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Quantum partition functions from classical distributions:
Application to rare-gas clusters
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We investigate the thermodynamic behavior of quantum many-body systems using several methods
based on classical calculations. These approaches are compared for the melting of Lennard-Jones
(LJ) clusters, where path-integral Monte CafRIMC) results are also available. First, we examine

two quasiclassical approaches where the classical potential is replaced by effective potentials
accounting for quantum corrections of low orderAnOf the Wigner—Kirkwood and Feynman—
Hibbs effective potentials, only the latter is found to be in quantitative agreement with quantum
simulations. However, both potentials fail to describe even qualitatively the low-temperature
regime, where quantum effects are strong. Our second approach is based on the harmonic
superposition approximation, but with explicit quantum oscillators. In its basic form, this approach
is in good qualitative agreement with PIMC results, and becomes more accurate at low
temperatures. By including anharmonic corrections in the form of temperature-dependent frequency
shifts, the agreement between the quantum superposition and the PIMC results becomes quantitative
for the caloric curve of neon clusters. The superposition method is then applied to larger clusters to
study the influence of quantum delocalization on the melting and premelting; of L;1, LJsg,

and L}s. The quantum character strongly affects the thermodynamics via changes in the ground
state structure due to increasing zero-point energies. Finally, we focus on the lowest temperature
range, and we estimate the Debye temperatures of argon clusters and their size variation. A strong
sensitivity to the cluster structure is found, especially when many surface atoms reorganize as in the
anti-Mackay/Mackay transition. In the large size regime, the Debye temperature smoothly rises to
its bulk limit, but still depends slightly on the growth sequence considered20@L American
Institute of Physics.[DOI: 10.1063/1.1359768

I. INTRODUCTION Fourier or Lie—Trotter coefficientsinstead of the infinite
number required for the methods to be rigorously exact.
Classical many-body systems in thermal equilibrium arepractically, the number of parameters can be kept moderately
commonly investigated by means of computer simulationgma)| for systems that are neither too cold nor too delocal-
such as Monte CarlgMC) or molecular dynamic¢MD).* _ized. However, because of this limitation, the calculation of
These methods in principle provide “exact” results for arbi- 50 rate thermodynamic properties, such as the caloric curve
trarily complex intermolecular forces, their only limitation or the heat capacity, is hindered by the slower convergence

being computational power. Quantum systems can also bgf PIMC-type simulations at very low temperatures. In addi-

studied by ”“.”?e”ca' simulation, and the most figorous apfi?n, the extra degrees of freedom arising in path-integral
proaches at finite temperature are based on the path-integra

. ) Iculation repli f th m, hence multiplyin
treatment of quantum mechanics. Path-integral Monte Carlﬁqa culat ons actas epiicas o the sy_ste » hence multiplying
(PIMC) methods have proven extremely useful and success- e effective computational complexity.

This problem can be at least partially handled for quasi-

ful in predicting the thermodynamics properties of many lassical ‘ . troct tentials. Th tential
condensed matter systefts,and, more recently, of finite classical systems using efiective potentials. These potentials

atomié~7 and moleculdrclusters. Two kinds of PIMC meth- MY be viewed as expansionsinof the quantum partition
ods are in use, namely the Fourier-path-integFa|) (Ref. funcFion, gither .in the path-integral formalisth,or in. the
9) and the discretized-path-integ@PI) (Ref. 10 methods. Semiclassical Wigner—Kirkwood approathThey provide a
They differ in how the paths are represented, but have bedpPWerful technique for obtaining quantum corrections to
shown to yield essentially similar resuffs. mostly c_IassmaI systems, without requiring full path—n_wtegral
Although PIMC simulations incorporate quantum delo- calculations. In particular, for atomic and molecular liquids,
calization, they still contain approximations at the computathey have given very satisfactory resufts?~*°On the other
tional level. In both FPI and DPI methods, the path integrald'and, solids displaying a non-negligible quantum character
are represented by a finite set of parameteespectively, are not well described by such potentidlsn this case, fur-
ther refinements of the path-integral theory have been
dpermanent address: Laboratoire de Physique Quantique, IRSAMC, UniveF—WoDosea17 to formulate effective pOtemlals valid even in the

site Paul Sabatier, 118 Route de Narbonne, F31062 Toulouse Cede£€rO temperature _“m|t' In particular, a quite efficient and
France. Electronic mail: florent@irsamc.ups-tise.fr elegant approach is that of Voth and co-workér¥ based
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on self-consistent harmonic oscillators. The idea is to replac®cal minimum is also considered, and we estimate the De-
the actual quantal and anharmonic system near an equililbye temperatures of argon clusters and their variation with
rium configuration by a set of equivalent oscillatétsThis  size. A very strong, nonmonotonic dependence on the struc-
approach is also useful in studying the dynamics of the systure is found for the smaller sizes. In particular, we are able
tem, and has recently been applied to the classical and quat® relate the variations of the Debye temperatures to changes
tum theories of solvation in glassy systetisdowever, all  in the surface structure, in agreement with the trends ob-
these self-consistent potentials must be recalculated at eashrved for the zero-point energies. The Debye approximation
new temperature and for each configuration, which makdtself needs to be critically examined for clusters, as it in-
them very demanding from a computational point of view. volves a complete neglect of the high-frequency part of the
Another approach to compute the thermodynamic propvibrational spectrum. By looking at two large clusters, with
erties of a complex many-body system consists of summingrystalline and amorphous structures, we hope to gain insight
the contributions of all basins of attraction of the configura-into how closely clusters of a few hundreds of atoms can
tion space, the so-called inherent structi#fas, the partition ~ approach the bulk limit.
function. This approach was pioneered by Stillinger and  The article is organized into six main sections and a
Weber?® then formalized in cluster physié$?? and more conclusion. In Sec. Il, we briefly review the effective poten-
recently used in the physics of liquids and glasSds.clas-  tial approaches of quasiclassical theories, and their use in
sical systems, it has proved very useful in elucidating thecomputer simulations. We then test two of them, namely the
relationships between the thermodynamics of clusters anguadratic Feynman—Hibb$H) potential and the Wigner—
their energy landscapé$?° Stillinger formally extended the Kirkwood (WK) potential in the Fujiwara—Osborn—-Wilk
idea of partitioning the configuration space to the case ofépresentation, on the 13-atom Lennard-Jads cluster at
quantum system® however, only a few applications were Vvarious degrees of quantum delocalization. We then consider
made due to the required use of path-integralin Sec. Il the quantum two-state model in the harmonic
calculations"?® A related approach uses instantaneous nor2pproximation, and its quasiclassical FH expansion. This
mal mode(INM) analysis to probe the structural or thermo- Simple model serves as a basis for the quantum superposition
dynamica| Changes in classical or quantum Syst%qn@ne methOd, and allows us to obtain a qualitative piCtUre of the
goal of this article is to extend the superposition method tfuantum effects on cluster melting. In Sec. IV we extend the
quantum systems. We have chosen to test our methods dfrmonic superposition method to the quantum case, and we
atomic clusters for which path-integral Monte Carlo data is2gain test it on the L cluster. We also compare its predic-
available>” We have also tried to investigate systems cur-tions to the quasiclassical harmonic superposition for which
rently too complex for full quantum simulations because ofthe quadratic FH potential is exact. We include anharmonic
quasiergodicity problems that slow down the convergenc&OTections in the quantum superposition, and find t_hat these
considerably at low temperature. corrections produce good quantitative agreement with PIMC
Following the results of Chakravarfy, we attempt to results..ln Sec. vV we a}pply the method to larger clusters,
rationalize the effects of quantum delocalization on clustefVhere little data is available. Some of these clusters are a
melting. Traditionally, these effects are quantified)gythe ~ challenge to simulation, even classically, because of the
thermal de Broglie wavelength at temperatdrewhere ~ Multiple-funnel energy landscapes they exhifiitve also
—#/amksT, o is the interatomic equilibrium distance, and Introduce stability diagrams where the “phase” of the clus-
m is the atomic mass. If we denote the depth of the potentiai€! can be obtained from a bidimensional plot in e T)
well by &, then the extent of quantum delocalization effectsP/@ne. In Sec. VI, we focus more specifically on the static
is measured by the de Boer paramefer#/o\me. The properties such as the influence of zero-point energies on the

guantum superposition method developed in the present pQIab'“ty of thehgloba(; m|n|r_na.bV\r/1e "’_‘ISO stgdy the veryh low
per allows us to investigateontinuousranges ofA, instead temperature thermodynamic behavior and estimate the De-

of only a set of prescribed values. Thus it allows a morebye temperature of argon clusters. Finally, we report our

