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Quantum partition functions from classical distributions:
Application to rare-gas clusters
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~Received 5 December 2000; accepted 8 February 2001!

We investigate the thermodynamic behavior of quantum many-body systems using several methods
based on classical calculations. These approaches are compared for the melting of Lennard-Jones
~LJ! clusters, where path-integral Monte Carlo~PIMC! results are also available. First, we examine
two quasiclassical approaches where the classical potential is replaced by effective potentials
accounting for quantum corrections of low order in\. Of the Wigner–Kirkwood and Feynman–
Hibbs effective potentials, only the latter is found to be in quantitative agreement with quantum
simulations. However, both potentials fail to describe even qualitatively the low-temperature
regime, where quantum effects are strong. Our second approach is based on the harmonic
superposition approximation, but with explicit quantum oscillators. In its basic form, this approach
is in good qualitative agreement with PIMC results, and becomes more accurate at low
temperatures. By including anharmonic corrections in the form of temperature-dependent frequency
shifts, the agreement between the quantum superposition and the PIMC results becomes quantitative
for the caloric curve of neon clusters. The superposition method is then applied to larger clusters to
study the influence of quantum delocalization on the melting and premelting of LJ19, LJ31, LJ38,
and LJ55. The quantum character strongly affects the thermodynamics via changes in the ground
state structure due to increasing zero-point energies. Finally, we focus on the lowest temperature
range, and we estimate the Debye temperatures of argon clusters and their size variation. A strong
sensitivity to the cluster structure is found, especially when many surface atoms reorganize as in the
anti-Mackay/Mackay transition. In the large size regime, the Debye temperature smoothly rises to
its bulk limit, but still depends slightly on the growth sequence considered. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1359768#
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I. INTRODUCTION

Classical many-body systems in thermal equilibrium
commonly investigated by means of computer simulatio
such as Monte Carlo~MC! or molecular dynamics~MD!.1

These methods in principle provide ‘‘exact’’ results for arb
trarily complex intermolecular forces, their only limitatio
being computational power. Quantum systems can also
studied by numerical simulation, and the most rigorous
proaches at finite temperature are based on the path-int
treatment of quantum mechanics. Path-integral Monte C
~PIMC! methods have proven extremely useful and succ
ful in predicting the thermodynamics properties of ma
condensed matter systems,2,3 and, more recently, of finite
atomic4–7 and molecular8 clusters. Two kinds of PIMC meth
ods are in use, namely the Fourier-path-integral~FPI! ~Ref.
9! and the discretized-path-integral~DPI! ~Ref. 10! methods.
They differ in how the paths are represented, but have b
shown to yield essentially similar results.11

Although PIMC simulations incorporate quantum de
calization, they still contain approximations at the compu
tional level. In both FPI and DPI methods, the path integr
are represented by a finite set of parameters~respectively,

a!Permanent address: Laboratoire de Physique Quantique, IRSAMC, Un
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Fourier or Lie–Trotter coefficients!, instead of the infinite
number required for the methods to be rigorously exa
Practically, the number of parameters can be kept modera
small for systems that are neither too cold nor too deloc
ized. However, because of this limitation, the calculation
accurate thermodynamic properties, such as the caloric c
or the heat capacity, is hindered by the slower converge
of PIMC-type simulations at very low temperatures. In ad
tion, the extra degrees of freedom arising in path-integ
calculations act as replicas of the system, hence multiply
the effective computational complexity.

This problem can be at least partially handled for qua
classical systems using effective potentials. These poten
may be viewed as expansions in\ of the quantum partition
function, either in the path-integral formalism,12 or in the
semiclassical Wigner–Kirkwood approach.13 They provide a
powerful technique for obtaining quantum corrections
mostly classical systems, without requiring full path-integ
calculations. In particular, for atomic and molecular liquid
they have given very satisfactory results.10,14–16On the other
hand, solids displaying a non-negligible quantum charac
are not well described by such potentials.15 In this case, fur-
ther refinements of the path-integral theory have be
proposed17 to formulate effective potentials valid even in th
zero temperature limit. In particular, a quite efficient a
elegant approach is that of Voth and co-workers,18,19 based

er-
x,
2 © 2001 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ac
il

y
ua

ea
ak
.

op
in

ra

n

th
an

o
e
ra
o
o-

t
s
i

ur
o

nc

te

d
ti

ct

t p

r
te

ra
al
fir
ta
,
se
m

e
s
n

c

lik

De-
ith

ruc-
ble
ges
ob-
tion
in-
the
ith
ight
an

a
n-
e in
the

ider
ic
his
ition
the
the

we
-
ich
nic
ese
MC
rs,
e a
the

s-

tic
the

w
De-

our

sed
cor-
ave
ed

ior,
the

er
u-

l
nd

7313J. Chem. Phys., Vol. 114, No. 17, 1 May 2001 Quantum partition functions
on self-consistent harmonic oscillators. The idea is to repl
the actual quantal and anharmonic system near an equ
rium configuration by a set of equivalent oscillators.18 This
approach is also useful in studying the dynamics of the s
tem, and has recently been applied to the classical and q
tum theories of solvation in glassy systems.19 However, all
these self-consistent potentials must be recalculated at
new temperature and for each configuration, which m
them very demanding from a computational point of view

Another approach to compute the thermodynamic pr
erties of a complex many-body system consists of summ
the contributions of all basins of attraction of the configu
tion space, the so-called inherent structures,20 to the partition
function. This approach was pioneered by Stillinger a
Weber,20 then formalized in cluster physics,21,22 and more
recently used in the physics of liquids and glasses.23 In clas-
sical systems, it has proved very useful in elucidating
relationships between the thermodynamics of clusters
their energy landscapes.24,25 Stillinger formally extended the
idea of partitioning the configuration space to the case
quantum systems,26 however, only a few applications wer
made due to the required use of path-integ
calculations.27,28 A related approach uses instantaneous n
mal mode~INM ! analysis to probe the structural or therm
dynamical changes in classical or quantum systems.29 One
goal of this article is to extend the superposition method
quantum systems. We have chosen to test our method
atomic clusters for which path-integral Monte Carlo data
available.5–7 We have also tried to investigate systems c
rently too complex for full quantum simulations because
quasiergodicity problems that slow down the converge
considerably at low temperature.

Following the results of Chakravarty,6,7 we attempt to
rationalize the effects of quantum delocalization on clus
melting. Traditionally, these effects are quantified byl, the
thermal de Broglie wavelength at temperatureT, wherel
5\/sAmkBT, s is the interatomic equilibrium distance, an
m is the atomic mass. If we denote the depth of the poten
well by «, then the extent of quantum delocalization effe
is measured by the de Boer parameterL5\/sAm«. The
quantum superposition method developed in the presen
per allows us to investigatecontinuousranges ofL, instead
of only a set of prescribed values. Thus it allows a mo
complete picture of how quantum effects influence clus
thermodynamics.

Another objective is to investigate the very low tempe
ture regime in more detail, where only a few dynamical c
culations are available apart from classical studies. We
estimate the contribution of the zero-point energy to the to
energy for clusters containing up to 150 rare-gas atoms
well as for some different growth sequences. In many ca
the global minimum geometry is seen to change when so
very soft vibrational modes are present, even in the cas
argon clusters that are usually considered as classical
tems. In this low-temperature regime structural transitio
may still be observed, but their thermodynamic signature
smeared out, and disappears for stronger quantum delo
ization.

The specific case of clusters trapped in a single solid
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local minimum is also considered, and we estimate the
bye temperatures of argon clusters and their variation w
size. A very strong, nonmonotonic dependence on the st
ture is found for the smaller sizes. In particular, we are a
to relate the variations of the Debye temperatures to chan
in the surface structure, in agreement with the trends
served for the zero-point energies. The Debye approxima
itself needs to be critically examined for clusters, as it
volves a complete neglect of the high-frequency part of
vibrational spectrum. By looking at two large clusters, w
crystalline and amorphous structures, we hope to gain ins
into how closely clusters of a few hundreds of atoms c
approach the bulk limit.

The article is organized into six main sections and
conclusion. In Sec. II, we briefly review the effective pote
tial approaches of quasiclassical theories, and their us
computer simulations. We then test two of them, namely
quadratic Feynman–Hibbs~FH! potential and the Wigner–
Kirkwood ~WK! potential in the Fujiwara–Osborn–Wilk
representation, on the 13-atom Lennard-Jones~LJ! cluster at
various degrees of quantum delocalization. We then cons
in Sec. III the quantum two-state model in the harmon
approximation, and its quasiclassical FH expansion. T
simple model serves as a basis for the quantum superpos
method, and allows us to obtain a qualitative picture of
quantum effects on cluster melting. In Sec. IV we extend
harmonic superposition method to the quantum case, and
again test it on the LJ13 cluster. We also compare its predic
tions to the quasiclassical harmonic superposition for wh
the quadratic FH potential is exact. We include anharmo
corrections in the quantum superposition, and find that th
corrections produce good quantitative agreement with PI
results. In Sec. V we apply the method to larger cluste
where little data is available. Some of these clusters ar
challenge to simulation, even classically, because of
multiple-funnel energy landscapes they exhibit.30 We also
introduce stability diagrams where the ‘‘phase’’ of the clu
ter can be obtained from a bidimensional plot in the (L,T)
plane. In Sec. VI, we focus more specifically on the sta
properties such as the influence of zero-point energies on
stability of the global minima. We also study the very lo
temperature thermodynamic behavior and estimate the
bye temperature of argon clusters. Finally, we report
conclusions in Sec. VII.

