
ARTICLE OPEN

Quantum parameter estimation with general dynamics
Haidong Yuan1 and Chi-Hang Fred Fung2

One of the main quests in quantum metrology, and quantum parameter estimation in general, is to find out the highest achievable
precision with given resources and design schemes to attain it. In this article we present a general framework for quantum
parameter estimation and provide systematic methods for computing the ultimate precision limit, which is more general and
efficient than conventional methods.
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INTRODUCTION

A pivotal task in science and technology is to identify the highest
achievable precision in measurement and estimation and design
schemes to reach it. Quantum metrology, which exploits quantum
mechanical effects such as entanglement, can achieve better
precision than classical schemes and has found wide applications
in quantum sensing, gravitational wave detection, quantum-
enhanced reading of digital memory, quantum imaging, atomic
clock synchronization, etc.;1–11 this has gained increasing attention
in recent years.12–26

A typical situation in quantum parameter estimation is to
estimate the value of a continuous parameter x encoded in some
quantum state ρx of the system. To estimate the value, one needs
to first perform measurements on the system, which, in the
general form, are described by Positive Operator Valued
Measurements (POVM), {Ey}, which provides a distribution for the
measurement results p(y|x) = Tr(Eyρx). According to the
Cramér–Rao bound in statistical theory,2, 3, 27, 28 the standard
deviation for any unbiased estimator of x, based on the
measurement results y, is bounded below by the Fisher
information: δx̂ � 1ffiffiffiffiffiffi

I xð Þ
p ; where δx̂ is the standard deviation of

the estimation of x, and I(x) is the Fisher information of the

measurement results, I xð Þ ¼
P

y p y xjð Þ ∂lnp y xjð Þ
∂x

� �2
.29 The Fisher

information can be further optimized over all POVMs, which gives

δx̂ � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxEy I xð Þ
q ¼ 1

ffiffiffiffiffiffiffiffiffiffi

J ρxð Þ
p ; ð1Þ

where the optimized value J(ρx) is called quantum Fisher
information.2, 3, 30, 31 If the above process is repeated n times,
then the standard deviation of the estimator is bounded by
δx̂ � 1ffiffiffiffiffiffiffiffiffi

nJðρxÞ
p :

To achieve the highest precision, we can further optimize the
encoding procedures x→ρx so that J(ρx) is maximized. Typically
the encoding is achieved by preparing the probe in some initial
state ρ0, then let it evolve under a dynamics that contains the

interested parameter, ρ0 �!
ϕx

ρx . Usually ϕx is determined by a
given physical dynamics which is then fixed, while the initial state

is up to our choice and can be optimized. A pivotal task in
quantum metrology is to find out the optimal initial state ρ0 and
the corresponding maximum quantum Fisher information under
any given evolution ϕx. When ϕx is unitary the GHZ-type of states
are known to be optimal, which leads to the Heisenberg limit.
However when ϕx is noisy, such states are in general no longer
optimal. Finding the optimal probe states and the corresponding
highest precision limit under general dynamics has been the main
quest of the field. Recently using the purification approach much
progress has been made on developing systematical methods of
calculating the highest precision limit.12, 13, 15, 18, 19 These
methods, however, require smooth representations of the Kraus
operators, which is not intrinsic to the dynamics.
In this article, we provide an alternative purification approach

that does not require smooth representations of the Kraus
operators. This framework provides systematic methods for
computing the ultimate precision limit, which can be formulated
as semi-definite programming and solved more efficiently than
conventional methods. We also extend the Bures angle on
quantum states to quantum channels, which is expected to find
wide application in various fields of quantum information science.

RESULTS

Ultimate precision limit

The precision limit of measuring x from a set of quantum states ρx
is determined by the distinguishability between ρx and its
neighboring states ρx + dx.