complete picture of how quantum effects influence clustelponCIUSIons in Sec. VII.
thermodynamics.
Anojther pbjective is tp investigate the very low tgmpera-ll_ QUASICLASSICAL APPROACHES
ture regime in more detail, where only a few dynamical cal-
culations are available apart from classical studies. We first  Effective potentials have long been used in condensed
estimate the contribution of the zero-point energy to the totamatter physics as a cheap way of incorporating quantum cor-
energy for clusters containing up to 150 rare-gas atoms, actions to classical properties. In cluster physics, they have
well as for some different growth sequences. In many casefeen employed by Chakravarty to study isotopically mixed
the global minimum geometry is seen to change when somelusters®® It is well known that their reliability is mainly
very soft vibrational modes are present, even in the case afependent on how far the system is from classical behavior,
argon clusters that are usually considered as classical syand also on the number of correction terms included in the
tems. In this low-temperature regime structural transitionexpansion.
may still be observed, but their thermodynamic signature is  In this work we have considered two such low-order
smeared out, and disappears for stronger quantum delocadffective potentials that have been previously used in simu-
ization. lations of bulk system&>163?By expanding the path-integral
The specific case of clusters trapped in a single solidlikepartition function around the classical path, Feynman and
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Hibbs have shown that the following Gaussian effective po-  With the above problems in mind, we have tested these
tential provides an approximation to the quantum freetwo effective pairwise potentials on a system where more

energy'? accurate results have been previously obtained, namely, the
5 13-atom Lennard-Jones cluster. The quasiclassical simula-
m |\ ; ;
Vern(R, B) = 2) Zf V(R+R’) tions Wesr4e pgrformed by parallel tempering Monte 'Carlo
B (PTMCO),”* using 50 temperatures regularly spaced in the

range 0.0&T=<0.50, and 1® MC sweeps for each tempera-
ture following 2x 10* thermalization sweeps. Parallel tem-
In this equationV(R) is the classical potential function of pering exchanges were attempted with 10% probability. All
the k=3N—6 atomic coordinateR={R;}, m is the atomic ~ results are given in reduced LJ units of massenergye,
mass, and8=1/kgT. In general, the Gaussian Feynman—and lengtho. The extent of quantum delocalization is given
Hibbs potential can be calculated analytically only for poten-entirely by the de Boer parametdr, which corresponds to
tials V that can be written as a sum of Gaussian functionsthe value of the constarit in the LJ reduced units system.
This effective representation then becomes very systemlhe following cases have been investigated;;l(dlassical,
dependent, and we give in Apperdh a way of obtaining it A =0), Xe;3 (A=0.01), Anz (A=0.03), and Ng; (A
for the Lennard-Jones potential. =0.095). For this latter cluster, we can compare our results
For a generalnon-Gaussianpairwise potentiaV(R) to the accurate data recently obtained by Neirotti, Freeman,
=3i-ju(ryj), it is also possible to expand the Gaussianand Doll(NFD).> A cut-off radius ofr ,=1.06r was neces-
Feynman—Hibbs potential into an effective pairwise potensary for Ngsin order to obtain physically meaningful results
tial vey(ri;), which is simply in this range of temperatures for the WK potential. For all
simulations, we enclosed the cluster inside a hard-wall
sphere to prevent evaporation. The radius was chosen to be
2.50 with respect to the cluster center of mass.

] o, 5. ] The heat capacities of the four clusters described by the
to first order in4*, whereV< is the Laplacian operator. two effective quasiclassical potentials are shown in Fig. 1.
Another way to construct effective potentials is based Onrhey were obtained from the partition functich by the

the semiclassical Wigner—Kirkwood expansidfi.o first or- usual formulaC,(8) = ke 8252 log /382, which can be writ-

X exp(—6mR’?/Bh%)dR’. )

Bh® _,
Upn(Tij yﬂ)zv(rij)+mv v(rij), i)

der in#?, it yields ten in terms of the following averages for a temperature-
Vwk(R,B) dependent potential ox():
2 2 2
3 IBZﬁZ B _ 2 < ( éﬁveﬁ) > _ < (9BVeff> B < d IBVeff> }
= —_ 1 — 2 L — — . L. 2 CU - k .
VR) =74 In| 1= o 30 | VAV = Z(ViVy) (B)=keh\ | 755 7B 2
+ gvivij > Vk(Vki—ij)”, (3)  Incidentally, this equation shows that negative heat capaci-
k#10. ties are possible if the effective potential grows withas it

poes in the Feynman—Hibbs approximations. We find in Fig.
1 that both the FH and WK potentials fail at low tempera-
tures, as expected from previous studie¥ The use of a
Gaussian-expanded LJ potential and the Gaussian—
Feynman—Hibbs effective potential does not help to solve
this problem.
The caloric curves calculated with the FH potential show
Bh? 24,2 a decrease in the heat capacity peak as well as a decrease in
vwk(rij,B)=v(rij) + szv(rij)— W[Vv(fij)]z- (4 the melting point as\ increases. The effect is already per-
ceptible for xenon, and reaches about 10% for neon with
The Wigner—Kirkwood expansion thus involves more termsyrespect to the classical behavior. The heat capacity peak de-
making the computation of the effective potential more de-creases from about 1kp to about 78 for Ne;3, which
manding. Furthermore, as noted by Neumann and Zbppi, together with the variations in the melting point, are in very
the last term inv\y is proportional both tg3% and to the good agreement with PIMC resuf§. Above the melting
square of the forc&v, and is alsoattractive Hence, low point, the curves we find are slightly different from Neirotti
temperatures will favor the collapse of all particles, a highlyand co-workers’ results, but we believe the differences result
undesirable situation. To solve this problem requires ondrom the different constraining potentials. Below the melting
either to incorporate higher-order terms in the semiclassicgboint, the same comparison shows that the FH potential
expansion, or to introduce an artificial short-range cut-off inceases to be valid nedr-0.2¢/kg for neon.
the potential preventing the collapse. However, the common The situation is quite different for the Wigner—
problem of such expansions, including the Feynman—Hibb&irkwood potentia? Because of the large cut-off used to
expansion, is that higher order termgfifiare also of higher truncate the repulsive part of the LJ potential, the caloric
order in 8. Consequently, the low-temperature behavior will curves are affected throughout the temperature range, and
necessarily be unphysical at this level of theory. differ from the classical behavidwith the untruncated LJ

with V; the gradient vector with respect to the coordinates o
atom i. Following the resummation method of Fujiwara,
Osborn, and Wilk® Neumann and Zoppi have developed
effective pairwise potentials based on the WK expansion
Neglecting the three-body term in E¢3), we get the
density-independent pair potental
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' ' ' ' ter. However, even the FH approximation will fail at higher
and higher temperatures, as quantum delocalization increases
beyond that observed in neon. Moreover, the present effec-
tive potentials are not able to account for all the possible
low-temperature effects characteristic of clusters, such as
isomerization and premeltinj. These results lead us to look

for alternative treatments that are valid at very low tempera-
tures, and retain the physical features of the various phase-
like forms of clusters.

100

50

Heat capacity (k)

Ill. TWO-STATE QUANTUM MODEL
AND THE QUASICLASSICAL REGIME

0 0.1 0.2 0.3 0.4 0.5 L
Temperature (e/k;) Although only qualitative, the two-state motfelhas

proved useful in analyzing the dynamical coexistence re-
ported in the 1980s by Berry and co-workéf®asically, the
model consists of assuming that the system can access only
two states, respectively solidlike and liquidlike, character-
ized by ground state energig andE, , vibrational(normal
mode frequenciesrs andv| , i=1,... k=3N—6, and de-
generaciesig andn, . The partition function of the system is
then simply the sum of the two individual partition functions
\ Z(T)=ZgT)+Z.(T), and all thermodynamic properties
follow from this definition.
.o Xe The harmonic approximation for each partition function
o Ar is sufficient to show that the system undergoes a ‘“phase
+— Ne change” between the state of lowest ener@) @nd the
0 . . . . other state I() at a temperature where the internal energy
0 0.1 0.2 0.3 0.4 0.5 rises and the heat capacity reaches its maximum. Of course,
Temperature (g/kg) this transition can be very gradual and depends on the size as
FIG. 1. Heat capacities of Lgclusters at various degrees of quantum de- well _as the ratios of the Vlbrathnal frequenmes_ and degen-
Ioca-lizétion, calculated from Monte Carlo simulations using effective clas-EracIes. Togo beyon_d the C'ass"?"?" plcture_ and mCIUde quan-
sical potentials. Results are shown for the classical caseQ), for xenon  tum effects, we consider the partition functiahsandZ, in

(A=0.01), argon A =0.03), and neonX =0.095). Upper panel: calcula- their fully quantum forms, wher& can be written as
tions with the Feynman—Hibbs potential; lower panel: calculations with the
Wigner—Kirkwood potential.