II. QUASICLASSICAL APPROACHES

Effective potentials have long been used in conden
matter physics as a cheap way of incorporating quantum
rections to classical properties. In cluster physics, they h
been employed by Chakravarty to study isotopically mix
clusters.31 It is well known that their reliability is mainly
dependent on how far the system is from classical behav
and also on the number of correction terms included in
expansion.

In this work we have considered two such low-ord
effective potentials that have been previously used in sim
lations of bulk systems.15,16,32By expanding the path-integra
partition function around the classical path, Feynman a
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Hibbs have shown that the following Gaussian effective
tential provides an approximation to the quantum fr
energy:12

VGFH~R,b!5S 6m

pb\2D k

2E V~R1R8!

3exp~26mR82/b\2!dR8. ~1!

In this equation,V(R) is the classical potential function o
the k53N26 atomic coordinatesR5$Ri%, m is the atomic
mass, andb51/kBT. In general, the Gaussian Feynman
Hibbs potential can be calculated analytically only for pote
tials V that can be written as a sum of Gaussian functio
This effective representation then becomes very syst
dependent, and we give in Appendix A a way of obtaining it
for the Lennard-Jones potential.

For a general~non-Gaussian! pairwise potentialV(R)
5( i , jv(r i j ), it is also possible to expand the Gaussi
Feynman–Hibbs potential into an effective pairwise pot
tial vFH(r i j ), which is simply

vFH~r i j ,b!5v~r i j !1
b\2

24m
¹2v~r i j !, ~2!

to first order in\2, where¹2 is the Laplacian operator.
Another way to construct effective potentials is based

the semiclassical Wigner–Kirkwood expansion.13 To first or-
der in \2, it yields

VWK~R,b!

5V~R!2b21 lnF12
b2\2

12m (
i , j

S ¹ i
2Vi j 2

b

2
~¹ iVi j !

2

1
b

2
¹ iVi j . (

kÞ i , j
¹k~Vki2Vk j! D G , ~3!

with ¹ i the gradient vector with respect to the coordinates
atom i . Following the resummation method of Fujiwar
Osborn, and Wilk,33 Neumann and Zoppi15 have developed
effective pairwise potentials based on the WK expansi
Neglecting the three-body term in Eq.~3!, we get the
density-independent pair potential15

vWK~r i j ,b!5v~r i j !1
b\2

12m
¹2v~r i j !2

b2\2

24m
@¹v~r i j !#

2. ~4!

The Wigner–Kirkwood expansion thus involves more term
making the computation of the effective potential more d
manding. Furthermore, as noted by Neumann and Zop15

the last term invWK is proportional both tob2 and to the
square of the force¹v, and is alsoattractive. Hence, low
temperatures will favor the collapse of all particles, a high
undesirable situation. To solve this problem requires o
either to incorporate higher-order terms in the semiclass
expansion, or to introduce an artificial short-range cut-off
the potential preventing the collapse. However, the comm
problem of such expansions, including the Feynman–Hi
expansion, is that higher order terms in\2 are also of higher
order inb. Consequently, the low-temperature behavior w
necessarily be unphysical at this level of theory.
Downloaded 25 May 2001 to 131.111.112.18. Redistribution subject to A
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With the above problems in mind, we have tested th
two effective pairwise potentials on a system where m
accurate results have been previously obtained, namely
13-atom Lennard-Jones cluster. The quasiclassical sim
tions were performed by parallel tempering Monte Ca
~PTMC!,34 using 50 temperatures regularly spaced in
range 0.01<T<0.50, and 105 MC sweeps for each tempera
ture following 23104 thermalization sweeps. Parallel tem
pering exchanges were attempted with 10% probability.
results are given in reduced LJ units of massm, energy«,
and lengths. The extent of quantum delocalization is give
entirely by the de Boer parameterL, which corresponds to
the value of the constant\ in the LJ reduced units system
The following cases have been investigated: LJ13 ~classical,
L50!, Xe13 (L50.01), Ar13 (L50.03), and Ne13 (L
50.095). For this latter cluster, we can compare our res
to the accurate data recently obtained by Neirotti, Freem
and Doll ~NFD!.5 A cut-off radius ofr cut51.06s was neces-
sary for Ne13 in order to obtain physically meaningful resul
in this range of temperatures for the WK potential. For
simulations, we enclosed the cluster inside a hard-w
sphere to prevent evaporation. The radius was chosen t
2.5s with respect to the cluster center of mass.

The heat capacities of the four clusters described by
two effective quasiclassical potentials are shown in Fig.
They were obtained from the partition functionZ by the
usual formulaCv(b)5kBb2]2 logZ/]b2, which can be writ-
ten in terms of the following averages for a temperatu
dependent potentialVeff(b):

Cv~b!5kBb2F K S ]bVeff

]b D 2L 2 K ]bVeff

]b L 2

2 K ]2bVeff

]b2 L G .
~5!

Incidentally, this equation shows that negative heat cap
ties are possible if the effective potential grows withb, as it
does in the Feynman–Hibbs approximations. We find in F
1 that both the FH and WK potentials fail at low temper
tures, as expected from previous studies.15,32 The use of a
Gaussian-expanded LJ potential and the Gaussi
Feynman–Hibbs effective potential does not help to so
this problem.

The caloric curves calculated with the FH potential sh
a decrease in the heat capacity peak as well as a decrea
the melting point asL increases. The effect is already pe
ceptible for xenon, and reaches about 10% for neon w
respect to the classical behavior. The heat capacity peak
creases from about 110kB to about 70kB for Ne13, which
together with the variations in the melting point, are in ve
good agreement with PIMC results.5,6 Above the melting
point, the curves we find are slightly different from Neiro
and co-workers’ results, but we believe the differences re
from the different constraining potentials. Below the melti
point, the same comparison shows that the FH poten
ceases to be valid nearT;0.2«/kB for neon.

The situation is quite different for the Wigner
Kirkwood potential.2 Because of the large cut-off used
truncate the repulsive part of the LJ potential, the calo
curves are affected throughout the temperature range,
differ from the classical behavior~with the untruncated LJ
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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potential! even at high temperatures. For xenon and arg
the lower limit of validity of the quasiclassical WK approx
mation is similar to the FH lower limit, near 0.1«/kB and
0.16«/kB , respectively. Below these values, the poten
and internal energies drop causing the heat capacity to
sharply asT goes to zero. The variations of the calor
curves in the nearly classical regime are close to those
tained with the FH potential. For Ne13 we have not been abl
to obtain reliable results below the classical melting tempe
ture. Increasing the cut-off radius beyond 1.06s leads to very
unphysical potentials behaving significantly differently fro
the original LJ potential. We have tried to improve this sit
ation by adding the three-body terms of Eq.~3!, but the
effect on the caloric curves is small.

Thus, at the lowest order in quantum corrections, o
the Feynman–Hibbs effective potential seems able to
count for the quasiclassical thermodynamic behavior of ra
gas clusters as light as Ne13. In contrast, the Wigner–
Kirkwood potential has trouble properly describing t
solidlike phase, which makes it unsuitable for investigat
melting in clusters exhibiting a noticeable quantum char

FIG. 1. Heat capacities of LJ13 clusters at various degrees of quantum d
localization, calculated from Monte Carlo simulations using effective cl
sical potentials. Results are shown for the classical case (L50), for xenon
(L50.01), argon (L50.03), and neon (L50.095). Upper panel: calcula
tions with the Feynman–Hibbs potential; lower panel: calculations with
Wigner–Kirkwood potential.
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ter. However, even the FH approximation will fail at high
and higher temperatures, as quantum delocalization incre
beyond that observed in neon. Moreover, the present ef
tive potentials are not able to account for all the possi
low-temperature effects characteristic of clusters, such
isomerization and premelting.35 These results lead us to loo
for alternative treatments that are valid at very low tempe
tures, and retain the physical features of the various ph
like forms of clusters.

III. TWO-STATE QUANTUM MODEL
AND THE QUASICLASSICAL REGIME

Although only qualitative, the two-state model36 has
proved useful in analyzing the dynamical coexistence
ported in the 1980s by Berry and co-workers.37 Basically, the
model consists of assuming that the system can access
two states, respectively solidlike and liquidlike, charact
ized by ground state energiesES andEL , vibrational~normal
mode! frequenciesnS

i andnL
i , i 51, . . . ,k53N26, and de-

generaciesnS andnL . The partition function of the system i
then simply the sum of the two individual partition function
Z(T)5ZS(T)1ZL(T), and all thermodynamic propertie
follow from this definition.

The harmonic approximation for each partition functio
is sufficient to show that the system undergoes a ‘‘ph
change’’ between the state of lowest energy (S) and the
other state (L) at a temperature where the internal ener
rises and the heat capacity reaches its maximum. Of cou
this transition can be very gradual and depends on the siz
well as the ratios of the vibrational frequencies and deg
eracies. To go beyond the classical picture and include qu
tum effects, we consider the partition functionsZS andZL in
their fully quantum forms, whereZ can be written as

ZQ~b!5nS exp~2bES!)
i 51

k
e2bhnS

i /2

12e2bhnS
i

1nL exp~2bEL!)
i 51

k
e2bhnL

i /2

12e2bhnL
i . ~6!

