51)

Additionally, it is important to note that, using the previous

results we get:

ω(λ + i0) = 1

2
V ′(λ) − iπρ(λ), (5.52)

ω(λ − i0) = 1

2
V ′(λ) + i iπρ(λ). (5.53)

Here the most general solution for the density function is

given by the following expression22:

ρ(λ) = 1

2π
M(λ)

√
−σ(λ), (5.55)

22 Additionally, it is important to note that the density function satisfy

the following normalization condition:

∫

supp μ

dμ ρ(μ) = 1. (5.54)
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where both M(λ) and σ(λ) are polynomial in λ are defined

as:

M(λ) =
∞∑

k=1

an−kλ
2(n−k),

σ (λ) =
n∏

i=1

(λ − a2i−1)(λ − a2i ). (5.56)

Here we consider n number of intervals on which ρ(λ) is

supported and a2i−1 and a2i are the end point.

Further we consider a general case where instead of the

specific form of the mass profile we only know the polyno-

mial structure of interaction random potential V (M) which

is characterized in terms of the random matrix M . For our

purpose we take it to be even polynomial potential written in

the following general form:

V (M) =
∞∑

i=1

C2i M2i = C2 M2 + C4 M4 + C6 M6 + · · ·

(5.57)

Here after diagonalizing the random matrix M we get its

eigen values λ1, λ2, . . . , λN , from which we can compute

the distribution of this eigen values for large N limit and

it turns out to be w be the density function ρ(λ), which is

already introduced earlier.

Now let us consider that the degree of the polynomial P ,

σ and M are:

deg(P) = 2k, deg(σ ) = 2n, deg(M) = 2k − n − 1.

(5.58)

Now considering n = 1 and n = 2 we get:

For n = 1: deg(P) = 2k, deg(σ ) = 2,

deg(M) = 2k − 2, (5.59)

For n = 2: deg(P) = 2k, deg(σ ) = 4,

deg(M) = 2k − 3. (5.60)

For n = 1 we also get the following simplified expressions

for the polynomial M(λ) and σ(λ):

M(λ) =
∞∑

k=1

a1−kλ
2(1−k), (5.61)

σ(λ) = λ2 − 4a2. (5.62)

Consequently, for n = 1 we get the following expression for

the density function on semi-circle:

ρ(λ) = 1

π

√
4a2 − λ2

∞∑

k=1

a1−kλ
2(1−k). (5.63)

Now we use this ρ(λ) in ω(λ+ i0) and Taylor expand in the

limit λ → ∞ we get:

ω(λ → ∞) = 1

λ
+ O

(
λ2
)

, (5.64)

which implies that all coefficients of λr for r > 0 is zero and

this gives n number of equations. This finally gives the full

equation of M(λ) in terms of the coefficients C2i . Solving

these equations we get:

1

2

(
−2λ + 4a2

λ
+ 4a4

λ2
+ 8a6

λ5
+ O

(
1

λ

)6
) ∞∑

k=1

an−kλ2(n−k)

+
∞∑

i=1

2i C2i λ2i−1 = 1

λ
. (5.65)

Further equating the coefficients on both sides of the

Eq. (5.65) we get:

2nC2n − 2an−1 = 0, (5.66)

4a2an−1 − 2an−2 + 2(n − 1)C2n−2 = 0 (5.67)

4a4an−1 + 4a2an−2 − 2an−3 + 2(n − 2)C2n−4 = 0,

(5.68)

and it will continue upto term by term giving all an and we

get the unique polynomial M(λ). We will verify this general-

ization for n = 1, 2, 3, 4, 5 and check their SFF in this work

accordingly. For more general discussions see Refs. [96,97]

also.

5.2 OTOC in random matrix theory (RMT)

In earlier section we have introduced OTOC and its applica-

tion to cosmology. In this subsection, we will discuss about

OTOC appearing in the context of RMT.

5.2.1 Two point OTOC

For this purpose, we start with two point correlation functions

for the GUE which is described by the following equation:

〈O1(0)O2(τ )〉GUE ≡
∫

d H 〈O1(0)O2(τ )〉, (5.69)

where the operator O2(τ ) in Heisenberg picture can be

expressed as:

O2(τ ) = exp[−i Hτ ]O2(0) exp[i Hτ ]. (5.70)

Here it is important to note that the GUE measure d H is rep-

resented by the Hamiltonian H ., which is invariant under the

following unitary conjugation operation, which is described

by:
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d H = d(U HU †) ∀ U. (5.71)

Here U is the unitary matrix. Consequently, the GUE two

point correlation function can be further expressed as:

〈O1(0)O2(τ )〉GUE

=
∫ ∫

d H dU 〈O1U exp[−i Hτ ]U†O2U exp[i Hτ ]U†〉,

(5.72)

where dU is the Haar measure appearing in this context.

After integrating over the Haar measure we get the following

expression for the GUE two point correlation function:

〈O1(0)O2(τ )〉GUE = 〈O1〉〈O2〉

+SFF(τ ) − 1

I2 − 1
〈〈O1O2〉〉C , (5.73)

where the connected two point correlation function 〈〈O1O2〉〉
is defined as:

〈〈O1O2〉〉C = 〈O1O2〉 − 〈O1〉〈O2〉. (5.74)

Now we consider a special case where O1 and O2 are

described Pauli operators. In such a situation, the GUE two

point correlation function can be expressed as:

〈O1(0)O2(τ )〉GUE =
{

SFF(τ )−1

I2−1
, O1 = O2

0, O1 	= O2

, (5.75)

where SFF(τ ) is the two point Spectral Form Factor (SFF)

which we have defined explicitly earlier. Further, one can

consider the situation where SFF(τ ) ≫ 1 and O2(τ ) =
O

†
1(τ ). For this case the GUE two point correlation function

is simplified to the following expression:

〈O1(0)O2(τ )〉GUE ∼ SFF(τ )

I2
. (5.76)

Here I represents the 2n dimensional Hilbert space in

the present computation. To derive this above mentioned

expression we have not assumed any additional assump-

tion expect the fact that the Haar measure of GUE d H is

invariant. This is a very useful information to study the phys-

ical characteristics of chaotic Hamiltonian at macroscopic

scales.

5.2.2 Four point OTOC

Now we discuss about the four point OTOC for the GUE

prescription. Here the fourth point OTOC can be expressed

in terms of fourth Haar moment:

〈O1(0)O2(τ )O3(0)O4(τ )〉GUE

=
∫ ∫

d H dU 〈O1U exp[−i Hτ ]U †O2U

× exp[i Hτ ]U †O3U exp[−i Hτ ]U †O4U

× exp[i Hτ ]U †〉, (5.77)

where we consider (4!)2 = 576 terms in this expression for

four point OTOC. Now we consider a special situation, where

all these operators appearing in the expression for the four

point OTOC for GUE are described by Pauli operators. In

such a case, the four point OTOC for GUE can be simplified

as:

〈O1(0)O2(τ )O3(0)O4(τ )〉GUE ≃ 〈O1O2O3O4〉

×SFF4(τ )

I4
, (5.78)

where SFF4(τ ) is the four point SFF for GUE, which is

defined by the following expression:

SFF4(τ ) ≡ 〈Z(τ )Z(τ )Z∗(τ )Z∗(τ )〉GUE

=
∫

Dλ
∑

i, j,k,l

exp[i(λi + λ j + λk + λm)τ ]

= I4 J 4
1 (2τ)

τ 4
+ τ

2
(τ − 2)

∼ I6

π2τ 6
+ τ

2
(τ − 2), (5.79)

and this is derived only by considering the leading order

behaviour of four point SFF. Here additionally it is important

to note that if we fix:

〈O1O2O3O4〉 = I. (5.80)

This will give rise to non-zero expression for the four point

OTOC for GUE. For other situations, where

〈O1O2O3O4〉 = 0, (5.81)

we get zero contribution to the four point OTOC for GUE.

One can further generalise this statement for any arbitrary

2p point OTOC for GUE, which is given by the following

expression:

〈O1(0)Q1(τ ) · · · Op(0)Qp(τ )〉GUE ≃ 〈O1Q1 · · ·OpQp〉

×SFF2p(τ )

I2p
. (5.82)

Generalizing the previous argument one can conclude that

the final result for the 2p point OTOC for GUE is non zero

when we have the following constraint:
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〈O1Q1 · · · OpQp〉 = I. (5.83)

Here one can further show that for the GUE we get:

〈O1(0)O2(τ )O3(2τ)O4(τ )〉GUE

≃ 〈O1(0)O2(τ )O3(0)O4(τ )〉GUE ≃ 〈O1O2O3O4〉

× SFF4(τ )

I4
, (5.84)

which indirectly implies that GUE is not sensitive to the fact

that the operators as appearing in this context are out-of-time

ordered or something else. Additionally, it is important to

note that, if we compute the expression for the OTOC corre-

lation function for a specified class of Hamiltonian operators,

which are in general invariant under the operation of conjuga-

tion on the unitary matrix U . In such a situation from OTOC

one can further express the OTOC in terms of SFF. This is a

very well known technique in the study of many -body QFT

systems, where particularly to study the underlying physics

of thermalization and quantum quench []. In the next subsec-

tion we will provide an analytical proof of the equivalence

of the two point SFF and the two point OTOC, which can

be further generalized to any arbitrary 2p point correlation

functions.

5.3 Spectral form factor (SFF) from OTOC

From the traditional perspective the idea of quantum chaos is

used in the context of study of spectral aspects of statistical

field theory. Recent developments are made in the context

of black hole theory and quantum information theory where

using OTOC one can quantify quantum chaos. However in

this paper our one of the prime objective to apply the con-

cept of quantum chaos to study early universe cosmology,

which is obviously another new direction of future research

area. In this subsection, our air is to give a formal proof which

establish the connection between Spectral Form Factor (SFF)

and OTOC in OEQFT. First of all we consider a limit where

β = 1/T = 0 in which distribution of quantum operator

insertions around a thermal circular path is very straightfor-

ward.

Let us consider a quantum mechanical Hamiltonian opera-

tor H operating on an I = 2n dimensional Hilbert space and

consists of n number of quantum bits (qbits). Next, we con-

sider the two point correlation function 〈O(0)O†(τ )〉 using

which one define the following averaged two point correla-

tion function:
∫

dO 〈O(0)O†(τ )〉

:≡ 1

I

∫
dO Tr

(
O exp[−i Hτ ]O† exp[i Hτ ]

)

= 1

I3

I2∑

k=1

Tr
(
Ok exp[−Hτ ]O†

k exp[i Hτ ]
)

. (5.85)

Here we assume that O is the Unitary operator which is inte-

grated over a Haar measure on U(2n). Also it is important to

note that the integral over the Haar measure can be translated

in terms of the Pauli operators Ok and I2 = 22n = 4n rep-

resents the total number of Pauli operators for this quantum

n qubit system.

Further, it is important to note that, to derive the expression

for SFF from the present context additionally we need the first

moment of the Haar ensemble, which is defined as:
∫

dO ODO† = 1

I
Tr(D) I, (5.86)

which can be equivalently expressed in terms of the language

of Pauli operator as:
∫

dO Ok
mOl

n = 1

I
δk

nδl
m . (5.87)

Next using Eqs. (5.87) in (5.85), we get the following sim-

plified result:

Quantum averaged OTOC =
∫

dO 〈O(0)O†(τ )〉

= 1

I2
|Tr(exp[−i Hτ ])|2

= 1

I2
SFF(τ ) ∝ Two point SFF., (5.88)

where the two point SFF at infinite temperature is defined in

terms of the quantum Hamiltonian H as:

SFF = | exp[−i Hτ ]|2. (5.89)

Here the result obtained in Eq. (5.88) implies that the quan-

tum averaged OTOC is proportional to the two point SFF at

infinite temperature of the present context.

This prescription can be further generalised to make the

connection between any arbitrary 2p point quantum OTOC

and 2p point SFF in this context. To establish this connection

let us consider a 2p point quantum OTOC, which is described

by:

〈O1(0)Q1(τ ) · · · Op(0)Qp(τ 〉 with O1Q1 · · · OpQp = I.

(5.90)

Now taking the average over such 2p point OTOC we get:
∫

dO1dQ1 · · · dOk−1dQk 〈O1(0)Q1(τ ) · · · Op(0)Qp(τ )〉

= 1

I2p
|Tr(exp[−i Hτ ])|2p

= 1

I2p
SFF2p(τ ), (5.91)

where Qp is defined as:

Qp = O†
p · · ·Q†

1O
†
1. (5.92)
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Here one can consider a special case where

Qp = O†
p ∀ p. (5.93)

Consequently, the average over such 2p point OTOC can be

further simplified to the following form:
∫

dO1dO2 · · · dOk−1dOk 〈O1(0)O
†
1(τ ) · · · Op(0)O†

p(τ )〉

= 1

I p+1
Tr(exp[−i Hτ ])pTr(exp[i pHτ ])︸ ︷︷ ︸ . (5.94)

Here it is important to note that the terms appearing in

the ︸︷︷︸ are not symmetric because the operator O1(0)

O
†
1(τ ) · · · Op(0)O

†
p(τ ) is an non-Hermitian quantum oper-

ator. This result establishes a direct connection between the

spectral physics in statistical field theory and other physical

observables. Apart from theoretical perspective one can use

two point SFF as a good estimator for experimental measure.

For this purpose one can consider the following standard

deviation (or experimental estimation error) of the unitary

operator O given by:

σO =
√

Var(O)

=

√∫
dO|O(0)O†(τ )|2 −

∣∣∣∣
∫

dOO(0)O†(τ )

∣∣∣∣
2

= O

(
1

I

)
. (5.95)

By choosing the Haar unitary operatorO as a random Clifford

operator one can find a good estimator of two point SFF.

To give the similar proof at finite temperature let us con-

sider the energy eigenvalue representation of OTOC, which

is given by the following expression:

C(τ ) = 1

|Z(β)|2
∑

n,m

cn,m(τ ) exp[−β(En + Em)], (5.96)

where the time dependent expansion coefficient can be

expressed as:

cn,m(τ ) = −〈n|[e−i Hτ , x]2|m〉 = exp [−i(En − Em)τ ] .

(5.97)

Here we have used the fact that, H |n〉 = En|n〉. Conse-

quently we get:

Quantum OTOC

C(τ ) = 1

|Z(β)|2
∑

n,m

exp[−β(En + Em)]

exp [−i(En − Em)τ ]

= |Z(β + iτ)|2
|Z(β)|2 = Two point SFF. (5.98)

This establishes the connection between OTOC and two point

SFF at finite temperature

5.4 Two point SFF and thermal Green’s function in RMT

In this subsection our prime objective is to explicitly com-

pute the expression for SFF for different even polynomial

potential of random matrices. This is very useful to quantify

chaos when we have no information about the interaction or

time dependent effective mass profile which will finally give

rise to scattering in conduction wire in presence of impurity

or cosmological particle creation during reheating.

Let us now consider a Thermofield Double State (TDS)

associated with canonical quantum mechanical state at finite

temperature. The time evolution of the TDS can be expressed

as:

|�(β, τ)〉TDS = 1√
Z(β)

∑

n

exp

[
−β

2
H

]
exp[i Hτ ].

(5.99)

Using this information one can define Spectral Form Factor

(SFF) as:

SFF = |TDS〈�(β, 0|�(β, τ)〉TDS|2

= 1

|Z(β)|2
∑

m,n

e−β(Em+En)e−iτ(Em−En)

= |Z(β + iτ)|2
|Z(β)|2 . (5.100)

Here En and Em correspond to the n -th and m -th level of the

quantum system under consideration. Here the Boltzmann

factor β = 1/T , where T is the temperature associated to

the system. Apart from temperature dependent Boltzmann

factor the definition of SFF also involves conformal time τ ,

which we have define in earlier section of this paper and

during reheating τ ∝ t . Here t is the physical time scale and

the proportionality factor is constant in space time.

Now at very high temperature (β = 1/T → 0) and low

temperature (β = 1/T → ∞) we get the following limiting

behaviour of SFF, as given by:

SFF =
{∑

m,n e−iτ(Em−En), β = 1/T → 0

0, β = 1/T → ∞ ,

(5.101)

It is also observed that in τ → ∞ limiting situation the near-

est neighbour energy spacings contribute only to the quan-

tification of SFF. This implies that the concept of SFF also

helps in understanding the time dynamics of the quantum sys-

tem under consideration and also very useful tool to analyze

the discreteness in energy spectrum. Chaotic system satisfy

Wigner’s formula which makes SFF a good observable for

quantifying chaos.
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In usual prescriptions, SFF is averaged over an statistical

ensemble of random matrix. This is a very particular feature

of SFF and can be directly linked to the quantification of

quantum chaos. Before going to discuss further here it is

important to note that, all distribution for eigenvalues are

different from each other but quite similar at small scales.

This is a very crucial information for the computation of

SFF to quantify chaos.

Now in the present context we define a new function

G(β, τ ), which is represented by the following expression:

G(β, τ ) = 〈|Z(β + iτ)|2〉GUE

〈Z(β)〉2
GUE

=
∫

supp ρ
dλ dμ e−β(λ+μ) e−iτ(λ−μ)〈D(λ)D(μ)〉GUE∫

supp ρ
dλ dμ e−β(λ+μ)〈D(λ)〉〈D(μ)〉GUE

.

(5.102)

Here, D(λ) = ρ(λ) =eigen value density. In the present con-

text, G(β, τ ) characterize the two point correlation function

which measures SFF.

Now, one can divide the total Green’s function G in two

parts (connected and disconnected part of the Green’s func-

tion), as given by:

G(β, τ ) = Gdc(β, τ ) + Gc(β, τ ), (5.103)

where disconnected part of the Green’s function Gdc and

connected part of the Green’s function Gc can be expressed

as:

Gdc(β, τ ) =
[ 〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]

=
∫

dλ dμ e−β(λ+μ) e−iτ(λ−μ) 〈D(λ)〉〈D(μ)〉∫
dλ dμ e−β(λ+μ) 〈D(λ)〉〈D(μ)〉

. (5.104)

Gc(β, τ ) = G(β, τ ) − Gdc(β, τ ) =
[

〈|Z(β + iτ)|2〉GUE

〈Z(β)〉2
GUE

]

−
[ 〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]

=
∫

dλ dμ e−β(λ+μ) e−iτ(λ−μ) 〈D(λ)D(μ)〉c∫
dλ dμ e−β(λ+μ) 〈D(λ)〉〈D(μ)〉

. (5.105)

Now, for further analysis we consider the high temperature

limit (β = 1/T → 0) and also can divide the total Green’s

function G in two parts (connected and disconnected part of

the Green’s function), as given by:

G(β → 0, τ ) = G(τ ) = Gdc(τ ) + Gc(τ ), (5.106)

where disconnected part of the Green’s function Gdc and

connected part of the Green’s function Gc can be expressed

as:

Gdc(τ ) =
[ 〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]

β=0

=
∫

dλ dμ e−iτ(λ−μ) 〈D(λ)〉〈D(μ)〉∫
dλ dμ 〈D(λ)〉〈D(μ)〉 . (5.107)

Gc(τ ) = G(τ ) − Gdc(τ ) =
[

〈|Z(β + iτ)|2〉GUE

〈Z(β)〉2
GUE

]

β=0

−
[ 〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]

β=0

=
∫

dλ dμ e−iτ(λ−μ) 〈D(λ)D(μ)〉c∫
dλ dμ 〈D(λ)〉〈D(μ)〉 . (5.108)

Here we define the connected two-point correlation function,

which is given by the following expression:

〈D(λ)D(μ)〉c ≡ (〈D(λ)D(μ)〉 − 〈D(λ)〉〈D(μ)〉). (5.109)

To quantify this explicitly one can define the eigen value

density function D(λ) in the neighbourhood of extremum of

level density (ρ(λ)) as:

D(λ) = D(λ) + δD(λ), (5.110)

where D(λ) is the average of the eigen value density function

over the statistical ensemble of eigen values of the random

matrices and δD(λ) represents the quantum fluctuation on

D(λ).

Consequently, using this fact the two point correlation

function reduced to the following form:

〈D(λ)D(μ)〉c = 〈δD(λ)δD(μ)〉 (5.111)

and using this connected part of the Green’s function Gc can

be further simplified as:

Gc(τ ) = G(τ ) − Gdc(τ )

=
∫

dλ dμ e−iτ(λ−μ) 〈δD(λ)δD(μ)〉∫
dλ dμ 〈D(λ)〉〈D(μ)〉 . (5.112)

Additionally, it is important to note that, the mean level den-

sity can be normalised in a semi circle using the following

two conditions:

∫ 2a

−2a

dλ D(λ) = N , (5.113)

∫ 2a

−2a

dλ ρ(λ) = 1. (5.114)

Here D(λ) actually represents the number of eigen values

lying between the small interval (λ, λ+dλ) and in the present

context it is proportional to O(
√

N ). On the other hand, ρ(λ)

is the density which we get by extremising the action and

treated to be free from all factor of N and all eigen values

which are just O(1). In this context, the two variables λ and
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σ are related by the following expression:

λ =
√

Nσ. (5.115)

To compute the Gdc and Gc part of SFF explicitly let us

first start with the one point function on the semi-circle as

given by:

〈Z(β ± iτ)〉nGUE =
∫

dλ e∓iτλ e−βλ 〈ρ(λ)〉nGUE

=
∫ 2a

−2a

dλ e∓iτλ e−βλ ρ(λ). (5.116)

At high temperature (β = 1/T → 0) this result can be

simplified as:

[〈Z(β ± iτ)〉nGUE]β=0 =
∫

dλ e∓iτλ 〈ρ(λ)〉nGUE

=
∫ 2a

−2a

dλ e∓iτλ ρ(λ). (5.117)

On the other hand at very low temperature limit (β = 1/T →
∞) we get: simplified as::

[〈Z(β + iτ)〉nGUE]β→∞ → 0. (5.118)

Here it is important to note that, for different polynomial

random potential we will get different expressions for the

integral measure. Now we need to find the specific point after

which properties of SFF drastically changes. We define this

points as critical points. For general even order polynomial

potential one can write down the following expression for the

density function of the eigenvalues of the random matrices:

ρ(λ) = 1

π

√
4a2 − λ2

n∑

k=1

an−kλ
2(n−k) ∀ even n. (5.119)

Further substituting Eq. (5.119) in Eq. (5.116) we get the

following simplified expression for the one point function

on the semi-circle:

〈Z(β ± iτ)〉nGUE = 1

π

∫ 2a

−2a
dλ e∓iτλ

× e−βλ
√

4a2 − λ2

n∑

k=1

an−kλ2(n−k) ∀ even n

=
n∑

k=1

an−k a2
(
−a2

)−2k
4n−k

[(
e2iπk + e2iπn

)
a2(k+n)

× Ŵ

(
−k + n + 1

2

)

× 1 F̃2

(
−k + n + 1

2
; 1

2
, −k + n + 2; a2(β ± iτ)2

)

+a(β ± iτ)
(

a2k(−a)2n − (−a)2ka2n
)

Ŵ(−k + n + 1)

× 1 F̃2

(
−k + n + 1; 3

2
, −k + n + 5

2
; a2(β ± iτ)2

)]

∀ even n. (5.120)

where 1 F̃2 (A; B, C; D) is the regularized Hypergeometric

function.

Repeating the same calculation in high temperature (β =
1/T → 0) limit we get:

[〈Z(β ± iτ)〉nGUE]β=0 = 1

π

∫ 2a

−2a

dλ e∓iτλ

√
4a2 − λ2

n∑

k=1

an−kλ
2(n−k) ∀ even n

=
n∑

k=1

an−k

e−2iπk4n−ka−2k+2n+2

√
πŴ(−k + n + 2)Ŵ

(
−k + n + 5

2

)

×
[{

(−1)2k + (−1)2n
}

Ŵ

(
−k + n + 1

2

)

×Ŵ

(
−k + n + 5

2

)

× 1 F2

(
−k + n + 1

2
; 1

2
,−k + n + 2;−a2τ 2

)

∓ 2iaτ
{
(−1)2k + (−1)2n+1

}

×Ŵ(−k + n + 1)Ŵ(−k + n + 2)

× 1 F2

(
−k + n + 1; 3

2
,−k + n + 5

2
;−a2τ 2

)]

∀ even n. (5.121)

For different polynomial potentials we can actually calculate

the expansion coefficients an−k and get the exact form of

Z(β ± iτ).
At finite temperature the disconnected part of the Green’s

function (Gdc(β, τ )) can be expressed as:

Gdc(β, τ ) = 〈Z(β + iτ)〉〈Z(β − iτ)〉
〈Z(β)〉2

=

⎧
⎨
⎩

n∑

q=1

an−q

(
−a2

)−2q
4−q

[(
e2iπq + e2iπn

)
a2(q+n)

×Ŵ

(
−q + n + 1

2

)

× 1 F̃2

(
−q + n + 1

2
; 1

2
,−q + n + 2; a2β2

)

+aβ
(

a2q (−a)2n − (−a)2qa2n
)

Ŵ(−q + n + 1)

× 1 F̃2

(
−q + n + 1; 3

2
,−q + n + 5

2
; a2β2

)]}−2

×

⎧
⎨
⎩

n∑

k=1

an−k

(
−a2

)−2k
4−k

[(
e2iπk + e2iπn

)
a2(k+n)

×Ŵ

(
−k + n + 1

2

)

1 F̃2

(
−k + n + 1

2
; 1

2
, −k + n + 2; a2(β + iτ)2

)

+a(β + iτ)
(

a2k(−a)2n − (−a)2ka2n
)

Ŵ(−k + n + 1)
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× 1 F̃2

(
−k + n + 1; 3

2
, −k + n + 5

2
; a2(β + iτ)2

)]}

×
{

n∑

m=1

an−m

(
−a2

)−2m
4−m

[(
e2iπm + e2iπn

)
a2(m+n)

×Ŵ

(
−m + n + 1

2

)

× 1 F̃2

(
−m + n + 1

2
; 1

2
, −m + n + 2; a2(β − iτ)2

)

+a(β − iτ)
(

a2m(−a)2n − (−a)2ma2n
)

Ŵ(−m + n + 1)

× 1 F̃2

(
−m + n + 1; 3

2
, −m + n + 5

2
; a2(β − iτ)2

)]}

∀ even n, m. (5.122)

Further taking high temperature limit we get the following

simplified expression for SFF as given by:

Gdc(τ ) =
[ 〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]

β=0

= 1

N 2

⎧
⎨
⎩

n∑

k=1

an−k

e−2iπk4n−ka−2k+2n+2

√
πŴ(−k + n + 2)Ŵ

(
−k + n + 5

2

)

×
[{

(−1)2k + (−1)2n
}

Ŵ

(
−k + n + 1

2

)

×Ŵ

(
−k + n + 5

2

)

× 1 F2

(
−k + n + 1

2
; 1

2
,−k + n + 2;−a2τ 2

)

−2iaτ
{
(−1)2k + (−1)2n+1

}
Ŵ(−k + n + 1)

×Ŵ(−k + n + 2)

× 1 F2

(
−k + n + 1; 3

2
,−k + n + 5

2
;−a2τ 2

)]}

×

⎧
⎨
⎩

n∑

m=1

an−k

e−2iπm4n−ma−2m+2n+2

√
πŴ(−m + n + 2)Ŵ

(
−m + n + 5

2

)

×
[{

(−1)2m + (−1)2n
}

Ŵ

(
−m + n + 1

2

)

×Ŵ

(
−m + n + 5

2

)

× 1 F2

(
−m + n + 1

2
; 1

2
,−m + n + 2;−a2τ 2

)

+2iaτ
{
(−1)2m + (−1)2n+1

}
Ŵ(−m + n + 1)

×Ŵ(−m + n + 2)

× 1 F2

(
−m + n + 1; 3

2
,

−m + n + 5

2
;−a2τ 2

)]}
. (5.123)

Next, we will consider late time limiting behaviour of the

one point function, which can be expressed as:

lim
τ→∞

〈Z(β ± iτ)〉nGU E ≡ 〈Z(β ± i∞)〉nGU E (5.124)

and at the high temperature (β = 1/T → 0) limit we get:

lim
τ→∞

[〈Z(β ± iτ)〉nGU E ]β=0 ≡ 〈Z(0±i∞)〉nGU E . (5.125)

Now, it is important to note from the previous discussion

on SFF that, the connected part of the Green’s function Gc

part of SFF depends on the two point correlation function

〈δD(λ)δD(μ)〉 and from RMT the exact from of this two-

point function near the centre of spectrum (mean) of the eigen

values is known and can be expressed in the following form:

〈δD(λ)δD(μ)〉 = − sin2[N (λ − μ)]
(π N (λ − μ))2

+ 1

π N
δ(λ − μ)

(5.126)

which can be derived using the method of orthogonal poly-

nomials for Gaussian ensembles. This is true for any polyno-

mial potential measure whose matrix (operator) is of single

trace. Various polynomial potentials change only the eigen

value distribution near edges of the distribution. There are

two parts and they give different measures:

1. 1/N 2 part with sine squared function gives the ramp and

have subdominant contribution.