30, 32 This is best seen if we expand
the Bures distance between the neighboring states ρx and ρx + dx

up to the second order of dx:30

d2Bures ρx; ρxþdx

� �
¼ 1

4
J ρxð Þdx2; ð2Þ

where dBures ρ1; ρ2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2F ρ1; ρ2ð Þ
p

; here F ρ1; ρ2ð Þ ¼
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
1=2
1 ρ2ρ

1=2
1

q

is the fidelity between two states. Thus maximizing

the quantum Fisher information is equivalent as maximizing the
Bures distance, which is equivalent as minimizing the fidelity
between ρx and ρx + dx. If the evolution is given by ϕx, ρx = ϕx(ρ)
and ρx + dx = ϕx + dx(ρ), the problem is then equivalent to finding

Received: 2 February 2016 Revised: 10 August 2016 Accepted: 26 September 2016

1Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong and 2Munich Research Center, Huawei Technologies

Düsseldorf GmbH, München, Germany

Correspondence: Haidong Yuan (hdyuan@mae.cuhk.edu.hk)

www.nature.com/npjqi

Published in partnership with The University of New South Wales

http://dx.doi.org/10.1038/s41534-017-0014-6
mailto:hdyuan@mae.cuhk.edu.hk
www.nature.com/npjqi


out minρ F ϕx ρð Þ;ϕxþdx ρð Þ
� �

. We now develop tools to solve this
problem for both unitary and open quantum dynamics.
Given two evolution ϕx and ϕx + dx, we define the Bures angle

between them as Θ ϕx;ϕxþdx

� �
¼ maxρ cos

�1 F ϕx ρð Þ;ϕxþdx ρð Þ
� �� �

.
This generalizes the Bures angle on quantum states33 to
quantum channels. Θ(ϕx, ϕx + dx) can be seen as an induced
measure on quantum channel from the Bures angle on
quantum states, it thus also defines a metric on quantum
channels. From the definition of the Bures distance it is easy to
see maxρ d

2
Bures ϕx ρð Þ;ϕxþdx ρð Þ

� �
¼ 2� 2 cosΘ ϕx;ϕxþdx

� �
, thus

from Eq. (2) we have

max
ρ

J ϕx ρð Þ½ � ¼ lim
dx!0

8 1� cosΘ ϕx ;ϕxþdx

� �� �

dx2
: ð3Þ

The ultimate precision limit under the evolution ϕx is thus
determined by the Bures angle between ϕx and the neighboring
channels

δx̂ � 1

limdx!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 1�cosΘ ϕx ;ϕxþdxð Þ½ �

p

dxj j
ffiffiffi
n

p ; ð4Þ

where n is the number of times that the procedure is
repeated. If ϕx is continuous with respect to x, then when dx→0,
Θ(ϕx, ϕx + dx)→Θ(ϕx, ϕx) = 0, in this case

max
ρ

J ϕx ρð Þ½ � ¼ lim
dx!0

8 1�cosΘ ϕx ;ϕxþdxð Þ½ �
dx2

¼ lim
dx!0

16 sin2
Θ ϕx ;ϕxþdxð Þ

2

dx2

¼ lim
dx!0

4Θ2 ϕx ;ϕxþdxð Þ
dx2

;

ð5Þ

the ultimate precision limit is then given by

δx̂ � 1

limdx!02
Θ ϕx ;ϕxþdxð Þ

dxj j
ffiffiffi
n

p : ð6Þ

The problem is thus reduced to determine the Bures angle
between quantum channels. We will first show how to compute
the Bures angle between unitary channels, then generalize to
noisy quantum channels.

Ultimate precision limit for unitary channels. Given two unitaries U1

and U2 of the same dimension, since F U1ρU
†
1;U2ρU

†
2

� �

¼ F ρ;U†
1U2ρU

†
2U1

� �
, we have Θ U1;U2ð Þ ¼ Θ I;U†

1U2

� �
, i.e., the Bures

angle between two unitaries can be reduced to the Bures angle
between the identity and a unitary. For a m ×m unitary matrix U, let
e�iθj be the eigenvalues of U, where θj∈(−π, π], 1≤ j≤m, which we
will call the eigen-angles of U. If θmax = θ1≥ θ2≥⋯≥θm = θmin are

arranged in decreasing order, then Θ I;Uð Þ ¼ θmax�θmin

2 when θmax −

θmin≤ π,34–39 specifically if U = e−iHt, then Θ I;Uð Þ ¼ λmax�λminð Þt
2 if

λmax � λminð Þt � π, where λmax(min) is the maximal (minimal)
eigenvalue of H. This provides ways to compute Bures angles on
unitary channels. For example, suppose the evolution takes the form
U(x) = (e−ixHt)⊗N (tensor product of e−ixHt for N times, which means
the same unitary evolution e−ixHt acts on all N probes). Then