Such an approach has been used by Franke and co-work22

to study isomerization between the two states of LJ6. In Eq.
~6!, we have made the approximation that the wave functi
inside each basin do not interfere. Of course, forh→0 we
recover the usual classical expressionZC(b)
5nSe2bES/(bhn̄S)k1nLe2bEL/(bhn̄L)k, where n̄ is the
geometric mean value of then i ’s. If the temperature is no
too low, it is also possible to use a quasiclassical expans
of the classical partition function, by noting that the qu
dratic Feynman–Hibbs expansion becomes exact for
monic oscillators.12 In this case, we just have to replace th
energiesEa by their effective valuesEa

FH(b), with a5S or
L,

Ea
FH~b!5Ea1

bh2

24 (
i

~na
i !25Ea1k

bh2

24
~na

rms!2, ~7!

-

e
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with the root mean square vibrational frequenciesna
rms. By

performing a simple semiclassical expansion of the quan
partition function,

)
i 51

k
e2bhn i /2

12e2bhn i 5
1

~bhn̄ !k F12k
b2h2

24
~n rms!21O~h4!G , ~8!

we recover the Feynman–Hibbs expansion of the effec
energies. The low-temperature behavior in the quasiclass
approximation is unphysical, which is hopefully not the ca
in the quantum model. To see what qualitative differen
are introduced by the quantum character of the oscillat
we introduce the arithmetic average of the vibrational f
quencies,̂ na&5(( ina

i )/k, and we write Eq.~6! as

ZQ~b!5nS

e2bES
0

) i12e2bhnS
i F11

nL

nS
eb(ES

0
2EL

0))
i

12e2bhnS
i

12e2bhnL
i G ,

~9!

whereEa
05Ea1kh^na&/2 is the ground state energy includ

ing the zero-point energy. The most stable state is found
looking at which term dominatesZQ at a given temperature
In particular, the zero temperature limit gives

ZQ~b→`!;nSe2bES
0
1nLe2bEL

0
. ~10!

Therefore the effective ground state is the one with the lo
estE0. A problem could appear if̂nL&,^nS& and if quan-
tum delocalization is high enough to exchange the rela
stabilities of theS andL states, as the latter would never b
populated.

We have been unable to extract exact analytic results
the influence of quantum effects on the heat capacity m
mum. Instead, we simplify the problem by assuming t
melting occurs when the two states become equally pr
able: ZS(T5Tmelt)5ZL . Then the melting pointTmelt

51/kBb satisfies

eb(EL
0

2ES
0)5

nL

nS
)

i

12e2bhnS
i

12e2bhnL
i . ~11!

In the quasiclassical~QC! regime, a Taylor expansion can b
performed, and we obtain the relative variations ofTmelt with
increasingh as

Tmelt
QC ~h!5T0F12

kh2

24T0DE
~nS

rms2nL
rms!~nS

rms1nL
rms!

1O~h4!G , ~12!

whereDE5EL2ES , and whereT05Tmelt(0) is the classical
melting temperature given byT05DE/G with

G5 lnFnL

nS
S n̄S

n̄L
D kG . ~13!

The same result is obtained by considering the semiclas
superposition for a small value ofh. However, in the
Feynman–Hibbs approximation, the exact calculation
Tmelt at any value ofh ~less than a maximum value, se
below! is possible, and the result is simply
Downloaded 25 May 2001 to 131.111.112.18. Redistribution subject to A
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Tmelt
FH ~h!5

T0

2 F11S 12
kh2

6T0DE
~nS

rms2nL
rms!

3~nS
rms1nL

rms! D 1/2G . ~14!

Equations~12! and~14! show that the variations in the mel
ing point depend essentially on the relative values of
mean square vibrational frequencies. The usual situation
clusters is thatnS andnL are comparable,nS being somewhat
larger thannL especially for very symmetric geometrie
Hence we can expect a decrease inTmelt, which will be
larger for high symmetry ‘‘magic number’’ clusters provide
that the effect of the largernS

2 is larger than that of the large
DE.

We have plotted in Fig. 2 the variations of the meltin
point as a function of quantum delocalization for the tw
casesnS

rms,nL
rms andnS

rms.nL
rms. For simplicity, all frequen-

cies were given the same value for each stateS or L: na
i

5na
rms5 n̄a5^na&. Tmelt was calculated by equatingZS and

ZL , and two cases were studied, withnS51, nL50.9, and
nL51.1, respectively, for a 30-atom system withDE51.
nS /nL was adjusted to keep the classical melting point a
constant value. In Fig. 2 we have compared the value in
quantum model to the FH approximation and to the sim
expansion~12!. The quasiclassical Feynman–Hibbs appro
mation is quite accurate whennL.nS , but fails completely
as soon ash.hmax5(6T0DE/k(nS

22nL
2))1/2.0.15, whennL

,nS . Again, this shows that quasiclassical effective pote
tials should be used with caution when dealing with stro
quantum effects.

IV. QUANTUM HARMONIC SUPERPOSITION
APPROXIMATION

The two-state model of the previous section is a ve
simplified representation of a many-body system with a m

FIG. 2. Variations of the melting temperature in the two-state harmo
model induced by quantum delocalization. The results are plotted for
values of the vibrational frequency of the liquid state, respectively, sma
and greater than the solid state frequency, and for the full quantum mo
the Feynman–Hibbs approximation, and the first-order semiclassical ex
sion.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tidimensional energy landscape. However, it contains the
tile concept of relating the global thermodynamic propert
to local features of these landscapes, namely, the ene
and vibrational frequencies of local minima. Such an a
proach has been considered before,38 but the lack of power-
ful computational tools for exploring energy landscapes h
dered its fruitful development until the last decade. With t
notion of inherent structures introduced by Stillinger a
Weber in bulk studies,20 came the idea of dividing the con
figuration space into basins of attraction, and building
partition function as the sum of all contributions from ea
basin. The problem then becomes the calculation of th
individual partition functions, whose number grows exp
nentially with the system size.

Various studies by Wales, Doye, and others21,24,25,39

have demonstrated how this superposition method can
implemented in practice for clusters in the classical regim
at various levels of approximation.40,41 Here the main moti-
vation has been to show in detail how the thermodyna
properties emerge from the characteristics of the ene
landscape. In the simplest version of the superposi
method, each local minimuma is treated as a collection ofk
uncoupled harmonic oscillators of frequenciesna

i , i
51, . . . ,k. Thus the classical partition function for one pa
ticular minimum is written21

Za~b!5
e2bEa

~bhn̄a!k 5Za
C~b!, ~15!

where the superscriptC stands for classical. The total part
tion function for the whole set of minima is

Z~b!5(
a

naZa~b!, ~16!

where the sum is over all geometrically distinct minima
the potential energy surface, withna the number of permu-
tational isomers of minimuma. If the system is made ofN
identical atoms,na is given byna52N!/ha , ha being the
order of point group of structurea.

A. Superposition of quantum oscillators

Following the approach of Sec. III, we attempt to i
clude quantum effects in the thermodynamic properties
simply replacing the classical oscillators with quantum on

Za~b!5e2bEa)
i 51

k
e2bhna

i /2

12e2bhna
i 5Za

Q~b!. ~17!

In the classical limit, one of the major approximations of t
harmonic superposition method is that it neglects the ov
lapping of the individual contributions toZ. This approxima-
tion remains in the case of quantum oscillators, but Eq.~17!
assumes in addition that no quantum interference occur
modify the energy levels of local minima, i.e., the prese
quantum superposition assumes there is no tunneling.

Practically, Eq.~17! together with Eq.~16! are of little
use if the set of minima in our database is far from comple
which is likely even for a few tens of atoms. To tackle th
problem one can use the reweighting technique previou
employed in the classical case,21 which uses the results of
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classical simulation. More precisely, we perform a canoni
~MC or MD! simulation at inverse temperatureb0 , and
record the probabilitypa(b0) of finding isomera. We write
the total classical partition function as a sum over all kno
minima, but weighted by factorsga to correct for the incom-
pleteness of the set of minima,

ZC~b!}(
a

ganaZa
C~b!. ~18!

From the simulation, the number of quenches leading to
mer a is proportional topa(b0), and also toganaZa

C(b0).
This proportionality requires the simulation to be ergod
The classical partition function for the incomplete sample
then approximated by

ZC~b!}(
a

pa~b0!
Za

C~b!

Za
C~b0!

. ~19!

Now we follow a similar procedure for the quantum cas
except that we do not wish to perform a quantum simulat
to obtain the weights. Actually, the weights should depe
only on the topography of the energy surface, and not on
ensemble~microcanonical or canonical! or on the probability
law used to generate the ensemble, quantum or class
because they are related to the number of minima on
potential energy surface. In the case of a bulk system, th
weights should also depend on the density or the press
The ga’s are the ratios ofpa(b0) andnaZa(b0), whereZa

is assumed to have been used to generatepa . Thus we can
employ the probabilities found in a classical simulation
estimate the weightsga , which depend only ona, and in
turn calculate the full quantum partition function as

ZQ~b!}(
a

pa~b0!
Za

Q~b!

Za
C~b0!

. ~20!

For large classical systems, the use of reweighted form
such as Eq.~19! was shown to improve considerably th
predictions of the harmonic superposition method,21 in par-
ticular by reproducing the van der Waals loop in the mic
canonical caloric curve of LJ55.