2. 1/N part with Delta function gives the plateau and dom-

inant.

Next, using Eq. (5.126) in Eq. (5.112) we get the following

simplified expression for the connected part of the Green’s

function Gc as given by:

Gc(τ ) = G(τ ) − Gdc(τ )

= 1

N 2

∫
dλ dμ e−iτ(λ−μ)

×
[
− sin2[N (λ − μ)]

(π N (λ − μ))2
+ 1

π N
δ(λ − μ)

]
, (5.127)

where we have used the fact that:

∫
dλ dμ 〈D(λ)〉〈D(μ)〉 = N 2. (5.128)

To perform the integral present in the expression for Gc we

further substitute, λ + μ = E, λ − μ = ω. Consequently,

the measure can be expressed as, dλ dμ = d E dω. Then at

high temperature using this fact Eq. (5.127) can be recast as:

Gc(τ ) = G(τ ) − Gdc(τ ) = 1

N 2

∫ ∞

−∞

∫ ∞

−∞
d E dω e−iτω
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×
[
− 1

π2

sin2[Nω]
(Nω)2

+ 1

π N
δ(ω)

]
. (5.129)

Then, at finite temperature the connected part of the Green’s

function can be written as:

Gc(β, τ ) = G(β, τ ) − Gdc(β, τ )

= 1

N 2

∫ ∞

−∞

∫ ∞

−∞
d E dω e−βE e−iτω

×
[
− 1

π2

sin2[Nω]
(Nω)2

+ 1

π N
δ(ω)

]

= 2π

N 2
δ(β)

∫ ∞

−∞
dω e−iτω

×
[
− 1

π2

sin2[Nω]
(Nω)2

+ 1

π N
δ(ω)

]
, (5.130)

where δ(β) is the Dirac Delta Function, which is defined as:

δ(β) = 1

2π

∫ ∞

−∞
d E e−βE . (5.131)

Since the integral over E gives trivial Dirac Delta function

we choose our working region for which E = 0 (at hight

temperature limit). Then the remaining integrand is only over

ω and it finally gives:

S(τ ) = N 2Gc(τ ) =
∫ ∞

−∞
dω e−iτω

×
[
− 1

π2

sin2[Nω]
(Nω)2

+ 1

π N
δ(ω)

]
, (5.132)

which gives us finally the following simplified expression:

S(τ ) =
{

τ
(2π N )2 − 1

N
+ 1

(π N )
, τ < 2π N

1
π N

, τ > 2π N
, (5.133)

From the obtained result it is clearly observed that we get the

linear growth in the region τ < 2π N and the constant plateau

type behaviour in the region τ > 2π N . Also it is important

to note that change in behaviour from region τ < 2π N to

region τ > 2π N is abrupt. To show the behaviour of SFF

explicitly we define argument of sin function as:

x ≡ N (λ − μ) = Nω = constant (5.134)

as we choose N → ∞ and ω → 0. In this limiting situation

we get the following results:

1. For large x(≫ 1), sin x
x

→ 0 and only the Dirac Delta

function remains intact. So in this specific limit the van-

ishing of sin term implies that the oscillatory fluctuations

don’t contribute in the final expression for SFF. This lim-

iting situation is called spectral rigidity.

2. For small x(≪ 1), sin x
x

→ 1. In this limiting situation

the integral gets maximum contribution from the ω = 0

region. And this part contributes in ramp region.

We can also measure dip-time and it will give the change of

decay behaviour exactly at the critical point. A direct relation

between fall-off behaviour of the SFF and the edge behaviour

of level density, at critical points can be established using

Paley–Wiener Theorem [59].

Now we consider a function g(ζ ) which is defined on a

compact spatial support and its Fourier transform F(η) has

a lower bound on the rate of decay is given by the following

expression:

|F(η)| � (1 + η)−N γN . (5.135)

Here N is a rational number and γN is a real constant. A direct

relation between the decay of the SFF and the edge effect of

mean level density is given by the following expression:

|〈Z(±iτ)〉| �
1

(±τ)n
(4a)

∣∣∣∣
∫ 2a

−2a

dn

dλn
(ρ(λ)) dλ

∣∣∣∣ . (5.136)

For the proof of this statement see Ref. [59]. For decay

behaviour of SFF at late time we use asymptotic behaviour

of the solution appearing in the Ref. [98].

Now to compute SFF we need to add both connected and

disconnected part of the Green’s function G(= Gc + Gdc).

Therefore, for different even polynomial potential we get

finally the following expression for SFF at finite temperature:

SFF(β, τ ) ≡ G(β, τ )

=

⎧
⎨
⎩

Gdc(β, τ ) + τ
(2π N )2 − 1

N
+ 1

(π N )
, τ < 2π N

Gdc(β, τ ) + 1
π N

, τ > 2π N
,

(5.137)

where SFF(τ ) is defined with proper normalization.

After substituting the expression for Gdc(β, τ ) we get the

following expression for the SFF at finite temperature:

SFF(β, τ ) ≡

⎧
⎨
⎩

n∑

q=1

an−q

(
−a2

)−2q
4−q

×
[(

e2iπq + e2iπn
)

a2(q+n)Ŵ

(
−q + n + 1

2

)

× 1 F̃2

(
−q + n + 1

2
; 1

2
, −q + n + 2; a2β2

)

+aβ
(

a2q (−a)2n − (−a)2q a2n
)

Ŵ(−q + n + 1)

× 1 F̃2

(
−q + n + 1; 3

2
,−q + n + 5

2
; a2β2

)⎤
⎦
⎫
⎬
⎭

−2

×

⎧
⎨
⎩

n∑

k=1

an−k

(
−a2

)−2k
4−k

×
[(

e2iπk + e2iπn
)

a2(k+n)Ŵ

(
−k + n + 1

2

)

× 1 F̃2

(
−k + n + 1

2
; 1

2
, −k + n + 2; a2(β + iτ)2

)

+a(β + iτ)
(

a2k (−a)2n − (−a)2ka2n
)

Ŵ(−k + n + 1)
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× 1 F̃2

(
−k + n + 1; 3

2
, −k + n + 5

2
; a2(β + iτ)2

)⎤
⎦
⎫
⎬
⎭

×
{

n∑

m=1

an−m

(
−a2

)−2m
4−m

[(
e2iπm + e2iπn

)
a2(m+n)

×Ŵ

(
−m + n + 1

2

)

× 1 F̃2

(
−m + n + 1

2
; 1

2
, −m + n + 2; a2(β − iτ)2

)

+a(β − iτ)
(

a2m (−a)2n − (−a)2ma2n
)

Ŵ(−m + n + 1)

× 1 F̃2

(
−m + n + 1; 3

2
, −m + n + 5

2
; a2(β − iτ)2

)⎤
⎦
⎫
⎬
⎭

+
{

τ

(2π N )2 − 1
N

+ 1
(π N )

, τ < 2π N

1
π N

, τ > 2π N .
(5.138)

Further taking the high temperature limit we get the following

simplified expression for SFF as given by:

SFF(τ ) ≡ 1

N 2

{
n∑

k=1

an−k

× e−2iπk4n−ka−2k+2n+2

√
πŴ(−k + n + 2)Ŵ

(
−k + n + 5

2

)

×
[{

(−1)2k + (−1)2n
}

Ŵ

(
−k + n + 1

2

)

×Ŵ

(
−k + n + 5

2

)

× 1 F2

(
−k + n + 1

2
; 1

2
,−k + n + 2; −a2τ 2

)

−2iaτ
{
(−1)2k + (−1)2n+1

}
Ŵ(−k + n + 1)

×Ŵ(−k + n + 2)

× 1 F2

(
−k + n + 1; 3

2
,−k + n + 5

2
; −a2τ 2

) n∑

q=1

⎤
⎦
⎫
⎬
⎭

×

⎧
⎨
⎩

n∑

q=1

n∑

m=1

an−m

e−2iπm4n−ma−2m+2n+2

√
πŴ(−m + n + 2)Ŵ

(
−m + n + 5

2

)

×
[{

(−1)2m + (−1)2n
}

Ŵ

(
−m + n + 1

2

)

×Ŵ

(
−m + n + 5

2

)

× 1 F2

(
−m + n + 1

2
; 1

2
,−m + n + 2; −a2τ 2

)

+2iaτ
{
(−1)2m + (−1)2n+1

}
Ŵ(−m + n + 1)

×Ŵ(−m + n + 2)

× 1 F2

(
−m + n + 1; 3

2
,−m + n + 5

2
; −a2τ 2

) n∑

q=1

⎤
⎦
⎫
⎬
⎭

+

⎧
⎨
⎩

τ
(2π N )2 − 1

N
+ 1

(π N )
, τ < 2π N

1
π N

, τ > 2π N .

(5.139)

5.5 SFF for even polynomial random potentials

5.5.1 For Gaussian random potential

Let us start our discussion with Gaussian random potential

given by:

V (M) = 1

2
M2. (5.140)

Now for a single interval (n = 1) with end points −2a and

2a (semi-circle) we get:

ω(λ + i0) = λ

2
+ ia0

√
4a2 − λ2, (5.141)

and we get the following expression for density function for

eigen value of the random matrix M as given by:

ρ(λ) = 1

π

√
4a2 − λ2 a0. (5.142)

Further, Taylor expanding ω(λ + i0) we get the following

expression:

4a0a6

λ5
+ 2a0a4

λ3
+ 2a0a2

λ
+
(

1

2
− a0

)
λ+O

((
1

λ

)6
)

= 1

λ
.

(5.143)

Then comparing the both the sides of above expression we

get:

a0 = 1/2, (5.144)

a = 1. (5.145)

Then the density function in terms of the eigen value of ran-

dom matrix M is given by the following expression:

ρ(λ) = 1

2π

√
4a2 − λ2, (5.146)

and one point function of the partition function in presence

of the Gaussian random potential can be expressed as:

〈Z(β ± iτ)〉 = 1

2π

∫ 2a

−2a

dλ
√

4a2 − λ2 e∓iτλ e−βλ

= a2
0 F̃1

(
2; a2(β ± iτ)2

)
, (5.147)

where 0 F̃1 (A; B) is the regularized Hypergeometric func-

tion. Now here substituting τ = 0 we get:
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〈Z(β)〉 = 1

2π

∫ 2a

−2a
dλ
√

4a2 − λ2 e−βλ = a2
0 F̃1

(
2; a2β2

)
.

(5.148)

Further taking high temperature limit we get the following

simplified expression for the one point function:

[〈Z(β ± iτ)〉]β=0 = 1

2π

∫ 2a

−2a

dλ
√

4a2 − λ2 e∓iτλ

= ±a J1(±2aτ)

τ
, (5.149)

which can be further simplified by taking the limit T =√
Nτ → ∞ as:

[〈Z(β ± iT )〉]β=0 = − 1√
π

a2

(
± 1

aT

)3/2

× cos

(
1

4
(±8aT + π)

)
. (5.150)

Now for the quadratic random potential disconnected part of

the Green’s function can be computed at finite temperature

as:

Gdc(β, τ ) = 〈Z(β + iτ)〉〈Z(β − iτ)〉
〈Z(β)〉2

=
0 F̃1

(
2; a2(β + iτ)2

)
0 F̃1

(
2; a2(β + iτ)2

)

(
0 F̃1

(
2; a2β2

))2
, (5.151)

which can be further simplified in the high temperature lim-

iting situation as:

Gdc(τ ) =
[ 〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]

β=0

= −a2

τ 4

J1(2aτ)J1(−2aτ)

N 2
. (5.152)

Further taking the limit T =
√

Nτ → ∞ we get the follow-

ing simplified result:

Gdc(T ) =
[ 〈Z(β + iT )〉〈Z(β − iT )〉

〈Z(β)〉2

]

β=0

= (−1)3/2 a4

2N 2π

(
1

aT

)3

cos

(
1

2
(8aT + π)

)
. (5.153)

Now to compute SFF we need to add both connected and

disconnected part of the Green’s function G(= Gc + Gdc).

Therefore, for quadratic polynomial potential we get finally

the following expression for SFF at finite temp:

SFF(β, τ ) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 F̃1

(
2;a2(β+iτ)2

)
0 F̃1

(
2;a2(β+iτ)2

)

(
0 F̃1

(
2;a2β2

))2

+ τ

(2π N )2 − 1
N

+ 1
(π N )

, τ < 2π N

0 F̃1

(
2;a2(β+iτ)2

)
0 F̃1

(
2;a2(β+iτ)2

)

(
0 F̃1

(
2;a2β2

))2

+ 1
π N

, τ > 2π N

,(5.154)

where SFF(β, τ ) is defined with proper normalization and

in our prescription it gives the total Green’s function as men-

tioned above. Further simplifying the result for high temper-

ature limit we get the following expression for SFF, as given

by:

SFF(τ ) ≡

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− a2

τ 4
J1(2aτ)J1(−2aτ)

N 2

+ τ
(2π N )2 − 1

N
+ 1

(π N )
, τ < 2π N

− a2

τ 4
J1(2aτ)J1(−2aτ)

N 2 + 1
π N

, τ > 2π N

,

(5.155)

Further taking the limit T =
√

Nτ → ∞ we get the follow-

ing simplified result for SFF:

SFF(T )

≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)3/2 a4

2N 2π

(
1

aT

)3
cos

(
1
2
(8aT + π)

)

+ T

(2π)2 N 5/2 − 1
N

+ 1
(π N )

, T < 2π N 3/2

(−1)3/2 a4

2N 2π

(
1

aT

)3

cos
(

1
2
(8aT + π)

)
+ 1

π N
, T > 2π N 3/2

.

(5.156)

From Fig. 23a–d we see that SFF at finite temperature

decays with increasing τ and reach zero. But with changing

β, SFF values remains almost same initially (for higher β or

lower temperature).

For both the plots we have shown that SFF decays to

zero for finite temperature. In Fig. 24a–c it is observed that

SFF with variation in N get saturated at different value of τ .

But with increasing N the value of the saturation point, will

decrease. Subtracting the change of axis[SF F |τ=0] we get

the predicted bound of SFF.

5.5.2 For quartic random potential

Here we consider quartic random potential which can be writ-

ten as:

V (M) = 1

2
M2 + gM4. (5.157)

For a single interval (n = 1) with end points -2a and 2a (semi-

circle) we get the following expression for density function

for eigen value of the random matrix M as given by:

ρ(λ) = 1

π

√
4a2 − λ2 (a1λ

2 + a0). (5.158)

Now, for the quartic random potential ω(λ + i0) can be

expressed as:

ω(λ + i0) = 1

2
(2C2λ + 4gλ3)

+i
√

4a2 − λ2(a1λ
2 + a0). (5.159)
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Fig. 23 Spectral Form Factor for Gaussian potential at different finite temperature[β] with N = 1000 and a = 0.1

Now Taylor expanding ω(λ + i0) near λ → ∞ gives the

following expression:

(
2a1a2 − a0 + 1

2

)
λ + λ3 (2g − a1) + 10a1a8 + 4a0a6

λ5

+4a1a6 + 2a0a4

λ3
+ 2a1a4 + 2a0a2

λ

+O

((
1

λ

)6
)

= 1

λ
. (5.160)
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Fig. 24 Time variation of SFF for different N at β = 0. Here we used a scale factor SF F + 0.01137

Therefore equating both sides of the above equation

gives:

a1 = 2g, (5.161)

a0 = 4a2g + 1

2
, (5.162)

along with the following constraint condition:

12ga4 + a2 = 1. (5.163)

Then the density function in terms of the eigen value of ran-

dom matrix M is given by the following expression:

ρ(λ) = 1

π

(
1

2
+ 4ga2 + 2gλ2

) √
4a2 − λ2. (5.164)
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Fig. 25 Eigen value distribution curve of density function for quartic potential for different parameter values. Here we fix a = 1

Further solving the constraint we get:

a2 =
√

48g + 1 − 1

24g
, (5.165)

and here a2 has imaginary value for g � − 1
48

and the critical

value is given by:

gc = − 1

48
. (5.166)

In Fig. 25a, b density function ρ(λ) for quartic potential

is plotted with a = 1. The curve follows from Eq. (5.164).

When g = 0 it matches with Wigner law. For g > 0 the curve

shows a plateau region whereas for g < 0 it preserve the

semicircular nature with minor deviation.The plateau region

denotes the deviation from Wigner law even at very less effect

of quartic term (as g is chosen to be small). The plateau region

though converge with semicircle at end point. At gc = − 1
48

the curve deviates but converge to semicircle at end points

where as for g < gc the curve never converge to semicircle

one supporting its non-existence (see Eq. (5.166) for details).

Now we will calculate the one point function of the parti-

tion function for quartic random potential, which is given by

the following expression:

〈Z(β ± iτ)〉 = 1

π

∫ 2a

−2a

dλ

(
1

2
+ 4ga2 + 2gλ2

)

×
√

4a2 − λ2 e∓iτλ e−βλ

= a

(β ± iτ)2

[
(24a2g + 1)(β ± iτ)I1(2a(β ± iτ))

−24agI2(2a(β ± iτ))
]
, (5.167)

where In(x) is the modified Bessel function of first kind with

order n.

Further taking the high temperature limit we get the fol-

lowing simplified expression for the one point function:

[〈Z(β ± iτ)〉]β=0 = 1

π

∫ 2a

−2a

dλ

(
1

2
+ 4ga2 + 2gλ2

)

×
√

4a2 − λ2 e∓iτλ

= a

τ 2

[
± (24a2g + 1)τ I1(±2aτ)

−24agI2(±2aτ)
]
. (5.168)

Therefore the first term vanishes exactly at the critical point

gc = − 1
48

which gives:

a2 = 1

24gc

= 2. (5.169)

Now taking the limit T =
√

Nt → ∞ we get finally the

following simplified result for the one point function:
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[〈Z(β ± iT )〉]β=0

= − 1

(±T )3/2

√
a

π

⎡
⎣
(

24a2g + 1
)

cos
(
±2aT + π

4

)

±
24g sin

(
±2aT + π

4

)

T

]

+O

(
1

(±T )
7
2

)
. (5.170)

Now for the quartic random potential disconnected part of

the Green’s function can be computed at finite temperature

as:

Gdc(β, τ ) = 〈Z(β + iτ)〉〈Z(β − iτ)〉
〈Z(β)〉2

= β4

(β2 + τ2)2

1
[(

24a2g + 1
)
β I1(2aβ) − 24agI2(2aβ)

]2

×
[(

24a2g + 1
)

(β + iτ)I1(2a(β + iτ))

−24agI2(2a(β + iτ))
]

×
[(

24a2g + 1
)

(β − iτ)I1(2a(β − iτ))

−24agI2(2a(β − iτ))
]
, (5.171)

which can be further simplified in the high temperature lim-

iting situation as:

Gdc(τ ) =
[ 〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]

β=0

= a2

N 2τ4

[(
24a2g + 1

)
(iτ)I1(2a(iτ))

−24agI2(2a(iτ))
]

×
[(

24a2g + 1
)

(−iτ)I1(2a(−iτ))

−24agI2(2a(−iτ))
]
. (5.172)

Further taking the limit T =
√

Nτ → ∞ we get the follow-

ing simplified result:

Gdc(T ) =
[ 〈Z(β + iT )〉〈Z(β − iT )〉

〈Z(β)〉2

]

β=0

= i

T 3

a

N 2π

{[(
24a2g + 1

)
cos

(
2aT + π

4

)

+
24g sin

(
2aT + π

4

)

T

]
+ O

(
1

(T )
7
2

)}

×
{[(

24a2g + 1
)

cos
(

2aT − π

4

)
−

24g sin
(
2aT − π

4

)

T

]

+O

(
1

(−T )
7
2

)}
. (5.173)

Now to compute SFF we need to add both connected and

disconnected part of the Green’s function G(= Gc + Gdc).

Therefore, for quartic polynomial potential we get finally the

following expression for SFF at finite temp:

SFF(β, τ ) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β4

(β2+τ 2)2
1[

(24a2g+1)β I1(2aβ)−24agI2(2aβ)
]2

×
[(

24a2g + 1
)
(β + iτ)I1(2a(β + iτ))

−24agI2(2a(β + iτ))]

×
[(

24a2g + 1
)
(β − iτ)I1(2a(β − iτ))

−24agI2(2a(β − iτ))]

+ τ
(2π N )2 − 1

N
+ 1

(π N )
, τ < 2π N

β4

(β2+τ 2)2
1

[(24a2g+1)β I1(2aβ)−24agI2(2aβ)]2

×
[(

24a2g + 1
)
(β + iτ)I1(2a(β + iτ))

−24agI2(2a(β + iτ))]

×
[(

24a2g + 1
)
(β − iτ)I1(2a(β − iτ))

−24agI2(2a(β − iτ))]

+ 1
π N

, τ > 2π N

,

(5.174)

where SFF(β, τ ) is defined with proper normalization and

in our prescription it gives the total Green’s function as men-

tioned above. Further simplifying the result for high temper-

ature limit we get the following expression for SFF, as given

by:

SFF(τ ) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2

N 2τ 4

[(
24a2g + 1

)
(iτ)I1(2a(iτ))

−24agI2(2a(iτ))
]

×
[(

24a2g + 1
)
(−iτ)I1(2a(−iτ))

−24agI2(2a(−iτ))
]

+ τ
(2π N )2 − 1

N
+ 1

(π N )
, τ < 2π N

a2

N 2τ 4

[(
24a2g + 1

)
(iτ)I1(2a(iτ))

−24agI2(2a(iτ))
]

×
[(

24a2g + 1
)
(−iτ)I1(2a(−iτ))

−24agI2(2a(−iτ))
]

+ 1
π N

, τ > 2π N

,

(5.175)

Further taking the limit T =
√

Nτ → ∞ we get the

following simplified result for SFF:

SFF(T ) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
T 3

a
N 2π

{[ (
24a2g + 1

)
cos

(
2aT + π

4

)

+ 24g sin(2aT + π
4 )

T

]
+ O

(
1

(T )
7
2

)}

×
{[ (

24a2g + 1
)

cos
(
2aT − π

4

)

− 24g sin(2aT − π
4 )

T

]
+ O

(
1

(−T )
7
2

)}

+ T

(2π)2 N 5/2 − 1
N

+ 1
(π N )

, T < 2π N 3/2

i
T 3

a
N 2π

{[ (
24a2g + 1

)
cos

(
2aT + π

4

)

+ 24g sin(2aT + π
4 )

T

]
+ O

(
1

(T )
7
2

)}

×
{[ (

24a2g + 1
)

cos
(
2aT − π

4

)

− 24g sin(2aT − π
4 )

T

]
+ O

(
1

(−T )
7
2

)}

+ 1
π N

, T > 2π N 3/2

.

(5.176)
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Further simplifying the result for high temperature limit

we get the following expression for SFF, as given by:

SFF(τ ) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2

N 2τ 4

[(
24a2g + 1

)
(iτ)I1(2a(iτ))

−24agI2(2a(iτ))
]

×
[(

24a2g + 1
)
(−iτ)I1(2a(−iτ))

−24agI2(2a(−iτ))
]

+ τ
(2π N )2 − 1

N
+ 1

(π N )
, τ < 2π N

a2

N 2τ 4

[(
24a2g + 1

)
(iτ)I1(2a(iτ))

−24agI2(2a(iτ))
]

×
[(

24a2g + 1
)
(−iτ)I1(2a(−iτ))

−24agI2(2a(−iτ))
]

+ 1
π N

, τ > 2π N

.

(5.177)

From Fig. 26a, b, we see that SFF at finite temperature

decays with increasing τ and reach zero. But with changing

β SFF values remains almost same initially (for higher β or

lower value of temperature).

From both the figures we have shown that SFF decays to

zero for finite temperature. In Fig. 27a–c, it is observed that

SFF with variation in N get saturated at different value of τ .

But with increasing N the value of the saturation point, will

decrease. Subtracting the change of axis[SF F |τ=0] we get

the predicted bound of SFF.

5.5.3 For sextic random potential

In this subsection we consider sextic random potential, as

given by the following expression:

V (M) = 1

2
M2 + gM4 + hM6. (5.178)

For a single interval (n = 1) with end points −2a and 2a

(semi-circle) we get the following expression for the density

function in terms of the eigen value of random matrix M :

ρ(λ) = 1

π

√
4a2 − λ2 (a2λ

4 + a1λ
2 + a0). (5.179)

Also for sextic potential ω(λ + i0) can be expressed as:

ω(λ + i0) = 1

2

(
4gλ3 + 6hλ5 + λ

)

+ i
√

4a2 − λ2(a2λ
4 + a1λ

2 + a0). (5.180)

In Fig. 28a, b for sextic potential behaviour of density

function ρ(λ) is shown. The curve follows from Eq. (5.185).

Again choosing g = h = 0 will produce the Wigner law.

Deviating g and h by small amount shows deviation from

Wigner semicircle law. For g > 0, h > 0 the curve shows

plateau region though merge with semicircle at end points.

But choosing g < 0, h < 0 and g = 0 and h < 0 show

deviation from semicircle and don’t converge even at end

points.

Further expanding ω(λ + i0) near λ → ∞ we get:

λ3
(

2a2a2 − a1 + 2g
)

+
(

2a2a4 + 2a1a2 − a0 + 1

2

)
λ

+4a2a6 + 2a1a4 + 2a0a2

λ

+λ5 (3h − a2) + O

((
1

λ

)3
)

= 1

λ
. (5.181)

Therefore, equating both the sides of the above equation we

get:

a2 = 3h, (5.182)

a1 = 2g + 6a2h, (5.183)

a0 = 18a4h + 4a2g + 1

2
, (5.184)

along with we get one additional constraint condition, as

given by:

60a6h + 12ga4 + a2 = 1.