100

Heat capacity (k;)

K e—ﬁhvis/Z
z(p)= nsexﬂ—ﬂEs)i:Hl PR
potentia) even at high temperatures. For xenon and argon, .
the lower limit of validity of the quasiclassical WK approxi- K B2
mation is similar to the FH lower limit, near Oslkg and +ng eXp(—BEL)Hl PR (6)
i= —e L

0.16¢/kg, respectively. Below these values, the potential

and internal energies drop causing the heat capacity to rise >
sharply asT goes to zero. The variations of the caloric SUCh @n approach has been used by Franke and co-workers

curves in the nearly classical regime are close to those off© Study isomerization between the two states ¢f Id Eq..
tained with the FH potential. For Newe have not been able (6), we have made the approximation that the wave functions

to obtain reliable results below the classical melting temperalnSide €ach basin do not interfere. Of course, ffer 0 we

ture. Increasing the cut-off radius beyond r0éads to very =~ "¢COVel the usual IcE:IassmEI expressEnZC(B)

unphysical potentials behaving significantly differently from ~ Ns® PEsl(Bhvg)“+n e’ L/,(ﬁhVL)Kv where v is the

the original LJ potential. We have tried to improve this situ-ge(JrT]G"[r'_C mean value_of the’s. If the te_mpera_lture IS not_

ation by adding the three-body terms of E), but the too low, it |s_also po_s_S|bIe to use a quasu?lassmal expansion

effect on the caloric curves is small. of the classical partition function, by noting that the qua-
Thus, at the lowest order in quantum corrections, omydratlc Feynman—2H|bbs. expansmn_becomes exact for har-

the Feynman—Hibbs effective potential seems able to acd"onC oscillators? In this case, we Just have to replace the

count for the quasiclassical thermodynamic behavior of rare€N€rgiesE, by their effective valueg ,"(B), with =S or

gas clusters as light as Ne In contrast, the Wigner— L,

Kirkwood potential has trouble properly describing the )

solidlike phase, which makes it unsuitable for investigating EFR(B)=E + &2 (v )2=E, +Kﬁ_(vrm5)2 @)

melting in clusters exhibiting a noticeable quantum charac- “ i
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with the root mean square vibrational frequenci€s®. By ' '

performing a simple semiclassical expansion of the quantum Quantum

partition function, P FH
——— Semiclassical -~

e—,BhVi/Z 1 Bzhz

W e = g 1 O] @

we recover the Feynman—Hibbs expansion of the effective
energies. The low-temperature behavior in the quasiclassical
approximation is unphysical, which is hopefully not the case

in the quantum model. To see what qualitative differences
are introduced by the quantum character of the oscillators,
we introduce the arithmetic average of the vibrational fre-

quencies{v,)=(Z;v)/«x, and we write Eq(6) as 0

—
e
S
=
'—

e—BEg 1_e—ﬁhvis

n 0
29(B)=ns | 1+ LefE B[] ——— |,
Hil—e‘ﬁh”s Ns i 1—e Bhr FIG. 2. Variations of the melting temperature in the two-state harmonic
(9) model induced by quantum delocalization. The results are plotted for two
values of the vibrational frequency of the liquid state, respectively, smaller

whereEgz E,+ Kh<Va>/2 is the ground state energy includ- and greater than the solid state frequency, and for the full quantum model,
ing the zero-point energy. The most stable state is found b{e Feynman—Hibbs approximation, and the first-order semiclassical expan-
looking at which term dominatez® at a given temperature.

In particular, the zero temperature limit gives

2

_ 0 — 0
ZQ(,B—WO)ane ﬁEs—i—nLe BEL, (10) Tﬁ":-ellt(h):% 1+|1—

ms__ Vers>

K
BT,AE 'S

Therefore the effective ground state is the one with the low-
estEC. A problem could appear ifv, )<{vs) and if quan-
tum delocalization is high enough to exchange the relative

stabilities of theS andL states, as the latter would never be . . .
populated Equations(12) and(14) show that the variations in the melt-
We havebeen unale o extactoxact anayic rsuts 9 P (PR Sl on e [eve vaues o1 e
the influence of quantum effects on the heat capacity maxi- q d ' .
clusters is thavg andv, are comparableyg being somewhat

mum. Instead, we simplity the problem by assuming tha[Iar er thany_ especially for very symmetric geometries
melting occurs when the two states become equally prob- 9 L esp y y sy 9 '

able: Z(T=T,.)=Z,. Then the melting pointT Hence we can expect a}‘ decreaseTme,t,,, which will b_e
— 1/kg 3 satisfies larger for high symmetry magic number” clusters provided
that the effect of the Iarger% is larger than that of the larger
1— e*,ﬁ’hvis AE.
(11 We have plotted in Fig. 2 the variations of the melting
point as a function of quantum delocalization for the two
casesvg <v| > andva'>p"™. For simplicity, all frequen-
cies were given the same value for each stter L: v!,
==, =(v,). Tner Was calculated by equatings and
Z, , and two cases were studied, witk=1, v, =0.9, and
v =1.1, respectively, for a 30-atom system witfE=1.
ng/n. was adjusted to keep the classical melting point at a
constant value. In Fig. 2 we have compared the value in the
12 quantum model to the FH approximation and to the simple
expansion12). The quasiclassical Feynman—Hibbs approxi-
mation is quite accurate when >vg, but fails completely
as soon adi>h.=(6ToAE/k(v3—17))?=0.15, wheny,
<wvg. Again, this shows that quasiclassical effective poten-
tials should be used with caution when dealing with strong
(13)  quantum effects.

1/2
X (vas+ p™ ) : (14

eB(EE_Eg):E E—
Ng " 1—e B

In the quasiclassicdQC) regime, a Taylor expansion can be
performed, and we obtain the relative variationg gf,; with
increasingh as

2

T (h)=To| 1— = (v
mel o7 24T,AE

rms m rms m
e i [€7 e

+0(h%

whereAE=E, —Eg, and wherel o= T,(0) is the classical
melting temperature given bjj,=AE/T" with

75) «

VL

ng
I'=In|—

Ng

The same result is obtained by considering the semiclassic
superposition for a small value df. However, in the

Feynman—Hibbs approximation, the exact calculation o
Tmer @t any value ofh (less than a maximum value, see The two-state model of the previous section is a very
below) is possible, and the result is simply simplified representation of a many-body system with a mul-

|
ﬁ/. QUANTUM HARMONIC SUPERPOSITION
fAPPROXIMATION
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tidimensional energy landscape. However, it contains the ferelassical simulation. More precisely, we perform a canonical
tile concept of relating the global thermodynamic propertiesMC or MD) simulation at inverse temperatug,, and

to local features of these landscapes, namely, the energiescord the probabilityp,(8) of finding isomera. We write
and vibrational frequencies of local minima. Such an ap-+the total classical partition function as a sum over all known
proach has been considered bef§but the lack of power- minima, but weighted by factorg, to correct for the incom-
ful computational tools for exploring energy landscapes hinpleteness of the set of minima,

dered its fruitful development until the last decade. With the

notion of inherent structures introduced by Stillinger and c c

Weber in bulk studie$? came the idea of dividing the con- z ('B)OC; 9aNaZ(B)- (18
figuration space into basins of attraction, and building the

partition function as the sum of all contributions from eachfFrom the simulation, the number of quenches leading to iso-
basin. The problem then becomes the calculation of thesger « is proportional top,(,), and also tog,n,Z$(Bo).
individual partition functions, whose number grows expo-This proportionality requires the simulation to be ergodic.

nentially with the system size. The classical partition function for the incomplete sample is
Various studies by Wales, Doye, and otfféf8?>*  then approximated by

have demonstrated how this superposition method can be
implemented in practice for clusters in the classical regime, ZS(B)

at various levels of approximatidf:** Here the main moti- Z°(B)= 2. palBo) <8
vation has been to show in detail how the thermodynamic “ a(Bo)

properties emerge from the characteristics of the eNergy|ow we follow a similar procedure for the quantum case
landscape. In the simplest version of the superposition '

- . . except that we do not wish to perform a quantum simulation
method, each local minimum is treated as a collection af . . .
. . . to obtain the weights. Actually, the weights should depend
uncoupled harmonic oscillators of frequencies,, i

_ . . . only on the topography of the energy surface, and not on the
N L... e _Thus _the qlassical partition function for one par- ensemblémicrocanonical or canonicabr on the probability
ticular minimum is writted

law used to generate the ensemble, quantum or classical,
e~ BEq c because they are related to the number of minima on the
Z(B)= = =Zs(B), (15  potential energy surface. In the case of a bulk system, these
(Bhv,) ; .
weights should also depend on the density or the pressure.
where the superscri stands for classical. The total parti- Theg,’s are the ratios op,(8,) andn,Z,(5,), whereZ,,

(19

tion function for the whole set of minima is is assumed to have been used to genguateThus we can
employ the probabilities found in a classical simulation to
Z(,8)=2 n,Z.(B), (16 estimate the weightg,, which depend only orw, and in

turn calculate the full quantum partition function as

where the sum is over all geometrically distinct minima on
the potential energy surface, with), the number of permu-
tational isomers of minimuna. If the system is made dfl
identical atomsn,, is given byn,=2N!/h,, h, being the
order of point group of structure. For large classical systems, the use of reweighted formulas
such as Eq(19) was shown to improve considerably the
predictions of the harmonic superposition metRbéh par-
Following the approach of Sec. I, we attempt to in- ticular by reproducing the van der Waals loop in the micro-
clude quantum effects in the thermodynamic properties b¥anonical caloric curve of lg.
simply replacing the classical oscillators with quantum ones, e first tested the quantum superposition method on a
cluster where our database of minima is almost complete,

z3B)

Z%(Bo) (20

zQ(moc; Pu(Bo)