We first tested the quantum superposition method o
cluster where our database of minima is almost compl
namely, LJ13. From expressions~16! and ~17! for the parti-
tion function, we calculated the heat capacityCv(b) from

Cv~b!5kBb2FZ212Z111Z02

Z0
2S Z11Z01

Z0
D 2G , ~21!

with the following terms (Z05Z):

Zn5(
a

na~Ea
0 !ne2bEa

0

) i12e2bhna
i , n50,1,2, ~22!

Zn15(
a

na~Ea
0 !ne2bEa

0

) i12e2bhna
i (

j

hn a
j

ebhn a
j
21

, n50,1, ~23!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Z025(
a

nae2bEa
0

) i12e2bhna
i F(

j

~hna
j !2e2bhn a

j

~12e2bhn a
j
!2

1S (
j

hn a
j

ebhn a
j
21

D 2G , ~24!

and with the notationEa
05Ea1kh^na&/2, wherê na& is the

arithmetic average of the frequenciesna
i , i 51, . . . ,k.

The results for four values of the quantum delocalizat
parameter and a sample of 1467 minima are shown in Fig
The general picture is very similar to the quasiclassical
sults of Sec. II; the melting peak decreases with the ato
mass, and the melting temperature decreases up to a
10% for neon. The low temperature behavior is correct
least qualitatively. This result was expected from the w
that we constructed the partition function, and from the
lidity of the harmonic approximation atT→0. However, a
precise comparison with the quasiclassical results or with
quantum MC results5 reveals that the melting point is to
high by about 15%, and that the peaks are too low also
15%. As similar shifts are found for the classical harmo
superposition method,21 the problem is not related to th
choice of quantum oscillators, but rather to the approxim
tion of harmonicity.

B. Quasiclassical superposition

By analogy to the way we have built the quantum pa
tion function from individual quantum oscillators, we ma
consider the particular case of semiclassical oscillators wh
the energy of minimuma is replaced by its Feynman–Hibb
effective energy. Since we are dealing only with harmo
oscillators, this quasiclassical approximation is equivalen
expanding the quantum partition function to its lowest c
rective order inh2. Hence we write

Za
QC~b!5

e2bEa

~bhn̄a!k F12k
b2h2

24
~na

rms!2G , ~25!

and the corresponding expressions for the total parti
functions, with or without reweighting, follow from this

FIG. 3. Heat capacities of LJ13 from the quantum superposition method. Th
values of the de Boer parameter are the same as in Fig. 1.
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equation. The heat capacity is given in Appendix B for th
quasiclassical approximation. We have calculated the cal
curves for the same clusters as those studied in the quan
case, and the results are plotted in Fig. 4. Not surprisin
we find good agreement with the quantum caloric curv
down to limiting temperatures that increase with the deg
of quantum delocalization. Below these temperatures,
quasiclassical approximation becomes unphysical (Cv,0).
In the case of Ne13, the caloric curve differs strongly from
the quantum behavior, even if the quasiclassical curve ex
its the correct shift in the melting temperature. We also n
tice that the present quasiclassical approximation is in be
agreement with the Gaussian Feynman–Hibbs effective
tential ~see Appendix A! than with the quadratic potentia
Since the computational cost involved in quasiclassical c
culations is only marginally lower than the cost of full qua
tum calculations, we have not considered the quasiclass
approach further. Instead, we have chosen to focus solel
the quantum superposition method.

As mentioned above, the agreement between the
monic form of the quantum superposition and the PIMC
sults is not fully quantitative in the vicinity of the meltin
point. The problem was already noticed by Doye and Wa
in the classical case,40 and interpreted in terms of anha
monic effects. These effects were also seen to be more
portant for the 13-atom LJ cluster, where the basin of
icosahedral global minimum is very large, leading to so
wide and flat regions in the energy landscape.40 Doye and
Wales managed to get agreement with simulations by inc
porating these anharmonicity effects as corrections to
harmonic partition function. Here we will follow simila
lines in an effort to improve the quantum superpositi
method.

C. Anharmonic corrections to the quantum partition
function

In Ref. 40, Doye and Wales investigated two possi
anharmonic contributions to the thermodynamic behav

FIG. 4. Heat capacities of LJ13 from the quasiclassical superpositio
method. The values of the de Boer parameter are the same as in Fig.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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namely, the effects of transition state valleys and well anh
monicity. Their results suggest that the latter effects do
nate, at least for the LJ clusters they investigated. In addit
we note that the transition state valleys could be accoun
for in the same way as for the quantum oscillators by rep
ing the corresponding classical oscillators of Ref. 40 acco
ingly. More recently, Ball and Berry have also examin
anharmonic corrections to the densities of states and fo
that the most appropriate form depended on the type
cluster.41,42

We first tried to correct for well anharmonicities usin
Morse oscillators instead of harmonic ones. This method
shown to work well as a correction for classical clusters40

however, a qualitative change occurs in the quantum reg
due to the finite number of energy levels in a Morse osci
tor, which caused large discrepancies in the final results

Another way to incorporate well anharmonicities is ph
nomenological, and is often used in solid state physics.43 It
consists of allowing shifts in the vibrational frequencies
duced by temperature changes. We have chosen to allo
frequenciesna

i to depend smoothly on temperature via t
following simple expansion, to second order inT,

na
i ~T!5na

i ~0!@12aa
i T2ba

i T2#. ~26!

In the classical case, it is worth noting that the same exp
sion is obtained using Morse oscillators,40 provided thatba

i is
set to 2(aa

i )2. To simplify the analysis, we have assum
that theaa

i ’s and ba
i ’s depend only on the geometrya but

not on i . The expressions for the thermodynamic quantit
become more complicated, and are given in Appendix C.
can now investigate the very low temperature behavior in
classical and quantum limits. The heat capacity is then fo
to behave as

Cv~b→`!;kkB~112a/b! in the classical case, ~27!

Cv~b→`!;kh^n~0!&bkB
3/b in the quantum case, ~28!

and therefore has a linear component in both cases. As
observed by Doye and Wales,40 it is difficult to estimate

FIG. 5. Heat capacities of Ne13 in the classical and quantum regimes calc
lated from the quantum superposition method, with and without anharm
corrections.
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independently the correct values for the coefficientsaa and
ba . We propose to divide the set of isomers into several s
according to the topography of the energy landscape. In
case of LJ13, the first set contains only the icosahedral min
mum, and the second set contains all the remaining isom
Then, by taking appropriate values for the coefficientsa and
b, we have obtained the caloric curves displayed in Fig. 5
LJ units we tookaI50.57, aII50.67, bI50.05, andbII

50.45 for correcting both the classical and quantum calo
curves. The comparison with the results of Neiro
Freeman, and Doll, is now much better: both the quant
and classical heat capacities have the correct widths, heig
and locations within the errorbars of the PIMC simulation5

Hence, it appears that with only a few parameters,
above quantum superposition approach can be brought
quantitative agreement with path-integral Monte Carlo sim
lations. This method also allows us to study much larg
systems, because it only requires information from class
calculations. The predicted effects of quantum delocalizat
on the melting of larger atomic van der Waals clusters
the subject of the next section.

V. LARGER SIZES AND STABILITY DIAGRAMS

We have selected four sizes in the range 13<N<55,
which display several characteristics of cluster melting
classical simulations. The 19-atom cluster is particula
stable~‘‘magic’’ !, and has been previously investigated
Chakravarty using PIMC simulations.6 Its solidlike–
liquidlike phase change is very similar to that in LJ13. The
next magic clusterN555 has a sharper melting peak, but
also similar to LJ13 in the classical regime.44 We have also
chosen two specific sizes that have more interesting size
fects due to the peculiarities of their energy landscapes.30

The 31-atom Lennard-Jones cluster lies at the crosso
between anti-Mackay~or polyicosahedral! geometries and
Mackay ~or multilayer icosahedral! geometries.45 At this
size, classical LJ31 is only slightly lower in energy in the
Mackay structure. At very low temperatures, the cluster cl
sically undergoes a structural transition between the
competing arrangements, and then, at much higher temp
tures, is seen to melt by reaching a much larger set
minima.46 The preliminary structural transition is sharp
this system, and leads to a very pronounced heat capa
peak.

The 38-atom cluster is now well known for its unusu
truncated octahedral geometry.47 The double-funnel energy
landscape of this system30,48 gives rise to a structural trans
tion between the global minimum and the icosahed
minima with higher entropy.24,49

These two systems are difficult to study by standa
simulation methods because of the structural transitions t
exhibit. Classical simulations must be performed with sp
cial techniques to overcome the quasiergodic behavior, e
cially at low temperatures where interfunnel crossings
normally rare, if not forbidden in the microcanonic
ensemble.49 Even when using such techniques as para
tempering~the most promising strategy at the present tim!,
the convergence of thermodynamic averages is much slo
for these clusters than for the single-funnel 19-atom and

ic
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 6. Heat capacities of LJ19 , LJ31 ,
LJ38 , and LJ55 calculated from the
quantum superposition method.
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atom clusters, and involves up to 109 Monte Carlo cycles
~and several tens of simultaneous simulations! for LJ38. It is
very likely that simulating LJ31 or LJ38 by quantum Monte
Carlo methods at thermal equilibrium is not practical w
the current computer technology. In these cases, the qua
superposition approach should be especially useful, sinc
is intrinsically ergodic once we have a representative sam
of minima that includes the contributions of all importa
funnels. Nevertheless, application of this technique requ
a reweighting of each individual partition function becau
an exhaustive sampling of the energy landscape is ne
feasible, nor desirable.