Then, for the sextic random potential we get the following

simplified expression for the density function in terms of the

eigen value of the random matrix M , as given by:

ρ(λ) = 1

π

√
4a2 − λ2

(
18a4h + λ2

(
6a2h + 2g

)

+4a2g + 3hλ4 + 1

2

)
. (5.185)

Solving the constraint condition we get, a2 in terms of g and

h. The real root for a2 is given by the following expression:

a2 = F(g, h)

30h
− 180h − 144g2

1080hF(g, h)
− g

15h
, (5.186)

where we define the function F(g, h) as:

F(g, h) = 3

√
−8g3 + 5

√
−144g3h2 − 3g2h2 + 270gh3 + 2025h4 + 5h3 + 15gh + 225h2. (5.187)

Here we can check that putting h = 0 the constraint condition

reduces to the following simplified form:

12ga4 + a2 = 1 (5.188)

and the solution of this equation is given by the following

expression:

a2 =
√

48g + 1 − 1

24g
. (5.189)
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Fig. 26 Spectral Form Factor for quartic potential at different finite temperature[β] with N = 1000 and a = 0.1

Here the critical value with h = 0 is given by:

gc = − 1

48
, (5.190)

which is exactly same result as obtained for quartic potential

in the previous subsection.

Now the expression for the one point function for partition

function at finite temperature can be computed as:

〈Z(β ± iτ)〉 = 1

π

∫ 2a

−2a

dλ
√

4a2 − λ2

×
(

18a4h + λ2
(

6a2h + 2g
)

+ 4a2g + 3hλ4 + 1

2

)

×e∓iτλ e−βλ

= a

(β ± iτ)4

[
(β ± iτ)I1(2a(β ± iτ))

×
(

360a2h + β2
(

180a4h + 24a2g + 1
)

±2iβτ
(

180a4h + 24a2g + 1
)

−τ 2
(

180a4h + 24a2g + 1
))

−24aI2(2a(β ± iτ))

×
(

30h + (β ± iτ)2
(

15a2h + g
))]

. (5.191)

Further in the high temperature limit the one point function

for partition function can be simplified as:

[〈Z(β ± i t)〉]β=0 = 1

π

∫ 2a

−2a
dλ
√

4a2 − λ2

×
(

18a4h + λ2
(

6a2h + 2g
)

+ 4a2g + 3hλ4 + 1

2

)
e∓iτλ

= a

τ4

[
(J1(±2aτ)((±τ)3

×(180a4h + 24a2g + 1) ∓ 360a2hτ)

−24J2(±2aτ)(τ2(15a2h + g) − 30h))
]
. (5.192)

Next, simplifying the result for one point function in the

limit T =
√

Nτ → ∞ we get:

[〈Z(β ± iT )〉]β=0 =
√

a

π

1

(±T )
3
2

×
[

−
(

1 + 24a2g + 180a4h
)

cos
(π

4
± 2aT

)

±24a
g + 15a2h

T
sin
(π

4
± 2aT

)

+360a2h

T 2
cos

(π

4
± 2aT

)
+ O

(
1

T 4

)]
. (5.193)

Now for the quadratic random potential disconnected part of

the Green’s function can be computed at finite temperature

as:

Gdc(β, τ ) = 〈Z(β + iτ)〉〈Z(β − iτ)〉
〈Z(β)〉2

= β8

(β2 + τ 2)4

[
β I1(2aβ)

×
(

360a2h + β2
(

180a4h + 24a2g + 1
))

−24aI2(2aβ)
(

30h + β2
(

15a2h + g
))]−2
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Fig. 27 Time variation of SFF for different N. Here we shift reference axis[SFF] to SF F |τ=0

× [(β + iτ)I1(2a(β + iτ))

×
(

360a2h + β2
(

180a4h + 24a2g + 1
)

+2iβτ
(

180a4h + 24a2g + 1
)

−τ 2
(

180a4h + 24a2g + 1
))

−24aI2(2a(β + iτ))

×
(

30h + (β + iτ)2
(

15a2h + g
))]

× [(β − iτ)I1(2a(β − iτ))

×
(

360a2h + β2
(

180a4h + 24a2g + 1
)

−2iβτ
(

180a4h + 24a2g + 1
)

−τ 2
(

180a4h + 24a2g + 1
))
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Fig. 28 Eigen value distribution curve of density function for sextic potential for different parameter values. Here we fix a = 1

−24aI2(2a(β − iτ))

×
(

30h + (β − iτ)2
(

15a2h + g
))]

, (5.194)

which can be further simplified in the high temperature lim-

iting situation as:

Gdc(τ ) =
[ 〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]

β=0

= a2

N 2τ 8

[
(J1(2aτ)(τ 3(180a4h + 24a2g + 1)

−360a2hτ) −24J2(2aτ)(τ 2(15a2h + g) − 30h))
]

×
[
(J1(−2aτ)((−τ)3(180a4h + 24a2g + 1)

+360a2hτ) −24J2(−2aτ)(τ 2(15a2h + g) − 30h))
]
.

(5.195)

Further taking the limit T =
√

Nτ → ∞ we get the follow-

ing simplified result:

Gdc(T ) =
[ 〈Z(β + iT )〉〈Z(β − iT )〉

〈Z(β)〉2

]

β=0

= i

T 3

a

N 2π

[
−
(

1 + 24a2g + 180a4h
)

× cos
(π

4
+ 2aT

)

+24a
g + 15a2h

T
sin
(π

4
+ 2aT

)

+360a2h

T 2
cos

(π

4
+ 2aT

)
+ O

(
1

T 4

)]

×
[
−
(

1 + 24a2g + 180a4h
)

cos
(π

4
− 2aT

)

−24a
g + 15a2h

T
sin
(π

4
− 2aT

)

+360a2h

T 2
cos

(π

4
− 2aT

)
+ O

(
1

T 4

)]
. (5.196)

Now to compute SFF we need to add both connected and

disconnected part of the Green’s function G(= Gc + Gdc).

Therefore, for sextic polynomial potential we get finally the

following expression for SFF at finite temp:

SFF(β, τ ) ≡ β8

(β2 + τ2)4

[
β I1(2aβ)

(
360a2h

+β2
(

180a4h + 24a2g + 1
))

−24aI2(2aβ)
(

30h + β2
(

15a2h + g
))]−2

× [(β + iτ)I1(2a(β + iτ))

×
(

360a2h + β2
(

180a4h + 24a2g + 1
)

+2iβτ
(

180a4h + 24a2g + 1
)

−τ2
(

180a4h + 24a2g + 1
))

− 24aI2(2a(β + iτ))

123



Eur. Phys. J. C (2019) 79 :320 Page 53 of 107 320

×
(

30h + (β + iτ)2
(

15a2h + g
))]

× [(β − iτ)I1(2a(β − iτ))

×
(

360a2h + β2
(

180a4h + 24a2g + 1
)

−2iβτ
(

180a4h + 24a2g + 1
)

−τ2
(

180a4h + 24a2g + 1
))

−24aI2(2a(β − iτ))
(

30h + (β − iτ)2
(

15a2h + g
))]

+
{

τ
(2π N )2 − 1

N
+ 1

(π N )
, τ < 2π N

1
π N

, τ > 2π N
(5.197)

where SFF(β, τ ) is defined with proper normalization and

in our prescription it gives the total Green’s function as men-

tioned above.

Further simplifying the result for high temperature limit

we get the following expression for SFF, as given by:

SFF(τ ) ≡ a2

N 2τ8

[
(J1(2aτ)(τ3(180a4h + 24a2g + 1) − 360a2hτ)

−24J2(2aτ)(τ2(15a2h + g) − 30h))
]

×
[
(J1(−2aτ)((−τ)3(180a4h + 24a2g + 1) + 360a2hτ)

−24J2(−2aτ)(τ2(15a2h + g) − 30h))
]

+
{

τ

(2π N )2 − 1
N

+ 1
(π N )

, τ < 2π N

1
π N

, τ > 2π N
(5.198)

Further taking the limit T =
√

Nτ → ∞ we get the follow-

ing simplified result for SFF:

SFF(T ) ≡ i

T 3

a

N 2π

[
−
(

1 + 24a2g + 180a4h
)

× cos
(π

4
+ 2aT

)

+24a
g + 15a2h

T
sin
(π

4
+ 2aT

)

+360a2h

T 2
cos

(π

4
+ 2aT

)
+ O

(
1

T 4

)]

×
[
−
(

1 + 24a2g + 180a4h
)

cos
(π

4
− 2aT

)

−24a
g + 15a2h

T
sin
(π

4
− 2aT

)

+360a2h

T 2
cos

(π

4
− 2aT

)
+ O

(
1

T 4

)]

+
{

T

(2π)2 N 5/2 − 1
N

+ 1
(π N )

, T < 2π N 3/2

1
π N

, T > 2π N 3/2

(5.199)

From Fig. 29a, b, we see that SFF at finite temperature

decays with increasing τ and reach zero. But with changing

β SFF values remains almost same initially (for higher β).

In Fig. 30a–c, it is observed that SFF with variation in N

get saturated at different value of τ . But with increasing N

the value of the saturation point, will decrease. Subtracting

the change of axis[SF F |τ=0] we get the predicted bound of

SFF.

5.5.4 For octa random potential

Here we consider octa random potential, as given by the fol-

lowing expression:

V (M) = 1

2
M2 + gM4 + hM6 + k M8. (5.200)

For a single interval (n = 1) with end points -2a and 2a

(semi-circle) we get the following expression for the density

function in terms of the eigen value of the random matrix M ,

as given by:

ρ(λ) = 1

π

√
4a2 − λ2

(
a3λ

6 + a2λ
4 + a1λ

2 + a0

)
.

(5.201)

Then the function ω(λ + i0) can be expressed as:

ω(λ + i0) = 1

2

(
4gλ3 + 6hλ5 + 8kλ7 + λ

)

+i
√

4a2 − λ2
(

a3λ
6 + a2λ

4 + a1λ
2 + a0

)
. (5.202)

Further Taylor expanding ω(λ + i0) near λ → ∞ we get:

λ5
(

2a3a2 − a2 + 3h
)

+ λ3
(

2a3a4 + 2a2a2 − a1 + 2g
)

+
(

4a3a6 + 2a2a4 + 2a1a2 − a0 + 1

2

)
λ

+10a3a8 + 4a2a6 + 2a1a4 + 2a0a2

λ
+ λ7 (4k − a3)

+O

((
1

λ

)3
)

= 1

λ
. (5.203)

Therefore, equating both the sides of the above equation we

get:

a3 = 4k, (5.204)

a2 = 3h + 8a2k, (5.205)

a1 = 24a4k + 6a2h + 2g, (5.206)

a0 = 1

2

(
160a6k + 36a4h + 8a2g + 1

)
, (5.207)

along with an additional constraint condition:

a2 + 12a4g + 60a6h + 280a8k = 1 (5.208)

Solution of this constraint equation gives a2 in terms of g,

h and k. Since the solutions for a2 are very complicated, we

have not explicitly mentioned them here. Instead of writing

full solution here we can check that putting h = 0 the con-

straint condition reduces to the following simplified form:
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Fig. 29 Spectral Form Factor for sextic potential at different finite temperature[β] with N = 1000 and a = 0.1

12ga4 + a2 = 1 (5.209)

and the solution of this equation is given by the following

expression:

a2 =
√

48g + 1 − 1

24g
. (5.210)

Here the critical value with h = 0 and k = 0 is given by the

following expression:

gc = − 1

48
, (5.211)

which is exactly same result as obtained for quartic and sextic

(with h = 0) potential in the previous subsections.

Then, the final expression for the density function in terms

of the eigen value of the random matrix M can be written as:

ρ(λ) = 1

π

√
4a2 − λ2

(
80a6k + 6a4

(
3h + 4kλ2

)

+a2
(

4g + 6hλ2 + 8kλ4
)

+2gλ2 + 3hλ4 + 4kλ6 + 1

2

)
. (5.212)

In Fig. 31a, b for octic potential behaviour of density func-

tion ρ(λ) is shown. The curve follows from Eq. (5.212).

Again choosing g = h = k = 0 will produce the Wigner

law. Deviating g, h and k by small amount shows devia-

tion from Wigner semicircle law. For g = 0, h > 0, k > 0

the curve shows plateau region though merge with semi-

circle at end points. But choosing g > 0, h < 0, k < 0

and g > 0, h > 0, k < 0 show deviation from semicircle

and don’t converge even at end points. On the other hand,

if we choose g > 0, h > 0, k > 0 then we get a val-

ley region lying between two peaks of the maxima of the

density distribution of eigen values of the random matrices

under consideration. The same behaviour can be obtained

by fixing g > 0, h < 0, k > 0, g = h = k = 1 and

g = 0, h ≫ 0, k ≫ 0. Only slight difference can be visu-

alised in the peak heights of the maxima and also in the spread

in the valley region. But in all such cases in between it will

not at all match with the Wigner semicircle law, but converge

to the end points of the Wigner semi-circle, which is obtained

by setting g = h = k = 0.

Next, we compute the expression for the one point function

of the partition function at finite temperature, which can be

expressed as:

〈Z(β ± iτ)〉 = 1

π

∫ 2a

−2a

dλ
√

4a2 − λ2

×
(

80a6k + 6a4
(

3h + 4kλ2
)

+ a2
(

4g + 6hλ2 + 8kλ4
)

+2gλ2 + 3hλ4 + 4kλ6 + 1

2

)
e∓iτλ e−βλ

= 1

(β ± iτ)6

[
−24a2 I2(2(β ± iτ) |a|)

×
(

15a2hτ 4 + β4
(

140a4k + 15a2h + g
)

±4iβ3τ
(

140a4k + 15a2h + g
)
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Fig. 30 Time variation of SFF for different N at β = 0. Here we shift reference axis[SFF] to SF F |τ=0

−6β2
(

140a4kτ 2 + 5h
(

3a2τ 2 − 1
)

− 140a2k + gτ 2
)

∓4iβτ
(

140a4kτ 2 + 15h
(

a2τ 2 − 1
)

− 420a2k + gτ 2
)

+140k
(

a4τ 4 − 6a2τ 2 + 12
)

+ gτ 4 − 30hτ 2
)

+ |a| (β ± iτ)3 I1(2(β ± iτ) |a|)
×
(
−1120a6kτ 2 + 60a4

(
112k − 3hτ 2

)

+24a2
(

15h − gτ 2
)

+β2
(

1120a6k + 180a4h + 24a2g + 1
)

±2iβτ
(

1120a6k + 180a4h + 24a2g + 1
)

− τ 2
)

+20160k |a|3 (β ± iτ)I1(2(β ± iτ) |a|)
]
, (5.213)

where In(x) is the modified Bessel function of first kind with

n th order.
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Fig. 31 Eigen value distribution curve of density function for quartic and octa potential for different parameter values. Here we fix a = 1

Further, considering the high temperature limiting situa-

tion we get the following simplified expression for the one

point function of the partition function:

[〈Z(β ± iτ)〉]β=0 = 1

π

∫ 2a

−2a
dλ
√

4a2 − λ2

×
(

80a6k + 6a4
(

3h + 4kλ2
)

+a2
(

4g + 6hλ2 + 8kλ4
)

+2gλ2 + 3hλ4 + 4kλ6 + 1

2

)
e∓iτλ

= a

τ6

[
±J1(±2aτ)(1120a6kτ5 + 60a4τ3(3hτ2 − 112k)

+24a2(gτ5 − 15hτ3 + 840kτ) + τ5)

−24J2(±2aτ)(−30τ2(28a2k + h)

+τ4(140a4k + 15a2h + g) + 1680k)
]
. (5.214)

Next, simplifying the result for one point function in the limit

T =
√

Nτ → ∞ we get:

[〈Z(β ± iT )〉]β=0 =
√

a

π

1

(±T )
3
2

×
[(

1120a6k + 180a4h + 2a2g + 1

−
(

6720a4k + 360a2h

T 2

))
cos

(π

4
± 2aT

)

∓24

(
140a4k + 15a2h + g

T
−
(

840a2k + 30h

T 3

))

× sin
(π

4
± 2aT

)]

+O

(
1

(±T )
11
2

)
. (5.215)

Now for the octic random potential disconnected part of the

Green’s function can be computed at finite temperature as:

Gdc(β, τ ) = 〈Z(β + iτ)〉〈Z(β − iτ)〉
〈Z(β)〉2

= β12

(β2 + τ 2)6

[
−24a2 I2(2β |a|)

×
(
β4
(

140a4k + 15a2h + g
)

+6β2
(

5h + 140a2k
)

+ 1680k
)

+ |a| β3 I1(2(β) |a|)
(

6720a4k + 360a2h

+β2
(

1120a6k + 180a4h + 24a2g + 1
))

+20160k |a|3 β I1(2(β) |a|)
]−2

×
[
−24a2 I2(2(β + iτ) |a|)

×
(

15a2hτ 4 + β4
(

140a4k + 15a2h + g
)

+4iβ3τ
(

140a4k + 15a2h + g
)

−6β2
(

140a4kτ 2 + 5h
(

3a2τ 2 − 1
)

− 140a2k + gτ 2
)

−4iβτ
(

140a4kτ 2 + 15h
(

a2τ 2 − 1
)

− 420a2k + gτ 2
)

+140k
(

a4τ 4 − 6a2τ 2 + 12
)

+ gτ 4 − 30hτ 2
)

+ |a| (β + iτ)3 I1(2(β + iτ) |a|)
×
(
−1120a6kτ 2 + 60a4

(
112k − 3hτ 2

)

+24a2
(

15h − gτ 2
)
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+β2
(

1120a6k + 180a4h + 24a2g + 1
)

+2iβτ
(

1120a6k + 180a4h + 24a2g + 1
)

− τ 2
)

+20160k |a|3 (β + iτ)I1(2(β + iτ) |a|)
]

×
[
−24a2 I2(2(β − iτ) |a|)

×
(

15a2hτ 4 + β4
(

140a4k + 15a2h + g
)

−4iβ3τ
(

140a4k + 15a2h + g
)

−6β2
(

140a4kτ 2 + 5h
(

3a2τ 2 − 1
)

− 140a2k + gτ 2
)

+4iβτ
(

140a4kτ 2 + 15h
(

a2τ 2 − 1
)

− 420a2k + gτ 2
)

+140k
(

a4τ 4 − 6a2τ 2 + 12
)

+ gτ 4 − 30hτ 2
)

+ |a| (β − iτ)3 I1(2(β − iτ) |a|)
×
(
−1120a6kτ 2 + 60a4

(
112k − 3hτ 2

)

−24a2
(

15h − gτ 2
)

+β2
(

1120a6k + 180a4h + 24a2g + 1
)

−2iβτ
(

1120a6k + 180a4h + 24a2g + 1
)

− τ 2
)

+20160k |a|3 (β − iτ)I1(2(β − iτ) |a|)
]

(5.216)

which can be further simplified in the high temperature lim-

iting situation as:

Gdc(τ ) =
[ 〈Z(β + iτ)〉〈Z(β − iτ)〉

〈Z(β)〉2

]

β=0

= a2

N 2τ 12

×
[

J1(2aτ)(1120a6kτ 5 + 60a4τ 3(3hτ 2 − 112k)

+24a2(gτ 5 − 15hτ 3 + 840kτ) + τ 5)

−24J2(2aτ)(−30τ 2(28a2k + h)

+τ 4(140a4k + 15a2h + g) + 1680k)
]

×
[
−J1(−2aτ)(1120a6kτ 5 + 60a4τ 3(3hτ 2 − 112k)

+24a2(gτ 5 − 15hτ 3 + 840kτ) + τ 5)

−24J2(−2aτ)(−30τ 2(28a2k + h)

+τ 4(140a4k + 15a2h + g) + 1680k)
]
. (5.217)

Further taking the limit T =
√

Nτ → ∞ we get the follow-

ing simplified result:

Gdc(T ) =
[ 〈Z(β + iT )〉〈Z(β − iT )〉

〈Z(β)〉2

]

β=0

= i

T 3

a

N 2π

×
[(

1120a6k + 180a4h + 2a2g+1
)

cos
(π

4
±2aT

)

∓24

(
140a4k + 15a2h + g

T

)
sin
(π

4
± 2aT

)

−
(

6720a4k + 360a2h

T 2

)
cos

(π

4
± 2aT

)

±24

(
840a2k + 30h

T 3

)
sin
(π

4
± 2aT

)]

×
[(

1120a6k + 180a4h + 2a2g + 1
)

cos
(π

4
±2aT

)

∓24

(
140a4k + 15a2h + g

T

)
sin
(π

4
± 2aT

)

−
(

6720a4k + 360a2h

T 2

)
cos

(π

4
± 2aT

)

±24

(
840a2k + 30h

T 3

)
sin
(π

4
± 2aT

)]
. (5.218)

Now to compute SFF we need to add both connected and

disconnected part of the Green’s function G(= Gc + Gdc).

Therefore, for octic polynomial potential we get finally the

following expression for SFF at finite temp:

SFF(β, τ ) ≡ β12

(β2 + τ 2)6

[
−24a2 I2(2β |a|)

×
(
β4
(

140a4k + 15a2h + g
)

+6β2
(

5h + 140a2k
)

+ 1680k
)

+ |a| β3 I1(2(β) |a|)
(

6720a4k + 360a2h

+β2
(

1120a6k + 180a4h + 24a2g + 1
))

+20160k |a|3 β I1(2(β) |a|)
]−2

×
[
−24a2 I2(2(β + iτ) |a|)

×
(

15a2hτ 4 + β4
(

140a4k + 15a2h + g
)

+4iβ3τ
(

140a4k + 15a2h + g
)

−6β2
(

140a4kτ 2+5h
(

3a2τ 2 − 1
)

− 140a2k+gτ 2
)

−4iβτ
(

140a4kτ 2+15h
(

a2τ 2 − 1
)

− 420a2k+gτ 2
)

+140k
(

a4τ 4 − 6a2τ 2 + 12
)

+ gτ 4 − 30hτ 2
)

+ |a| (β + iτ)3 I1(2(β + iτ) |a|)
×
(
−1120a6kτ 2 + 60a4

(
112k − 3hτ 2

)

+24a2
(

15h − gτ 2
)

+β2
(

1120a6k + 180a4h + 24a2g + 1
)

+2iβτ
(

1120a6k + 180a4h + 24a2g + 1
)

− τ 2
)

+20160k |a|3 (β + iτ)I1(2(β + iτ) |a|)
]

×
[
−24a2 I2(2(β − iτ) |a|)

×
(

15a2hτ 4 + β4
(

140a4k + 15a2h + g
)
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−4iβ3τ
(

140a4k + 15a2h + g
)

−6β2
(

140a4kτ 2+5h
(

3a2τ 2 − 1
)

− 140a2k+gτ 2
)

+4iβτ
(

140a4kτ 2+15h
(

a2τ 2 − 1
)

− 420a2k+gτ 2
)

+140k
(

a4τ 4 − 6a2τ 2 + 12
)

+ gτ 4 − 30hτ 2
)

+ |a| (β − iτ)3 I1(2(β − iτ) |a|)
×
(
−1120a6kτ 2 + 60a4

(
112k − 3hτ 2

)

−24a2
(

15h − gτ 2
)

+β2
(

1120a6k + 180a4h + 24a2g + 1
)

−2iβτ
(

1120a6k + 180a4h + 24a2g + 1
)

− τ 2
)

+20160k |a|3 (β − iτ)I1(2(β − iτ) |a|)
]

+

⎧
⎪⎨
⎪⎩

τ
(2π N )2 − 1

N
+ 1

(π N )
, τ < 2π N

1
π N

, τ > 2π N

(5.219)

where SFF(β, τ ) is defined with proper normalization and

in our prescription it gives the total Green’s function as men-

tioned above.

Further simplifying the result for high temperature limit

we get the following expression for SFF, as given by:

SFF(τ ) ≡ a2

N 2τ 12

[
J1(2aτ)(1120a6kτ 5

+60a4τ 3(3hτ 2 − 112k)

+24a2(gτ 5 − 15hτ 3 + 840kτ) + τ 5)

−24J2(2aτ)(−30τ 2(28a2k + h)

+τ 4(140a4k + 15a2h + g) + 1680k)
]

×
[
−J1(−2aτ)(1120a6kτ 5 + 60a4τ 3(3hτ 2 − 112k)

+24a2(gτ 5 − 15hτ 3 + 840kτ) + τ 5)

−24J2(−2aτ)(−30τ 2(28a2k + h)

+τ 4(140a4k + 15a2h + g) + 1680k)
]

+
{

τ
(2π N )2 − 1

N
+ 1

(π N )
, τ < 2π N

1
π N

, τ > 2π N
(5.220)

Further taking the limit T =
√

Nτ → ∞ we get the follow-

ing simplified result for SFF:

SFF(T ) ≡ i

T 3

a

N 2π

[(
1120a6k + 180a4h + 2a2g + 1

)

× cos
(π

4
± 2aT

)

∓24

(
140a4k + 15a2h + g

T

)
sin
(π

4
± 2aT

)

−
(

6720a4k + 360a2h

T 2

)
cos

(π

4
± 2aT

)

±24

(
840a2k + 30h

T 3

)
sin
(π

4
± 2aT

)]

×
[(

1120a6k + 180a4h + 2a2g + 1
)

cos
(π

4
± 2aT

)

∓24

(
140a4k + 15a2h + g

T

)
sin
(π

4
± 2aT

)

−
(

6720a4k + 360a2h

T 2

)
cos

(π

4
± 2aT

)

±24

(
840a2k + 30h

T 3

)
sin
(π

4
± 2aT

)]

+

⎧
⎨
⎩

T

(2π)2 N 5/2 − 1
N

+ 1
(π N )

, T < 2π N 3/2

1
π N

, T > 2π N 3/2
. (5.221)

From Fig. 32a–c, we see that SFF at finite temperature

decays with increasing τ and reach zero. But with changing

β SFF values remains almost same initially (For higher β).

In Fig. 33a–c, it is observed that SFF with variation in N

get saturated at different value of τ . But with increasing N

the value of the saturation point, will decrease.Subtracting

the change of axis[SF F |τ=0] we get the predicted bound of

SFF. From these plots we can say that time variation of SFF

follow oscillatory pattern initially but after certain time it has

linear decaying amplitude for dominance of linear part. Then

after τ > 2π N region SFF abruptly saturated due to second

part of the connected part of the total Green’s function Gc.

On the other hand, for τ < 2π N region SFF is decaying in

amplitude and increasing with time. After τ > 2π N region

the function will be constant thereafter.

Here it is important to note that, depending on the specific

structure of the even polynomial random potential the upper

bound on chaos very slightly changes (i.e. the amplitude for

saturation of SFF is almost at the same order of magnitude

for different even polynomial random potentials). But the

late time behaviour for different random potentials are almost

same as it shows complete saturation with respect to time.

The saturation depends only on value of N . Also it is import

to note from the plots that, for each even polynomial potential

sudden transition from the random oscillatory behaviour to

the perfect saturation of SFF take place at the unique time,

τ = 2π N .

5.5.5 Estimation of dip-time scale from SFF

Now we introduce the concept of dip-time which denotes the

change in fall-off behaviour of SFF near the critical points. It

is estimated by comparing the initial fall-off behaviour with

late time behaviour of the curve from which it starts the linear

increase (ramp part).
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Fig. 32 Spectral Form Factor for sextic potential at different finite temperature[β] with N = 1000 and a = 0.1

For different even polynomial random model [see

Eqs. (5.150), (5.170), (5.193), (5.215)], we see that the fall

off behaviour varies with τ− N
2 . Consequently, the discon-

nected part of the Green’s function (Gdc) fall off as τ−N and

we tabulated different fall off behaviour with linear increase

rate in Table 3. Physical time t , conformal time τ and newly

define time scale are dined as23:

T =
√

Nτ ≈
√

N
t

a
∝

√
N t, (5.223)

23 Here to define the new time scale T we assume that the

reheating approximation is perfectly valid. This implies that we can
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Fig. 33 Time variation of SFF for different N at β = 0. Here we shift reference axis[SFF] to SF F |τ=0

Footnote 23 continued

really neglect the expansion of the universe. This further pointing

towards the fact the conformal are related by the following expression:

τ = t/a ∝ t, (5.222)

where during reheating we have assumed that the conformal and phys-

ical time are almost same and the proportionality constant is the inverse

of the scale factor a−1, which is independent of both the time scales

discussed in this paper.

which specifically depends on different values of N , where

it represents order of the even polynomial used in our paper

to compute SFF.