A. Superposition of quantum oscillators

K -phol 2 : i
Za(ﬁ):e—,BEaH -=79B). (17) namely, Ld;. From expressionél6) and(17) for the parti-
11— B, ¢ tion function, we calculated the heat capadity(3) from
In the cllassical Iimit., one of the major approximations of the | Zo+2244+ 26y (24424 2
harmonic superposition method is that it neglects the over- C,(B8)=kgp Z — Z , (21
lapping of the individual contributions 8. This approxima- 0 0
tion remains in t_h_e case of quantum osfcnlators, but #a@) with the following terms Z,=2):
assumes in addition that no quantum interference occurs to
modify the energy levels of local minima, i.e., the present 0\n . BE?
guantum superposition assumes there is no tunneling. 7 :z No(Ep)"e "me n=01.2 22)
Practically, Eq.(17) together with Eq(16) are of little T ml-e A o
use if the set of minima in our database is far from complete,
which is likely even for a few tens of atoms. To tackle this 0y, BEC i
R . . n,(E,)"e F=a hv
problem one can use the reweighting technique previously 7z = « . —~—, n=01, (23
employed in the classical caSewhich uses the results of a a IMl-e Ave T efva—1
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FIG. 3. Heat capacities of Lgfrom the quantum superposition method. The FIG. 4. Heat capacities of Lg from the quasiclassical superposition
values of the de Boer parameter are the same as in Fig. 1. method. The values of the de Boer parameter are the same as in Fig. 1.
— gE? i \2n—phy . o . . .
Zo=S n.e #fa (hv),)%e A" e equation. The heat capacity is given in Appendix B for this
027 < Hil_efﬁhv'd ; (1_efﬁhvju)2 quasiclassical approximation. We have cal<_:u|a_ted the caloric
curves for the same clusters as those studied in the quantum
hVL 2 case, and the results are plotted in Fig. 4. Not surprisingly,
+H > 1) | (24)  we find good agreement with the quantum caloric curves
i a—

down to limiting temperatures that increase with the degree
and with the notatiorEngaJr xh({v, )2, where(v,) is the of quantum delocalization. Below these temperatures, the
arithmetic average of the frequencigs, i=1,. .. «. quasiclassical approximation becomes unphysi€al<(0).

The results for four values of the quantum delocalizationln the case of Ng, the caloric curve differs strongly from
parameter and a sample of 1467 minima are shown in Fig. 3he quantum behavior, even if the quasiclassical curve exhib-
The general picture is very similar to the quasiclassical reits the correct shift in the melting temperature. We also no-
sults of Sec. II; the melting peak decreases with the atomi¢ice that the present quasiclassical approximation is in better
mass, and the melting temperature decreases up to abcagreement with the Gaussian Feynman—Hibbs effective po-
10% for neon. The low temperature behavior is correct, atential (see Appendix A than with the quadratic potential.
least qualitatively. This result was expected from the WaySince the computational cost involved in quasiclassical cal-
that we constructed the partition function, and from the va<culations is only marginally lower than the cost of full quan-
lidity of the harmonic approximation af—0. However, a tum calculations, we have not considered the quasiclassical
precise comparison with the quasiclassical results or with th@pproach further. Instead, we have chosen to focus solely on
quantum MC resulfsreveals that the melting point is too the quantum superposition method.
high by about 15%, and that the peaks are too low also by ~As mentioned above, the agreement between the har-
15%. As similar shifts are found for the classical harmonicmonic form of the quantum superposition and the PIMC re-
superposition methotl, the problem is not related to the sults is not fully quantitative in the vicinity of the melting
choice of quantum oscillators, but rather to the approxima#oint. The problem was already noticed by Doye and Wales
tion of harmonicity. in the classical cas¥ and interpreted in terms of anhar-
monic effects. These effects were also seen to be more im-
portant for the 13-atom LJ cluster, where the basin of the

By analogy to the way we have built the quantum parti-icosahedral global minimum is very large, leading to some
tion function from individual quantum oscillators, we may wide and flat regions in the energy landsc&p@oye and
consider the particular case of semiclassical oscillators wheré/ales managed to get agreement with simulations by incor-
the energy of minimuna is replaced by its Feynman—Hibbs porating these anharmonicity effects as corrections to the
effective energy. Since we are dealing only with harmonicharmonic partition function. Here we will follow similar
oscillators, this quasiclassical approximation is equivalent tdines in an effort to improve the quantum superposition
expanding the quantum partition function to its lowest cor-method.
rective order inh?. Hence we write

Cr oy e Fra B*h? rms, 2

z3 (ﬁ)—m 1=k, (vy™)
and the corresponding expressions for the total partition In Ref. 40, Doye and Wales investigated two possible
functions, with or without reweighting, follow from this anharmonic contributions to the thermodynamic behavior,

B. Quasiclassical superposition

(25) C. Anharmonic corrections to the quantum partition
’ function
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' ' ' independently the correct values for the coefficiemsand

120 Quantum harmonic N I b, . We propose to divide the set of isomers into several sets
——— Classical harmonic LN according to the topography of the energy landscape. In the
—-—- Classical anharmonic /'I \ case of LJ3, the first set contains only the icosahedral mini-
— Quantum anharmonic \ mum, and the second set contains all the remaining isomers.

Then, by taking appropriate values for the coefficientnd
b, we have obtained the caloric curves displayed in Fig. 5. In
LJ units we tooka,=0.57, a;,=0.67, b;=0.05, andb,
=0.45 for correcting both the classical and quantum caloric
curves. The comparison with the results of Neirotti,
Freeman, and Doll, is now much better: both the quantum
and classical heat capacities have the correct widths, heights,
and locations within the errorbars of the PIMC simulatidns.
Hence, it appears that with only a few parameters, the
above quantum superposition approach can be brought into
guantitative agreement with path-integral Monte Carlo simu-
FIG. 5. Heat capacities of Ngin the classical and quantum regimes calcu- lations. This method also allows us to study much larger
lated from the quantum superposition method, with and without anharmoni®ystems, because it only requires information from classical
corrections. calculations. The predicted effects of quantum delocalization
on the melting of larger atomic van der Waals clusters are
the subject of the next section.
namely, the effects of transition state valleys and well anhar-
monicity. Their results suggest that the latter effects domiy/. | ARGER SIZES AND STABILITY DIAGRAMS
nate, at least for the LJ clusters they investigated. In addition, ) )
we note that the transition state valleys could be accounted W& have selected four sizes in the rangesh8<55,
for in the same way as for the quantum oscillators by replacWich display several characteristics of cluster melting in
ing the corresponding classical oscillators of Ref. 40 accordClassical simulations. The 19-atom cluster is particularly
ingly. More recently, Ball and Berry have also examinedStable( magic )'_ and has bee_n pre\{lously mvespggted by
anharmonic corrections to the densities of states and founﬁha\kr"ﬂ\larty using PIMC simulatiofis. Its ~solidlike—

that the most appropriate form depended on the type ofduidlike phase change is very similar to that injb.JThe
clusteri142 next magic clusteN=55 has a sharper melting peak, but is

We first tried to correct for well anharmonicities using /S0 Similar to Lds in the classical regimé: We have also

Morse oscillators instead of harmonic ones. This method waSh0Sen two specific sizes that have more interesting size ef-
shown to work well as a correction for classical clustérs, '€CtS due to the peculiarities of their energy landscépes.

however, a qualitative change occurs in the quantum regime 1 he 31-atom Lennard-Jones cluster lies at the crossover
between anti-Mackayor polyicosahedral geometries and

due to the finite number of energy levels in a Morse oscilla- . : i0d5 .
tor, which caused large discrepancies in the final results. Mackay (or multllgyer |cos§1hedralgeom.etr|e - AL .th's
size, classical Ly] is only slightly lower in energy in the

Another way to incorporate well anharmonicities is phe-
nomenological, and is often used in solid state phy&ids. Mackay structure. At very low tempergt_ures, the cluster clas-
sically undergoes a structural transition between the two

consists of allowing shifts in the vibrational frequencies in- ) h h hiah
duced by temperature changes. We have chosen to allow £PTPeting arrangements, and then, at much higher tempera-

frequenciesy', to depend smoothly on temperature via the!U'®S: 18 seen to melt by reaching a much larger set of
following simple expansion, to second orderTin minima.™ The preliminary structural transition is sharp in
_ _ _ . this system, and leads to a very pronounced heat capacity
Y (T)y=v (0)[1—a  T-Db' T?]. (26)  peak.
In the classical case, it is worth noting that the same expan- | ¢ 38-atom cluster is now well known for its unusual

sion is obtained using Morse oscillatdfsrovided thabia is truncated octahedral geomeffyThe double-funnel energy

set to Ze'a)z. To simplify the analysis, we have assumed![‘T’mdsl;:""g‘va of th;ﬁ sysré’gn | gives rise 0a dst;t;ctur al trahns(;— |
that thea),'s andb!,'s depend only on the geometey but lon “between the global minimum an € icosahedra

not oni. The expressions for the thermodynamic quantitieémm_?;]a W'trt‘ h|ghertentrop§‘.‘ difficult to study by standard
become more complicated, and are given in Appendix C. We, ese two systems are difficult 1o study by standar
can now investigate the very low temperature behavior in thglmulatlon methods because of the structural transitions they

classical and quantum limits. The heat capacity is then foun&Xh'b't' C_Iassmal simulations must b_e perf(_)rmed W.'th Spe-
to behave as cial techniques to overcome the quasiergodic behavior, espe-