We estimated all weights from classical MC simulatio
improved with parallel tempering in order to get better
godic sampling. For LJ19 and LJ55, the weights were calcu
lated above the melting point, atT50.35«/kB , and sets of
1259 and 3332 isomers were used, respectively. For L38,
the weights were calculated at a much lower temperat
T50.175«/kB , where the global minimum, icosahedr
minima, and liquidlike minima all have reasonably lar
probabilities of being visited.24,48,49 1881 different minima
were recorded for this size. The case of LJ31 is a bit more
problematic, because the probability of being in the glo
minimum basin was seen to drop nearly to zero at
Mackay/anti-Mackay transition temperatureT;0.03«/kB ,
while the liquidlike isomers start becoming populated on
above 0.2«/kB .46 We have used the reweighting techniq
to calculate the relative weights of the liquidlike isome
with respect to one anti-Mackay minimum, and then add
the contribution of the lowest-energy minimum,

Z~T!.Zlowest~T!1Zothers~T!. ~29!
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A similar approach has been used previously by Doye
Wales for the 38-atom cluster.24 2183 distinct minima were
used for LJ31, and the weights were calculated atT
50.35«/kB . After estimating the weights from classica
simulations, we used them to compute the quantum parti
functions following the method described in Sec. IV. We d
not use anharmonic corrections in the four cases investig
here, because the agreement with classical simulations
already satisfactory, as far as the melting points are c
cerned. Moreover, such corrections would not give new
sights into the effects of delocalization, so the present h
monic treatment is good enough for our purposes.

A. Caloric curves

The effects of quantum delocalization on the melting
LJ19, LJ31, LJ38, and LJ55 can be seen in Fig. 6, where w
represent the canonical heat capacities for values ofL cor-
responding to classical behavior, xenon, argon, and neon
predicted from the two-state model, the shift inTmelt is larger
for LJ55, which has a higher average vibrational frequency
its icosahedral global minimum, than for other nonmag
sizes.

The heat capacity of Ne19 shows the same variations i
the melting point as the path-integral MC simulations
Chakravarty.6 The heights of the peaks are too low, and i
dicate that the anharmonic terms are significant. Howe
given the size of the error bars and how far the class
results reported in Ref. 6 are from other published data,50 we
think that the agreement found for this cluster is very sa
factory.

The very low temperature at which the structural tran
tion takes place in LJ31 makes this cluster sensitive to qua
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tum effects. Even a very low value of the de Boer parame
is enough to make the small heat capacity peak disapp
and Xe31 only displays a bump atT;0.03«/kB . Surpris-
ingly, Ar31 and Ne31 both exhibit a very sharp peak at eve
lower temperatures. These effects result from changes in
global minimum, and will be examined further in the ne
section.

The preliminary icosahedral transition in LJ38 also oc-
curs at a relatively low temperature, near 0.1«/kB , but the
melting peak itself is located atT;0.17«/kB . Such low
temperatures make the caloric curve extremely dependen
L for this cluster, and the small bump indicative of preme
ing is no longer visible for argon. The effect on neon is ev
stronger, no peak remaining visible at all in the temperat
range 0,T,0.5«/kB .

No structural transition or premelting effects complica
the caloric curve of LJ55, and so the melting peak is muc
clearer. As with smaller clusters, we notice that quant
delocalization is already non-negligible for argon below t
melting point. Anharmonic corrections would probably rai
all the curves of Fig. 6, but the shift in the latent heats fro
the classical result should be roughly unchanged. The
obtained for this cluster and for the smaller 13-atom clus
can be used within the framework of the two-state mode
predict approximate values of the shifts in the melting te
perature of larger clusters. The two-state model is expe
to be a reasonable description of magic clusters especial
large sizes. In a first approximation, we write all variables
Eq. ~12! as asymptotic expansions to first order inn2k/3.
Thus the shift in the melting temperature induced by qu
tum delocalization can be expressed simply as a t
parameter function, for a given value ofh,

DT~n!5DT~`!@11an21/31O~n22/3!#. ~30!

In this equation, the shift in the bulk melting pointDT(`) is

DT~`!52
h2

8L
~nS

rms~`!2nL
rms~`!!~nS

rms~`!1nL
rms~`!!,

~31!

whereL is the latent heat of melting. The application of E
~30! to the clusters Ne13 and Ne55 allows us to estimate the
approximate values of the shiftDT for larger neon clusters
and for the bulk limit. We find DT(147)51.6 K and
DT(`)52.0 K.

B. Stability diagrams

In her study of quantum delocalization on cluster me
ing, Chakravarty7 showed that melting could be induced e
ther by increasingL at fixed temperature, or by increasingT
at fixedL. Fixing the temperature and varying the degree
quantum delocalization for a prescribed system may
seem a very physical procedure, but it allows the differ
effects to be studied separately. Because she performed
integral MC simulations, Chakravarty was limited to a sm
set of values forL and T. Additionally, she used the
Lindemann index as a probe of melting, which is not suita
for complex systems such as LJ31 or LJ38 because of prelimi-
nary transitions.35
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We have used the present quantum superposition me
to quantify the influence of delocalization on the thermod
namics of the five clusters investigated above. As a definit
of the melting temperature, we have chosen the position
the heat capacity peak. When the peak disappears du
strong delocalization, we relied on an alternative, more s
jective definition, namely the temperature where the high
99% of minima~in energy! become dominant, i.e., their oc
cupation probability exceeds 50%. Because we used
possible definitions for the melting temperature, its va
may jump when a peak in the heat capacity appears or v
ishes. The freezing temperature was simply taken as the
perature above which the global minimum is no longer dom
nant. These definitions can account, in a first approximat
for coexistence phenomena and the possibility of two-s
melting.

We have represented in Fig. 7 the stability diagram o
tained for LJ13 in the range 0<L<0.35. The lower part of
this diagram, below the freezing curve, shows the region
stability of the ‘‘pure’’ solidlike phase corresponding to th
global minimum alone, while the upper part, above the m
ing curve, shows the region of stability of the liquidlik
phase and its numerous minima. As can be seen from
figure, the two lines coincide from the classical regime up
about L.0.25, the value at which the heat capacity pe
vanishes. This coincidence reflects the two-state characte
this system. In the quasiclassical regime, the melting te
perature roughly decreases withL asL2, in agreement with
semiclassical expansions. The most striking features in
diagram are the points at which the freezing curve meets
T50 line. This is because the minimum with the lowe
value ofEa

0 can change as a function ofL. Larger values of
L favor those minima with a lower arithmetic mean vibr
tional frequency, because they have a lower zero-point
ergy. As Fig. 7 illustrates, there can be several changes in
global minimum withL. More precisely, the existence o

FIG. 7. Diagram of stability of LJ13 as a function of quantum delocalization
The solid line is the freezing curve, the dashed line is the melting curve.
five vertical lines indicate the values of the de Boer parameterL for Xe, Ar,
Ne, D2 , and H2 , respectively.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



d

7322 J. Chem. Phys., Vol. 114, No. 17, 1 May 2001 Calvo, Doye, and Wales
FIG. 8. Diagrams of stability of LJ19 ,
LJ31 , LJ38 , and LJ55 as a function of
the de Boer parameterL. The solid
line is the freezing curve, the dashe
line is the melting curve. Vertical lines
are the same as in Fig. 7.
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such changes in morphology can be checked from the d
base of minima by simply looking at the values of

La0
5min

a
H 2

k S Ea2Ea0

^na&2^na0
& D , ^na&.^na0

&J . ~32!

If a0 is the classical global minimum, and ifLa0
exists and

is positive, then the global minimum changes whenL
crossesLa0

to the isomera that minimizesLa0
. Further

changes in the global minimum can be estimated in the s
way. Two such crossovers are found in the database
LJ13, respectively located atL50.255 andL50.328, in
complete agreement with the results shown in Fig. 7. T
this simple diagram shows for instance that the geometrie
~D2)13 and~H2)13 should differ strongly owing to the differ
ence in zero-point energy. Actually, this result is in agre
ment with previous PIMC works on the thermodynamics
these two systems showing that~H2!13 has a liquidlike phase
at temperatures where~D2)13 is still rigidlike.51 In particular,
Scharf et al. have shown that the icosahedral structure
(H2)13 was only marginally stable atT52.5 K, the cluster
exhibiting most frequently very disordered geometries.52

Similar stability diagrams for the four larger clusters a
shown in Fig. 8. The general picture resembles that for LJ13,
with a quadratic decrease in the melting and freezing te
peratures in the quasiclassical regime, and some chang
the global minimum as quantum delocalization increases

The structure of the 19-atom cluster appears to be
most resistant to quantum effects, as it only shows one cr
over at L50.325 in the rangeL<0.35. The coexistence
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rangeDT5Tmelting2Tfreezing is larger than for LJ13, and re-
mains of this magnitude up to the strong quantum deloc
ization regime ofL.0.2.