From Table 3, we get the proper estimation of dip time for

different even order polynomial random potential at different

critical point. Further, in Table 4, we get an order of magni-

tude estimation of conformal time (τ ) and physical time (t)

in terms of the order of polynomial N .
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Table 3 Fall-off behaviour near

critical points for different even

polynomial random potential

Potential 1st critical point 2nd critical point 3rd critical point 4th critical point

Gaussian τ−3 = τ
N 2 – – –

Quartic τ−3 = τ
N 2 τ−5 = τ

N 2 – –

Sextic τ−3 = τ
N 2 τ−5 = τ

N 2 τ−7 = τ
N 2 –

Octa τ−3 = τ
N 2 τ−5 = τ

N 2 τ−7 = τ
N 2 τ−9 = τ

N 2

Table 4 Order of magnitude estimation of conformal time (τ ) and phys-

ical time (t) in terms of the order of polynomial N

Equation of τ τ in order of N t in order of N

τ−3 = τ
N 2 τ = O(

√
N ) t = O(1)

τ−5 = τ
N 2 τ = O(N

1
3 ) t = O(N− 1

6 )

τ−7 = τ
N 2 τ = O(N

1
4 ) t = O(N− 1

4 )

τ−9 = τ
N 2 τ = O(N

1
5 ) t = O(N− 3

10 )

In the next section we will discuss about quantum cor-

rection of Fokker–Planck equation in the context of cosmo-

logical particle production. Here it is important to note that,

particle production in cosmology can be treated as a chaotic

random event and through our calculation we get quantum

corrections due to the non-Gaussian contribution in the prob-

ability distribution function. In this context the system can be

treated as semiclassical. As a result, SFF shows a saturating

behaviour on large time limit which implies that randomness

in eigen value density has a upper bound though it is chaotic

[59]. This relate that particle production also can have an

upper bound which also confirmed using the computation of

Lyapunov exponent.

5.6 Universal bound on quantum chaos from SFF and its

application to cosmology

In the previous subsection we have explicitly computed the

analytical expression for SFF for generalized even polyno-

mial random potential at finite temperature (β = 1/T =finite)

in Eq:. (5.138) and at very high temperature (β = 1/T → 0)

in Eq. (5.139). Now in this subsection our prime objective is

to compute the analytical bound on SFF at long time interval

i.e. τ → ∞. To derive the bound on SFF we first use the

asymptotic behaviour of Hypergeometric PFQ regularized

function, which is given below:

lim
τ→∞ 1 F̃2

[
−m + n + 1; 3

2
,−m + n + 5

2
; a2(β ± iτ)2)

]

= 0 ∀k = 1, 2, . . . , n, (5.224)

lim
τ→∞ 1 F̃2

[
−m + n + 1

2
; 1

2
,−m + n + 2; a2(β ± iτ)2)

]

= 0 ∀k = 1, 2, . . . , n. (5.225)

This asymptotic behaviour of the Hypergeometric PFQ reg-

ularized function remains same in the high temperature limit

(β = 1/T → 0) also.

Consequently, the asymptotic behaviour of the discon-

nected part of the Green’s function can be expressed at finite

temperature as well as in the limit β → 0 with finite N as:

lim
τ→∞

Gdc(β, τ ) = 0 ∀τ(→ ∞) > 2πN. (5.226)

lim
τ→∞

lim
β→0

Gdc(β, τ ) = 0 ∀τ(→ ∞) > 2πN. (5.227)

Similarly, the asymptotic behaviour of the connected part of

the Green’s function can be expressed at finite temperature

as well as in the limit β → 0 with finite N as:

lim
τ→∞

Gc(β, τ ) = 1

π N
∀τ(→ ∞) > 2πN. (5.228)

lim
τ→∞

lim
β→0

Gc(β, τ ) = 0 ∀τ(→ ∞) > 2πN. (5.229)

Finally, adding the contribution from the disconnected and

connected part of the Green’s function in the asymptotic limit

(τ → ∞) we get the following simplified expression for SFF

at finite N as given by:

SFF(β, τ → ∞) = lim
τ→∞

(Gdc(β, τ ) + Gc(β, τ ))

= 1

π N
> 0 ∀τ(→ ∞) > 2πN (Finite N),

β ≤ ∞. (5.230)

Also in the high temperature limit with finite N we get:

SFF(β → 0, τ → ∞) = lim
τ→∞ lim

β→0
(Gdc(β, τ ) + Gc(β, τ ))

= 0 ∀τ(→ ∞) > 2πN (Finite N), β ≥ 0. (5.231)

Here we considered the part of SFF only after τ > 2π N with

finite N as we are considering τ → ∞ asymptotic limit. The

main obstruction of the taking τ → ∞ asymptotic limit in

the τ < 2π N with finite N divergent contribution in the

connected part of the total Green’s function Gc as given by:

lim
τ→∞

Gc(β, τ ) = lim
τ→∞

(
τ

(2π N )2
− 1

N
+ 1

π N

)
→ ∞

∀τ(→ ∞) < 2πN (Finite N). (5.232)

On the other hand, for the disconnected part of the Green’s

function we get the same result as obtained for τ(→ ∞) >

2π N with finite N case.
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As a result, it gives divergent contribution to SFF at finite

N is given by:

SFF(β, τ → ∞) → ∞ ∀τ(→ ∞) < 2πN (Finite N).

(5.233)

For this reason, we will concentrate on the finite contribution

on SFF coming from τ(→ ∞) > 2π N with finite N region.

Finally, adding both the contribution from connected and

disconnected part of the total Green’s function for the asymp-

totic region τ(→ ∞) > 2π N (Finite N ) with 0 ≤ β(=
1/T ) ≤ ∞ we get the following upper and lower bound on

SFF, as given by:

Bound on SFF: 0 ≤ SFF ≤ 1

π N
∀τ(→ ∞)

> 2πN (Finite N), 0 ≤ β(= 1/T) ≤ ∞. (5.234)

On the other hand, with large N limit one can consider the

τ < 2π N region for the computation of the bound on SFF.

To justify this statement we take the τ → ∞ asymptotic limit

in the τ < 2π N with large N gives finite contribution in the

connected part of the total Green’s function Gc as given by:

lim
τ→∞

Gc(β, τ ) = lim
τ→∞

(
τ

(2π N )2
− 1

N
+ 1

π N

)

≃ − 1

N

(
1 − 1

π

)
< 0 ∀τ(→ ∞)

< 2πN (Large N). (5.235)

Similarly, for the disconnected part of the Green’s function

we get the same result as obtained for τ(→ ∞) > 2π N in

previous case.

Finally, adding both the contribution from connected and

disconnected part of the total Green’s function for the asymp-

totic region τ(→ ∞) < 2π N (Large N ) with 0 ≤ β(=
1/T ) ≤ ∞ we get the following upper and lower bound on

SFF, as given by:

Bound on SFF: − 1

N

(
1 − 1

π

)
≤ SFF ≤ 0 ∀τ(→ ∞)

< 2πN (Large N), 0 ≤ β(= 1/T) ≤ ∞. (5.236)

Combining Eq. (5.234) and Eq. (5.236) we can write for all

range of τ the following bound on SFF:

Bound on SFF from theory: − 1

N

(
1 − 1

π

)
≤ SFF

≤ 1

π N
∀τ, 0 ≤ β(= 1/T) ≤ ∞. (5.237)

In Fig. 34a–c we have shown the nature of Gdc with dif-

ferent parameter. For all the cases Gdc decays to zero at

τ → ∞ which matches our analytical conclusion. Here we

differentiate the τ < 2π N and τ > 2π N region with dif-

ferent color. In Fig. 35 we show the behaviour of SFF with

temperature and time for large and small N. At higher τ

(Fig. 32a–c) SFF decays with τ and at last goes to 1
π N

. Else

(Fig. 35a–d) SFF increases with τ for τ < 2π N and at last

saturate to 1
π N

. Now from the analytical solution we know

that for large τ or large β Gdc doesn’t contribute to the SFF

as the Gc has τ
(2π N )2 term.But for higher N and low τ there

should be a minima( 1
π N

− 1
N

) for this function within the

range τ < 2π N . As soon as the point τ = 2π N is crossed

the function change its form and get saturated. This way of

calculation of bound conclude that nature of SFF at late τ

shows same nature independent of type of potential. For infi-

nite temperature SFF saturate at same level and at same τ

value- for different potential with same N . For finite temper-

ature it decays to zero irrespective of nature of potential. SFF

is a measure of quantum chaos in a dynamical system. Bound

on SFF prove that whatever be the interaction, every system

at infinite temperature with same N saturated at same value.

But at finite temperature randomness in the system decays to

zero at late time and the system equilibrate within itself.

Here we consider Gaussian (Eq. (5.154)), quartic

(Eq. (5.174), Eq. (5.176), Eq. (5.177)), sextic (Eq. (5.197),

Eq. (5.198), Eq. (5.199)), octa (Eq. (5.219), Eq. (5.220),

Eq. (5.221)) potential and applying same limit to get the SFF.

Here we have Bessel’s Function of first kind (Ik(2aτ ) in

which taking asymptotic time limit we get:

lim
τ→∞

Ik(2aτ)

τ n
= 0 ∀k = 1, 2, . . . , n. (5.238)

Here n is order of the polynomial random potential. As a

result for finite N and large N we get the bound on SFF

s mentioned earlier. Here it is important to note that, our

prescribed bound on SFF is also the same as the saturation

value of SFF for different potential for finite N and large N .

6 Randomness from higher order Fokker–Planck

equation: a probabilistic treatment in cosmology

6.1 Cosmological scattering problem

Here we discuss about the cosmological scattering problem

due to the particle creation in the context of early universe

physics (mostly during reheating epoch). For detailed deriva-

tion of the results see Refs. [42,99], which we have followed

in this discussion mostly. As we have already discussed in the

first half of the paper that, the Klein–Gordon equation, which

is the dynamical master equation of the particles created dur-

ing reheating can be solved in the same way as Schrödinger

problem by formulating it as scattering problem in presence

of an impurity potential inside a conduction wire [100] and

can be related to the phenomena of chaos [43,44,101,102].

In this section our prime objective is to establish this connec-
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Fig. 35 Different nature of SFF at finite [β 	= 0] and Infinite temperature [β = 0]

tion including the possible quantum effects (corrections) and

we will try to develop a formalism to explain the quantum

analogue of the chaos during cosmological particle creation.

To serve this purpose let us start with the solution of the

Fourier mode of the field (created particle during reheating)

after j- th non-adiabatic event, which can be expressed as:

Fourier mode solution after j-th event:

x j (τ ) = 1√
2π

[β j e
ikτ + α je−ikτ ], (6.1)

where β j and α j are the Bogoliubov coefficients. For the

vacuum solution we set the initial condition as:

Vacuum initial condition:

β0 = 0, α0 = eiδ at τ = 0, (6.2)
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where δ is a phase factor. Now the vacuum initial condition

implies:

x j (τ = 0) = x0 = 1√
2π

[β0 + α0]. (6.3)

In this context the Bogoliubov coefficients satisfy following

normalization condition:

Normalization: W [x j x∗
j ] =

(
x j

dx∗
j

dτ
− x∗

j

dx j

dτ

)

= i �⇒ |α j |2 − |β j |2 = 1 ∀ j = 1, 2, . . . , N . (6.4)

This is analogous with scattering in presence of an impurity

inside the conduction wire. Here we can relate Bogoliubov

coefficients before and after the non-adiabatic event by trans-

fer matrix as:

(
β j

α j

)

︸ ︷︷ ︸
Co-efficient matrix for j-th event

=
(

M11 M12

M21 M22

)

︸ ︷︷ ︸
Transfer matrix ≡Mj(

β j−1

α j−1

)

︸ ︷︷ ︸
Co-efficient matrix for (j-1)-th event

∀ j = 1, . . . , N . (6.5)

When the wavelength of incoming mode is much larger than

coherence interval of the non-adiabatic event, then the time

dependent mass profile evolution m2(τ ), can’t be resolved

in wave. For this purpose, we take the following Dirac Delta

profile of time dependent mass function:

m2(τ ) =
N∑

j=1

m jδD(τ − τ j ), (6.6)

which is localized at time τ = τ j . Here j represents the

number of non-adiabatic events and the total number of the

events can be expressed as:

N∑

j=1

1 = N . (6.7)

Now, it is important to note that, these solutions will satisfy

the following two fold junction conditions:

Condition I: x j (τ j ) = x j−1(τ j ) (6.8)

Condition II: x ′
j (τ j ) = x ′

j−1(τ j ) − m j x j−1(τ j ). (6.9)

In the present context, the transfer matrix M j can be

expressed as:

M j =
(

M11 M12

M21 M22

)
= I + iλ j

(
1 e−2ikτ j

−e2ikτ j −1

)
, (6.10)

where λ j is defined as:

λ j = m j

2k
. (6.11)

Therefore in this computation the transmission and reflection

co-efficient can be expressed as:

T j = |t j |2 = 1

(1 − iλ j )(1 + iλ j )

= 1

1 + λ2
j

= 1

1 + m2
j

4k2

(6.12)

R j = |r j |2 = −(iλ j )(iλ j )

(1 − iλ j )(1 + iλ j )

=
λ2

j

1 + λ2
j

=
m2

j

4k2

1 + m2
j

4k2

. (6.13)

Further, the local change in occupation number n j can be

written in terms of transmission co-efficient as:

n j = T −1
j − 1 = λ2

j = R j

T j

=
m2

j

4k2
. (6.14)

Further, assuming the local change of occupation number is

large only for k ≪ m j i.e. λ j ≫ 1/2 then the transfer matrix

can be simplified to the following polar form as:

M j =
(

eiθ j
√

1 + n j ei(2φ j −θ j )
√

1 + n j

e−i(2φ j −θ j )
√

1 + n j e−iθ j
√

1 + n j

)
(6.15)

where the phase factors θ j and φ j are defined as:

θ j = tan−1(λ j ) = tan−1
(m j

2k

)
, (6.16)

φ j = tan−1(λ j ) − kτ j + π

4

= tan−1
(m j

2k

)
− kτ j + π

4
. (6.17)

Further, using the transfer matrix in polar form we define the

transmission, reflection probability and the total occupation

number as:

t j = eiθ j

√
(1 + n j )−1 =

√
T j eiθ j , (6.18)

r j = −
√

n j (1 + n j )−1e2i(θ j −φ j ) = −
√

1 − T j e
2i(θ j −φ j )

= −
√

R j e
2i(θ j −φ j ), (6.19)

n j = T −1
j − 1 = R j

T j

. (6.20)

Additionally, it is important to note that, the total occupation

number before (n( j)) and after (n( j −1)) the j-th scattering

are related by the following expression:

n( j) = n( j − 1) + λ2
j [1 + 2n( j − 1)

+2
√

n( j − 1)[1 + n( j − 1)]
]

cos 	 j
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+2λ j

√
n( j − 1)(1 + n( j − 1)) sin 	 j (6.21)

where 	 j is the phase factor which is defined in terms of the

Bogoliubov coefficients of the ( j − 1) th events as:

	 j ≡= −arg[α j−1] + arg[β j−1] − 2kτ j . (6.22)

Now the vacuum initial condition demands that,

n(0) = 0, (6.23)

which further implies the following equation for n(−1):

A n2(−1) + B n(−1) + C = 0. (6.24)

where we define A, B and C as:

A =
[(

1 + 2λ2
0 cos 	0

)2

−4λ2
0 (λ0 cos 	0 + sin 	0)

2

]
, (6.25)

B =
[
2λ2

0 cos 	0

(
1 + 2λ2

0 cos 	0

)

−4λ2
0 (λ0 cos 	0 + sin 	0)

2
]
, (6.26)

C = λ4
0 cos2 	0. (6.27)

Using Eq. (6.24) the solution for n(−1) can be written as:

n(−1) = 1

2A

[
−B ±

√
B2 − 4AC

]
. (6.28)

Similarly using Eq. (6.21) recursively one can find out the

expressions for occupation number for many scattering pro-

cesses.

Alternatively, using the concept of transfer matrices one

can also compute the occupation number in the present con-

text. To serve this purpose one can first write down the total

transfer matrices for Ns number of scatterer as:

M(Ns) =
Ns∏

i=1

Mi = MNs . . . M2 M1. (6.29)

Using this the total occupation number can be expressed as:

n(Ns) = [M(Ns)]∗11 M(Ns)11 − 1. (6.30)

To model a phenomenological situation where width is finite,

the scattering event is relevant and consider “sech” scatterers:

m2(τ ) =
N∑

j=1

m j

2w j

sech2

(
τ − τ j

w j

)
. (6.31)

Now, if we take the limit w j → ∞ then we get back the

Dirac Delta mass profile as given by:

m2(τ ) = lim
w j →∞

N∑

j=1

m j

2w j

sech2

(
τ − τ j

w j

)

=
N∑

j=1

m jδD(τ − τ j ). (6.32)

Further, using the results obtained for transmission co-

efficient we finally get the following simplified expression

for the total occupation number:

n j =
cos2( 1

2
π
√

1 + 2m jw j )

sinh2(πkw j )
. (6.33)

6.2 Fokker–Planck Equation

In this subsection our prime objective is to construct Fokker–

Planck equation from the basic principles. To serve this pur-

pose we start with the concept of probability density, which

can be expressed in terms of Smoluchowski equation:

Smoluchowski Equation:

P(M; τ + δτ) =
∫ ∞

−∞
P(M1, τ )P(M2, δτ )d M2

= 〈P(M1, τ )〉M2 . (6.34)

It actually explain the probability density for particle position

of Brownian motion in a random system. For a Markovian

process one can further express this in terms of Chapman–

Kolmogorov equation where the probability density is con-

ditional. It is important to note that, Smoluchowski equation

describes a two point conditional probability distribution sat-

isfying the following criteria:

P2(Y1, t1|Y3, t3) =
∫ ∞

−∞
dY2 P2(Y1, t1|Y2, t2)

×P3(Y1, t1; Y2, t2|Y3, t3)

for t1 < t2 < t3. (6.35)

where we have added a small interval δτ to an existing inter-

val τ to construct the probability density function. in such a

situation the transfer matrix for the elongate interval can be

expressed as:

M = Mδτ Mτ = Mτ+δτ . (6.36)

Here it is important to note that, to write this expression we

have used the following set of rules:

1. First of all, we identify, M1 = Mτ and M2 = Mδτ .

2. Then we apply the composition law

M = M2 M1. (6.37)
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3. Finally, we write M1 = Mτ as:

M1 = M−1
2 M = M + δM(M, M2). (6.38)

This implies:

δM = (M−1
2 − 1)M. (6.39)

Then, the time evolution of the probability density function

can be expressed as:

∂τ P(M, τ ) = 〈δM〉M2

δτ
∂M P(M, τ )

+〈δMδM〉M2

δτ
∂M∂M P(M, τ ) + · · · (6.40)

This gives ⁀Fokker–Planck equation upto different order for

occupation number n after appropriate parameterization of

the transfer matrices and a marginalization over certain

parameters.

Additionally it is important to note that, in order to reduce

the complexity of the computation we suppress the wave

number (k) dependence in our obtained results. As a conse-

quence, the Smoluchowski equation as stated in Eq. (6.1) can

be simplified to the following form:

P(n, θ, φ; τ + δτ) =
∫

dn2
dφ2

2π

dθ2

2π
P(n1, θ1, φ1; τ)

P(n2, θ2, φ2; δτ) = 〈P(n1, θ1, φ1; τ)〉δτ . (6.41)

Now, we Taylor expand both side after writing [n1, θ1, φ1]
in terms of [n, θ.φ].

Here one can write the occupation umber n1 as:

n1 = T −1
1 − 1 = [M1]∗11[M1]11 − 1 ≡ n + δn, (6.42)

θ1 = − i

2
ln

[ [M1]11

[M1]∗11

]
≡ θ + δθ. (6.43)

where the perturbed part of the occupation number δn can be

expressed as:

δn ≡ n2(1 + 2n) − 2
√

(1 + n2)(1 + n)n2n

cos 2(φ2 − θ) ≡ f (φ2 − θ). (6.44)

In this context, the right hand side of the above equation

represents the perturbed Hamiltonian. Here we use pertur-

bation theory to find the eigenvalues of occupation number

n1 in terms of the eigenvalues of occupation number n and

the matrix elements of the perturbed part δn in the preferred

choice of basis which diagonalizes the matrix n. Addition-

ally, it is important to note that, the explicit expression for the

perturbed angular parameter δθ is not very significant for our

discussion. Instead of this, the angular difference (φ2 − θ)

play crucial role to quantify the perturbed contribution to the

occupation number.

Now, the conditional probability of getting Y at time t +τ

in terms of probability of getting nearby to Y − ξ at time t

and then to Y in time τ is given by:

P2(Y0|Y, t + τ) =
∫ ∞

−∞
dξ

P2(Y0|Y − ξ, t)P2(Y − ξ |Y, τ ). (6.45)

On the other hand, using Taylor series expansion of P2

(Y0|Y, t + τ) around τ = 0 we get:

P2(Y0|Y, t + τ) ≈ P2(Y0|Y, t) + ∂ P2(Y0|Y, t)

∂t
τ. (6.46)

Here it is important to note that, in Taylor series expansion of

the probability density function P2(Y0|Y, t + τ) we truncate

the series by considering upto the second term in the series.

Further, comparing the right hand sides of Eqs. (6.45) and

(6.46), we finally get the second term of the Taylor expansion

as given by:

∂ P2(Y0|Y, t)

∂t
τ = −P2(Y0|Y, t)

+
∫ ∞

−∞
P2(Y0|Y − ξ, t)P2(Y − ξ |Y, τ )dξ. (6.47)

Next using Eq. (6.45) in Eq. (6.47) we get the following

simplified result for the second term of the Taylor expansion

as given by:

∂ P2(Y0|Y, t)

∂t
τ = −

∫ ∞

−∞
P2(Y0|Y, t)P2(Y − |Y − ξ, τ )dξ

+
∫ ∞

−∞
P2(Y0|Y − ξ, t)P2(Y − ξ |Y, τ )dξ. (6.48)

Now in this context the normalization condition for the prob-

ability density function can be written as:

∫ ∞

−∞
P2(Y |Y − ξ, τ )dξ = 1. (6.49)

From Eq. (6.48) we observe that it has scattering out and

scattering in contributions respectively.

Now, we can determine P2 ≡ P(n2, θ2, φ2; δτ) by the

condition that it maximizes the Shannon entropy:

Shannon Entropy:

S = −〈ln P2(n2, θ2, φ2; δτ)〉δτ − g1 [〈1〉δτ − 1]︸ ︷︷ ︸
Constraint I

− g2 [〈n2〉δτ − μδτ ]︸ ︷︷ ︸
Constraint II

+ g3 [〈U (θ2)〉δτ − αδτ ]︸ ︷︷ ︸
Constraint III

. (6.50)

using the principles of maximum entropy ansatz. In the above

expression, g1, g2 and g3 are the Lagrange multipliers. Here

it is important to note that, U (θ2) is an arbitrary function of

θ2 which has an extremum at the location θ2 = 0 and can be

explicitly determined by imposing additional constraint con-

ditions i.e. symmetry arguments, consistency requirements
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and available knowledge of the microscopic sector of the

system under consideration.

To apply the concept of maximum entropy ansatz we

choose the following set of constraints, which are helpful

to minimize Shannon entropy in the present computation:

1. Constraint I:

First of all, we talk about the Constraint I, which will

fix the normalization condition of the probability density

distribution as given by:

〈1〉δτ = 1. (6.51)

This is obtained by setting the co-efficient of the

Lagrange multiplier g1 to zero.

2. Constraint II:

Using the Constraint II, it is possible to fix the local mean

particle production rate, which is quantitatively defined

as:

〈n2〉δτ
δτ

= μ. (6.52)

This is obtained by setting the co-efficient of the

Lagrange multiplier g2 to zero.

3. Constraint III:

Finally the Constraint III demands that:

lim
δτ→0

Mτ+δτ → Mτ , (6.53)

which basically implies that the addition of infinitesimal

interval can’t correspond to a finite significant change in

transfer matrix.

To establish this statement we start with the following

transfer matrix written in the polar form for j = 2:

M2 =
(

eiθ2
√

1 + n2 ei(2φ2−θ2)
√

1 + n2

e−i(2φ2−θ2)
√

1 + n2 e−iθ2
√

1 + n2

)
.

(6.54)

Now in the limit δτ → 0 we have:

lim
δτ→0

n2 = 0, lim
δτ→0

e±iθ2 = 1,

lim
δτ→0

e±i(2φ2−θ2) = 0. (6.55)

Consequently the transfer matrix can be simplified as:

lim
δτ→0

M2 =
(

1 0

0 1

)
= I. (6.56)

To impose this specific non-trivial constraint we assume

that the following condition is satisfied:

〈U (θ2)〉δτ = αδτ �⇒ lim
δτ→0

〈U (θ2)〉 = fixed, (6.57)

where U (θ2) is a real valued and positive definite arbi-

trary function. This is possible if the function U (θ2) has

an extremum at θ2 = 0 where eiθ2 = 1. One can choose

various types of function which can satisfy these con-

straints. For an example, as a phenomenological choice

one can consider the following functional form:

U (θ2) =
[
(eiθ2 − 1)(e−iθ2 − 1)

]p

= |eiθ2 − 1|2p

= 4 sin2p θ2

2
∀ p = 1, 2, 3, . . . . (6.58)

As a result, the probability density function reaches its

maximum at θ2 = 0 when the time interval δτ → 0. Fur-

ther, extremizing the expression for the Shannon entropy

we get the following expression for the probability den-

sity distribution function P(n2, θ2, φ2; δτ) as given by:

P2 = P(n2, θ2, φ2; δτ) =
(

1

K(g2)
e−g2n2

)

×
(

1

K(g3)
e−g3U (θ2)

)
, (6.59)

where we introduce two new functions K(g2) and K(g3)

which are defined as:

K(g2) ≡
∫ ∞

0

dn2 e−g2n2 = 1

g2
, (6.60)

K(g3) ≡
∫

dθ2

2π
e−g3U (θ2). (6.61)

Further using Eqs. (6.52) and (6.57), we get the following

simplified expression for the probability density function:

P(n2, θ2, φ2; δτ) as given by:

Maximum Entropy Ansatz: P2 = P(n2, θ2, φ2; δτ)

=
(

1

μδτ
e
− n2

μδτ

)(
1

K(αδτ)
e−g3αδτU (θ2)

)

= P(n2; δτ)P(θ2; δτ)

= P(n2, θ2; δτ), (6.62)

which implies that the probability density function is

independent of φ2 after applying the maximum entropy

ansatz. For weak scattering, this corresponds to scattering

events being uniformly distributed. Now if we consider

large number of scatterings, then applying Central Limit

Theorem one can show that the final result is not sensitive

123



Eur. Phys. J. C (2019) 79 :320 Page 69 of 107 320

to the probability density function P2. In this discussion

we have explicitly provided the mathematical form of the

probability density function, which is not very important

to derive the Fokker–Planck equation.