_ _ cially at low temperatures where interfunnel crossings are
C,(B—»)~«kkg(1+2a/B) in the classical case, (27) normally rare, if not forbidden in the microcanonical
_ 3, ensemblé® Even when using such techniques as parallel
Co(f—)~xh(¥(0))bkg//5 in the quantum case, (28) tempering(the most promising strategy at the present jime
and therefore has a linear component in both cases. As walke convergence of thermodynamic averages is much slower
observed by Doye and Walé%;it is difficult to estimate for these clusters than for the single-funnel 19-atom and 55-

Cv (ky)

Temperature (K)
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atom clusters, and involves up to®l®lonte Carlo cycles A similar approach has been used previously by Doye and
(and several tens of simultaneous simulatjdos LJsg. Itis ~ Wales for the 38-atom clusté?.2183 distinct minima were
very likely that simulating Lgy or LJg by quantum Monte wused for LJ;, and the weights were calculated at
Carlo methods at thermal equilibrium is not practical with =0.35¢/kg. After estimating the weights from classical
the current computer technology. In these cases, the quantusimulations, we used them to compute the quantum partition
superposition approach should be especially useful, since ftinctions following the method described in Sec. IV. We did
is intrinsically ergodic once we have a representative samplaot use anharmonic corrections in the four cases investigated
of minima that includes the contributions of all important here, because the agreement with classical simulations was
funnels. Nevertheless, application of this technique requirealready satisfactory, as far as the melting points are con-
a reweighting of each individual partition function becausecerned. Moreover, such corrections would not give new in-
an exhaustive sampling of the energy landscape is neithaights into the effects of delocalization, so the present har-
feasible, nor desirable. monic treatment is good enough for our purposes.

We estimated all weights from classical MC simulations
improved with parallel tempering in order to get better er-
godic sampling. For L} and L35, the weights were calcu- The effects of quantum delocalization on the melting of
lated above the melting point, at=0.35¢/kg, and sets of LJ;g, LJs;, LJ3g and L35 can be seen in Fig. 6, where we
1259 and 3332 isomers were used, respectively. Fgg,LJ represent the canonical heat capacities for value& obr-
the weights were calculated at a much lower temperaturagesponding to classical behavior, xenon, argon, and neon. As
T=0.175¢/kg, where the global minimum, icosahedral predicted from the two-state model, the shifflig is larger
minima, and liquidlike minima all have reasonably large for LJs;5, which has a higher average vibrational frequency in
probabilities of being visited**®49 1881 different minima its icosahedral global minimum, than for other nonmagic
were recorded for this size. The case ofLi$ a bit more sjzes.
problematic, because the probability of being in the global  The heat capacity of Ng shows the same variations in
minimum basin was seen to drop nearly to zero at thehe melting point as the path-integral MC simulations of
Mackay/anti-Mackay transition temperatufie~0.03z/kg,  Chakravarty’. The heights of the peaks are too low, and in-
while the liquidlike isomers start becoming populated onlydicate that the anharmonic terms are significant. However,
above 0.2/kg.*® We have used the reweighting technique given the size of the error bars and how far the classical
to calculate the relative weights of the liquidlike isomersresults reported in Ref. 6 are from other published davee
with respect to one anti-Mackay minimum, and then addedhink that the agreement found for this cluster is very satis-

A. Caloric curves

the contribution of the lowest-energy minimum, factory.
The very low temperature at which the structural transi-
Z(M)=Ziowesk T) + Zotherd T) - (290  tion takes place in Ly] makes this cluster sensitive to quan-
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tum effects. Even a very low value of the de Boer parameter Xe Ar Ne D H
is enough to make the small heat capacity peak disappear, 0.5 ' £ Z.
and Xe; only displays a bump aT~0.03e/kg. Surpris-

ingly, Ar3; and Ng; both exhibit a very sharp peak at even
lower temperatures. These effects result from changes in the _
global minimum, and will be examined further in the next
section.

The preliminary icosahedral transition in JgJalso oc-
curs at a relatively low temperature, near &k, but the
melting peak itself is located afl~0.17¢/kg. Such low
temperatures make the caloric curve extremely dependent on
A for this cluster, and the small bump indicative of premelt-
ing is no longer visible for argon. The effect on neon is even 0.1 r N=13 (
stronger, no peak remaining visible at all in the temperature
range 0<T<0.5¢e/kg. 0 . , .

No structural transition or premelting effects complicate 0 0.1 0.2 0.3
the caloric curve of Lgk, and so the melting peak is much A

clearer. As with smaller clusters, we notice that quantun]: ) . . -
del lization is alreadyv non-negligible for arqon below th IG. 7. Diagram of stability of Ly} as a function of quantum delocalization.

e O_Ca 1z .' ! y_ g !g| g W ; €The solid line is the freezing curve, the dashed line is the melting curve. The
melting point. Anharmonic corrections would probably raisefive vertical lines indicate the values of the de Boer paramétier Xe, Ar,

all the curves of Fig. 6, but the shift in the latent heats fromNe, D,, and K, respectively.
the classical result should be roughly unchanged. The data
obtained for this cluster and for the smaller 13-atom cluster
can be used within the framework of the two-state model to

predict approximate values of the shifts in the melting tem- quantify the influence of delocalization on the thermody-

perature of larger clusters. The two-state model is expectegly njcs of the five clusters investigated above. As a definition

to be a reasonable description of magic clusters especially Ak the melting temperature, we have chosen the position of

large sizes. In a first approximation, we write all varlakl?gles N o heat capacity peak. When the peak disappears due to

Eq. (12 as .asymptouc expansions to f|rs-t order nn ™ strong delocalization, we relied on an alternative, more sub-
Thus the Sh'.ﬂ n the melting temperature |_nduced by qu"’mj'ective definition, namely the temperature where the highest
tum delocallzat!on can b? expressed simply as a WOgg94 of minima(in energy become dominant, i.e., their oc-
parameter function, for a given value bf cupation probability exceeds 50%. Because we used two
AT(n)=AT(®)[1+an ¥*+0(n"23)]. (300  possible definitions for the melting temperature, its value
may jump when a peak in the heat capacity appears or van-
ishes. The freezing temperature was simply taken as the tem-
perature above which the global minimum is no longer domi-

04 f -

o
w

Temperature (e/k;
o
fo

We have used the present quantum superposition method

In this equation, the shift in the bulk melting poidfl («) is
2

AT(e) =~ 8_|_(Vrsms(°°)_ (@) (V") + (M), nant. These definitions can account, in a first approximation,
(31  for coexistence phenomena and the possibility of two-step
melting.

wherelL is the latent heat of melting. The application of Eq.
(30) to the clusters Ng and Ngg allows us to estimate the
approximate values of the shit T for larger neon clusters
and for the bulk limit. We findAT(147)=1.6K and
AT(»)=2.0K.

We have represented in Fig. 7 the stability diagram ob-
tained for LJ5 in the range 6 A<0.35. The lower part of
this diagram, below the freezing curve, shows the region of
stability of the “pure” solidlike phase corresponding to the
global minimum alone, while the upper part, above the melt-
ing curve, shows the region of stability of the liquidlike
phase and its numerous minima. As can be seen from this
figure, the two lines coincide from the classical regime up to

In her study of quantum delocalization on cluster melt-about A =0.25, the value at which the heat capacity peak
ing, Chakravarty showed that melting could be induced ei- vanishes. This coincidence reflects the two-state character of
ther by increasing\ at fixed temperature, or by increasig this system. In the quasiclassical regime, the melting tem-
at fixed A. Fixing the temperature and varying the degree ofperature roughly decreases withas A2, in agreement with
guantum delocalization for a prescribed system may nosemiclassical expansions. The most striking features in this
seem a very physical procedure, but it allows the differentdiagram are the points at which the freezing curve meets the
effects to be studied separately. Because she performed path=0 line. This is because the minimum with the lowest
integral MC simulations, Chakravarty was limited to a smallvalue ong can change as a function af Larger values of
set of values forA and T. Additionally, she used the A favor those minima with a lower arithmetic mean vibra-
Lindemann index as a probe of melting, which is not suitabletional frequency, because they have a lower zero-point en-
for complex systems such asj,dr LJg because of prelimi-  ergy. As Fig. 7 illustrates, there can be several changes in the
nary transitions> global minimum with A. More precisely, the existence of

B. Stability diagrams
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such changes in morphology can be checked from the dataangeAT =T eying— TreezingiS larger than for Lg;, and re-
base of minima by simply looking at the values of mains of this magnitude up to the strong quantum delocal-
ization regime ofA=0.2.