LJ31 is probably the most intriguing case studied here,
it undergoes three consecutive changes in the global m
mum associated with qualitative changes in the lo
temperature heat capacity curves~see above!. The three
crossovers occur atL50.011, 0.040, and 0.043, and involv
surface rearrangements towards anti-Mackay geomet
The Mackay/anti-Mackay transition is therefore favored
both temperature effects and by quantum delocalization. O
of these three isomers entropically dominates over the oth
and corresponds to the solidlike state that is stable up to
melting point when it becomes the effective global minimu
(0.040,L,0.043).

LJ38 shows only one crossover atL50.065. Such a low
value probably explains why the heat capacity of Ne38 is so
qualitatively different from that of Ar38. Looking at the ca-
loric curves near this crossover shows that the melting p
disappears above this value, and only reappears aL
.0.18. This explains the discontinuity in the melting tem
perature on the diagram of this cluster.

LJ55 also shows three changes in its global minimum
quantum effects rise, namely atL50.175, 0.294, and 0.335
As for the smaller icosahedron LJ13, these changes are fa
cilitated by the large vibrational frequencies of the high sy
metry ground state, which are not compensated by the
ference in potential energies. For this size, Ne55 and ~D2)55

are predicted to have different morphologies.
The results of these stability diagrams show a stro

dependence on the vibrational properties of the cluster.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 9. Structures of some clusters that exhibit
change in the global potential energy minimum due
quantum delocalization.
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cause we used only incomplete samples of minima, one
wonder whether other isomers that are not included in
sample could be lower in energy at some degree of delo
ization. All curves in Fig. 8 have been checked twice, a
the same new global minima were found from the two ind
pendently generated databases. Nevertheless, this sens
of cluster structure in the quantum regime to the vibratio
frequencies merits further investigation.

VI. LOW-TEMPERATURE BEHAVIOR AND DEBYE
TEMPERATURES

All isomers found as new global minima of the effectiv
quantum potential were discovered by classical simulati
performed to estimate the respective weights in the parti
functions. We have also assumed that the weights in
quantum partition function would be unchanged from t
classical weights, but this is not true for the partition fun
tions themselves, which are far more influenced by the
brational properties in the quantum case. In order to ana
the influence of delocalization on cluster structure, it is th
important to include the quantum character during the sea
for possible lowest-energy structures.

A. Global optimization of Lennard-Jones clusters
including quantum delocalization

We have used the basin-hopping Monte Ca
algorithm53,54to explore the energy landscape of LJn clusters
in the size rangen<100, and to find the global minima as
function of the de Boer parameterL. After each quench was
performed, the zero-point energy contribution was added
the potential energy, and the Metropolis acceptance proba
ity was calculated using these effective quantum energ
Since the diagonalization of the Hessian matrix involved
the calculation of the vibrational frequencies is computati
ally demanding, especially for large clusters, we started
optimizations from the classical global minimum for eachn.
5000 quenches were performed for each size, at the temp
tureT51.5«/kB and withL50.095. We are aware that 500
is a relatively small number, which may be inadequate
find the true global minimum for sizes larger thann.50.
However, this initial survey will give us insight into the ex
tent to which rare-gas clusters can be considered as clas
from a static point of view.
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In the size rangen<100, Lennard-Jones clusters prefe
entially exhibit icosahedral-based geometries, with differ
possible external arrangements.54,55 Only a few sizes have
been shown to deviate from this icosahedral sequence,n
538 ~truncated octahedron!, n575– 77~Marks’ decahedra!,
and n598 ~tetrahedral structure!.56 The effect of quantum
delocalization is quantified in Table I, where we report t
best energies found and compare them with the LJ glo
minimum. These global minima are available at the Ca
bridge Cluster Database.57 Neon, of course, is most influ
enced by quantum effects, and shows a different global m
mum in 35 out of the 99 cases investigated. However, Arn is
also seen to differ from the classical LJn for a few sizes,
including 17, 27, and 31, but also the larger 76- or 77-at
clusters where the icosahedral minima are preferred to
decahedral geometries. Krypton clusters, not included in
table, sometimes also show differences from the class
structure. Xenon clusters differ from the purely classic
Lennard-Jones prediction in only three cases~n565, 86, and
98!. Although challenging, it would be interesting to verif
these results with more accurate quantum Monte Carlo
culations atT50. A reasonable test case could be the s
n517, where three different effective global minima a
found, depending on the degree of delocalization.

Not surprisingly, most of the structural changes d
played by these clusters arise from different arrangement
the outer layer, and take place for sizes where the Mac
and anti-Mackay overlayers compete:55 betweenn525 and
n535, nearn567, and nearn588. Differences between th
classical and quantum gometries are illustrated in Fig. 9
some selected sizes. In the case of the 13-atom cluster
have shown how the global minimum structures of~D2)13

and ~H2)13 are expected to differ, even though the icosah
dron remains as the global minimum for rare gases. The v
prolate shape of (H2)13 induces some floppy vibrationa
modes, thus lowering the average frequency and zero-p
energy. We also show the different isomers of LJn and Arn
for n517, 27, and 31. Including delocalization usual
makes the structure much more distorted, as was notice
Hodgdon and Stillinger in the case of solid helium.27 Our
study of neon clusters shows that most new global mini
have onlyC1 symmetry. For all these sizes, we expect s
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Lennard-Jones clusters LJn which change global minimum in the rangen<100. Energies are given in units ofe. For each size and species, th
global minimum is underlined.

Size
LJ

(L50)
Xe

(L50.01)
Ar

(L50.03)
Ne

(L50.095)
Point
group Size

LJ
(L50)

Xe
(L50.01)

Ar
(L50.03)

Ne
(L50.095)

Point
group
17 261.317 99 258.670 10 253.374 32 236.163 03 C2

17 261.307 15 258.666 63 253.385 58 236.222 20 C1

17 261.296 77 258.658 69 253.382 52 236.235 00 C3v

27 2112.873 58 2108.393 26 299.432 60 270.310 47 C2v

27 2112.825 52 2108.363 45 299.439 33 270.435 91 Cs

28 2117.822 40 2113.178 88 2103.891 84 273.708 96 Cs

28 2117.777 96 2113.152 75 2103.902 33 273.838 47 Cs

30 2128.286 57 2123.283 48 2113.277 30 280.757 21 C2v

30 2128.181 59 2123.194 82 2113.221 27 280.807 23 C2v

31 2133.586 42 2128.104 41 2117.140 38 281.507 30 Cs

31 2133.293 82 2128.097 68 2117.705 40 283.930 50 C1

31 2133.104 62 2127.954 44 2117.654 09 284.177 93 C1

32 2139.635 52 2133.928 25 2122.513 70 285.416 42 C2v

32 2138.823 61 2133.497 88 2122.846 41 288.229 15 C2v

33 2144.842 72 2138.930 97 2127.107 48 288.681 12 Cs

33 2143.622 17 2138.129 74 2127.144 87 291.444 05 C1

34 2150.044 53 2143.928 54 2131.696 58 291.942 68 C2v

34 2148.351 36 2142.673 75 2131.318 53 294.414 04 C1

35 2155.756 64 2149.429 00 2136.773 70 295.644 00 C1

35 2153.695 48 2147.870 74 2136.221 27 298.360 49 Cs

36 2161.825 36 2155.273 06 2142.168 46 299.578 49 Cs

36 2158.676 22 2152.648 41 2140.592 81 2101.412 08 Cs

37 2167.033 67 2160.277 16 2146.764 13 2102.846 79 C1

37 2163.873 63 2157.602 17 2145.059 25 2104.294 74 C1

38 2173.928 43 2166.828 35 2152.628 18 2106.477 65 Oh

38 2168.519 99 2162.088 87 2149.226 62 2107.424 31 C1

44 2207.688 73 2199.416 47 2182.871 97 2129.102 32 C1

44 2203.861 02 2196.048 03 2180.422 07 2129.637 67 C1

57 2288.342 62 2277.186 18 2254.873 28 2182.356 36 Cs

57 2288.259 86 2277.113 22 2254.819 94 2182.366 78 Cs

65 2334.971 53 2322.101 10 2296.360 23 2212.702 42 C1

65 2334.969 70 2322.104 87 2296.375 22 2212.753 84 C1

65 2334.402 50 2321.598 41 2295.990 23 2212.763 65 C1

66 2341.110 60 2328.017 25 2301.830 55 2216.723 78 C1

66 2340.763 60 2327.728 73 2301.658 99 2216.932 34 C1

67 2347.252 01 2333.930 58 2307.287 73 2220.698 48 Cs

67 2347.049 76 2333.796 75 2307.290 74 2221.146 20 C1

69 2359.882 57 2346.136 91 2318.645 61 2229.298 87 C1
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69 2359.664 32 2345.964 85 2318.565 91 2229.519 37 C1