Now if we use the fact that the probability density distribu-

tion function P2 is completely independent of φ2 one can

further express the Smoluchowski equation in the following

simplified form:

P(n, θ, φ; τ + δτ) ≡ P(n, θ; τ + δτ)

=
∫

P(n, θ, τ )P(dn + dn′, dθ + dθ ′; δτ)dn′dθ ′

= 〈P(n + δn, θ + δθ; τ)〉δτ . (6.63)

Further, integrating both sides of the above equation with

respect to the parameter θ we get the following simplified

expression:

P(n; τ + δτ) =
∫

dθ P(n, θ; τ + δτ)

=
∫

dθ 〈P(n + δn, θ + δθ; τ)〉δτ
= 〈P(n + δn; τ)〉δτ (6.64)

where during performing the integration over θ we explicitly

use the information that the infinitesimal change in θ i.e. δθ

is not functionally dependent on θ .

Now, using Taylor expansion of 〈P(n + δn; τ)〉δτ with

respect to the infinitesimal occupation number δn we get:

〈P(n + δn; τ)〉δτ = 〈P(n; τ)〉δτ

+
∞∑

q=1

1

q!
∂q P(n; τ)

∂nq
〈(δn)q〉δτ

= 〈P(n; τ)〉δτ + ∂ P(n; τ)

∂n
〈δn〉δτ

+ 1

2!
∂2 P(n; τ)

∂n2
〈(δn)2〉δτ + · · ·

= 〈P(n; τ)〉δτ +
{

∂ P(n; τ)

∂n

∂〈δn〉δτ
∂τ

+ 1

2!
∂2 P(n; τ)

∂n2

〈(δn)2〉δτ
δτ

}
δτ + · · · , (6.65)

where in this context we have:

〈P(n; τ)〉δτ = P(n, τ ). (6.66)

On the other hand, taking Taylor expansion of the probability

density function P(n; τ+δτ) with respect to the infinitesimal

time interval δτ we get:

P(n; τ + δτ) = P(n; τ) +
∞∑

q=1

1

q!
∂q P(n; τ)

∂τ q
(δτ )q

= P(n; τ) + ∂ P(n; τ)

∂τ
δτ

+ 1

2!
∂2 P(n; τ)

∂τ 2
(δτ )2 + · · · , (6.67)

Further, substituting Eqs. (6.65) and (6.67) in Eq. (6.64) and

equating both the sides we get:

∂ P(n; τ)

∂τ
= ∂ P(n; τ)

∂n

〈δn〉δτ
δτ

+1

2

∂2 P(n; τ)

∂n2

〈(δn)2〉δτ
δτ

+ · · · (6.68)

Consequently, using Eq. (6.44) one can define the following

statistical moments:

〈δn〉δτ = (1 + 2n)〈n2〉 = μδτ(1 + 2n) (6.69)

〈(δn)2〉δτ = 2n(n + 1)〈n2〉 + (1 + 6n + 6n2)〈n2〉2

= 2n(n + 1)μδτ + (1 + 6n + 6n2)(μδτ)2.

(6.70)

Here it is important to note that, for proper truncation of

the moments we assume that the particle production rate is

small locally i.e. μδτ < 1. For this reason the second factor

is ignored in 〈(δn)2〉δτ and finally we get:

Fokker Planck Equation:
1

μk

∂ P(n; τ)

∂τ

= (1 + 2n)
∂ P(n; τ)

∂n︸ ︷︷ ︸
Drift term

+ n(1 + n)
∂2 P(n; τ)

∂n2︸ ︷︷ ︸
Diffusion term

, (6.71)

where in the mean particle production rate (defined earlier)

we have restored the Fourier mode dependence i.e. μ = μk .

On the other hand, in the occupation number we have ignored

the Fourier mode dependence. For more details see Ref.

[103]. Additionally, it is important to note that in presence

of diffusion one can derive the Fokker–Planck equation from

Langevin equation of the following mathematical form:

Langevin Equation I:
dn(τ )

dτ
= a(n) + b(τ ), (6.72)

where a(n) is defined in terms of an external deterministic

force f (n) and contribution from frictional damping (which

is characterised by the damping coefficient γ ) as:

a(n) = f (n)

mγ
= 0, (6.73)

and b(τ ) is the Gaussian random function (also known as

Gaussian white noise), which satisfies the following criteria:

〈b(τ )〉 = 0, (6.74)

〈b(τ )b(τ ′)〉 = 2D(n)δ(τ − τ ′). (6.75)

In our prescription, the diffusion coefficient D(n) is given by

the following expression:

Diffusion Coefficient (Einstein’s Relation):

D(n) = kT

η
= n(1 + n). (6.76)
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Here it is important to note that, in a most generalised situ-

ation b(τ ) has a finite microscopic autocorrelation time for

which it is a coloured noise defined as:

〈b(τ )b(τ ′)〉 = g(τ − τ ′), (6.77)

where g(τ−τ ′) is an arbitrary function of the time interval τ−
τ ′. In such a situation it describes a non-Markovian process.

One can also recast the Langevin equation in the following

alternative form:

Langevin Equation II:

dn(τ )

dτ
= a(n) +

√
D(n0) b(τ ), (6.78)

where, the Gaussian white noise satisfies the following cri-

teria:

〈b(τ )〉 = 0, (6.79)

〈b(τ )b(τ ′)〉 = 2δ(τ − τ ′). (6.80)

However, due to the presence of Dirac Delta function in

the two point correlation function the white noise function

b(τ ) is singular and consequently the factor
√

D(n) b(τ )

is not defined in this context. This will finally lead to Itô

vs. Stratonovitch dilemma. For an infinitesimal time interval

[τ, τ + ǫ], in the present context the occupation number n0,

is defined as a function of a new parameter Q:

n0 = n(τ ) + (1 − Q) [X (τ + ǫ) − x(τ )]

= y + (1 − Q) [X (τ + ǫ) − y] 0 ≤ Q ≤ 1. (6.81)

Now we define:

Bǫ =
∫ τ+ǫ

τ

dτ ′ b(τ ′), (6.82)

using which we finally get the following results:

〈Bǫ〉 = 0, (6.83)

〈BǫBǫ〉 = 2. (6.84)

1. Itô prescription:

According to this prescription one can write:

n(τ + ǫ) = y + ǫa(y) +
√

D(y)

∫ τ+ǫ

τ

dτ ′ b(τ ′)

= y + ǫa(y) +
√

D(y) Bǫ, (6.85)

which is true for Q = 1. Now using the Chapman-

Kolmogorov equation in the present context we get:

P(n, τ + ǫ|y, τ ) =
〈
δ
(

n − y − ǫa(y) −
√

D(y) Bǫ

)〉

≃
(

1 − ǫ
∂a(n)

∂n
− Bǫ

∂(
√

D(n))

∂n
+ B2

ǫ

2

∂2 D(n)

∂n2

)

×
〈
δ
(

n − y − ǫa(y) −
√

D(y) Bǫ

)〉
. (6.86)

Here upto the order ǫ we use the following fact:

a(n) = a(y) + O(ǫ). (6.87)

Also we have used the following well known identity of

Dirac Delta function, as given by:

δ( f (y)) = 1

| f ′(y)|δ(y − y0), where f (y0) = 0.

(6.88)

Now, we expand the Dirac Delta function in the powers

of ǫ, as given by:

δ
(

n − y − ǫa(y) −
√

D(y) Bǫ

)

= δ(n − y) +
[
ǫa(n) +

√
D(y) Bǫ

]
δ′(x − y)

+1

2

[
ǫa(n) +

√
D(y) Bǫ

]2
δ′′(x − y) + · · ·

(6.89)

where it is important to note that we have Taylor expanded

the Dirac Delta function of the order of B2
ǫ , this is because

of the reason that Bǫ ∼ O(
√

ǫ). Hence we use this result

in Chapman-Kolmogorov equation and we get the fol-

lowing simplified integral:

P(n; τ + ǫ|n0) =
∫

dy P(y, τ |n0)

〈[(
1 − ǫ

∂a(n)

∂n

−Bǫ

∂(
√

D(n))

∂n
+ B2

ǫ

2

∂2 D(n)

∂n2

)
δ(y − n)

+
(
ǫa(n) +

√
D(n)Bǫ

)
δ′(y − n)

+ D(n)B2
ǫ

2
δ′′(y − n)

]〉
(6.90)

Further, performing the integration and using Eq. (6.83)

and Eq. (6.84) we finally get the following simplified

result of this integral:

P(n; τ + ǫ|n0) = P(n; τ |n0) + ǫ
∂ P(n; τ |n0)

∂τ

= P(n; τ |n0) + ǫ

{
− ∂

∂n
(a(n)P(n, τ |n0))

+ ∂2

∂n2
(D(n)P(n, τ |n0))

}
+ O(ǫ2). (6.91)

So for Q = 1 the Fokker–Planck equation can be written

starting from Langevin equation II in the following form:
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Fokker Planck Equation (From Itô) :
∂ P(n; τ)

∂τ
= − ∂

∂n
(a(n)P(n; τ))

+ ∂2

∂n2
(D(n)P(n; τ)) , (6.92)

where we have used the notation P(n; τ |n0) ≡ P(n; τ)

for simplicity.

2. Generalized Itô prescription:

In this situation for general Q one can write:

〈n(τ + ǫ) − y〉 = ǫ
[
a(y) + (1 − Q)D′(y)

]
. (6.93)

Further, we have to make the following substitution:

a(y) −→ a(y) + (1 − Q)D′(y). (6.94)

This will finally lead to the following Fokker–Planck

equation:

Fokker Planck Equation (For Generalized Itô):

∂ P(n; τ)

∂τ
= − ∂

∂n
(a(n)P(n; τ))

+ ∂

∂n

(
(D(n))1−Q ∂

∂n

(
(D(n))Q P(n; τ)

))
,

(6.95)

where in the present situation the Stratonovich prescrip-

tion corresponds to Q = 1/2. However, for our prob-

lem, we consider the simplest situation, where a(n) = 0,

Q = 0 and D(n) = n(1 + n).

Now integrating the Langevin equation II over a small

time interval ǫ we get:

n(τ + ǫ) − n(τ ) = ǫa(n(τ ))

+
∫ τ+ǫ

τ

dτ ′ √D(n(τ ′) b(τ ′). (6.96)

Now to deal with the product
√

D(n(τ ) b(τ ) one can use var-

ious prescriptions and that will finally lead to different form

of Fokker–Planck equations. One of the possibility is to apply

Stratonovich prescription, using which we can compute the

integral as24:

I(n; τ |ǫ) =
∫ τ+ǫ

τ

dτ ′ √D(n(τ ′)) b(τ ′)

=
√

D

(
[n(τ ) + n(τ + ǫ)]

2

) ∫ τ+ǫ

τ

dτ ′ b(τ ′). (6.98)

This will correspond to the following form of Fokker–Planck

equation, as given by:

Fokker Planck Equation (From Stratonovitch) :
∂ P(n; τ)

∂τ
= − ∂

∂n
(a(n)P(n; τ))

+ ∂

∂n

(√
D(n)

∂

∂n

(√
D(n)P(n; τ)

))
, (6.99)

Further, one can write the Fokker–Planck equation in terms

of a continuity equation, given by the following expression:

Continuity Equation:
∂ P(n; τ)

∂τ
= −∂ J (n; τ)

∂n
,

(6.100)

where the Fokker–Planck current is defined as:

Fokker–Planck current (From Itô):

J (n; τ) = μk

(
a(n) − D(n)

∂

∂n

)
P(n; τ), (6.101)

Fokker–Planck current (From Stratonovitch):

J (n; τ)

= μk

(
a(n)P(n; τ) −

√
D(n)

∂

∂n

(√
D(n)P(n; τ)

))
, (6.102)

Fokker–Planck current (From Our Paper):

J (n; τ) = −μk

(
n(1 + n)

∂

∂n

)
P(n; τ). (6.103)

Additionally, it is important to note that the Fokker–Planck

equation explicitly mimics the role of a Schrödinger equa-

tion, provided the real time should be replaced by imagi-

nary time in the present context. and such an analogy usu-

ally used to describe the convergence to the equilibrium. To

establish this statement let us start with the time dependent

Schrödinger equation for an electron moving in one dimen-

sion conduction wire in presence impurity potential V (x), as

given by:

Schrödinger Equation:
[
− 1

2m

∂2

∂x2
+ V (x)

]
ψ(x, t)

24 In case of Itô prescription one can recast the integral I(n; τ |ǫ) in to

the following form:

I(n; τ |ǫ) =
∫ τ+ǫ

τ

dτ ′ √D(n(τ ′)) b(τ ′) (6.97)

=
√

D (n(τ ))

∫ τ+ǫ

τ

dτ ′ b(τ ′).
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= Hψ(x, t) = i
∂ψ(x, t)

∂t
. (6.104)

Now changing t = −iτ , x = n, ψ(x, τ ) = P(n; τ) we get:

∂

∂n

(
D(n)

∂ P(n; τ)

∂n

)
= ∂ P(n; τ)

∂τ
= −∂ J (n; τ)

∂n
. (6.105)

Further taking, V = 0 one can identify the above equation as

diffusion equation and identify the diffusion coefficient as:

Diffusion Coefficient:

D(n) = 1

2m
= kT

η
= n(1 + n). (6.106)

Now if we consider the contribution from the impurity poten-

tial is non vanishing then one can write:

Generalized Fokker Planck Equation:

∂

∂n

(
D(n)

{
∂ P(n; τ)

∂n
+ β P(n; τ)

∂V (n)

∂n

})

= ∂ P(n; τ)

∂τ
= −∂ J (n; τ)

∂n
, (6.107)

then for equilibrium we set the Fokker–Planck current is

zero,25 for which we get finally the following result:

{
∂ P(n)

∂n
+ β P(n)

∂V (n)

∂n

}
= 0, (6.108)

from which we get the following Boltzmann probability dis-

tribution function for equilibrium:

P(n) = P0 exp(−βV (n)), (6.109)

where P0 = P(n = 0) is the normalization constant for the

probability distribution.

Now in the situation where the Fokker–Planck current

is non-vanishing one can use the following solution ansatz

to solve the most Generalized Fokker–Planck Equation, as

given by:

Solution Ansatz:

P(n; τ) = exp

(
−β

2
V (n)

)
W (n; τ) . (6.110)

Using this ansatz one can write the following expression:

{
∂ P(n; τ)

∂n
+ β P(n; τ)

∂V (n)

∂n

}

= exp

(
−β

2
V (n)

)

×
{

∂W (n; τ)

∂n
+ β

2
W (n; τ)

∂V (n)

∂n

}
. (6.111)

25 Here it is important to note that, in one dimension J = constant

directly implies J = 0. But in the case of higher dimension one can get

stationary out-of-equilibrium currents.

Further, substituting this result in the Generalized Fokker

Planck Equation we get the following partial differential

equation for the unknown function W (n; τ), as given by:

∂

∂n

(
D(n) exp

(
−β

2
V (n)

)

×
{

∂W (n; τ)

∂n
+ β

2
W (n; τ)

∂V (n)

∂n

})

= exp

(
−β

2
V (n)

)
∂W (n; τ)

∂τ
, (6.112)

which can be recast in to the following simplified form:

∂

∂n

(
D(n)

∂W (n; τ)

∂n

)
− U (n)W (n; τ) = ∂W (n; τ)

∂τ
,

(6.113)

where the effective potential U (n) is defined as:

Effective Potential:

U (n) =
[

β2

4
D(n)

(
∂V (n)

∂n

)2

− β

2
D(n)

(
∂2V (n)

∂n2

)

−β

2

(
∂ D(n)

∂n

)(
∂V (n)

∂n

)]
. (6.114)

Now let us only consider the time independent part of the

Generalized Fokker–Planck equation for which the wave

function for the equilibrium is described by the following

expression:

∂

∂n

(
D(n)

∂ψ0(n)

∂n

)
= U (n)ψ0(n), (6.115)

where the solution is given by:

ψ0(n) = Neq exp

(
−β

2
V (n)

)
, (6.116)

where Neq is the normalization constant which can be fixed

by the following normalization condition of the equilibrium

wave function:
∫

dn |ψ0(n)|2 = 1 �⇒ |Neq|

= 1√∫
dn exp(−βV (n))

, (6.117)

where ψ0(n) physically represents the ground state wave

function with energy eigen value E0 = 0. All the excited

state have energy eigen value E p > 0 (for p > 1). To get

the time dependence of the evolution equation we use the

initial condition at time τ = 0 in terms of complete set of

eigenfunctions ψp(n) = 〈n|p〉, which satisfy the following

eigen value equation:
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− ∂

∂n

(
D(n)

∂ψp(n)

∂n

)
+ U (n)ψp(n) = E pψp(n),

(6.118)

which implies the following result:

W (n, 0|n0) =
∑

p

C pψp(n). (6.119)

Here the expansion coefficient of the basis is defined as:

C p =
∫

dn ψp(n)W (n, 0|n0) = ψp(n0) exp

(
β

2
V (n0)

)

= 〈n|n0〉 exp

(
β

2
V (n0)

)
, (6.120)

where we have used the following expression:

W (n, 0|n0) = exp

(
β

2
V (n0)

)
δ(n − n0). (6.121)

Now for the time dependent part the solution of the Gener-

alized Fokker–Planck equation can be written as:

W (n, τ |n0) =
∑

p

C pψp(n) exp
(
−E pτ

)

=
∑

p

exp

(
β

2
V (n0)

)
〈n|p〉 exp

(
−E pτ

)
〈p|n0〉

= exp

(
β

2
V (n0)

)
〈n| exp

×
(

−
[
− ∂

∂n

(
D(n)

∂

∂n

)
+ U (n)

]
τ

)
|n0〉. (6.122)

Then the probability distribution function can be expressed

as:

P(n; τ) = exp

(
−β

2
[V (n) − V (n0)]

)
〈n|

× exp

(
−
[
− ∂

∂n

(
D(n)

∂

∂n

)
+ U (n)

]
τ

)
|n0〉. (6.123)

In this paper we investigate the physical outcomes of the

simplest possibility where V (n) = V (n0) = 0 and U (n) = 0

for which one can write the following simplified expression:

P(n; τ) = 〈n| exp

(
−
[
− ∂

∂n

(
D(n)

∂

∂n

)]
τ

)
|n0〉. (6.124)

Now from Eq. (6.127), one can write down the Fokker–

Planck equation in terms of the following operator equation:

D̂FP P(n; τ) = 0, (6.125)

where D̂FP is the Fokker–Planck operator represented by:

D̂FP ≡
[
(1 + 2n)

∂

∂n
+ n(1 + n)

∂2

∂n2
− 1

μk

∂

∂τ

]

=
[

∂

∂n

(
n(n + 1)

∂

∂n

)
− 1

μk

∂

∂τ

]
. (6.126)

Now, we consider a special case where n ≫ 1, which gives

the most simplest outcome in the present context. In such

a situation one can approximately write down the following

simplified form of the Fokker–Planck equation, as given by:

1

μk

∂ P(n; τ)

∂τ
= 2n

∂ P(n; τ)

∂n
+ n2 ∂2 P(n; τ)

∂n2

= ∂

∂n

(
n2 ∂ P(n; τ)

∂n

)
. (6.127)

To solve this partial differential equation in the n ≫ 1 limit

we use method of separation of variable, using which we can

write:

P(n; τ) = P1(n)P2(τ ). (6.128)

Further, using Eq. (6.128) we get the following two sets of

independent differential equations, as given by:

[
n2 d2

dn2
+ 2n

d

dn
+ q

]
P1(n) = 0, (6.129)

[
d

dτ
+ q

]
P2(τ ) = 0. (6.130)

Solution of Eq. (6.145) and Eq. (6.146) is given by:

P1(n) =
[

A n− 1
2 (

√
1−4q+1) + B n

1
2 (

√
1−4q−1)

]
, (6.131)

P2(τ ) = C e−qτ , (6.132)

where we define a new constant:

q = μk Q2. (6.133)

Additionally, A, B and C are arbitrary constants, which can

be determined after imposing appropriate boundary condi-

tions.

Consequently, the most general total solution for the prob-

ability density function in the limit n ≫ 1 can be expressed

as:

P(n; τ) =
∞∑

q=0

[
A1 n− 1

2 (
√

1−4q+1) + B1 n
1
2 (

√
1−4q−1)

]
e−qτ ,

(6.134)

where we define A1 and B1 as:

A1 = AC, B1 = BC. (6.135)

Now, after imposing the boundary condition it can be shown

that in the large n limit (n → ∞) the solution obtained in

Eq. (6.150) can be expressed in terms of the following log-

normal distribution. To check that explicitly, let us write the

probability distribution as the Fourier transformation with

respect to the occupation number n, which is given by:

P(n; τ |n′; τ ′) = 1

2π

∫
dk eikn P̄(k; τ |n′; τ ′). (6.136)
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Using this one can write down the Fokker–Planck equation

in the Fourier space as:

∂ P̄(k; τ)

∂τ
= μk

(
2ink − k2n2

)
P̄(k; τ), (6.137)

which is obviously a simplest version of the Fokker–Planck

equation as it contains a single derivative with respect to

time τ . Now, one can choose the initial condition such that

the probability distribution function at time τ ′ is given by the

following expression:

P(n; τ ′|n′; τ ′) = δ(n − n′). (6.138)

This is only true when the probability distribution function

after Fourier transform at time τ = τ ′ can be written as:

P̄(k; τ ′|n′; τ ′) = e−ikn′
. (6.139)

Then solution of Eq. (6.137) can be expressed after imposing

the initial condition as:

P̄(k; τ |n′; τ ′) = eμk (2ink−k2n2)(τ−τ ′)−ikn′
. (6.140)

Hence substituting back the above mentioned result into the

definition of Fourier transformation and setting the initial

condition n′ = 0 and τ ′ = 0 and further considering n → ∞
limit we get the following result for the probability distribu-

tion function, as given by:

P(n; τ) = 1

n

1

σ
√

2π
exp

[
− (ln n − μkτ)2

2σ 2

]
, (6.141)

which is precisely a log-normal distribution function and σ

is standard deviation of the log-normal distribution, which

can be expressed as:

σ =
√

2μkτ . (6.142)

One can explain the physics of this obtained result in the large

n limit. In the earlier section we have discussed that the aver-

aging over the phase factor of ln n can be expressed in terms

of the logarithms of the occupation number of particles pro-

duced in each scattering events. Further using Central Limit

Theorem, one can further interpret that ln n follows Gaus-

sian profile (on the other hand, one can also say that in such

a case n follows a log-normal distribution). But this physical

explanation is only valid for large n limiting approximation.

In Fig. 36, we have shown the Evolution of the log normal

probability density function with respect to the logarithm of

the occupation number per mode ln(1 + nk), for a fixed time

(μkτ = fixed). Additionally, it is important to note that from

the plot that for very large value of the occupation number n

(large n limit) the log normal profile shows Gaussian features

perfectly, which indicates the initial assumption regarding

large n was consistent.

Now, we consider another special case where n ≪ 1 in the

present context. In such a situation one can approximately

write down the following simplified form of the Fokker–

Planck equation, as given by:

1

μk

∂ P(n; τ)

∂τ
= ∂ P(n; τ)

∂n
+ n

∂2 P(n; τ)

∂n2

= ∂

∂n

(
n
∂ P(n; τ)

∂n

)
, (6.143)

To solve this partial differential equation in the n ≪ 1 limit

we use method of separation of variable, using which we can

write:

P(n; τ) = P1(n)P2(τ ). (6.144)

Further, using Eq. (6.144) we get the following two sets of

independent differential equations, as given by:

[
n

d2

dn2
+ d

dn
+ w

]
P1(n) = 0, (6.145)

[
d

dτ
+ w

]
P2(τ ) = 0. (6.146)

Fig. 36 Evolution of the log

normal probability density

function with respect to the

logarithm of the occupation

number per mode ln(1 + nk),

for a fixed time for nk ≫ 1
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Solution of Eqs. (6.145) and (6.146) is given by:

P1(n) = [D ln n + E − nw] , (6.147)

P2(τ ) = F e−wτ , (6.148)

where we define a new constant:

w = μk W 2. (6.149)

Additionally, D, E and F are arbitrary constants, which can

be determined after imposing appropriate boundary condi-

tions.

Consequently, the most general total solution for the prob-

ability density function in the limit n ≫ 1 can be expressed

as:

P(n; τ) =
∞∑

w=0

[D1 ln n + E1 − nw] e−wτ , (6.150)

where we define D1 and E1 as:

D1 = DF, E1 = E F. (6.151)

Further using the Fourier transformation with respect to the

occupation number n as mentioned in Eq. (6.136), we get

the following simplified expression for the Fokker–Planck

equation in n ≪ 1 limit:

∂ P̄(k; τ)

∂τ
= μk(ik − k2n)P̄(k; τ), (6.152)

which is obviously a simplest version of the Fokker–Planck

equation as it contains a single derivative with respect to time

τ . Further imposing the previously used boundary condition

for the limit n ≫ 1 in the present context we get the following

result for the probability distribution function in the Fourier

transformed space, as given by:

P̄(k; τ |n′; τ ′) = eμk (ik−k2n)(τ−τ ′)−ikn′
. (6.153)

Hence substituting back the above mentioned result into the

definition of Fourier transformation and setting the initial

condition n′ = 0 and τ ′ = 0 and further considering n → 0

limit we get the following result for the probability distribu-

tion function, as given by:

P(n; τ) = 1

2
√

μknτπ
exp

[
− (n + μkτ)2

4μknτ

]
, (6.154)

which is not a log normal distribution function in n ≪ 1 limit.

One can explain the physics of this obtained result in the small

n limit. In this situation one can observe deviations in the pro-

file function. The prime reason for such deviations in small n

limit is appearing due to the fact that, the total transmission

probability is bounded by unity. In other words, on can say

that this is only possible when n is bounded by zero in this

context of discussion. In Fig. 37, we have shown the evolution

of the probability density function with respect to the occu-

pation number per mode nk , for a fixed time (μkτ=fixed).

Additionally, it is important to note that for very small val-

ues of the parameter n we have observed from the plot that

the deviation from Gaussian feature is observed. In other

words, one can interpret that the deviation from log normal

probability distribution function corresponds to the signifi-

cant non-Gaussian features at small values of n. Apart from

this one can also comment on the quantum mechanical ori-

gin of higher order non-Gaussian contributions appearing in

Fokker–Planck equation which are more appropriate at small

values of n. In the next subsection we will discuss about the

physical impacts of this additional higher order contributions

in detail [107–110].