o E,~E, LJ;; is probably the most intriguing case studied here, as
A, =min|—(—°  (v)>(v, )]_ (32 it undergoes three consecutive changes in the global mini-
O [ K\ (ra) = (v ° mum associated with qualitative changes in the low-

temperature heat capacity curvésee above The three
If g is the classical g|0ba| minimum, andAfao exists and crossovers occur aﬁ=0011, 0040, and 0043, and involve
is positive, then the global minimum changes whan surface rearrangements towards anti-Mackay geometries.
crossesA ’ to the isomera that minimizesA . . Further The Mackay/anti-Mackay transition is therefore favored by
changes inothe global minimum can be estimat(zed in the sam%om temperature effects and by quantum delocalization. One
way. Two such crossovers are found in the database fo?f these three isomers entropically dominates over the others,
' nd corresponds to the solidlike state that is stable up to the

LJ,5, respectively located ah =0.255 andA=0.328, in and _ ) . o
complete agreement with the results shown in Fig. 7. Thugweltmg point when it becomes the effective global minimum
040<A <0.043).

this simple diagram shows for instance that the geometries cﬁo
(D,) 13 and(H,) 3 should differ strongly owing to the differ- LJsg Shows only one crossover at=0.065. Such a low
ence in zero-point energy. Actually, this result is in agree-valué probably explains why the heat capacity ogiNe so
ment with previous PIMC works on the thermodynamics ofdualitatively different from that of A. Looking at the ca-
these two systems showing that,);s has a liquidlike phase loric curves near this crossover shows that the melting peak
at temperatures whef®,) 5 is still rigidlike.?! In particular, ~ disappears above this value, and only reappears\ at
Scharfet al. have shown that the icosahedral structure of=0.18. This explains the discontinuity in the melting tem-
(H,) 15 was only marginally stable a&f=2.5K, the cluster Perature on the diagram of this cluster.
exhibiting most frequently very disordered geometrfes. LJs5 also shows three changes in its global minimum as
Similar stability diagrams for the four larger clusters arequantum effects rise, namely At=0.175, 0.294, and 0.335.
shown in Fig. 8. The general picture resembles that fgg,LJ As for the smaller icosahedron i) these changes are fa-
with a quadratic decrease in the melting and freezing temeilitated by the large vibrational frequencies of the high sym-
peratures in the quasiclassical regime, and some changes'itetry ground state, which are not compensated by the dif-
the global minimum as quantum delocalization increases. ference in potential energies. For this size gd\Nend (D,)s5
The structure of the 19-atom cluster appears to be thare predicted to have different morphologies.
most resistant to quantum effects, as it only shows one cross- The results of these stability diagrams show a strong
over at A=0.325 in the rangeA <0.35. The coexistence dependence on the vibrational properties of the cluster. Be-
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LJyr

FIG. 9. Structures of some clusters that exhibit a
change in the global potential energy minimum due to
quantum delocalization.

(H2)13 Ar17

cause we used only incomplete samples of minima, one may In the size range<100, Lennard-Jones clusters prefer-
wonder whether other isomers that are not included in ouentially exhibit icosahedral-based geometries, with different
sample could be lower in energy at some degree of delocapossible external arrangements® Only a few sizes have
ization. All curves in Fig. 8 have been checked twice, andoeen shown to deviate from this icosahedral sequence, at
the same new global minima were found from the two inde-= 38 (truncated octahedropnn=75—77(Marks’ decahedra
pendently generated databases. Nevertheless, this sensitiviilid n=98 (tetrahedral structuy&® The effect of quantum

of cluster structure in the quantum regime to the vibrationaljelocalization is quantified in Table I, where we report the

frequencies merits further investigation. best energies found and compare them with the LJ global

minimum. These global minima are available at the Cam-
VI. LOW-TEMPERATURE BEHAVIOR AND DEBYE bridge Cluster Databasé.Neon, of course, is most influ-
TEMPERATURES

enced by quantum effects, and shows a different global mini-
All isomers found as new global minima of the effective mum in 35 out of the 99 cases investigated. Howevey,igr
guantum potential were discovered by classical simulationglso seen to differ from the classical Libr a few sizes,
performed to estimate the respective weights in the partitioincluding 17, 27, and 31, but also the larger 76- or 77-atom
functions. We have also assumed that the weights in thelusters where the icosahedral minima are preferred to the
quantum partition function would be unchanged from thedecahedral geometries. Krypton clusters, not included in this
classical weights, but this is not true for the partition func-table, sometimes also show differences from the classical
tions themselves, which are far more influenced by the vistructure. Xenon clusters differ from the purely classical
brational properties in the quantum case. In order to analyzeennard-Jones prediction in only three cages 65, 86, and
the influence of delocalization on cluster structure, it is thusg). Although challenging, it would be interesting to verify
important to include the quantum character during the Searc{hese resu'ts with more accurate quantum Monte Car'o Ca'_

for possible lowest-energy structures. culations atT=0. A reasonable test case could be the size
A. Global optimization of Lennard-Jones clusters n=17, where three different effective global minima are
including quantum delocalization found, depending on the degree of delocalization.

Not surprisingly, most of the structural changes dis-
played by these clusters arise from different arrangements of
the outer layer, and take place for sizes where the Mackay

We have used the basin-hopping Monte Carlo
algorithn3**to explore the energy landscape of, lclusters
in the size range<100, and to find the global minima as a .
function of the de Boer parametdr. After each quench was and anti-Mackay overlayers compéfebetweenn= 25 and
performed, the zero-point energy contribution was added t§ = 32 néam=67, and nean=88. Differences between the
the potential energy, and the Metropolis acceptance probabiﬁlass'cal and quqntum gometries are illustrated in Fig. 9 for
ity was calculated using these effective quantum energie$OMe selected sizes. In the case of the 13-atom cluster, we
Since the diagonalization of the Hessian matrix involved inhave shown how the global minimum structures(bb) 3
the calculation of the vibrational frequencies is computation8nd (Hz) 15 are expected to differ, even though the icosahe-
ally demanding, especially for large clusters, we started thélfon remains as the global minimum for rare gases. The very
optimizations from the classical global minimum for each ~ prolate shape of (k)3 induces some floppy vibrational
5000 quenches were performed for each size, at the temper@odes, thus lowering the average frequency and zero-point
ture T=1.5¢/kg and withA =0.095. We are aware that 5000 energy. We also show the different isomers of, ahd Ar,
is a relatively small number, which may be inadequate tdor n=17, 27, and 31. Including delocalization usually
find the true global minimum for sizes larger than-50.  makes the structure much more distorted, as was noticed by
However, this initial survey will give us insight into the ex- Hodgdon and Stillinger in the case of solid heliGmOur
tent to which rare-gas clusters can be considered as classicglidy of neon clusters shows that most new global minima
from a static point of view. have onlyC; symmetry. For all these sizes, we expect sig-
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TABLE I. Lennard-Jones clusters Livhich change global minimum in the range<100. Energies are given in units ef For each size and species, the
global minimum is underlined.

LJ Xe Ar Ne Point LJ Xe Ar Ne Point
Size (A=0) (A=0.01) (A=0.03) (A=0.095) group Size (A=0) (A=0.01) (A=0.03) (A=0.095) group