Θ U xð Þ;U x þ dxð Þ½ � ¼ Θ I;U† xð ÞU x þ dxð Þ½ �

¼ Θ I; e�iHtdx
� ��N

h i

:

ð7Þ

It is easy to see that the difference between the maximal
eigen-angle and the minimal eigen-angle of (e−iHtdx)⊗N is

θmax � θmin ¼ N λmax dxj jt � λmin dxj jtð Þ. Thus Θ I; e�iHtdx
� ��N

� �

¼
θmax�θmin

2 ¼ Nλmax dxj j�Nλmin dxj jð Þt
2 ; Eq. (6) then recovers the Heisenberg

limit

δx̂ � 1
ffiffiffi
n

p
λmax � λminð Þt

1

N
: ð8Þ

This also has close connection to the quantum speed limit,40–42

essentially the optimal probe state in this case, which is the equal
superposition of the eigenvectors corresponding to λmax and λmin, is
also the state that has the fastest speed of evolution.

Ultimate precision limit for noisy quantum channels. For a general
quantum channel that maps from a m1-dimensional to m2-
dimensional Hilbert space, the evolution can be represented by a

Kraus operation K ρSð Þ ¼
Pd

j¼1 FjρSF
†

j ; here the Kraus operators Fj,

1≤ j≤ d are of the size m2 ×m1,
Pd

j¼1 F
†

j Fj ¼ Im1
. The channel can

be equivalently represented as follows:

K ρSð Þ ¼ TrE UES 0Ej i 0Eh j � ρSð ÞU†

ES

� �
; ð9Þ

where 0Ej i denotes some standard state of the environment, and
UES is a unitary operator acting on both system and environment,
which we will call as the unitary extension of K. A general UES can
be written as follows:

UES ¼ ðWE � Im2
Þ

F1 � � � � � �
F2 � � � � � �
.
.
.

.

.

.
.
.
.

Fd � � � � � �
0 � � � � � �
.
.
.

.

.

.
.
.
.

0 � � � � � �

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U

; ð10Þ

where only the first m1 columns of U are fixed and WE∈U(p)(p ×
p unitaries) only acts on the environment and can be
chosen arbitrarily; here p≥ d as p − d zero Kraus operators can
be added.
Given a channel an ancillary system can be used to

improve the precision limit, this can be described as the extended
channel

K � IAð Þ ρSAð Þ ¼
X

j

Fj � IA
� �

ρSA Fj � IA
� �†

;

where ρSA represents a state of the original and ancillary systems.
Without loss of generality, the ancillary system can be assumed to
have the same dimension as the original system.
Given two quantum channels K1 and K2 of the same dimension,

let UES1 and UES2 as unitary extensions of K1 and K2, respectively,
we have43

Θ K1 � IA; K2 � IAð Þ ¼ min
UES1;UES2

Θ UES1;UES2ð Þ

¼ min
UES1

Θ UES1;UES2ð Þ

¼ min
UES2

Θ UES1;UES2ð Þ:

ð11Þ

This extends Uhlmann’s purication theorem on mixed states44

to noisy quantum channels. Furthermore, Θ(K1⊗IA, K2⊗IA) can
be explicitly computed from the Kraus operators of K1 and K2
(please see supplemental material for detail): if K1 ρSð Þ
¼Pd

j¼1 F1jρSF
†

1j , K2 ρSð Þ ¼Pd
j¼1 F2jρSF

†

2j , then cosΘ
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K1 � IA; K2 � IAð Þ ¼ max Wk k�1
1
2 λmin KW þ K†

W

� �
; here λmin KW þ K†

W

� �

denotes the minimum eigenvalue of KW þ K†

W , where
KW ¼

P

ij wijF
†

1iF2j , with wij as the ij-th entry of a d × d matrix W,

which satisfies Wk k � 1 ( �k k denotes the operator norm, which is
equal to the maximum singular value). If we substitute K1 = Kx and