6.3 Corrected probability distribution profiles: quantum

effects from non-Gaussianity

In this subsection we get different order correction to the

Fokker–Planck equation that we have derived by Taylor

expansion. As we already know that the Taylor expansion

of the probability density distribution function is taken with

Fig. 37 Evolution of the

probability density function

with respect to the occupation

number per mode nk , for a fixed

time in the limit nk ≪ 1
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respect to time τ . On the other hand, using Maximum entropy

ansatz we have considered the Taylor expansion of the

ensemble average of the distribution function with respect to

the occupation number n. After that we equate both the results

and comparing the coefficient of δτ from the both sides of

the expansion (see previous Eq. (6.68) for more details). Now

without truncating both the sides of this expression one can

get additional contributions in δτ and in its higher order. If we

do the comparison including such additional contributions

then it will give rise to corrected version of the Fokker–Planck

equation valid upto higher orders. Further solving these sets

of differential equation order by order one can explicitly jus-

tify the validity of all such corrections in the Fokker–Planck

equation. In this paper we have investigated this possibility

by considering the contributions upto fourth order. All such

higher order correction terms are very useful to describe the

non-Gaussian effects appearing during the process of cosmo-

logical particle production during reheating phase of early

universe. On top of that, one can explain the origin of such

higher order contributions in the quantum mechanical ground

as it produces non vanishing significant effects in the expres-

sion for the higher order statistical moments directly originat-

ing from the various quantum mechanical correlations (one-

point, two-point, three-point etc.) computed during cosmo-

logical particle production at the epoch of reheating of early

universe. More precisely, the deviation from Gaussianity (in

other words the deviation from log-normal distribution) in

the present context can be directly linked with the quantum

mechanical effects appearing during reheating epoch of early

universe and for this reason one can interpret the higher order

corrected version of the Fokker–Planck equation as a quan-

tum corrected Fokker–Planck equation. Since in this paper

we have provided the analytical correction upto the fourth

order, one can say that in this derivation we have actually

provided the fourth order quantum corrected Fokker–Planck

equation. The details of this derivations are explicitly dis-

cussed in the following sub sections, where doing the analysis

we justify order by order that how such specific corrections

will modify the log-normal distribution and its impact in the

quantum mechanical ground.

6.3.1 First order contribution

In this context, our prime objective is to find out the first

order contribution to the Fokker–Planck equation and to solve

this equation analytically, which will help us to understand

the background physics related to the present formalism. To

serve this purpose we equate both the sides of Eq. (6.68)

after Taylor expansion and compare coefficient of δτ . Con-

sequently, we get the following partial differential equation:

First order Fokker Planck Equation:

1

μk

∂ P(n; τ)

δτ
= (1 + 2n)

∂ P(n; τ)

∂n

+n(1 + n)
∂2 P(n; τ)

∂n2
. (6.155)

Now to solve this partial differential equation we apply

method of separation of variable, using which we can write

the total solution in the following form:

P(n; τ) = P1(n)P2(τ ). (6.156)

Further, using the solution ansatz stated in Eq. (6.156) we

get the following sets of independent differential equations,

as given by:

[
n(n + 1)

d2

dn2
+ (2n + 1)

d

dn
+ m1

]
P1(n) = 0, (6.157)

d P2(τ )

dτ
+ m1 P2(τ ) = 0. (6.158)

Solution of Eqs. (6.157) and (6.158) is given by:

P1(n) = C1 P1
2 (−1+

√
1−4m1)

(1 + 2n)

+C2 Q 1
2 (−1+

√
1−4m1)

(1 + 2n), (6.159)

P2(τ ) = C3 e−τμk m1 . (6.160)

Here C1, C2 and C3 are arbitrary integration constants which

can be obtained by imposing appropriate boundary condi-

tions. Additionally, we introduce a constant m1 which is

defined as:

m1 = m2, (6.161)

which will follow certain constraints in the present context.

It is important to note that, to get real valued solution the

constant m1 satisfy the following condition:

1

2
[−1 +

√
1 − 4m1] ≡ N ∈ Z > 0

�⇒ m1 = 1

4

[
1 − (2N + 1)2

]
, (6.162)

as Legendre polynomial has general form PN (x) with con-

dition that N should be an integer greater than zero. For dif-

ferent values of N we get different m1 following Eq. (6.162).

Consequently, the most general solution of probability dis-

tribution function P(n; τ) is given by the following expres-

sion:

First order solution: P(n; τ) =
∞∑

N=0

[D1 PN (1 + 2n)

+D2 QN (1 + 2n)] e− τ
4 μk

[
1−(2N+1)2

]
, (6.163)

where we define two new constants, D1 and D2 by the fol-

lowing expressions:

D1 = C1C3, D2 = C2C3. (6.164)
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Fig. 38 Evolution of the first

order contribution to the

probability density function

with respect to the occupation

number per mode nk , for a fixed

time
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Here it is important to note that, this solution on limit n → ∞
converge to log-normal distribution as we have discussed

earlier. In further section we will compare this result with

obtained higher order calculations. From Eq. (6.162), we see

that the quantization property of m1 eventually help us to

predict the quantum nature of the present set-up. In other

words, one can interpret N as a quantum number given by26:

Quantum number I: N = 0, 1, 2, . . . ,∞ ∈ Z. (6.165)

Further using Eq. (6.162), one can further introduce another

quantum number m1 given by the following expression:

Quantum number II: m1 = 0,−2,−6, . . . ,∞.

(6.166)

Further using the Fourier transformation with respect to the

occupation number n as mentioned in Eq. (6.136), we get

the following simplified expression for the Fokker–Planck

equation in n ≪ 1 limit:

∂ P̄(k; τ)

∂τ
= μk

(
(2n + 1)ik − k2n(n + 1)

)
P̄(k; τ),

(6.167)

which is obviously a simplest version of the Fokker–Planck

equation as it contains a single derivative with respect to time

τ . Further imposing the previously used boundary condition

used for the limit n ≫ 1 and n ≪ 1 in the present context

we get the following result for the probability distribution

function in the Fourier transformed space, as given by:

P̄(k; τ |n′; τ ′) = eμk ((2n+1)ik−k2n(n+1))(τ−τ ′)−ikn′
. (6.168)

Hence substituting back the above mentioned result into the

definition of Fourier transformation and setting the initial

26 In the present context, N actually mimics the role of principle quan-

tum number. Also m1 is another quantum number which is derived from

N using Eq. (6.162).

condition n′ = 0 and τ ′ = 0 we get the following result for

the probability distribution function, as given by:

P(n; τ) = 1

2
√

μkn(n + 1)τπ

× exp

[
−n

(
μk(n + 1)τ + 1

4μkτ(n + 1)
+ 1

)]
,

(6.169)

which is coming from the first order contribution in the

Fokker–Planck equation. This expression is actually equiva-

lent to the result obtained in Eq. (6.163).

In Fig. 38, we have shown the evolution of the probability

density function with respect to the occupation number per

mode, for a fixed time (μkτ=fixed). For very small values

of the parameter n we have observed from the plot that the

deviation from Gaussian feature is observed.

6.3.2 Second order contribution

In this context, our objective is to find out the contributions

coming from second order in the Fokker–Planck equation and

to solve this equation numerically.27 To serve this purpose

we equate both sides of Eq. (6.68) after Taylor expansion

and compare the coefficient of δτ 2. Consequently, we get the

following partial differential equation:

Second order Fokker Planck Equation:

n2

2
(1 + n)2 ∂4 P(n; τ)

∂n4
+ 2n

(
1 + 3n + 2n2

) ∂3 P(n; τ)

∂n3

+
(

1 + 6n + 6n2
) ∂2 P(n; τ)

∂n2
= 1

μ2
k

∂2 P(n; τ)

∂τ 2
.

(6.170)

27 Including the contributions from second order we will see that the

Fokker–Planck equation can not solvable analytically.
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Now to solve this partial differential equation we apply

method of separation of variable, using which we can write

the total solution in the following form:

P(n; τ) = P1(n)P2(τ ). (6.171)

Further, using the solution ansatz stated in Eq. (6.171) we

get the following sets of independent differential equations,

as given by:
[

n2

2
(1 + n)2 d4

dn4
+ 2n

(
1 + 3n + 2n2

) d3

dn3

+
(

1 + 6n + 6n2
) d2

dn2
− m2

2

]
P1(n) = 0, (6.172)

[
d2

dτ 2
− m2

2μ
2
k

]
P2(τ ) = 0. (6.173)

It is important to note that, the analytical solution of P1(n)

is not possible for any arbitrary values of the constant m2,

except the special case m2 = 0. For this reason we use

numerical technique to solve Eq. (6.172). On the other hand

Eq. (6.173) is exactly solvable in the present context and the

solution can be written as:

P2(τ ) =
[
C3eτm2μk + C4e−τm2μk

]
, (6.174)

where C3 and C4 are two arbitrary constants which can be

fixed by choosing proper boundary conditions.

Now we solve Eq. (6.172) numerically for different values

of m2 along with given initial condition and also we consider

the special case m2 = 0 where we solve this equation ana-

lytically. Here it important to mention that, since arbitrary

values of m2 is allowed, one can consider integer as well

as non integer values at the level of solution of differential

equation. However, the only physically acceptable solution

restrict us to only consider the integer values of m2 because

such second order corrected solution of the Fokker–Planck

equation is directly related to the quantum effects as we have

mentioned earlier. As a result such integer values of m2 can

be interpreted as the (principal) quantum number i.e.

Quantum Number III:

m2 = 0,±1,±2, . . . ,±∞ ∈ Z. (6.175)

For numerical solution we take the following assumptions:

P1(n = 0.001) = 100,

[
d P1(n)

dn

]

n=0.001

= 100,

[
d2 P1(n)

dn2

]

n=0.001

= 100,

[
d3 P1(n)

dn3

]

n=0.001

= 100. (6.176)

Here we assume that the particle production rate at low n(=

0.001) has a constant value and its derivatives also have same

constant value for a given m2. Getting the numerical solution

we plot (P2(n, τ ) vs n) them for some particular range of n.

From Fig. 39 we can say that for m2 = ±2,±3 sec-

ond order corrected probability distribution function almost

overlap at lower values of the occupation number n but devi-

ate significantly as n increases to large number. As a conse-

quence, for low value of n particle production rate is inde-

pendent on m2 but as n increases they significantly deviate.

It also implies that for higher values of n the integer m2 con-

strains particle production rate. For m2 = ±1 we found that

the second order corrected probability distribution function

significantly deviates from log normal (Gaussian) distribu-

tion and both of them explicitly show the signature of non-

Gaussianity is the second order corrected distribution func-

tion. Finally, we have shown that for m2 = 0 the amount of

deviation from log normal (Gaussian) distribution is small

compared to results obtained from the other values of m2.

Now we discuss about the analytical solution of Eq. (6.172)

for the special case when we fix m2 = 0. In this situation one

can recast the Eq. (6.172) in to the following simplified form:
[

n2

2
(1 + n)2 d4

dn4
+ 2n

(
1 + 3n + 2n2

) d3

dn3

+
(

1 + 6n + 6n2
) d2

dn2

]
P1(n) = 0. (6.177)

Then analytical solution of Eq. (6.177) can be written as:

P1(n) = −C1

∞∑

i=0

2Ŵ
(

i − i
√

7
2

+ 1
2

)
Ŵ
(

i − 1
2

i(
√

47 + i)
)

Ŵ
(

i + 1
2
(
√

47 + i)i + 1
)

ni− i
√

7
2 + 1

2

(−2i +
√

7i + 1)i !Ŵ(i − i
√

7 + 1)Ŵ
(
− 1

2
i(

√
47 + i)

)
Ŵ
(

1 + 1
2

i(
√

47 + i)
)

× 2 F̃1

(
3

2
− i

√
7

2
, i − i

√
7

2
− 1

2
; i − i

√
7

2
+ 3

2
; −n

)
+ C2

∞∑

i=0

∞∑

j=0

∞∑

m=0

Ŵ(c)2u+1
√

π2−b−1((
√

π2−b−1)Ŵ(b + u + 1))

(u − 1)Ŵ(a)Ŵ(b1)Ŵ(b2)Ŵ
(

1
2
(b + u + 1)

)
Ŵ
(

1
2
(b + u + 2)

)

×
2 j (−1)m+ u

2 +1ni+m+ u−1
2 +1Ŵ

(
1
2
(b + u + 1) + i

)
Ŵ
(

1
2
(b + u + 2) + i

)

i ! j !m!
(
i + m + u−1

2
+ 1

)
Ŵ
(
b + i + 3

2

)
Ŵ(c + j + m)

Ŵ(b1 + m)Ŵ(b2 + n)Ŵ(a + j + m), (6.178)
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Fig. 39 Evolution of probability distribution function obtained from the second order corrected Fokker–Planck equation with the occupation

number n for different value of m2. Here we use the initial conditions as mentioned in Eq. (6.176)

where a, b, c, b1, b2 and u are all functions of i which is

summed over and we have introduced them to use short-

hand notation. In this context the functional dependence of

all of these i dependent parameters are given by the following

expressions:

a = a(i) = 1

2

(
−1 + i

√
7
)

, b = b(i) = 1

2
i
(√

47 + i
)

,

c = c(i) = 1

2

(
1 + i

√
7
)

, b1 = b1(i) = 1

2

(
3 − i

√
7
)

,

b2 = b2(i) = 1

2

(
4i + 2

√
7i +

√
47i + 1

)
,

u = u(i) = i
√

7. (6.179)

The solution contains generalized Hypergeometric PFQ Reg-

ularized function. Also C1 and C2 are arbitrary constant of

integration which can be evaluated by imposing appropriate

initial conditions.
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For m2 = 0 the total probability distribution function can

be expressed as:

P(n; τ) =

⎡
⎢⎣−C1

∞∑

i=0

2Ŵ
(

i − i
√

7
2

+ 1
2

)
Ŵ
(

i − 1
2
i(

√
47 + i)

)
Ŵ
(

i + 1
2
(
√

47 + i)i + 1
)

ni− i
√

7
2 + 1

2

(−2i +
√

7i + 1)i !Ŵ(i − i
√

7 + 1)Ŵ
(
− 1

2
i(

√
47 + i)

)
Ŵ
(

1 + 1
2
i(

√
47 + i)

)

× 2 F̃1

(
3

2
− i

√
7

2
, i − i

√
7

2
− 1

2
; i − i

√
7

2
+ 3

2
;−n

)

+C2

∞∑

i=0

∞∑

j=0

∞∑

m=0

Ŵ(c)2u+1
√

π2−b−1((
√

π2−b−1)Ŵ(b + u + 1))

(u − 1)Ŵ(a)Ŵ(b1)Ŵ(b2)Ŵ
(

1
2
(b + u + 1)

)
Ŵ
(

1
2
(b + u + 2)

)

×
2 j (−1)m+ u

2 +1ni+m+ u−1
2 +1Ŵ

(
1
2
(b + u + 1) + i

)
Ŵ
(

1
2
(b + u + 2) + i

)

i ! j !m!
(
i + m + u−1

2
+ 1

)
Ŵ
(
b + i + 3

2

)
Ŵ(c + j + m)

×Ŵ(b1 + m)Ŵ(b2 + n)Ŵ(a + j + m)

⎤
⎥⎦
[
C3eτm2μk + C4e−τm2μk

]
. (6.180)

For the special case m2 = 0 and considering the large n limit

(n → ∞) the Eq. (6.177) reduces to the following form:
[

n4

4

d4

dn4
+ 2n3 d3

dn3
+ 3n2 d2

dn2

]
P1(n) = 0. (6.181)

After solving Eq. (6.64) we get the following solution in the

large n limit:

P1(n) =
[

1

6

(
C5

n2
+ 3C6

n

)
+ C7n + C8

]
, (6.182)

where C5, C6, C7 and C8 are the arbitrary constants of inte-

gration which can be evaluated by imposing appropriate ini-

tial condition.

In the large n limit with m2 = 0 the total probability

distribution function can be expressed as:

P(n; τ) =
[

1

6

(
C5

n2
+ 3C6

n

)
+ C7n + C8

]

×
[
C3eτm2μk + C4e−τm2μk

]
, (6.183)

which shows huge deviation from log normal (Gaussian) dis-

tribution.

Further using the Fourier transformation with respect to

the occupation number n as mentioned in Eq. (6.136), we get

the following simplified expression for the Fokker–Planck

equation at the second order:

∂2 P̄(k; τ)

∂τ2
= μ2

k

[
n2

2
(1 + n)2k4

−2ink3(1 + 3n + 2n2) − k2(1 + 6n + 6n2)

]
P̄(k; τ),

(6.184)

which is obviously a simplest version of the Fokker–Planck

equation as it contains only two derivative with respect to

time τ . In the present context we get the following result

for the probability distribution function in the Fourier trans-

formed space, as given by:

P̄(k; τ |n′; τ ′) = C1 exp
[
G(k; n′) (τ − τ ′)

]

+C2 exp
[
−G(k; n′) (τ − τ ′)

]
, (6.185)

where G(k; n′) is defined as:

G(k; n′) = μk

×
√{

(n′)2

2
(1 + n′)2k4 − 2in′k3(1 + 3n′ + 2(n′)2) − k2(1 + 6n′ + 6(n′)2)

}
.

(6.186)

Additionally, C1 and C2 are arbitrary constants which is fixed

by the following two fold boundary conditions, as given by:

P(n; τ |n′ = 0; τ ′ = τ) = δ(n), (6.187)(
∂ P(n; τ |n′; τ ′)

∂τ

)

n′=0,τ ′=τ

= −δ(n)

n
, (6.188)

which are necessary to solve the above mentioned second

order differential equation.

As a result, we get the following set of constraints equa-

tions:

C1 + C2 = 1,

C1 − C2 = − 1

iμkkn
. (6.189)

Solving these equations we get:

C1 = 1

2

(
1 − 1

iμkkn

)
, (6.190)

C2 = 1

2

(
1 + 1

iμkkn

)
. (6.191)

Using this solution we get the following probability distri-

bution function in Fourier space with n′ = 0 and τ ′ = 0, as

given by:
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P̄(k; τ) = cos(μkkτ) − sin(μk kτ)
μk kn

. (6.192)

Hence substituting back the above mentioned result into the

definition of Fourier transformation and setting the initial

condition n′ = 0 and τ ′ = 0 we get the following result for

the probability distribution function, as given by:

P(n; τ) = 1

2π

∫ ∞

−∞
dk exp[ikn]

×
(

cos(μkkτ) − sin(μkkτ)

μkkn

)
. (6.193)

However this integral is not convergent within −∞ < k <

∞. For this reason we introduce a momentum cut-off −�C <

k < �C . Consequently, we get the following regularised

expression for the probability distribution function:

P(n; τ) = n sin(�C n) cos(�Cμkτ) − μkτ cos(�C n) sin(�Cμkτ)

π(n2 − μ2
kτ

2)

− 1

4πμkn
[i(Ci(−�C (n + μkτ)) − Ci(�C (n + μkτ))

−Ci(�Cμkτ − n�C )

+Ci(�C (n − μkτ)) − 2iSi(�C (n + μkτ))

+2iSi(�C (n − μkτ)))] , (6.194)

which is coming from the second contribution in the Fokker–

Planck equation.

In Fig. 40, we have shown the probability density function

for second order correction with respect to the occupation

number per mode, for a fixed time (τ = 0.15
μk

). From this plot

we have observed irregular oscillations with deviation from

Gaussian feature.We have selected a high value for momen-

tum cutoff[λc] for this particular plot.

6.3.3 Third order correction

In this context, our objective is to find out the contributions

coming from third order in the Fokker–Planck equation and

to solve this equation numerically.28 To serve this purpose

we equate both sides of Eq. (6.68) after Taylor expansion

and compare the coefficient of δτ 3. Consequently, we get the

following partial differential equation:

n3

6
(1 + n)3 ∂6 P(n; τ)

∂n6

+3n2

2
(1 + n)2(1 + 2n)

∂5 P(n; τ)

∂n5

+3n(1 + n)(1 + 5n + 5n2)
∂4 P(n; τ)

∂n4

+(1 + 2n)(1 + 10n + 10n2)
∂3 P(n; τ)

∂n3

= 1

μ3
k

∂3 P(n; τ)

∂τ 3
(6.195)

28 Including the contributions from third order we will see that the

Fokker–Planck equation can not solvable analytically.

which can not able to solve analytically with any integer

values of m3. We solve this equation for different values of

m3 numerically with assumed initial condition. Only for the

special case, m3 = 0 with large n limit we can able to provide

an analytical solution in the present context.

Now to solve this partial differential equation we apply

method of separation of variable, using which we can write

the total solution in the following form:

P(n; τ) = P1(n)P2(τ ). (6.196)

Further, using the solution ansatz stated in Eq. (6.171) we

get the following sets of independent differential equations,

as given by:

n3

6
(1 + n)3 d6 P1(n)

dn6

+3n2

2
(1 + n)2(1 + 2n)

d5 P1(n)

dn5

+3n(1 + n)(1 + 5n + 5n2)
d4 P1(n)

dn4

+(1 + 2n)(1 + 10n + 10n2)
d3 P1(n)

dn3

−m2
3 P1(n) = 0, (6.197)

[
d3

dτ 3
− m2

3μ
3
k

]
P2(τ ) = 0. (6.198)

It is important to note that, the analytical solution of P1(n)

is not possible for any arbitrary values of the constant m3,

except the special case m3 = 0. For this reason we use

numerical technique to solve Eq. (6.197). On the other hand

Eq. (6.198) is exactly solvable in the present context and the

solution can be written as:

P2(τ ) =
[

C7e(−1)2/3m
2/3
3 τμk + C8e− 3√−1m

2/3
3 τμk

+C9em
2/3
3 τμk

]
, (6.199)

where C7, C8 and C9 are three arbitrary constants which can

be fixed by choosing proper boundary conditions.

Now to solve Eq. (6.197) numerically for different values

of m3 along with given initial condition and we also prove

the analytical solution for the special case m3 = 0. Here

it important to mention that, since arbitrary values of m3 is

allowed, one can consider integer as well as non integer val-

ues at the level of solution of differential equation. However,

the only physically acceptable solution restrict us to only

consider the integer values of m3 because such third order

corrected solution of the Fokker–Planck equation is directly

related to the quantum effects as we have mentioned earlier.

As a result such integer values of m3 can be interpreted as

the quantum number i. e.

Quantum Number IV:
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Fig. 40 Second order

contribution to the probability

density function with respect to

the occupation number per

mode n, for a fixed time from

the analytical solution (6.194) of

second order equation (6.170)
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m3 = 0,±1,±2, . . . ,±∞ ∈ Z. (6.200)

For numerical solution we take the following assumptions:

P1(n = 0.0001) = 100,

[
d P1(n)

dn

]

n=0.0001

= 100,

[
d2 P1(n)

dn2

]

n=0.0001

= 100,

[
d3 P1(n)

dn3

]

n=0.0001

] = 100,

[
d4 P1(n)

dn4

]

n=0.0001

= 100,

[
d5 P1(n)

dn5

]

n=0.0001

= 100. (6.201)

As per our assumption particle production probability has

constant value at some particular small n[0.0001] or for small

n P[n, τ ] and all its derivative has constant values and all

those values are same.

From Fig. 41 one can say that the third order corrected

probability distribution function for different value of m3 =
0 overlap at lower n limit (n → 0) though deviate signifi-

cantly at large n limit. At lower values of n, particle produc-

tion probability is independent of m3 and almost flat. But as

soon as n reaches values greater than unity the distribution

increase exponentially and for different m3 they differ from

each other.

Now we discuss about the analytical solution of Eq. (6.197)

for the special case when we fix m3 = 0. In this situation one

can recast the Eq. (6.197) in to the following simplified form:

n3

6
(1 + n)3 d6 P1(n)

dn6

+3n2

2
(1 + n)2(1 + 2n)

d5 P1(n)

dn5

+3n(1 + n)(1 + 5n + 5n2)
d4 P1(n)

dn4

+(1 + 2n)(1 + 10n + 10n2)
d3 P1(n)

dn3
= 0. (6.202)

To find the analytical solution of Eq. (6.202) one can further

use the following simplification:

n3(1 + n)3

6

d3 Q1(n)

dn3

+3n2(1 + n)2(1 + 2n)

2

d2 Q1(n)

dn2

+3n(1 + n)(1 + 5n + 5n2)
d Q1(n)

dn

+(1 + 2n)(1 + 10n + 10n2)Q1(n) = 0 (6.203)

where we introduce a new function Q1(n) which can be

expressed in terms of P1(n) by following identification:

Q1(n) = d3 P1(n)

dn3
. (6.204)

On large n limit (n → ∞) the Eq. (6.203) reduces to follow-

ing extremely simplified form:

n6

6

d3 Q1(n)

dn3
+ 3n5 d2 Q1(n)

dn2
+ 15n4 d Q1(n)

dn

+20n3 Q1(n) = 0. (6.205)

The solution of this equation at large n limit can be expressed

as:

Q1(n) =
[

C3 − 1

148n15/2

×
{(

15C1 −
√

71C2

)
sin

(
1

2

√
71 ln n

)

+
(

15C2 +
√

71C1

)
cos

(
1

2

√
71 ln n

)

+240n15/2 ln n

}]
, (6.206)

where C1, C2 and C3 are arbitrary constant of integration and

can be evaluated by imposing appropriate initial condition.
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Fig. 41 Evolution of probability distribution function obtained from the third order corrected Fokker–Planck equation with the occupation number

n for different value of m3. Here we use the initial conditions as mentioned in Eq. (6.201)

Here, in the large n limit the solution for P1(n) can be

written as:

P1(n) =
[

1

674880n9/2

{
3040n15/2 (37C3 − 60 ln n + 110)

−
(

189C1 + 17
√

71C2

)
sin

(
1

2

√
71 ln n

)

+
(

17
√

71C1 − 189C2

)
cos

(
1

2

√
71 ln n

)}

+C6n2 + C5n + C4

]
, (6.207)

where C4, C5 and C6 are arbitrary constant of integration and

can be evaluated by imposing appropriate initial condition.

Finally, in the large n limit the total probability distribution

function can be expressed as:

P(n; τ) =
[

1

674880n9/2

{
3040n15/2 (37C3 − 60 ln n + 110)

−
(

189C1 + 17
√

71C2

)
sin

(
1

2

√
71 ln n

)

+
(

17
√

71C1 − 189C2

)
cos

(
1

2

√
71 ln n

)}

+C6n2 + C5n + C4

]

×
[

C7e(−1)2/3m
2/3
3 τμk + C8e− 3√−1m

2/3
3 τμk

+C9em
2/3
3 τμk

]
, (6.208)

which shows large deviation from log normal (Gaussian) dis-

tribution.

Further using the Fourier transformation with respect to

the occupation number n as mentioned in Eq. (6.136), we get

the following simplified expression for the Fokker–Planck

equation at the third order:

∂3 P̄(k; τ)

∂τ 3
= μ3

k

[
−n3

6
(1 + n)3k6

+3n2i

2
(1 + n)2(1 + 2n)k5

+3n(1 + n)(1 + 5n + 5n2)k4

−ik3(1 + 2n)(1 + 10n + 10n2)

]
P̄(k; τ), (6.209)

which is obviously a simplest version of the Fokker–Planck

equation as it contains only three derivative with respect to

time τ . In the present context we get the following result

for the probability distribution function in the Fourier trans-

formed space, as given by:

P̄(k; τ |n′; τ ′) = C1 exp
[
(−1)2/3 3

√
O(k; n′) (τ − τ ′)

]

+C2 exp
[
(−1)1/3 3

√
O(k; n′) (τ − τ ′)

]

+C3 exp
[

3
√

O(k; n′) (τ − τ ′)
]
, (6.210)

where O(k; n′) is defined as:
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O(k; n′) = μ3
k

[
− (n′)3

6
(1 + n′)3k6

+3(n′)2i

2
(1 + n′)2(1 + 2n′)k5

+3n′(1 + n′)(1 + 5n′ + 5(n′)2)k4

−ik3(1 + 2n′)(1 + 10n′ + 10(n′)2)

]
. (6.211)

Additionally, C1, C2 and C3 are arbitrary constants which

is fixed by the following three fold boundary conditions, as

given by:

P(n; τ |n′ = 0; τ ′ = τ) = δ(n), (6.212)(
∂ P(n; τ |n′; τ ′)

∂τ

)

n′=0,τ=τ ′
= −δ(n)

n
, (6.213)

(
∂2 P(n; τ |n′; τ ′)

∂τ 2

)

n′=0,τ=τ ′
= 2 δ(n)

n2
, (6.214)

which are necessary to solve the above mentioned third order

differential equation.