17 —61.31799 —58.67010 —53.37432 —36.16303 C, 69 —359.664 32 —345.96485 —318.56591 —229.51937 C;
17 —61.30715 —58.66663 —53.38558 —36.22220 C; 72 —378.63725 —364.25211 —335.48181 —241.97835 Cq
17 —61.29677 —58.65869 —53.38252 —36.23500 Cj;, 72 —378.52399 —364.16254 —335.43963 —242.09019 C;
27 —112.87358 —108.39326 —99.43260 —70.31047 C,, 75 —397.49233 —382.11032 —351.34629 —251.36320 Dsg,
27 —112.82552 —108.36345 —99.43933 —70.43591 C 75 —396.23851 —381.24630 —351.26187 —253.81249 C;
28 —117.82240 —113.17888 —103.89184 —73.70896 Cg 76 —402.89487 —387.32395 —356.18212 —254.97117 Cg
28 —117.77796 —113.15275 —103.90233 —73.83847 C; 76 —402.38458 —387.15878 —356.70720 —257.73953 C;
30 —128.28657 —123.28348 —113.27730 —80.75721 C,, 76 —401.862 14 —386.70554 —356.39230 —257.87437 C;
30 —128.18159 —123.19482 —-113.22127 —80.80723 C,, 77 —409.08352 —393.276 96 —361.66383 —258.92118 C,,
31 —133.58642 —128.10441 —117.14038 —81.50730 C 77 —408.518 27 —393.064 35 —362.15653 —261.706 11 C;
31 -—133.29382 —128.09768 —117.70540 —83.93050 C,; 77 —408.15537 —392.78536 —362.04534 —262.14029 C;
31 —133.10462 —127.95444 —117.65409 —84.17793 C, 78 —414.79440 —399.09829 —367.706 07 —265.68137 Cg
32 —139.63552 —133.92825 —122.51370 —85.41642 C,, 78 —414.44251 —398.84030 —367.63587 —266.22148 C;
32 -—138.82361 —133.49788 —122.84641 —88.22915 C,, 79 —421.81090 —405.87642 —374.00745 —-270.43332 C;
33 —144.84272 —138.93097 —127.10748 —88.68112 C, 79 —420.70975 —404.89648 —373.26993 —270.48364 C;
33 —143.62217 —138.12974 —127.14487 —91.44405 C,; 82 —440.55043 —423.81738 —390.35129 —281.58650 C;
34 —150.04453 —143.92854 —131.69658 —91.94268 C,, 82 —440.04139 —423.53248 —390.51466 —283.20672 C;
34 -—148.35136 —142.67375 —131.31853 —94.41404 C,; 83 —446.92409 —429.96330 —396.04172 —285.79658 C,,
35 —155.756 64 —149.42900 —136.77370 —95.64400 C, 83 —445.80065 —429.10237 —395.70580 —287.16698 C;
35 -—153.69548 —147.87074 —136.22127 —98.36049 C, 84 —452.65721 —435.48096 —401.12844 —289.48276 C;
36 —161.82536 —155.27306 —142.16846 —99.57849 C, 84 —451.65041 —434.76188 —400.98482 —291.20937 C;
36 —158.67622 —152.64841 —140.59281 -—101.41208 Cq 85 —459.05580 —441.81940 —407.34660 —295.31000 C;
37 —167.03367 —160.27716 —146.76413 —102.84679 C; 85 —457.95441 —440.83485 —406.59572 —295.31855 C;
37 —163.87363 —157.60217 —145.05925 —104.29474 C, 86 —465.38449 —447.75172 —412.48617 —297.87315 C;
38 —173.92843 —166.82835 —152.628 18 —106.47765 Oy 86 —465.23787 —447.82634 —413.00329 —299.82836 C;
38 —168.51999 —162.088 87 —149.22662 —107.42431 C, 87 —472.09816 —454.22568 —418.48072 —302.30959 C;
44 —207.688 73 —199.41647 —182.87197 —129.10232 C, 87 —471.38320 —453.80146 —418.63798 —304.35668 C;
44 —203.86102 —196.04803 —180.42207 —129.63767 C; 88 —479.03263 —460.904 78 —424.64907 —306.81804 C;
57 —288.34262 —277.18618 —254.87328 —182.35636 Cq 88 —476.63177 —458.86300 —423.32546 —307.82846 C;
57 —288.25986 —277.11322 —254.81994 —182.366 78 C; 89 —486.05391 —467.688 76 —430.95844 —311.58493 C;
65 —334.97153 —322.10110 —296.36023 —212.70242 C, 89 —482.83655 —464.84632 —428.86587 —311.92939 C;
65 —334.96970 —322.10487 —296.37522 —212.75384 C,; 92 —505.18531 —486.13999 —448.04937 —324.25482 C;
65 —334.40250 —321.59841 —295.99023 —212.76365 C; 92 —502.36642 —483.65137 —446.22129 —324.57352 C;
66 —341.11060 —328.01725 —301.83055 —216.72378 C,; 93 —510.87769 —491.61396 —453.08652 —327.87231 C;
66 —340.76360 —327.72873 —301.65899 —216.93234 C,; 93 —507.48868 —488.68053 —451.06425 —328.81132 C;
67 —347.25201 —333.93058 —307.287 73 —220.69848 Cq 98 —543.66536 —523.06651 —481.86880 —347.97626 T4
67 —347.04976 —333.79675 —307.29074 —221.14620 C,; 98 —543.64296 —523.20337 —482.32420 —349.46688 C,

69 —359.88257 —346.13691 —318.64561 —229.29887 C;

nificant differences in the dynamical and thermodynamic bea quadratic function ofy with a cutoff at vya: 9(v)

havior in the quantum regime, even at reasonably high temx 2@ (v,,,,— ), where® is the step function. The resulting
peratures. formula for the total heat capacity is

A comparison of the present results with the experimen-
tal data of Mak and Scheiéf is quite difficult, because the 3ITD Xt q

- 24X, (33

mass spectra obtained by these authors for neutral neon clus- o (e5=1)
ters do not show a clear picture of the magic numbers. How- )
ever, the results of Harrist al® for argon clusters clearly Where the Debye temperaturg, is related 10 vma by
indicate that the anti-Mackay sequence is stable up to thB?max=KgTp. This formula contrasts with the corresponding
sizen=34. Quantum delocalization shifts the crossover be£Xpression for aliscretesolid,

.
To

CPebYqT) = 3KkB<

tween the anti-Mackay and Mackay sequences=34, al- K hp |2 ghvilkeT
though Ag, has a Mackay-type geometry. This small dis- CU(T):kBE (l SR — (34)
crepancy would probably be resolved by using a more i kgT) (™71 —1)

accurate argon potential than the basic Lennard-Jones mod?rl]. particular, the behavior at low temperature is different

although both models converge to the Dulong—Petit Law at
high T. Attributing a Debye temperature to a cluster may
seem strange at first sight, since the structures we consider
are still far from the continuum. However, the Debye for-
For a three-dimensionatontinuoussolid, the Debye mula (33) is just an interpolation made to account for the
approximatiofi°® models the vibrational density of statgsis  observed Dulong—Petit behavior at high temperatures, as

B. Debye temperatures of argon clusters
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TABLE Il Parameters of the asymptotic expansi@8) for the icosahedral  dral (TOCT), for which we fitted the measured valuesTgf
(ICO), decahedrallDEC), and truncated octahedrélTOCT) growth se- according to the simple asymptotic expansion,

qguences.
— ‘ —-1/3 —2/3 -1
Sequence To(®) (K) a b . To(N)=Tp(e)[1+aN""*+bN~“+cN™"]. (35
ICO 87.304 —1.229 0.445 0.932 Clusters as large as=10179(ICO), n=9062 (DEC), and
DEC 88.730 -1271 0.625 0.571 n=9201 (TOCT) were used to obtain the coefficients
TOCT 88.788 —-1.295 0.759 0.607

Tp(), a, b, andc for each sequence. The results of the fits
are reported in Table Il. They probably underestimate the
bulk Debye temperaturéy (), because 9000 atoms is still

3 _ a relatively small size, and also because several rather small
well as the observed dependencc_a nedr=0. Therefore, i oq such an=13 (ICO), n=18 (DEC), or n=38 (TOCT)
there is no fundamental problem with the use of B) as are included in the fi.

an approximation Fo Eq34). The variation of the estimated Debye temperature with
In order to estimate the Debye temperatures of LJ Clusgj, ¢ for solid argon clusters is shown in Fig. 10. The non-

ters with some degree of quantum delocalization, we havg,onqtonic variations in the small size regimes100 are
fitted the “exact” heat capacity of Eq34) to a Debye form  caracteristic of cluster size effeffsas opposed to the

(33) by a standard least-squares method. Such a procedut ey smoother and regular variations above this limit. Even
requires several comments. First we must ensure that thg, qh we did not systematically study sizes above 150 apart
isomer we consider is indeed the one corresponding to thg,, growth sequences, we do not expect drastic changes for
solid” state. Hence the structures should be selected acyig kind of cluster, at least not of the same magnitude as

cording to their effective quantum energies including they,ose ohserved near the anti-Mackay/Mackay crossover at
zero-point contribution. Second, melting points in clusters,_34 At this size, the cluster changes shape, gains more

are usually much lower than the bulk melting point. Con,s‘?'potential energy than it loses zero-point energy, and by in-

quently, the neglect of all isomers except the global mini-craaqing its vibrational energy its Debye temperature also
mum may not reproduce the actual caloric curve if the degreg, ..aaces.

of quantum delocalization is higimeon), or if some prelimi- The agreement between the bulk Debye temperature es-
nary transitions or premelting phenomena are preé&@at,  (jmated from extrapolating Eq35) to n— and the experi-
LJ;y). In these cases, the heat capacity of the solidlike ISOM&hental bulk value of 92 K is quite good. The remaining

e_llone will underestimate the real heat _capacity. However, @iiscrepancy could probably be reduced by replacing the

) Whals for argon, by including anharmonic corrections to the
have focussed on clusters having only a modest quantumq ¢ capacities, and also by fitting E85) using larger clus-

character, namely argon clusters. ters of the most stable sequence, namely, the truncated octa-
We estimated the Debye temperature of al} Alusters  ,oqron.
in the range 3n<100 using the putative global minima  the correlation between the Debye temperature and the

determined previously. In the range }0@<150, a similar o ster structure is made via the vibrational spectrum, but for

investigation was made by assuming that the geometries Qfgry ordered large clusters® 150) the present results seem
Ar, are the same as those of,LJFinally, we considered

: ; X to indicate only small changes in the Debye temperatures for
three growth sequences in the large size regime, namelyjitterent sequences. However, disordered geometries or clus-
icosahedrallCO), decahedralDEC), and truncated octahe- g trapped in metastable isomers may have significantly
different vibrational properties, which may have a measur-
able effect on the thermal behavior. We have compared the
Debye temperatures of a 201-atom cluster in its very ordered
Bulk exp. TOCT geometry and in an amorphous state. This latter state
was made of 100 geometries quenched from random starting
points, whose contributions were added using the superposi-
tion method. The heat capacities are plotted in the upper
panel of Fig. 11, together with the corresponding vibrational
densities of stateOS) in the lower panel. We also plotted
the equivalent Debye DOS of the ordered cluster for com-
parison.