72 2378.637 25 2364.252 11 2335.481 81 2241.978 35 Cs

72 2378.523 99 2364.162 54 2335.439 63 2242.090 19 C1

75 2397.492 33 2382.110 32 2351.346 29 2251.363 20 D5h

75 2396.238 51 2381.246 30 2351.261 87 2253.812 49 C1

76 2402.894 87 2387.323 95 2356.182 12 2254.971 17 Cs

76 2402.384 58 2387.158 78 2356.707 20 2257.739 53 C1

76 2401.862 14 2386.705 54 2356.392 30 2257.874 37 C1

77 2409.083 52 2393.276 96 2361.663 83 2258.921 18 C2v

77 2408.518 27 2393.064 35 2362.156 53 2261.706 11 C1

77 2408.155 37 2392.785 36 2362.045 34 2262.140 29 C1

78 2414.794 40 2399.098 29 2367.706 07 2265.681 37 Cs

78 2414.442 51 2398.840 30 2367.635 87 2266.221 48 C1

79 2421.810 90 2405.876 42 2374.007 45 2270.433 32 C1

79 2420.709 75 2404.896 48 2373.269 93 2270.483 64 C1

82 2440.550 43 2423.817 38 2390.351 29 2281.586 50 C1

82 2440.041 39 2423.532 48 2390.514 66 2283.206 72 C1

83 2446.924 09 2429.963 30 2396.041 72 2285.796 58 C2v

83 2445.800 65 2429.102 37 2395.705 80 2287.166 98 C1

84 2452.657 21 2435.480 96 2401.128 44 2289.482 76 C1

84 2451.650 41 2434.761 88 2400.984 82 2291.209 37 C1

85 2459.055 80 2441.819 40 2407.346 60 2295.310 00 C1

85 2457.954 41 2440.834 85 2406.595 72 2295.318 55 C1

86 2465.384 49 2447.751 72 2412.486 17 2297.873 15 C1

86 2465.237 87 2447.826 34 2413.003 29 2299.828 36 C1

87 2472.098 16 2454.225 68 2418.480 72 2302.309 59 C1

87 2471.383 20 2453.801 46 2418.637 98 2304.356 68 C1

88 2479.032 63 2460.904 78 2424.649 07 2306.818 04 C1

88 2476.631 77 2458.863 00 2423.325 46 2307.828 46 C1

89 2486.053 91 2467.688 76 2430.958 44 2311.584 93 C1

89 2482.836 55 2464.846 32 2428.865 87 2311.929 39 C1

92 2505.185 31 2486.139 99 2448.049 37 2324.254 82 C1

92 2502.366 42 2483.651 37 2446.221 29 2324.573 52 C1

93 2510.877 69 2491.613 96 2453.086 52 2327.872 31 C1

93 2507.488 68 2488.680 53 2451.064 25 2328.811 32 C1

98 2543.665 36 2523.066 51 2481.868 80 2347.976 26 Td

98 2543.642 96 2523.203 37 2482.324 20 2349.466 88 Cs
g
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nificant differences in the dynamical and thermodynamic
havior in the quantum regime, even at reasonably high t
peratures.

A comparison of the present results with the experim
tal data of Märk and Scheier58 is quite difficult, because the
mass spectra obtained by these authors for neutral neon
ters do not show a clear picture of the magic numbers. H
ever, the results of Harriset al.59 for argon clusters clearly
indicate that the anti-Mackay sequence is stable up to
sizen534. Quantum delocalization shifts the crossover
tween the anti-Mackay and Mackay sequences ton534, al-
though Ar34 has a Mackay-type geometry. This small d
crepancy would probably be resolved by using a m
accurate argon potential than the basic Lennard-Jones m

B. Debye temperatures of argon clusters

For a three-dimensionalcontinuoussolid, the Debye
approximation60 models the vibrational density of statesg as
-
-

-

us-
-

e
-

e
el.

a quadratic function ofn with a cutoff at nmax: g(n)
}n2Q(nmax2n), whereQ is the step function. The resultin
formula for the total heat capacity is

Cv
Debye~T!53kkBS T

TD
D 3E

0

TD /T x4ex

~ex21!2 dx, ~33!

where the Debye temperatureTD is related to nmax by
hnmax5kBTD . This formula contrasts with the correspondin
expression for adiscretesolid,

Cv~T!5kB(
i 51

k S hn i

kBTD 2 ehn i /kBT

~ehn i /kBT21!2 . ~34!

In particular, the behavior at low temperature is differe
although both models converge to the Dulong–Petit Law
high T. Attributing a Debye temperature to a cluster m
seem strange at first sight, since the structures we cons
are still far from the continuum. However, the Debye fo
mula ~33! is just an interpolation made to account for th
observed Dulong–Petit behavior at high temperatures,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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well as the observedT3 dependence nearT50. Therefore,
there is no fundamental problem with the use of Eq.~33! as
an approximation to Eq.~34!.

In order to estimate the Debye temperatures of LJ c
ters with some degree of quantum delocalization, we h
fitted the ‘‘exact’’ heat capacity of Eq.~34! to a Debye form
~33! by a standard least-squares method. Such a proce
requires several comments. First we must ensure that
isomer we consider is indeed the one corresponding to
‘‘solid’’ state. Hence the structures should be selected
cording to their effective quantum energies including t
zero-point contribution. Second, melting points in clust
are usually much lower than the bulk melting point. Con
quently, the neglect of all isomers except the global mi
mum may not reproduce the actual caloric curve if the deg
of quantum delocalization is high~neon!, or if some prelimi-
nary transitions or premelting phenomena are present~e.g.,
LJ31!. In these cases, the heat capacity of the solidlike iso
alone will underestimate the real heat capacity. Howeve
fit to a Debye law would also be meaningless if some ex
bumps or peaks are apparent. To avoid this problem,
have focussed on clusters having only a modest quan
character, namely argon clusters.

We estimated the Debye temperature of all Arn clusters
in the range 3<n<100 using the putative global minim
determined previously. In the range 101<n<150, a similar
investigation was made by assuming that the geometrie
Arn are the same as those of LJn . Finally, we considered
three growth sequences in the large size regime, nam
icosahedral~ICO!, decahedral~DEC!, and truncated octahe

FIG. 10. Variations in the Debye temperature of argon clusters with s

TABLE II. Parameters of the asymptotic expansion~35! for the icosahedral
~ICO!, decahedral~DEC!, and truncated octahedral~TOCT! growth se-
quences.

Sequence TD(`) ~K! a b c

ICO 87.304 21.229 0.445 0.932
DEC 88.730 21.271 0.625 0.571
TOCT 88.788 21.295 0.759 0.607
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dral ~TOCT!, for which we fitted the measured values ofTD

according to the simple asymptotic expansion,

TD~N!5TD~`!@11aN21/31bN22/31cN21#. ~35!

Clusters as large asn510179 ~ICO!, n59062 ~DEC!, and
n59201 ~TOCT! were used to obtain the coefficien
TD(`), a, b, andc for each sequence. The results of the fi
are reported in Table II. They probably underestimate
bulk Debye temperatureTD(`), because 9000 atoms is sti
a relatively small size, and also because several rather s
sizes such asn513 ~ICO!, n518 ~DEC!, or n538 ~TOCT!
are included in the fit.

The variation of the estimated Debye temperature w
size for solid argon clusters is shown in Fig. 10. The no
monotonic variations in the small size regimen&100 are
characteristic of cluster size effects,61 as opposed to the
much smoother and regular variations above this limit. Ev
though we did not systematically study sizes above 150 a
from growth sequences, we do not expect drastic change
this kind of cluster, at least not of the same magnitude
those observed near the anti-Mackay/Mackay crossove
n534. At this size, the cluster changes shape, gains m
potential energy than it loses zero-point energy, and by
creasing its vibrational energy its Debye temperature a
increases.

The agreement between the bulk Debye temperature
timated from extrapolating Eq.~35! to n→` and the experi-
mental bulk value of 92 K is quite good. The remainin
discrepancy could probably be reduced by replacing
rather crude Lennard-Jones model by more accurate po
tials for argon, by including anharmonic corrections to t
heat capacities, and also by fitting Eq.~35! using larger clus-
ters of the most stable sequence, namely, the truncated
hedron.

The correlation between the Debye temperature and
cluster structure is made via the vibrational spectrum, but
very ordered large clusters (n.150) the present results see
to indicate only small changes in the Debye temperatures
different sequences. However, disordered geometries or c
ters trapped in metastable isomers may have significa
different vibrational properties, which may have a meas
able effect on the thermal behavior. We have compared
Debye temperatures of a 201-atom cluster in its very orde
TOCT geometry and in an amorphous state. This latter s
was made of 100 geometries quenched from random sta
points, whose contributions were added using the superp
tion method. The heat capacities are plotted in the up
panel of Fig. 11, together with the corresponding vibratio
densities of states~DOS! in the lower panel. We also plotte
the equivalent Debye DOS of the ordered cluster for co
parison.

Clearly, the Debye approximation is only realistic for th
nearly crystalline cluster and fails for the amorphous sta
The presence of many soft modes in the amorphous s
decreases the Debye temperature by about 5 K with respect
to the TOCT structure. The vibrational DOS of the truncat
octahedral cluster is rather far from its equivalent Debye d
tribution, despite the fact that the corresponding heat cap
ties are very close to each other. This gives us an idea of.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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far we are from the continuum limit for a cluster of 20
atoms. Inspecting the DOS for larger clusters shows that
n2 law is still approximate even for 9201 atoms, because
variations ofg(n) are strongly nonmonotonic. On the oth
hand, the smooth vibrational DOS displayed by the am
phous structures is in fact little affected by the averag
procedure, and is nearly the same for all the individual am
phous minima considered in the sample. No evidence
linear variations of the heat capacity asT→0 was found in
Fig. 11, which would be a signature of glassy behavior.
proper treatment of this regime would, however, proba
require a method that, unlike the superposition approa
does not ignore tunneling.