As a result, we get the following set of constraints equa-

tions:

C1 + C2 + C3 = 1, (6.215)

C1 − (−1)2/3 C2 − (−1)1/3 C3 = 1

i1/3μkkn
, (6.216)

C1 − (−1)4/3C2 − (−1)2/3C3 = − 2

i2/3μ2
kk2n2

. (6.217)

Solving these equations we get:

C1 =
(−1)2/3

(
− 6

√
−1knμk − iknμk + 2 3

√
−1 − 2

)
(
3 3
√

−1 − 1
)

k2n2μ2
k

, (6.218)

C2 = −
3
√

−1
(
−knμk − (−1)2/3knμk − 4i + 2 6

√
−1 + 6(−1)5/6

)
(

6
√

−1 − i
) (

3 3
√

−1 − 1
)

k2n2μ2
k

,

(6.219)

C3 = −
3
√

−1knμk − (−1)2/3knμk − 8i + 10 6
√

−1 + 10(−1)5/6

(
6
√

−1 − i
) (

3 3
√

−1 − 1
)

k2n2μ2
k

.

(6.220)

Using this solution get the following probability distribution

function in Fourier space, as given by:

P̄(k; τ) =
(−1)2/3

(
− 6

√
−1knμk − iknμk + 2 3

√
−1 − 2

)
(
3 3
√

−1 − 1
)

k2n2μ2
k

× exp
[
−i1/3μkk τ

]

−
3
√

−1
(
−knμk − (−1)2/3knμk − 4i + 2 6

√
−1 + 6(−1)5/6

)
(

6
√

−1 − i
) (

3 3
√

−1 − 1
)

k2n2μ2
k

× exp
[
(−1)2/3i1/3μkk τ

]

+ −
3
√

−1knμk − (−1)2/3knμk − 8i + 10 6
√

−1 + 10(−1)5/6

(
6
√

−1 − i
) (

3 3
√

−1 − 1
)

k2n2μ2
k

× exp
[
(−1)1/3i1/3μkk τ

]
. (6.221)

Hence substituting back into the definition of Fourier trans-

formation and setting the initial condition n′ = 0 and τ ′ = 0

we get the following result for the probability distribution

function, as given by:

P(n; τ)

=

((√
3 + 3i

)
μk + 2

(√
3 + i

))
n3

4
(√

3 + 2i
)

μ2
kn2

(
(−1)2/3μkτ + n

)√(
(−1)2/3μkτ + n

)2

+2in2
(

2i
√

3μ2
kτ

+μk

(√
− 3

√
−1μ2

kτ
2 + n2 + 2(−1)2/3μknτ + 3i

√
3τ + 3τ

)

−2

√
− 3

√
−1μ2

kτ
2 + n2 + 2(−1)2/3μknτ

)

−μknτ
((

−
(√

3 − 3i
))

μ2
kτ

+2
6
√

−1μ

(√
− 3

√
−1μ2

kτ
2 + n2 + 2(−1)2/3μknτ

+3i
√

3τ + 3τ
)

−2
(√

3 − i
)√

− 3
√

−1μ2
kτ

2 + n2 + 2(−1)2/3μknτ

)

+
(√

3 + i
)

μ2
kτ

2 (2μkτ

+
√

−2i
(√

3 − i
)

μ2
kτ

2 + 4n2 + 4i
(√

3 + i
)

μknτ

)
, (6.222)

which is coming from the third contribution in the Fokker–

Planck equation.

In Fig. 42, we have shown the third order correction of

probability density function with respect to the occupation

number per mode, for a fixed time (μkτ=fixed). From this

plot we have observed primary gaussian feature followed by

an exponential type increase.We consider the perturbative

expansion to be valid. So the higher order correction con-

tribute less than the previous order. To normalize the ana-

lytical solution we have used this. In latter part we can see

the exponential type increase contribute in longer tail effect

[higher kurtosis].

6.3.4 Fourth order correction

In this context, our objective is to find out the contributions

coming from fourth order in the Fokker–Planck equation and

to solve this equation numerically.29 To serve this purpose

we equate both sides of Eq. (6.68) after Taylor expansion

and compare the coefficient of δτ 4. Consequently, we get the

following partial differential equation:

70n4(1 + n)4 ∂8 P(n; τ)

∂n8
+ 140n3(1 + 2n)

∂7 P(n; τ)

∂n7

29 Including the contributions from fourth order we will see that the

Fokker–Planck equation can not solvable analytically.
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Fig. 42 Third order

contribution to the probability

density function with respect to

the occupation number per

mode n, for a fixed time from

the analytical solution

(Eq. 6.222) of third order

correction equation (Eq. 6.197)
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+30n2(1 + n)2(3 + 14n + 14n2)
∂6 P(n; τ)

∂n6

+20n(1 + n)(1 + 2n)(1 + 7n + 7n2)
∂5 P(n; τ)

∂n5

+(1 + 20n + 90n2 + 140n3 + 70n4)
∂4 P(n; τ)

∂n4

= 1

μ4
k

∂4 P(n; τ)

∂τ 4
, (6.223)

which can not able to solve analytically with any integer

values of m4. We solve this equation for different values of

m4 numerically with assumed initial condition. Only for the

special case, m4 = 0 with large n limit we can able to provide

an analytical solution in the present context.

Now to solve this partial differential equation we apply

method of separation of variable, using which we can write

the total solution in the following form:

P(n; τ) = P1(n)P2(τ ). (6.224)

Further, using the solution ansatz stated in Eq. (6.223) we

get the following sets of independent differential equations,

as given by:

70n4(1 + n)4 d8 P1(n)

dn8
+ 140n3(1 + 2n)

d7 P1(n)

dn7

+30n2(1 + n)2(3 + 14n + 14n2)
d6 P1(n)

dn6

+20n(1 + n)(1 + 2n)(1 + 7n + 7n2)
d5 P1(n)

dn5

+(1 + 20n + 90n2 + 140n3 + 70n4)
d4 P1(n)

dn4

−m2
4 P1(n) = 0, (6.225)

[
d4

dτ 4
− m2

4μ
4
k

]
P2(τ ) = 0. (6.226)

It is important to note that, the analytical solution of P1(n) is

not possible for any arbitrary values of the constant m4. For

this reason we use numerical technique to solve Eq. (6.225).

Also considering the large n limit we have checked that

Eq. (6.225) is not analytically solvable. On the other hand

Eq. (6.226) is exactly solvable in the present context and the

solution can be written as:

P2(τ ) =
[

C9e−√
m4τμk + C10e

√
m4τμk + C11 sin

(√
m4τμk

)

+C12 cos
(√

m4τμk

) ]
, (6.227)

where C9, C10, C11 and C12 are three arbitrary constants

which can be fixed by choosing proper boundary conditions.

Now to solve Eq. (6.225) numerically for different val-

ues of m4 along with given initial condition. Here it impor-

tant to mention that, since arbitrary values of m4 is allowed,

one can consider integer as well as non integer values at the

level of solution of differential equation. However, the only

physically acceptable solution restrict us to only consider the

integer values of m4 because such third order corrected solu-

tion of the Fokker–Planck equation is directly related to the

quantum effects as we have mentioned earlier. As a result

such integer values of m4 can be interpreted as the quantum

number i. e.

Quantum Number V:

m4 = 0,±1,±2, . . . ,±∞ ∈ Z. (6.228)

For numerical solution we take the following assumptions:

P1(n = 0.0001) = 100,[
d P1(n)

dn

]

n=0.0001

= 100,

[
d2 P1(n)

dn2

]

n=0.0001

= 100,

[
d3 P1(n)

dn3

]

n=0.0001

= 100,

[
d4 P1(n)

dn4

]

n=0.0001

= 100,
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[
d5 P1(n)

dn5

]

n=0.0001

= 100,

[
d6 P1(n)

dn6

]

n=0.0001

= 100,

[
d7 P1(n)

dn7

]

n=0.0001

= 100. (6.229)

According to our assumption particle production probability

has constant value at some particular small n value (n =
0.0001) and all its derivative has constant values and all those

values are same.

During the analysis we assume that the particle production

probability and all its derivative has a constant same value for

n = 0.0001, which is very very helpful for us to deal with the

initial conditions during performing numerical techniques to

solve the Eq. (6.225).

From Fig. 43 we observe that the fourth order corrected

probability distribution function for different m4 is almost flat

upto n = 1 and after that the distribution function suddenly

increases. Additionally, we observe that the fourth order cor-

rection has deviation from Gaussianity at small values of the

occupation number. On the other hand, for large values of the

occupation number we get a Gaussian like feature and that

is shown explicitly in the mentioned plot.

Further using the Fourier transformation with respect to

the occupation number n as mentioned in Eq. (6.136), we get

the following simplified expression for the Fokker–Planck

equation at the fourth order:

∂4 P̄(k; τ)

∂τ 4
= μ4

k

[
70n4(1 + n)4k8 − 140in3(1 + 2n)k7

−30n2(1 + n)2(3 + 14n + 14n2)k6

+20ni(1 + n)(1 + 2n)(1 + 7n + 7n2)k5

+(1 + 20n + 90n2 + 140n3 + 70n4)k4
]

P̄(k; τ),

(6.230)

which is obviously a simplest version of the Fokker–Planck

equation as it contains only four derivative with respect to

time τ . In the present context we get the following result

for the probability distribution function in the Fourier trans-

formed space, as given by:

P̄(k; τ |n′; τ ′) = C1 exp
[
− 4
√

J (k; n′)
(
τ − τ ′)]

+C2 exp
[

4
√

J (k; n′)
(
τ − τ ′)]

+C3 sin
(

4
√

J (k; n′)
(
τ − τ ′))

+C4 cos
(

4
√

J (k; n′)
(
τ − τ ′)) , (6.231)

where J (k; n′) is defined as:

J (k; n′) = μ4
k

[
70n

′4(1 + n′)4k8 − 140in
′3(1 + 2n′)k7

−30n2(1 + n′)2(3 + 14n′ + 14n
′2)k6

+20ni(1 + n′)(1 + 2n′)(1 + 7n′ + 7n
′2)k5

+(1 + 20n′ + 90n
′2 + 140n

′3 + 70n
′4)k4

]
. (6.232)

Additionally, C1, C2, C3 and C4 are arbitrary constants which

is fixed by the following three fold boundary conditions, as

given by:

P(n; τ |n′ = 0; τ ′ = τ) = δ(n), (6.233)(
∂ P(n; τ |n′; τ ′)

∂τ

)

n′=0,τ=τ ′
= −δ(n)

n
, (6.234)

(
∂2 P(n; τ |n′; τ ′)

∂τ 2

)

n′=0,τ=τ ′
= 2 δ(n)

n2
(6.235)

(
∂3 P(n; τ |n′; τ ′)

∂τ 3

)

n′=0,τ=τ ′
= −6 δ(n)

n3
, (6.236)

which are necessary to solve the above mentioned fourth

order differential equation.

As a result, we get the following set of constraints equa-

tions:

C1 + C2 + C4 = 1, (6.237)

C1 − C2 − C3 = 1

μkkn
, (6.238)

C1 + C2 − C3 = 2

μ2
kk2n2

, (6.239)

C1 − C2 + C3 = 6

μ3
kk3n3

. (6.240)

Solving these equations we get:

C1 =
−k2n2μ2

k − 2knμk − 6

4k3n3μ3
k

,

C2 = −
k2n2μ2

k − 2knμk + 6

4k3n3μ3
k

, (6.241)

C3 = −
k2n2μ2

k − 6

2k3n3μ3
k

, C4 = − 1

k2n2μ2
k

. (6.242)

Using this solution get the following probability distribution

function in Fourier space, as given by:

P̄(k; τ) =
−k2n2μ2

k − 2knμk − 6

4k3n3μ3
k

exp [−μkkτ ]

−
k2n2μ2

k − 2knμk + 6

4k3n3μ3
k

exp [μkτ ]

−
k2n2μ2

k − 6

2k3n3μ3
k

sin (μkkτ)

− 1

k2n2μ2
k

cos (μkkτ) , (6.243)

Hence substituting back into the definition of Fourier trans-

formation and setting the initial condition n′ = 0 and τ ′ = 0
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Fig. 43 Evolution of probability distribution function obtained from the fourth order corrected Fokker–Planck equation with the occupation number

n for different value of m4. Here we use the initial conditions as mentioned in Eq. (6.229)

we get the following result for the probability distribution

function, as given by:

P(n; τ) = 1

2π

∫ ∞

−∞
dk exp [ikn]

×
{

−k2n2μ2
k − 2knμk − 6

4k3n3μ3
k

exp [−μkkτ ]

−
k2n2μ2

k − 2knμk + 6

4k3n3μ3
k

exp [μkτ ] −
k2n2μ2

k − 6

2k3n3μ3
k

sin (μkkτ)

− 1

k2n2μ2
k

cos (μkkτ)

}
(6.244)

which is divergent within the interval −∞ < k < ∞. After

introducing an IR and UV regulators, Q < k < L we can get

a finite result, which we have not presented in this paper for
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its huge length. The origin of such corrections are the fourth

order contribution in the Fokker–Planck equation.

In Fig. 44, we have shown the fourth order correction to

the probability density function with respect to the occupa-

tion number per mode, for a fixed time (μkτ=fixed) flow the

initial gaussian then exponential decay type distribution.This

decreasing feature suggest very low effect from fourth order

correction which is also supported by perturbative expansion

assumption.

6.3.5 Total solution considering different order correction

Now we plot total solutions with different order of correction

with main solution.Then we check validation of different

order of correction altogether and how they merge with each

other at what limit.

A. Upto second order correction:-

Further we consider upto second order corrected solution

with first order contribution at m1 = 2 for different m2.

From Fig. 45a, b we observe that at low values of n, P1+P2

and P2 are significantly different, but as we increase n they

overlapped and P2 effect is more over P1 + P2 so the second

order solution dominate over the first order solution.On the

other hand Fig. 45c shows how the second order contribution

effect the primary gaussian curve. Distinct oscillation effect

on gaussian curve shows the effect of second order correction

which is not available from the numerical solution.

B. Upto third order correction:-

Here we add all the three previously derived contributions to

produce the total probability distribution corrected upto third

order.

From Fig. 46a, b we observe that P1 + P2 + P3, P2 + P3

and P3 overlap at higher n limit though separated. At low

n limit and P1 + P2 and P2 overlap with each other but

remain separated from P1 + P2 + P3 for the complete range.

This implies that third order contribution is dominant over

the other two due to the non-linearities in the differential

equation and behaves like a non-perturbative quantum effect

at the level of solution. From Fig. 46c we show the third

order correction affects the tail of the gaussian and shift it bit

higher.It is clear from Fig. 46d.

C. Upto fourth order correction:-

Here we add all the four previously derived contributions

to produce the total probability distribution corrected upto

fourth order.

From Fig. 47a we observe the final curve represented by

P1 + P2 + P3 + P4 shifted the mean of the gaussian from

its value at P1. Initial gaussian feature for P1 + P2 + P3 and

P1 + P2 are deviated at high n limit . Here P1 + P2 + P3 + P4

and P1 follow exact gaussian nature but they are mirror image

of one another. P1+P2+P3 and P1+P2 don’t have this gaus-

sian nature due to their divergence property as n increases.

In Fig. 47b and Fig. 47c the effect of all order correction can

be observed but effect of different order correction become

evident from Fig. 47d. Second order correction introduce the

oscillating feature whereas third order correction increase

the tail and responsible for higher kurtosis. Fourth order cor-

rection add a small positive effect to the previous correction

without any shape change.

Previously it is shown that in Ref. [42] the distribution will

be log-normal at large n, considering the lowest order contri-

bution coming from the solution of Fokker–Planck equation.

We extend this result upto fourth order and shown the effect

of different order correction.The oscillating nature and long

tail can be specific feature of stochastic particle production

in inflation epoch.This may be the effect of background field

or noise at that time.The numerical solutions give different

quantum numbers which support the quantum nature. In the

next subsection we will calculate various statistical moments

and from that we can discuss about the role of quantum effects

and non-Gaussianity from the Probability distribution profile

for particle production in the context of early universe cos-

mology (mostly during reheating).

6.4 Calculation of statistical moments (or quantum

correlation functions) from corrected probability

distribution function

Here our prime objective is to compute the different statistical

moments from the quantum corrected probability distribution

function as obtain by Taylor expanding in order by order from

Eq. (6.68). From is corrected probability distribution function

we compute the expression for 〈n〉,〈n2〉,〈n3〉 and 〈n4〉 and

then calculate standard deviation, skewness and kurtosis for

a given time. We have explicitly shown that the non vanishing

contributions of skewness and kurtosis carries the signature

of significant effect of non-Gaussianity. In this analysis the

values of these moments are compared with predicted results

obtained from log-normal (Gaussian) distribution and non

zero values of kurtosis and skewness define the deviation

from that.

To compute the moments we start with the following sets

of master evolution equations valid in different orders, as

given by:

First Order Master Evolution Equation:

1

μk

∂〈F〉
∂τ

=
〈
(1 + 2n)

∂ F

∂n
+ n(n + 1)

∂2 F

∂n2

〉
, (6.245)

Second Order Master Evolution Equation:

1

μ2
k

∂2〈F〉
∂τ 2

=
〈

n2

2
(1 + n)2 ∂4 F

∂n4

+2n
(

1 + 3n + 2n2
) ∂3 F

∂n3

+
(

1 + 6n + 6n2
) ∂2 F

∂n2

〉
, (6.246)
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Fig. 44 Fourth order

contribution to the probability

density function with respect to

the occupation number per

mode n, for a fixed time from

the analytical solution

(Eq. 6.244) of the fourth order

correction distribution function

(Eq. 6.223)
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Third Order Master Evolution Equation:

1

μ3
k

∂3〈F〉
∂τ 3

=
〈

n3

6
(1 + n)3 ∂6 F

∂n6

+3n2

2
(1 + n)2(1 + 2n)

∂5 F

∂n5

+3n(1 + n)(1 + 5n + 5n2)
∂4 F

∂n4
+ (1 + 2n)

×(1 + 10n + 10n2)
∂3 F

∂n3

〉
, (6.247)

Fourth Order Master Evolution Equation:

1

μ4
k

∂4〈F〉
∂τ 4

=
〈
70n4(1 + n)4 ∂8 F

∂n8
+ 140n3(1 + 2n)

∂7 F

∂n7

+30n2(1 + n)2(3 + 14n + 14n2)
∂6 F

∂n6

+20n(1 + n)(1 + 2n)(1 + 7n + 7n2)
∂5 F

∂n5

+(1 + 20n + 90n2 + 140n3 + 70n4)
∂4 F

∂n4

〉
, (6.248)

where the first moment or the expectation value of the observ-

able F is define as:

First Moment: 〈F(n)〉(τ ) ≡
∫

dn F(n)P(n; τ) .

(6.249)

Here F(n) is the physical observable in which we are inter-

ested in and P(n; τ) is the corrected probability distribution

function which is not necessarily log-normal (Gaussian) in

nature. In the present context of discussion, Eq. (6.249) plays

the role of generating function, which is commonly used in

calculating various mathematical special functions. In our

discussion, Eq. (6.249) represents the statistical moment gen-

erating function in presence of quantum corrected probability

distribution function. In terms of quantum mechanical lan-

guage, Eq. (6.249) signify the one point quantum correlation

function and it is exactly equal to the statistical first moment

in this discussion.

Now, we explicitly compute the expressions for one point

function (or first moment) of the occupation number i.e. 〈n〉,
two point function (or second moment) of the occupation

number i.e. 〈n2〉, three point function (or third moment) of

the occupation number i.e. 〈n3〉 and four point function (or

fourth moment) of the occupation number i.e. 〈n2〉 using the

previously mentioned first, second, third and fourth order

master equations. The detailed steps of the computations are

appended bellow:

1. Step I:

First of all, we use the first order master evolution equa-

tion. Then we replace the function F by the occupation

number n. Consequently, we get the following time evo-

lution equation of the first moment or one point function

〈n〉, given by:

1

μk

∂〈n〉
∂τ

= 〈(1 + 2n)〉 = 1 + 2〈n〉. (6.250)

2. Step II:

Secondly, we want to compute the expression for 〈n2〉.
To compute this we consider here the first and second

order master equations, as mentioned earlier. Considering

only the first order master equation we get the following

analytical expression:

1

μk

∂〈n2〉
∂τ

= 〈2n(1 + 2n) + 2n(1 + n)〉

= 〈4n + 6n2〉 = 4〈n〉 + 6〈n2〉. (6.251)
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Fig. 45 Second order corrected probability distribution profile for different m2 with previously mentioned initial conditions. Here we fix m = 2.

Here the subscript 1 and 2 stands for the corrected order in the distribution

On the other hand, using the second order master equation

we get the following analytical expression for the time

evolution of the second moment or two point correlation:

1

μ2
k

∂2〈n2〉
∂τ 2

= 〈2(1 + 6n + 6n2)〉 = 12〈n〉 + 12〈n2〉 + 2.

(6.252)

3. Step III:

Next, we want to compute the expression for 〈n3〉. To

compute this we consider here the first, second and third

order master equations, as mentioned earlier. Considering

only the first order master equation we get the following

analytical expression:
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Fig. 46 Upto third order corrected probability distribution profile for different m3, m2 and m1 = 2 with previously mentioned initial conditions

and Exact analytical solution for probability distribution with previous correction included

1

μk

∂〈n3〉
∂τ

= 〈3n2(1 + 2n) + 6n(1 + n)〉

= 〈6n + 9n2 + 6n3〉 = 6〈n〉 + 9〈n2〉 + 6〈n3〉.
(6.253)

On the other hand, using the second order master equa-

tion we get the following analytical expression for

the time evolution of the third moment or three point

correlation:

1

μ2
k

∂2〈n3〉
∂τ2

= 〈12n(1 + 3n + 3n2) + 6n(1 + 6n + 6n2)〉

= 18〈n〉 + 72〈n2〉 + 60〈n3〉. (6.254)

Finally, using the third order master equation we get the

following analytical expression for the time evolution of

the third moment or three point correlation:

1

μ3
k

∂3〈n3〉
∂τ 3

= 〈6(1 + 2n)(1 + 10n + 10n2)〉

= 72〈n〉 + 180〈n2〉 + 120〈n3〉 + 6. (6.255)
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Fig. 48 Time dependent

behaviour of 〈n〉 for μk = 1
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4. Step IV:

Next, we want to compute the expression for 〈n4〉. To

compute this we consider here the first, second, third and

fourth order master equations, as mentioned earlier. Con-

sidering only the first order master equation we get the

following analytical expression:

1

μk

∂〈n4〉
∂τ

= 〈4n3(1 + 2n) + 12n2(1 + n)〉

= 〈16n3 + 20n4〉 = 16〈n3〉 + 20〈n4〉. (6.256)

On the other hand, using the second order master equation

we get the following analytical expression for the time

evolution of the fourth moment or four point correlation:

1

μ2
k

∂2〈n4〉
∂τ 2

= 〈12n2(1 + n)2 + 48n2(1 + 3n + 2n2)

+12n2(1 + 6n + 6n2)〉
= 72〈n2〉 + 240〈n3〉 + 180〈n4〉. (6.257)

Then, using the third order master equation we get the

following analytical expression for the time evolution of

the fourth moment or fourth point correlation:

1

μ3
k

∂3〈n4〉
∂τ 3

= 〈72n(1 + n)(1 + 5n + 5n2)

+24n(1 + 2n)(1 + 10n + 10n2)〉
= 96〈n〉 + 720〈n2〉 + 1440〈n3〉 + 840〈n4〉. (6.258)

Finally, using the third order master equation we get the

following analytical expression for the time evolution of

the fourth moment or fourth point correlation:

1

μ4
k

∂4〈n4〉
∂τ 4

= 〈24(1 + 20n + 90n2 + 140n3 + 70n4)〉

= 480〈n〉 + 2160〈n2〉 + 3360〈n3〉
+1680〈n4〉 + 24. (6.259)

5. Step V:

Further we apply the boundary conditions, i.e. 〈n〉, 〈n2〉,
〈n3〉, 〈n4〉, d〈n2〉

dτ 2 ,
d〈n3〉
dτ 3 and,

d〈n4〉
dτ 4 are vanishingly small

at τ = 0. Using these conditions we get expressions for

〈n〉, 〈n2〉, 〈n3〉 and 〈n4〉.
6. Step VI:

Using the result obtained in Step I and using the previ-

ously mentioned boundary condition we get the following

expression for the one point function30 (or first moment)

30 Here it is important to note that as far as quantum mechanical com-

putation is concerned, it produces same result for the one point function

of occupation number:

First Moment (First Order):

〈n〉I = 1

2
(e2τμk − 1), (6.260)

which is further used to compute all the higher order

moments from master evolution equation considering

higher order Taylor expansion. Additionally, it is impor-

tant to note that if we use higher order equations for the

first moment then after imposing the boundary conditions

we get the following results:

First Moment (Second Order):

〈n〉II = 0, (6.261)

First Moment (Third Order):

〈n〉III = 0, (6.262)

First Moment (Fourth Order):

〈n〉IV = 0. (6.263)

Consequently, the total first moment can be written as:

Total First Moment:

〈n〉 = 〈n〉I + 〈n〉II + 〈n〉III + 〈n〉IV

= 〈n〉I = 1

2
(e2τμk − 1). (6.264)

In Fig. 48, we have explicitly shown the time dependent

behaviour of first moment or one point function of the

occupation number 〈n〉. As there is no contributions are

coming from the second, third and fourth order moment

generating master evolution equation for 〈n〉, the only

contribution is coming from the first order master evolu-

tion equation. From this plot we see that for a fixed value

of the parameter μk = 1, at the lower values of the time

the first moment or the one point function of the occupa-

tion number initially increase with time very very slowly.

Then after a certain time when τ ≫ 1 it shows suddenly

huge increment in the behaviour. Most importantly, this

plot shows the first moment or one point function of the

occupation number is not zero. This shows the first sig-

nature of the non-Gaussianity as we know for Gaussian

probability distribution profile this is exactly zero.