K2 = Kx + dx, where Kx ρSð Þ ¼
Pd

j¼1 Fj xð ÞρSF†j xð Þ and Kxþdx ρSð Þ ¼
Pd

j¼1 Fj x þ dxð ÞρSF†j x þ dxð Þ with x being the interested para-

meter, then

cosΘ Kx � IA; Kxþdx � IAð Þ
¼ max

Wk k�1

1
2 λmin KW þ K†

W

� �
; ð12Þ

where KW ¼
P

ij wijF
†

i xð ÞFj x þ dxð Þ.
By substituting ϕx = Kx⊗IA and ϕx + dx = Kx + dx⊗IA in Eq. (3), we

then get the maximal quantum Fisher information for the
extended channel Kx⊗IA,

max J ¼ lim
dx!0

8 1�max Wk k�1
1
2 λmin KW þ K†

W

� �� �

dx2
: ð13Þ

The maximization in Eq. (13) can be formulated as semi-definite
programming: max Wk k�1

1
2 λmin KW þ K†

W

� �
¼

maximize 1
2 t

s:t:
I W†

W I

0

B
B
B
@

1

C
C
C
A

� 0;

KW þ K†

W � tI � 0:

ð14Þ

For example, consider two qubits with independent dephasing
noises, which can be represented by four Kraus operators: F1(x)
⊗F1(x), F1(x)⊗F2(x), F2(x)⊗F1(x), F2(x)⊗F1(x) with F1 xð Þ ¼
ffiffiffiffiffiffiffi
1þη
2

q

U xð Þ, F2 xð Þ ¼
ffiffiffiffiffiffiffi
1�η
2

q

σ3U xð Þ; here U xð Þ ¼ exp �i σ32 x
� �

: Figure 1

shows the maximal quantum Fisher information and the quantum
Fisher information for the separable input state þþj i, where

þj i ¼ 0j iþ 1j i
ffiffi
2

p . It can be seen that the gain of entanglement is only

obvious in the region of high η, i.e., low noises. It is also found that
there exists a threshold for η, above the threshold the GHZ state is
the optimal state that achieves the maximal quantum Fisher
information, but with the decreasing of η the optimal state
gradually changes from GHZ state to separable state, and this
threshold increases with the number of qubits.
In Fig. 2 the quantum Fisher information for the optimal state,

GHZ state, and the separable state are plotted.

Parallel scheme

Previous results on the SQL (standard quantum limit)-like scaling
for certain independent noise processes12, 13, 15, 18, 45 can also be
recaptured in this framework. In ref. 43 we showed that given
any two channels K1 ρSð Þ ¼Pd

j¼1 F1jρSF
†

1j , K2 ρSð Þ ¼Pd
j¼1 F2jρSF

†

2j ,
we have

2� 2 cosΘ K�N
1 � IA; K

�N
2 � IA

� �

� N 2I � KW � K†

W









þ N N � 1ð Þ I � KWk k2;

ð15Þ

where K⊗N denote N channels in parallel as in Fig. 3,
KW ¼Pij wijF

†

1iF2j , with wij as the ij-th entry of a d × d matrix W
which satisfies Wk k � 1. This inequality is valid for any W with
Wk k � 1, the smaller the right side of the inequality, the tighter
the bound is. In the asymptotical limit, N N � 1ð Þ I � KWk k2 is the
dominating term, in that case we would like to choose a W
minimizing I � KWk k for a tighter bound. This can be formulated
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Fig. 2 Quantum Fisher information for optimal probe states, GHZ
state, and separable state for five qubits under independent
dephasing noises
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separable input state þþj i for two qubits with independent
dephasing noises

Fig. 3 N probes with independent noisy processes
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as semi-definite programming with

min Wk k�1 I � KWk k ¼

s:t:

min t

I W†

W I

� � � 0;

tI I � KWð Þ†

I � KW tI

 !