VII. CONCLUSION

In this work, we have investigated the low temperatu
thermodynamics of rare-gas clusters using several diffe
methods. The development of effective potentials from c
densed matter physics provides a computationally con
nient way to include quantum corrections in a semiclass
framework. We have used the quadratic Feynman–Hibbs

FIG. 11. Upper panel: heat capacities of a crystalline Ar201 cluster~TOCT!
and for a sample of 100 amorphous minima. Lower panel: correspon
vibrational densities of states. The Debye density of states is the equiv
distribution for the TOCT cluster at the Debye temperature.
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tential and the Fujiwara–Osborn–Wilk potential based
the Wigner–Kirkwood expansion, both potentials being tru
cated at first order in\2. These potentials were tested on t
melting of the 13-atom Lennard-Jones cluster with differe
degrees of quantum delocalization. The Feynman–Hibbs
fective potential has been shown to reproduce the result
more accurate path-integral Monte Carlo simulations surp
ingly well, down to temperatures where the quantum cal
lations become rather expensive. In particular, it gives a c
rect account of the decrease in the latent heat and me
point in Ne13. On the other hand, the potential based on
Wigner–Kirkwood expansion suffers from numerical pro
lems that make it unsuitable~in its simple form! for studying
the dynamics of clusters in a wide temperature range inc
ing both the solidlike and liquidlike states. Both effectiv
potentials were found to be inadequate at very low tempe
tures.

To correct for the deficiencies of the effective potentia
we have extended the harmonic superposition method to
quantum regime by considering quantum harmonic partit
functions. This idea was tested first on the simple two-st
model, which showed the general influence of the vibratio
properties on the most stable structure and the melting po
Its extension to a sample of minima on an energy landsc
was seen to give good agreement with path-integral M
simulations of Ne13. For larger sizes, we used a reweightin
technique to account for the incomplete sample, similar
that previously used in a classical context.21 We presented a
quasiclassical version of the superposition method, and
also extended the quantum version to include anharmo
corrections to the partition function, which gives quantitati
agreement with the caloric curve of Ne13.

Using the quantum superposition method we have st
ied the effects of delocalization on the melting and prem
ing of 19-, 31-, 38-, and 55-atom LJ clusters. We observe
general decrease of the latent heat and melting point. T
decrease is largest for the magic number Ne55 cluster, con-
firming the prediction of the two-state model that tight
bound systems should be less resistant to heating. Using
results for Ne13 and Ne55 in the framework of the two-state
model, we have estimated the bulk contribution of quant
delocalization to the melting point to be roughly 2 K. Clu
ters exhibiting preliminary structural transitions in the cla
sical regime, such as LJ31 and LJ38, are strongly affected by
quantum delocalization, as they are more likely to have
change in the global minimum. These effects have been
tionalized by calculating stability diagrams where the me
ing and freezing temperatures are plotted against the de B
parameter, which quantifies the amount of delocalization

We then focused on the very low temperature proper
by looking more systematically at the effect of delocalizati
on cluster structure. Our simple approach shows that
classical LJ potential is too crude for describing neon cl
ters when surface rearrangements occur. We estimated
Debye temperatures of argon clusters over a wide size ra
and for several growth sequences. The size-dependence
plays nonmonotonic variations characteristic of cluster s
effects, which are especially strong near the anti-Mack
Mackay crossover. The influence of cluster structure on

g
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Debye temperature was further investigated by compa
the behavior of a symmetrical, truncated octahedral 2
atom cluster and a set of amorphous isomers. A much lo
Debye temperature was found in the latter case, altho
there is no reason why the continuous approximation sho
work at such low sizes.

The quantum harmonic superposition method develo
in this work is a complementary approach to path-integ
simulations. It is predictive down to arbitrary low temper
tures, and works best as the temperature decreases, be
fewer isomers contribute to the partition function and b
cause the harmonic approximation improves. Most imp
tantly, this approach uses only parameters from class
simulations, which makes it suitable for much larger sizes
more complex systems exhibiting quasiergodicity. Its pred
tions can be made quantitative by incorporating anharmo
corrections in a simple way, choosing appropriate values
the newly introduced parameters to reproduce the result
classical simulations. The method is especially powerful a
allows the calculation of thermal properties in continuo
ranges of temperature and for any degree of quantum d
calization. Its main approximation, besides the harmonic
sumption, is to neglect tunneling. It could be used to stu
other finite systems, as well as bulk liquids or glasses bey
the classical regime. One major improvement to the met
could be the incorporation of self-consistent harmonic th
ries such as the the ones developed by Voth
co-workers.18,19 In particular, we believe that the precise ca
culation of effective normal modes could be used to rem
the unknown anharmonicity parameters of the pres
theory, in both the classical and quantum cases. We are
rently working along these lines.

The experimental measurement of Debye temperat
in clusters has recently been accomplished by the Haber
group for sodium.62 In view of the peculiarities of thermo
dynamic size effects in alkali clusters,63 we expect even
more intricate variations of the Debye temperature than th
observed here for argon clusters. In this respect, we bel
that the tools and results presented here provide a very p
ising way of including quantum effects in the finite
temperature study of complex many-body systems bey
the approximation of effective potentials.
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APPENDIX A: GAUSSIAN FEYNMAN–HIBBS
EFFECTIVE POTENTIAL FOR LJ SYSTEMS

The analytic calculation of the Gaussian effective pot
tial, Eq. ~1!, can be performed for an interaction potent
Downloaded 25 May 2001 to 131.111.112.18. Redistribution subject to A
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which is decomposed into a sum of Gaussian functions.
the Lennard-Jones potential, we use a simple 2-te
decomposition,64

VLJ~r !'(
k

gk exp~2akr
2!, ~A1!

with parameters taken from Ref. 64:g1514 487.1, g2

525.553 38,a159.051 48, anda251.225 36. Inserting the
above expression into Eq.~1! leads to the following effective
pairwise Feynman–Hibbs potential:

vGFH~r ,b!5(
k

gkxk
3 exp~2akxkr

2!, ~A2!

where the coefficientxk is

xk~b!5S 11
akb\2

3m D 21

. ~A3!

A standard simulation can then be performed with this p
tential, and the thermal properties calculated in the us
way. We plot in Fig. 12 the heat capacity calculated from E
~5! for Xe13, Ar13, and Ne13. Except for neon, the curve
are almost identical to the results obtained with the quadr
FH potential in Fig. 1. For Ne13 we find that the Gaussian
effective potential is a worse approximation than the q
dratic potential, in comparison to the path-integral results
Neirroti, Freeman, and Doll.5 However, it is difficult to state
precisely the origin of this larger discrepancy, because of
approximation involved in the Gaussian decomposition
the LJ potential.

APPENDIX B: QUASICLASSICAL SUPERPOSITION
APPROXIMATION

Here we provide the expressions for the thermodyna
properties in the quasiclassical harmonic superposition
proximation and in the quantum harmonic superposition
proximation with anharmonic corrections. In these two a

FIG. 12. Heat capacities of LJ13 clusters at various degrees of quantu
delocalization, calculated from Monte Carlo simulations using the Gaus
decomposed LJ~GLJ! potential and effective Gaussian Feynman–Hib
quasiclassical potentials. Results are shown for the classical case (L50),
for xenon (L50.01), argon (L50.03), and neon (L50.095).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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pendices, we consider anN-atom system at temperatureT
51/kBb, with k53N26 the number of independent de
grees of freedom. For a given set$na

i % of vibrational fre-
quencies,i 51, . . . ,k, n̄a is the geometric mean frequenc
^na& is the arithmetic mean frequency, andna

rms is the root
mean square frequency of minimuma.

The partition function of the single isomera is given by
Eq. ~25!, which includes the temperature-dependent qu
classical Feynman–Hibbs effective potential,

Za~b!5
e2bEa

FH(b)

~bhn̄a!k . ~B1!

Straightforward algebra leads to the following quasiclass
heat capacity, after summation of all individual contrib
tions ~B1!,

Cv~b!5kBb2FZ22Zc

Z0
1

k

b2 2S Z1

Z0
D 2G , ~B2!

with

Zn~b!5(
a

na~Ea
FH!n

e2bEa
FH

~bhn̄a!k , n50,1,2, ~B3!

and

Zc~b!5
k

6 (
a

na~hna
rms!2

e2bEa
FH

~bhn̄a!k . ~B4!

APPENDIX C: QUANTUM SUPERPOSITION
WITH ANHARMONIC CORRECTIONS

By allowing all vibrational frequenciesna
i to be

temperature-dependent, Eqs.~21!–~24! can be replaced by
the following expression:

Cv~b!5kBb2FZ212Z111Z022Zc

Z0
2S Z11Z01

Z0
D 2G , ~C1!

where

Zn5(
a

naFEa1(
i

h

2

]bna
i

]b Gn e2bEa
0

) i12e2bhna
i , n50,1,2,

~C2!

Zn15(
a

naFEa1(
i

h

2

]bna
i

]b Gn e2bEa
0

) i12e2bhna
i

3(
j

h]~bn a
j !/]b

ebhn a
j
21

, n50,1, ~C3!

Z025(
a

nae2bEa
0

) i12e2bhna
i F(

j

~h]~bn a
j !/]b!2e2bhn a

j

~12e2bhn a
j
!2

1S (
j

h]~bn a
j !/]b

ebhn a
j
21

D 2G , ~C4!

Zc5(
a

nae2bEa
0

) i12e2bhna
i (

j

h

2 S ]2bn a
j

]b2 D tanh
bhna

i

2
. ~C5!
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