Clearly, the Debye approximation is only realistic for the
nearly crystalline cluster and fails for the amorphous state.
The presence of many soft modes in the amorphous state
decreases the Debye temperature by abBoki with respect
40 o2 0a 06 0.8 to the TOCT structure. The vibrational DOS of the truncated

N-1/3 octahedral cluster is rather far from its equivalent Debye dis-
tribution, despite the fact that the corresponding heat capaci-
FIG. 10. Variations in the Debye temperature of argon clusters with size.ties are very close to each other. This gives us an idea of how

100 T T T

Tp (K)
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tential and the Fujiwara—Osborn—Wilk potential based on
the Wigner—Kirkwood expansion, both potentials being trun-
cated at first order i 2. These potentials were tested on the
melting of the 13-atom Lennard-Jones cluster with different
degrees of quantum delocalization. The Feynman—Hibbs ef-
fective potential has been shown to reproduce the results of
more accurate path-integral Monte Carlo simulations surpris-
ingly well, down to temperatures where the quantum calcu-
lations become rather expensive. In particular, it gives a cor-
rect account of the decrease in the latent heat and melting
point in Ne ;. On the other hand, the potential based on the
Wigner—Kirkwood expansion suffers from numerical prob-
lems that make it unsuitablén its simple form for studying
the dynamics of clusters in a wide temperature range includ-
ing both the solidlike and liquidlike states. Both effective
potentials were found to be inadequate at very low tempera-
tures.

To correct for the deficiencies of the effective potentials,
we have extended the harmonic superposition method to the
quantum regime by considering quantum harmonic partition

——— Debye functions. This idea was tested first on the simple two-state

] model, which showed the general influence of the vibrational
properties on the most stable structure and the melting point.
Its extension to a sample of minima on an energy landscape
was seen to give good agreement with path-integral MC
| simulations of Ne;. For larger sizes, we used a reweighting

| NS _ technigue to account for the incomplete sample, similar to

! il I ™ that previously used in a classical cont&XwWe presented a

I |

|

Unnormalized DOS

N quasiclassical version of the superposition method, and we
also extended the quantum version to include anharmonic
corrections to the partition function, which gives quantitative
agreement with the caloric curve of Ne
FIG. 11. Upper panel: heat capacities of a crystalling,Azluster(TOCT) Using the quantum superposition method we have stud-
and for a sample of 100 amorphous minima. Lower panel. correspondingeq the effects of delocalization on the melting and premelt-
vibrational densities of states. The Debye density of states is the equivalent
distribution for the TOCT cluster at the Debye temperature. ing of 19-, 31-, 38-, and 55-atom LJ clusters. V_Ve obs.erved a
general decrease of the latent heat and melting point. This
decrease is largest for the magic numbegd\#uster, con-
far we are from the continuum limit for a cluster of 201 firming the prediction of the two-state model that tightly
atoms. Inspecting the DOS for larger clusters shows that theound systems should be less resistant to heating. Using the
v? law is still approximate even for 9201 atoms, because th&esults for Ngs and Ngs in the framework of the two-state
variations ofg(») are strongly nonmonotonic. On the other model, we have estimated the bulk contribution of quantum
hand, the smooth vibrational DOS displayed by the amordelocalization to the melting point to be roughly 2 K. Clus-
phous structures is in fact little affected by the averagingers exhibiting preliminary structural transitions in the clas-
procedure, and is nearly the same for all the individual amorsical regime, such as byJand L3g, are strongly affected by
phous minima considered in the sample. No evidence fogluantum delocalization, as they are more likely to have a
linear variations of the heat capacity &s+0 was found in ~ change in the global minimum. These effects have been ra-
Fig. 11, which would be a signature of glassy behavior. Ationalized by calculating stability diagrams where the melt-
proper treatment of this regime would, however, probablying and freezing temperatures are plotted against the de Boer
require a method that, unlike the superposition approactarameter, which quantifies the amount of delocalization.
does not ignore tunneling. We then focused on the very low temperature properties
by looking more systematically at the effect of delocalization
on cluster structure. Our simple approach shows that the
classical LJ potential is too crude for describing neon clus-
In this work, we have investigated the low temperatureters when surface rearrangements occur. We estimated the
thermodynamics of rare-gas clusters using several differeribebye temperatures of argon clusters over a wide size range
methods. The development of effective potentials from conand for several growth sequences. The size-dependence dis-
densed matter physics provides a computationally conveplays nonmonotonic variations characteristic of cluster size
nient way to include quantum corrections in a semiclassicagffects, which are especially strong near the anti-Mackay/
framework. We have used the quadratic Feynman—Hibbs pdviackay crossover. The influence of cluster structure on the

Frequency (LJ unit)

VIlI. CONCLUSION
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Debye temperature was further investigated by comparing ' ' ' '
the behavior of a symmetrical, truncated octahedral 201- __ Gaussian LJ
atom cluster and a set of amorphous isomers. A much lower ;5 | +— Xe
Debye temperature was found in the latter case, although o—o Ar
there is no reason why the continuous approximation should & = Ne
work at such low sizes.

The quantum harmonic superposition method developed
in this work is a complementary approach to path-integral
simulations. It is predictive down to arbitrary low tempera-
tures, and works best as the temperature decreases, becau
fewer isomers contribute to the partition function and be-
cause the harmonic approximation improves. Most impor-
tantly, this approach uses only parameters from classical
simulations, which makes it suitable for much larger sizes, or 0
more complex systems exhibiting quasiergodicity. Its predic-
tions can be made quantitative by incorporating anharmonic
corrections in a simple way, choosing appropriate values oOfIG. 12. Heat capacities of kg clusters at various degrees of quantum
the newly introduced parameters to reproduce the results @lelocalization, calculated from Monte Carlq simulatio_ns using the Gaqssian
classical simulations. The method is especially powerful as ifiécomposed LIGL) potential and effective Gaussian Feynman-—Hibbs

. . . . quasiclassical potentials. Results are shown for the classical das@Y,
allows the calculation of thermal properties in continuoUSsy, yenon (A =0.01), argon { =0.03), and neon = 0.095).
ranges of temperature and for any degree of quantum delo-
calization. Its main approximation, besides the harmonic as-
sumption, is to neglect tunneling. It could be used to studywhich is decomposed into a sum of Gaussian functions. For
other finite systems, as well as bulk liquids or glasses beyonthe Lennard-Jones potential, we use a simple 2-term
the classical regime. One major improvement to the methodecompositior*
could be the incorporation of self-consistent harmonic theo-
ries such as the _the ones d_eveloped by thh and v, (r)=> yexp—ayr?), (A1)
co-workers®*®In particular, we believe that the precise cal- K
culation of effective normal modes could be used to removegiin parameters taken from Ref. 64y, =14487.1, v,

the unknown anharmonicity parameters of the present _g5533g a,=9.05148, andr,=1.225 36. Inserting the

theory, in both the classical and quantum cases. We are cukpgye expression into E(L) leads to the following effective

rently working along these lines. pairwise Feynman—Hibbs potential:
The experimental measurement of Debye temperatures

in clusters has recently been accomplished by the Haberland
group for sodiun?? In view of the peculiarities of thermo-
dynamic size effects in alkali clustet$,we expect even where the coefficient. i
more intricate variations of the Debye temperature than those Kic1s
ak,BﬁZ
m

Heat capacity

m

0.1 02 03 0.4 0.5
Temperature (e/k;)

[=]

vGFH<r,B>=Ek YiXs €XH — axil 2), (A2)

observed here for argon clusters. In this respect, we believe

that the tools and results presented here provide a very prom- xk(B)= ( 1+ 3
ising way of including quantum effects in the finite-
temperature study of complex many-body systems beyon
the approximation of effective potentials.

-1
) . (A3)

standard simulation can then be performed with this po-
tential, and the thermal properties calculated in the usual
way. We plot in Fig. 12 the heat capacity calculated from Eq.
(5) for Xe;3, Ariz, and Ng;. Except for neon, the curves
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APPENDIX B: QUASICLASSICAL SUPERPOSITION

APPROXIMATION

APPENDIX A: GAUSSIAN FEYNMAN-HIBBS H ide th . for the th d .
EFFECTIVE POTENTIAL FOR LJ SYSTEMS ere we provide tne expressions for the thermodynamic

properties in the quasiclassical harmonic superposition ap-
The analytic calculation of the Gaussian effective potenproximation and in the quantum harmonic superposition ap-
tial, Eq. (1), can be performed for an interaction potential proximation with anharmonic corrections. In these two ap-
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pendices, we consider dd-atom system at temperatufie

=1/kgB, with k=3N—6 the number of independent de-

grees of freedom. For a given sgt'} of vibrational fre-
quenciesj=1,... k, v,

mean square frequency of minimum

The partition function of the single isomeris given by

is the geometric mean frequency,
(v,) is the arithmetic mean frequency, an{]™ is the root
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heat capacity, after summation of all individual contribu-
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Z,—Z. Kk [Z1\?
C,(B)=k 2[ +——(—) , B2
(ﬁ) Bﬁ ZO EZ ZO ( )
with
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n(EM— — n=012, B3
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_K ms2 € 7
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Zo+2Z1+Zop—Ze [ Z1+Zo1\?
C,(B)=kgB? - , (€D
Z, Z,
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f 0
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