7. Step VII:

Using the results obtained in Step II and using the previ-

ously mentioned boundary condition we get the follow-

Footnote 30 continued

and first moment of the occupation number and both of them is equal

to the expectation or average value of the occupation number in this

context.
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ing expression for the two point function31 (or second

moment) of occupation number:

Second Moment (First Order):

〈n2〉I = 1

6
e6τμk + 1

6
(2 − 3e2τμk ) . (6.267)

Second Moment (Second Order):

〈n2〉II = 1

24
e−2

√
3μkτ

[
8e2

√
3μkτ − 18e

2
(√

3+1
)
μkτ

+
(

3
√

3 + 5
)

e4
√

3μkτ − 3
√

3 + 5
]
, (6.268)

which is further used to compute all the higher order

moments from master evolution equation considering

higher order Taylor expansion. Additionally, it is impor-

tant to note that if we use higher order equations for the

second moment then after imposing the boundary condi-

tions we get the following results:

Second Moment (Third Order):

〈n2〉III = 0, (6.269)

Second Moment (Fourth Order):

〈n2〉IV = 0. (6.270)

Consequently, the total second moment can be written

as:

Total Second Moment:

〈n2〉 = 〈n2〉I + 〈n2〉II + 〈n2〉III + 〈n2〉IV

= 〈n2〉I + 〈n2〉II. (6.271)

In Fig. 49, we have explicitly shown the time depen-

dent behaviour of second moment or amplitude of the

two point function of the occupation number 〈n2〉. As

there is no contributions are coming from the third and

fourth order moment generating master evolution equa-

tion for 〈n2〉, the only contribution is coming from the

first and second order master evolution equation. From

this plot we see that for a fixed value of the parameter

31 It is important to note that, as far as quantum mechanical computa-

tion is concerned, it produces not exactly same result for the one point

function and first moment of the occupation number. For two point

function we actually get the following result:

〈n(τ )n(τ ′)〉 = A(τ )δ(τ + τ ′), (6.265)

where A(τ ) is the amplitude of the two point function as given by the

following expression:

A(τ ) = 〈n2〉 = 〈n2〉I + 〈n2〉II. (6.266)

This implies that the amplitude part is exactly matches with the second

moment of the occupation number in this context.

μk = 1, 10, 100, at the lower values of the time the sec-

ond moment or the amplitude of the two point function of

the occupation number initially increase with time very

very slowly. Then after a certain time when τ ≫ 1 it

shows suddenly huge increment in the behaviour.
8. Step VIII:

Using the results obtained in Step III and using the pre-
viously mentioned boundary condition we get the fol-

lowing expression for the three point function32 (or third
moment) of occupation number:

Third Moment (First Order):

〈n3〉I = 1

8μk

[
e6μkτ

(
12μ2

kτ + 2μk − 5
)

+(9 − 6μk )e2μkτ + 4(μk − 1)
]

. (6.274)

Third Moment (Second Order):

〈n3〉II = 1

560

[
35
(

3
√

3 − 5
)

e−2
√

3μkτ + 450e2μkτ

−35
(

3
√

3 + 5
)

e2
√

3μkτ +
(

6
√

15 + 20
)

e2
√

15μkτ

+
(

20 − 6
√

15
)

e−2
√

15μkτ − 140
]

. (6.275)

Third Moment (Third Order):

〈n3〉III = 1

36960

[
2√

3 − 3i

×
(
−6135i + 2045

√
3 − 1654 35/6 3√

5 + 1011
6√

352/3

+1011i152/3
)

e
− 3√

15
(

1+i
√

3
)
μkτ + 32670e2μkτ

−1050
(

10
√

3 + 17
)

e2
√

3μkτ

+
(

4090 + 827i35/6 3√
5 − 1011i

6√
352/3

−827
3√

15 − 337 152/3
)

e
i

3√
15
(√

3+i
)
μkτ

+1050
(

10
√

3 − 17
)

e−2
√

3μkτ − 9240

+ 2√
3 − 3i

(
−6135i + 2045

√
3

+827 35/6 3√
5 + 1011

6√
352/3

−2481i
3√

15 − 1011i152/3
)

e2
3√

15μkτ

]
, (6.276)

which is further used to compute all the higher order

moments from master evolution equation considering

32 It is important to note that, as far as quantum mechanical computation

is concerned, it produces not exactly same result for the three point

function and third moment of the occupation number. For three point

function we actually get the following result:

〈n(τ )n(τ ′)n(τ ′′)〉 = B(τ, τ ′, τ ′′)δ(τ + τ ′ + τ ′′), (6.272)

where B(τ, τ ′, τ ′′) is the amplitude of the three point function. If we

fix τ = τ ′ = τ ′′ (equal time) then we get the following expression:

B(τ, τ, τ ) = 〈n3〉 = 〈n3〉I + 〈n3〉II + 〈n3〉III. (6.273)

This implies that the equal time amplitude part is exactly matches with

the third moment of the occupation number in this context.
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higher order Taylor expansion. Additionally, it is impor-

tant to note that if we use higher order equations for the

third moment then after imposing the boundary condi-

tions we get the following results:

Third Moment (Fourth Order):

〈n2〉IV = 0. (6.277)

Consequently, the total third moment can be written as:

Total Third Moment:

〈n3〉 = 〈n3〉I + 〈n3〉II + 〈n3〉III + 〈n3〉IV

= 〈n3〉I + 〈n3〉II + 〈n3〉III . (6.278)

In Fig. 50, we have explicitly shown the time dependent

behaviour of third moment or three point function of the

occupation number 〈n3〉. As there is no contributions are

coming from the fourth order moment generating master

evolution equation for 〈n3〉, the only contribution is com-

ing from the first, second and third order master evolution

equation. From this plot we see that for a fixed value of

the parameter μk = 1, 10, 100, at the lower values of the

time the third moment or the equal time amplitude of the

three point function of the occupation number initially

increase with time very slowly. Then after a certain time

it shows suddenly huge increment in the behaviour. Most

importantly, this plot shows the third moment or equal

time amplitude of the three point function of the occupa-

tion number is not zero. This shows the second signature

of the non-Gaussianity as we know for Gaussian proba-

bility distribution profile this is exactly zero.

9. Step IX:

Using the results obtained in Step IV and using the previ-

ously mentioned boundary condition we get the follow-

ing expression for the four point function33 (or fourth

moment) of occupation number:

33 It is important to note that, as far as quantum mechanical computation

is concerned, it produces not exactly same result for the three point

function and third moment of the occupation number. For three point

function we actually get the following result:

〈n(τ )n(τ ′)n(τ ′′)n(τ ′′′)〉 = C(τ, τ ′, τ ′′, τ ′′′)δ(τ + τ ′ + τ ′′ + τ "′
),

(6.279)

where C(τ, τ ′, τ ′′, τ ′′′) is the amplitude of the four point function. If

we fix τ = τ ′ = τ ′′ = τ ′′′ (equal time) then we get the following

expression:

C(τ, τ, τ, τ ) = 〈n4〉 = 〈n4〉I + 〈n4〉II + 〈n4〉III + 〈n4〉IV. (6.280)

This implies that the equal time amplitude part is exactly matches with

the third moment of the occupation number in this context.

Fourth Moment (First Order):

〈n4〉I

= 6(μ − 1)e2μτ + 3(5μ − 2)e8μτ −2e6μτ (3μ(4μτ +3)−5) − 3μ+2

2μ
.

(6.281)

Fourth Moment (Second Order):

〈n4〉II =

(
67 − 45

√
5
)
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√

5μτ

10080

+
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√
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10080
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5040
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15 sinh
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√

3 sinh
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2
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−5265 cosh(2μτ)

+4350 cosh
(

2
√

3μτ
)

− 720 cosh
(

2
√

15μτ
)

+ 1568). (6.282)

The third and the fourth order corrected version of the

fourth order moment equations are not exactly solvable

analytically. For this reason we have applied numerical

techniques to solve these differential equations.

Consequently, the total fourth moment can be written as:

Total Fourth Moment:

〈n4〉 = 〈n4〉I + 〈n4〉II︸ ︷︷ ︸
Analytical

+〈n4〉III + 〈n4〉IV︸ ︷︷ ︸
Numerical

. (6.283)

In Fig. 51, we have explicitly shown the time depen-

dent behaviour of fourth moment or amplitude of the

four point function of the occupation number 〈n4〉. From

this plot we see that for a fixed value of the parameter

μk = 1, 10, 100, at the lower values of the time the third

moment or the equal time amplitude of the four point

function of the occupation number initially increase with

time very slowly. Then after a certain time it shows sud-

denly huge increment in the behaviour.

6.4.1 Standard deviation

Further, using the results obtained in the context of second

moment or two point correlation function, in this subsec-

tion our prime objective is compute the expression for the

Standard Deviation from the corrected version of the proba-

bility distribution function. In the present context of discus-

sion Standard Deviation actually gives the spread of the peak

of the corrected probability distribution function. Therefore,

Standard Deviation considering upto first order is given by

the following expression:

S.D.uc =
√

〈n2〉I − (〈n〉I)
2

=
√

2e6τμk − 3e4τμk + 1

2
√

3
, (6.284)

where the subscript “uc” stands for uncorrected.
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Fig. 49 Time dependent

behaviour of different 〈n2〉 at

different values of the parameter

μk
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Fig. 50 Time dependent

behaviour of the third moment

〈n3〉 for different fixed values of

the parameter μk
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On the other hand, after including the result from the sec-

ond order the corrected expression for the Standard Deviation

can be expressed as:

S.D.c =
√(

〈n2〉I + 〈n2〉II

)
− (〈n〉I)

2

=

√(
3
√

3 + 5
)

e2
√

3μkτ − 18e2μkτ − 6e4μkτ + 4e6μkτ +
(

5 − 3
√

3
)

e−2
√

3μkτ + 10

2
√

6
. (6.285)

From the Fig. 52, we can see that the uncorrected Stan-

dard Deviation (first order) and corrected Standard Deviation

(second order) has significant difference in low μkτ limit and

second order overlapped as they approach higher μkτ . So for

lower limit this second order correction is significant and for

this reason during the computation of Kurtosis and Skewness

we use total solution of standard deviation over the uncor-

rected one alone. In Fig. 52a the variance is with in the value

1 but in Fig. 52b variance has a enormous value.It is mere

effect of tuning.The plots or values of variance can always

be tuned to be within 1 using proper prefactor.

6.4.2 Skewness

In this subsection, our prime objective is to computed the

expression for the Skewness from the corrected probability

distribution function. Skewness actually measure the asym-

metry of the probability distribution function of a real-valued

random variable about its mean value. This measure can

be positive or negative, or undefined. From positive skew-
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Fig. 51 Log plot of Time dependent behaviour of the Fourth moment 〈n4〉 for different fixed values of the parameter μk
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Fig. 52 Time dependent behaviour of variance without second order correction and with second order correction and 〈n〉2 are shown for different

μk
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ness (for unimodal distribution) we can say normal curve

has longer right tail.
Therefore, skewness without correction can be expressed

as:

Skewnessuc = 〈n3〉I
[
〈n2〉I − (〈n〉I)

2
]3/2

= 〈n3〉I

[S.D.uc]3

=
3
√

3
(
e6μτ

(
12μ2τ + 2μ − 5

)
+ (9 − 6μ)e2μτ + 4(μ − 1)

)

μ
(
−3e4μτ + 2e6μτ + 1

)3/2
.

(6.286)

On the other hand, the third order corrected value of the

Skewness can be expressed as:

Skewnessuc = 〈n3〉I + 〈n3〉II + 〈n3〉III
[(

〈n2〉I + 〈n2〉II

)
− (〈n〉I)

2
]3/2

= 〈n3〉I

[S.D.c]3
. (6.287)

The explicit detail of the corrected version of Skewness is not

written to avoid writing the unnecessary lengthy expression.

Now from Fig. 53, we can say that the corrected Skewness

deviate significantly from the uncorrected one at low μkτ

limit. But we can see that at higher limit they overlap. Also

Skewness is positive for the whole range which implies that

the normal distribution curve has longer right tail. Moreover,

there is a discontinuity of third order corrected Skewness in

between the range 0.1 < τ < 1 and for the rest of the whole

range of time Skewness decreased upto unity and then it is

increased.

6.4.3 Kurtosis

Kurtosis is a measure of the tailedness of the probability dis-

tribution of a real-valued random variable. This is actually a

descriptor of the shape of a probability distribution function

and there are specific ways of quantifying it for a theoretical

probability distribution and corresponding ways of estimat-

ing it from a sample from a population. It is important to

note that, the Kurtosis of any univariate normal distribution

is 3. For practical purposes it is common practice to compare

the expression for Kurtosis of a probability distribution func-

tion to 3. Probability distributions with Kurtosis less than the

value 3 are identified as platykurtic, although this informa-

tion does not imply the distribution is flat-topped in nature.

Rather, it implies that the probability distribution produces

fewer and less extreme outliers than does the normal prob-

ability distribution. Probability distributions with Kurtosis

greater than the value 3 are said to be leptokurtic. It is also

common practice to use, the excess Kurtosis, which is the

Kurtosis minus 3, to provide the comparison to the normal

probability distribution profile. Like Skewness here also we

calculate kurtosis from different distribution and get it at dif-

ferent order of correction.

Therefore, Kurtosis without correction can be expressed

as:

Kurtosisuc = 〈n4〉I
[
〈n2〉I − (〈n〉I)

2
]2

= 〈n4〉I

[S.D.uc]2

= 6

μ
(
−3e4μkτ + 2e6μkτ + 1

)

×
[
6(μk − 1)e2μkτ + 3(5μk − 2)e8μkτ

−2e6μkτ (3μ(4μkτ + 3) − 5) − 3μk + 2
]
. (6.288)

On the other hand, the fourth order corrected value of the

Kurtosis can be expressed as:

Kurtosisc = 〈n4〉I + 〈n4〉II + 〈n4〉III + 〈n4〉IV
[
〈n2〉I + 〈n2〉I − (〈n〉I)

2
]2

= 〈n4〉I + 〈n4〉II + 〈n4〉III + 〈n4〉IV

[S.D.c]2
. (6.289)

From Fig. 54, we can say that uncorrected kurtosis deviate

from corrected one in lower τ regime though overlapped in

higher order [τ > 1]. So the contribution from the correction

factor is important in lower regime. Also it is important to

note that, Kurtosis is greater than the value 3 for the whole

time regime, so the distribution is Leptokurtic and have fatter

tails. Here Fig. 54a has a huge value for corrected kurtosis

which can be bounded within a particular value using tuning

parameter.

From the calculation of the higher-order statistical moments

(or equivalently the amplitude of the quantum mechanical

correlation functions) we get the following overall features

to analyze the nature and physical outcomes of the corrected

probability density function derived in this paper.

1. The Standard Deviation is significantly large for higher

μkτ , though very small for lower regime.

2. Skewness is positive throughout the time regime, though

becomes vanishingly small at a specific time interval

(0.1 < τ < 0.7).

3. Kurtosis is greater than 3 for the whole time regime.

4. The predicted Log-Normal Gaussian Distribution shows

deviations at significant levels. Effects of the non-

Gaussianity in the distribution function is clearly visu-

alized.

5. The probability distribution has longer trailing ends and

the trails go broad higher.

6. The probability distribution has a very low spread at lower

μkτ limit though highly spread out in larger limit.

Consequently, from the previously predicted result of [42]

we show that distribution deviates from a Log-Normal dis-
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Fig. 53 Time dependent behaviour of Skewness without correction and with correction at different fixed range of μk

tribution and the predicted distribution function appears to

be leptokurtic and has a broad right trailing end. All of this

portion have a similar connection with Ref. [104]

7 Conclusion

In this paper we have addressed the issues which are

appended below:

• In this paper, we have provided the analogy between

particle creation in primordial cosmology and scattering

problem inside a conduction wire in presence of impuri-

ties. Such impurities are characterized by effective poten-

tial in the context of quantum mechanical description. On

the other hand, in the context of primordial cosmology

time dependent mass profile of created particles (cou-

plings) mimics the same role.

• Specific time dependence of mass profile actually restricts

the structure of the scattering effective potential. To estab-

lish the analogy between two theoretical frameworks we

have further computed various characteristic features of

conduction wire i.e. resistance, conductance (electrical

properties), Lyapunov exponent (dynamical property),

reflection and transmission coefficients (optical proper-

ties), occupation number and energy density (energet-

ics) using the expression for Bogoliubov coefficients for

different mass profiles which connects the ingoing and

outgoing solution of the mode functions obtained in the

context of particle creation process in cosmology.

• We have solved this particle creation problem using the

following crucial steps:

1. First of all assuming that the interactions are well

known we have studied the one to one correspondence

between the particle creation problem in early uni-

verse cosmology with the scattering problem inside a

conduction wire. Here we have additionally neglected

the effect of the expansion of our universe and this is

perfectly justifiable during the epoch of reheating. For

this reason we call it as Reheating Approximation.

2. Secondly we have studied the same problem where

the particle interactions are not known at all at

the level of action. In such a situation, assum-

ing the gravitational background is classical in

nature and also assuming the previously mentioned

Reheating Approximation we have demonstrated

the problem with the help of Random matrix theory.

3. Further we have solved the dynamics of the particle

creation problem by studying the higher order correc-

tions in the Fokker–Planck equation for previously

mentioned random system where the interactions are

not easily quantifiable at the level of action. We have

constructed the fourth order corrected Fokker–Planck

equation from which we have provided the solu-

tion of the random probability distribution function.
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Fig. 54 Time dependent behaviour of Kurtosis without correction and with correction in the probability density distribution function at different

range of τ considering different μk

Such distributions are very very useful to study the

dynamical systems when particle interactions are not

well known. In our analysis we have identified all of

these modifications as the quantum correction to the

Fokker–Planck equation, the physical implications of

which we have studied in detail in this paper.

• In this work, we have shown that the Lyapunov exponent

varies inversely with the number of scatterers. There-

fore, with an increase in the number of scatterers the

Lyapunov exponent also reduces thereby reducing the

amount of randomness in the system. This may be a hint

to the fact that the Lyapunov exponent has a dependence

on the momenta values of the incoming wave-function

of the scalar field. Additionally, it is important to note

that the upper bound of Lyapunov exponent is restricted

by the constraint λ ≤ 2π/β (where β = 1/T ), which

is a generic bound on chaos obtained in the context of

quantum field theory. As a consequence, one can find

restriction on the upper bound on the reheating temper-

ature for the different quenched mass profiles for which

the chaos bound saturates. This is obviously a remark-

able result in the present context as it can able to provide

the explicit expression for the reheating temperature for

a specified momentum scale, which was not predicted

earlier in the detailed study of reheating. Most impor-

tantly, the bound on quantum chaos in terms of Lya-

punov exponent directly restrict the value of reheating

temperature without explicitly knowing the details of the

particle interactions as appearing in the action. Just the

knowledge of time dependence of the quenched mass

profiles (in other words the knowledge of effective impu-

rity potential as appearing inside the conduction wire) is

sufficient enough to restrict the upper bound of reheating

temperature due to quantum chaos.

• In this context we have also provided the expression

for the two point quantum correlation function, which

is known as Spectral Form Factor (SFF) for both in finite

and zero temperature. Spectral Form Factor is actually

a more strong measure to find chaotic behaviour of a

dynamical system compared to Lyapunov exponent. We

get saturating behaviour of SFF at late time scale, which

indicates that it has an upper-bound. We can relate SFF

for any potential (Even Polynomial Potential in this case).

In the calculation of the Lyapunov Exponent for the

specific time dependent mass profiles, we choose three

different quenched protocols for mass profiles. Poten-

tial functions which can be represented by polynomial

potential (Even only in our case) can be used to get the

SFF-saturation. In this connection, we have provided a

model independent upper and lower bound of SFF, which

is treated as the significant bound of quantum chaos

(−1/N (1 − 1/π) ≤ SFF ≤ 1/π N ) in the context of

particle production event in cosmology. This is obviously
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a remarkable result which we have explicitly computed

in this paper.In [105] this same has been calculated for

general polynomial with GUE.

• We have also presented the computation of quantum cor-

rected Fokker- Planck equation which corresponds to the

delta-scatterers. From this computation we have derived

the corrected statistical distribution of the particle pro-

duction events in cosmology. The distribution which has

been predicted in [42] to be Gaussian doesn’t retain its

form when more correction terms are taken into account.

This may be treated as a signature of non-Gaussian in

particle production events during reheating (in cosmol-

ogy).

The future discussions of the present work are mentioned

in the following:

• In this paper for our study of quantum chaos in the context

of cosmology we have used a closed quantum system. As

we have mentioned that the present computation has been

performed for a massless scalar field which interacts with

the heavy fields (which acts like scatterers inside the con-

duction wire). The entire calculation is being done for the

set up when there is only a single massless scalar field that

interacts with the scatterer. One may repeat the calcula-

tion for a large number of these scalar fields interacting

with the scatterers which needs the introduction of the

random matrix approach in a more generalized fashion.

• The system we have studied in this paper have no interac-

tions with the background as the definition of the back-

ground in this set-up is itself an ill-defined one during

reheating. To treat the entire system having being inter-

acted with a background one needs to have a detailed

description of the nature of background in the cosmolog-

ical scenario. Then it will be possible to introduce the

other non-linear and dissipative effects into the system

introduced by the background itself. Such a treatment will

be studied within the framework of an open quantum sys-

tem interacting with the defined background set-up. One

then needs to consider the entire system having being

interacted with the background under a weak coupling

limit. One such model as has been studied in [106].

• We have calculated the Lyapunov exponent and Spectral

Form Factor in this paper which is a measure of chaos or

non-linearity into the system. With the system prescribed

in this work being treated as an open quantum system one

may study the effects of dissipation being introduced into

such a system which renders the system to be a stochastic

one. With this, one may be able to study the effects of

the non-linearity being introduced into the system which

may well be a good study to look for the behaviour of

Lyapunov exponent and Spectral Form Factor.

• During the study of quantum correction in the Fokker–

Planck equation and the deviation from log normal dis-

tribution we have followed a specific approach in which

we have considered the following possibilities:

1. We have neglected the contribution from the damping

term in the Fokker–Planck equation. One can include

such effect and study its role in the context of cos-

mology (specifically during reheating).

2. During the computation we have followed a specific

approach in which we have also neglected the effect

of impurity potential at very high temperature dur-

ing reheating. This will give rise to a simplest form

of the Fokker–Planck equation where only diffusion

and drift contributions are appearing explicitly. But

if we include the effect of impurity potential in pres-

ence of finite temperature then it will surely effect the

final solution of the probability distribution function.

One can include such additional effects and study its

impact during reheating epoch of the early universe.

3. Furthermore, during the construction of the Fokker–

Planck equation from the basic principles we have

followed a special approach in which the effect of dif-

fusion and drift is appearing in a very simplified man-

ner. However, in the study of statistical field theory Itô

and Stratonovitch or more generalized prescriptions

are used commonly to construct the Fokker–Planck

equation. Here it is important to note that in each case

it will give rise to different mathematical structure of

Fokker–Planck equations. In the present context of

discussion, one can follow such well known prescrip-

tions to see its physical outcomes to solve the proba-

bility distribution function for the particle production

and compare the results to check the appropriateness

of these approaches during reheating.
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A Itô solution of Fokker–Planck equation

From Itô perspective the Fokker–Planck equation can be

expressed as:

Fokker Planck Equation (From Itô):

∂ P(n; τ)

∂τ
= − ∂

∂n
(a(n)P(n; τ))

+ ∂2

∂n2
(D(n)P(n; τ)) . (A.1)

Here we take a(n) = 0 and D(n) = n(n + 1). Using this we

get the following solution of probability distribution:

P(n, τ ) = 1

2
√

π
√

n(n + 1)τμk

× exp

[
− ((4n + 2)τμk + n)2

4n(n + 1)τμk

]
(A.2)

In Fig. 55 we have shown the probability distribution function

obtained from the Itô solution of the Fokker–Planck equa-

tion. This solution is similar to the log normal distribution

obtained from the present computation. From the plot we

observe that for large value of occupation number n (n ≫ 1)

the distribution function decays to a finite saturation value.

On the other hand for small occupation number n (n ≪ 1)

we get peak in the distribution function for different values

of μkτ .

Fig. 55 Evolution of the

probability density function for

Itô prescription with respect to

the occupation number per

mode n, for a fixed time
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Fig. 56 Evolution of the

probability density function for
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time in the limit n ≪ 1

=
1

k

=
1.2

k

=
1.4

k

=
1.6

k

=
1.8

k

0 5 10 15 20 25

0.000

0.005

0.010

0.015

n

P
(n

;
)

ProbabilityDistribution for fixed

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2019) 79 :320 Page 103 of 107 320

B Stratonovitch solution of Fokker–Planck equation

From Stratonovitch perspective the Fokker–Planck equation

can be expressed as:

Fokker Planck Equation (From Stratonovitch):
∂ P(n; τ)

∂τ
= − ∂

∂n
(a(n)P(n; τ))

+ ∂

∂n

(√
D(n)

∂

∂n

(√
D(n)P(n; τ)

))
. (B.1)

Here we take a(n) = 0 and D(n) = n(n + 1). Using this we

get the following solution of probability distribution:

P(n, τ ) = 1

2
√

π
√

n(n + 1)τμk

exp

[
−9(2n + 1)2τμk

16n(n + 1)

]
.

(B.2)

In Fig. 56 we have shown the probability distribution func-

tion obtained from the Stratonovitch solution of the Fokker–

Planck equation. This solution is similar to the log normal

distribution obtained from the present computation. From the

plot we observe that for large value of occupation number n

(n ≫ 1) the distribution function decays to a finite satura-

tion value. On the other hand for small occupation number n

(n ≪ 1) we get peak in the distribution function for different

values of μkτ .

C Generalized solution of Fokker–Planck equation at

infinite temperature

From General perspective the Fokker–Planck equation can

be expressed as:

Fokker Planck Equation (For Generalized Itô) :
∂ P(n; τ)

∂τ
= − ∂

∂n
(a(n)P(n; τ))

+ ∂

∂n

(
(D(n))1−Q ∂

∂n

(
(D(n))Q P(n; τ)

))
. (C.1)

Here we take a(n) = 0 and D(n) = n(n + 1). Using this we

get the following solution of probability distribution:

P(n, τ ) = 1

2
√

μkπτ(n(n + 1))Q

× exp

[
−
(
n2(n + 1) + μkτ(2n + 1)Q(Q + 1)(n(n + 1))Q

)2

4μkτ(n(n + 1))Q+2

]
.

(C.2)

In Fig. 57 we have shown the probability distribution function

obtained from the generalized solution of the Fokker–Planck

equation without dissipation in very very large temperature.

From the plot we observe that for large value of occupation

number n (n ≫ 1) the distribution function decays to a finite

saturation value. On the other hand for small occupation num-

ber n (n ≪ 1) we get peak in the distribution function for

different values of μkτ .
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Fig. 57 Evolution of the probability density function for generalized prescription with respect to the occupation number per mode n, for a fixed

time
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Fig. 58 Evolution of the probability density function for generalized prescription with respect to the occupation number per mode n, for a fixed

time and β

D Generalized solution of Fokker–Planck equation at

finite temperature

From General perspective the Fokker–Planck equation with

effect of potential can be expressed as:

Effective Potential:

U (n) =
[

β2

4
D(n)

(
∂V (n)

∂n

)2

− β

2
D(n)

(
∂2V (n)

∂n2

)

−β

2

(
∂ D(n)

∂n

)(
∂V (n)

∂n

)]
. (D.1)

∂

∂n

(
D(n)

∂W (n; τ)

∂n

)
− U (n)W (n; τ)
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= ∂W (n; τ)

∂τ
, (D.2)

P(n; τ) = exp

(
−β

2
V (n)

)
W (n; τ). (D.3)

Here we take a(n) = 0,V [n] = n2 and D(n) = n(n +
1). Using this we get the following solution of probability

distribution:

P(n, τ ) = 1

2
√

π
√

n(n + 1)τμk

× exp

[
− (n − μk(2nτ + τ))2

4n(n + 1)τμk

− βn2

2

−βn {n(βn(n + 1) − 3) − 2}
]

(D.4)

In Fig. 58 we have shown the probability distribution func-

tion obtained from the solution of the Fokker–Planck equa-

tion derived in presence of finite temperature effective poten-

tial solution. From the plot we observe that for large value

of occupation number n (n ≫ 1) the distribution function

decays to a finite saturation value. On the other hand for small

occupation number n (n ≪ 1) we get peak in the distribution

function for different values of μkτ .
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