� 0:

ð16Þ

For quantum parameter estimation with the noisy channel

Kx ρð Þ ¼
Pd

i¼1 Fi xð ÞρF†i xð Þ, we can substitute K1 = Kx and K2 = Kx + dx

into Eq. (15). If there exists a d × d matrix W with Wk k � 1 such
that I � KWk k � Ddx2 , where KW ¼Pij wijF

†

i xð ÞFj x þ dxð Þ, then

the precision limit of K�N
x will scale at most 1ffiffiffi

N
p . As by substituting

K1 = Kx and K2 = Kx + dx into Eq. (15),

2� 2 cosΘ K�N
x � IA; K

�N
xþdx � IA

� �

� N 2I � KW � K†

W









þ N N � 1ð Þ I � KWk k2

� N I � KWk k þ I � K†

W











� �
þ N N � 1ð ÞD2dx4

� 2DNdx2 þ N N � 1ð ÞD2dx4:

ð17Þ

The quantum Fisher information is then bounded by

max J ¼ lim
dx!0

8
1�cos Θ K�N

x �IA;K
�N
xþdx

�IAð Þ½ �
dx2

� 8DN;

thus the precision limit has SQL scaling

δx � 1
ffiffiffiffiffi
nJ

p � 1
ffiffiffiffiffiffiffiffiffiffiffiffi
8nDN

p :

For example, consider the dephasing channel with

Kx ρ0ð Þ ¼ U xð Þ 1þ η

2
ρ0 þ

1� η

2
σ3ρ0σ3

� �

U† xð Þ;

where U xð Þ ¼ exp �i σ32 x
� �

, σ1 ¼
0 1
1 0

� �

, σ2 ¼
0 �i

i 0

� �

and

σ3 ¼ 1 0
0 �1

� �

, η∈[0, 1]. In this case F1 xð Þ ¼
ffiffiffiffiffiffiffi
1þη
2

q

U xð Þ, F2 xð Þ ¼
ffiffiffiffiffiffiffi
1�η
2

q

σ3U xð Þ: We choose W ¼ cosðξdxÞ i sinðξdxÞ
i sinðξdxÞ cosðξdxÞ

 �

and vary ξ

to minimize I � KWk k. In this case

thus

I � KW ¼ R� iI 0

0 Rþ iI

� �

; ð19Þ

where R ¼ 1� cos ξdxð Þ cos dx
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� η2
p

sin ξdxð Þ sin dx
2 and

I ¼ cos ξdxð Þ sin dx
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� η2
p

sin ξdxð Þ cos dx2 , then I � KWk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ I2
p

. Expanding R and I to the second order of dx, we can

get R ¼ 1þ4ξ2þ4ξ
ffiffiffiffiffiffiffiffi
1�η2

p
8 dx2 þ O dx3ð Þ and I ¼ dx

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� η2
p

ξdx

þOðdx3Þ. To minimize I � KWk k we should choose ξ ¼ � 1

2
ffiffiffiffiffiffiffiffi
1�η2

p

when η ≠ 1(η = 1 corresponds to the case of no dephasing error)
so the first-order term in I cancels. In this case up to the second
order

I � KWk k ¼ Rj j

¼ η2

8 1�η2ð Þ dx
2 þ O dx3ð Þ;

ð20Þ

thus max J ¼ limdx!0 8
1�cos ΘQC K�N

x �IA;K
�N
xþdx

�IAð Þ½ �
dx2

� η2

1�η2
N, and the

precision limit δx � 1ffiffiffiffi
nJ

p �
ffiffiffiffiffiffiffiffi
1�η2

p
η
ffiffiffiffi
nN

p , which scales as 1ffiffiffi
N

p for any η ≠ 1.

This is consistent with previous studies12, 13, 18, 19 but here with a
clear procedure to obtain the value for ξ.

DISCUSSION

We discuss how our results are related to previous studies.
Previous studies12, 13 show that for an extended channel Kx⊗IA the
maximal quantum Fisher information is given by

max J ¼ 4 min
F̂ j xð Þf g

Xd

j¼1

_̂
F
†

j xð Þ _̂F j xð Þ






















ð21Þ

where the minimization is over all smooth representations of
equivalent Kraus operators of the channel Kx. Note that this can be
equivalently written as

max J ¼ 4 min
F̂ j xð Þf g

Pd

j¼1

_̂
F
†

j xð Þ _̂F j xð Þ






















¼ 4 min
F̂ j xð Þf g

Pd

j¼1

lim
dx!0

F̂†
j
xþdxð Þ�F̂†

j
xð Þð Þ

dx

F̂ j xþdxð Þ�F̂ j xð Þð Þ
dx























¼ 4 min
F̂ j xð Þf g

2I�
Pd

j¼1
F̂†
j
xð ÞF̂ j xþdxð ÞþF̂†

j
xþdxð ÞF̂ j xð Þð Þ

dx2



















¼ 4
2�max

F̂j xð Þf gλmin

Pd

j¼1
F̂†
j
xð ÞF̂ j xþdxð ÞþF̂†

j
xþdxð ÞF̂ j xð Þð Þ

h i

dx2
;

ð22Þ

where the optimization is over all smooth representations of
equivalent Kraus operators. In previous studies the equivalent
Kraus operators are represented by F̂j xð Þ ¼Pd

i¼1 ωji xð ÞFi xð Þ and
F̂j x þ dxð Þ ¼Pd

i¼1 ωji x þ dxð ÞFi x þ dxð Þ, where ωji(x) is ji-entry of

WE(x)∈U(d), and WE(x) is required to be smooth with respect to x. It
is easy to see that in this case Eq. (22) is a special case of Eq. (13)
with W restricted to the form W†

E xð ÞWE x þ dxð Þ. This restriction
arises as the operator WE in Eq. (10), which originally can be
arbitrary chosen, was assumed to depend on x smoothly in
previous studies.12, 13 Such restriction is not intrinsic to the
dynamics. Furthermore without the restriction the set
Wj Wk k � 1f g is a convex set, which allows a direct formulation
as the semi-definite programming. While with the restriction W ¼
W†

E xð ÞWE x þ dxð Þ needs to be unitary which does not form a

KW

¼ cos ξdxð ÞF†1 xð ÞF1 x þ dxð Þ þ i sin ξdxð ÞF†1 xð ÞF2 x þ dxð Þ þ i sin ξdxð ÞF†2 xð ÞF1 x þ dxð Þ þ cos ξdxð ÞF†2 xð ÞF2 x þ dxð Þ

¼
cos ξdxð Þ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� η2
p

sin ξdxð Þ
h i

ei
dx
2 0

0 cos ξdxð Þ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� η2
p

sin ξdxð Þ
h i

e�idx2

0

B
B
B
B
@

1

C
C
C
C
A

;

ð18Þ
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convex set, to circumvent this difficulty previous study needs to
resort to the Lie algebra of the unitaries and formulated the semi-
definite programming on the tangent space instead.15 That,
however, comes with a cost on the computational complexity. The
complexity of semi-definite programming is determined by the
number of variables (A) and the size of the constraining matrices
(B) as O(A2B2),46 while the number of variables in the semi-definite
programming here is in the same order as previous studies (both
in the order of d2), the size of the constraining matrices differ: the
constraining matrices here have the total size of 2d +m1, while
previous formulation needs a size of m1 + dm2.

15 The difference
can be significant when the system gets large (note that for
generic channels d is in the order of m1m2). For example, for N-
qubit system, m1 =m2 = 2N, the difference quickly becomes large
with the increase of N. Also since any choice of allowed W leads to
a lower bound on the precision limit, expanding the set of allowed
W from the unitaries to Wj Wk k � 1f g also provides more room
for obtaining useful lower bounds.

CONCLUSION

In conclusion, we presented a general framework for quantum
metrology that provides systematical ways to obtain the ultimate
precision limit. This framework relates the ultimate precision limit
directly to the geometrical properties of the underlying dynamics,
which eases the analysis on utilizing quantum control methods to
alter the underlying dynamics for better precision limit.47, 48 The
tools developed here, such as the generalized Bures angle on
quantum channels that can be efficiently computed using semi-
definite programming, are expected to find wide applications in
various fields of quantum information science.

METHODS

For more details on the derivation of the formulas for the ultimate
precision limit, please see the Supplemental Information.
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