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Quantum periods for 3–dimensional Fano manifolds
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The quantum period of a variety X is a generating function for certain Gromov–

Witten invariants of X which plays an important role in mirror symmetry. We

compute the quantum periods of all 3–dimensional Fano manifolds. In particular we

show that 3–dimensional Fano manifolds with very ample anticanonical bundle have

mirrors given by a collection of Laurent polynomials called Minkowski polynomials.

This was conjectured in joint work with Golyshev. It suggests a new approach to the

classification of Fano manifolds: by proving an appropriate mirror theorem and then

classifying Fano mirrors.

Our methods are likely to be of independent interest. We rework the Mori–Mukai

classification of 3–dimensional Fano manifolds, showing that each of them can be

expressed as the zero locus of a section of a homogeneous vector bundle over a

GIT quotient V ==G , where G is a product of groups of the form GLn.C/ and

V is a representation of G . When G D GL1.C/
r, this expresses the Fano 3–

fold as a toric complete intersection; in the remaining cases, it expresses the Fano

3–fold as a tautological subvariety of a Grassmannian, partial flag manifold, or

projective bundle thereon. We then compute the quantum periods using the quantum

Lefschetz hyperplane theorem of Coates and Givental and the abelian/non-abelian

correspondence of Bertram, Ciocan-Fontanine, Kim and Sabbah.

14J45, 14J33; 14N35

A Introduction

The quantum period of a Fano manifold X is a generating function for Gromov–Witten

invariants. It is a deformation invariant of X that carries detailed information about

quantum cohomology. In this paper we give closed formulas for the quantum periods

for all 3–dimensional Fano manifolds. As a consequence we prove a conjecture,

made jointly with Golyshev, that identifies Laurent polynomials which correspond

under mirror symmetry to each of the 98 deformation families of 3–dimensional Fano
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manifolds with very ample anticanonical bundle. We also exhibit Laurent polyno-

mial mirrors for the remaining 7 deformation families. Our arguments rely on the

classification of 3–dimensional Fano manifolds, due to Iskovskikh, Mori and Mukai;

this is a difficult theorem whose proof, even today, requires delicate arguments in

explicit birational geometry. On the other hand our mirror Laurent polynomials have

a simple combinatorial definition and classification. Given a suitable mirror theorem

this classification would give a straightforward, combinatorial and uniform alternative

proof of the classification of 3–dimensional Fano manifolds. The general outlines of

such a mirror theorem are beginning to emerge — see Kontsevich [41], Strominger,

Yau and Zaslow [70], Auroux [2; 3] and Katzarkov, Kontsevich and Pantev [39] — as

are some promising approaches to proving it; see Kontsevich and Soibelman [43; 44],

Gross [26] and Gross and Siebert [27; 28; 29].

Let X be a Fano manifold, that is, a smooth projective variety such that the anticanonical

bundle �KX is ample. The quantum period GX .t/ of X, defined in Section B, is a

generating function for certain genus-zero Gromov–Witten invariants of X. It satisfies

a differential equation,

(1)

� rX

kD0

tkpk.D/

�
GX D 0;

where D D t d=dt and the pk are polynomials, called the quantum differential equation

for X. The quantum differential equation carries information about the quantum

cohomology of X : the local system of solutions to the quantum differential equation

is an irreducible piece of the restriction of the Dubrovin connection (in the Frobenius

manifold given by the quantum cohomology of X ) to the line in H �.X / spanned

by c1.X /. In Sections 1–105 below we give closed formulas for the quantum periods

of the 105 deformation families of 3–dimensional Fano manifolds.

In joint work with Golyshev [11] we introduced Minkowski polynomials: these are a

collection of Laurent polynomials f in three variables such that the Newton polytope �

of f is a reflexive polytope, defined1 in terms of Minkowski decompositions of the

facets of �. Given a Laurent polynomial f , one can define the period of f by

�f .t/D
�

1

2�i

�n Z

jx1jD���DjxnjD1

1

1 � tf .x1; : : : ;xn/

dx1

x1

� � � dxn

xn

1Some of these Laurent polynomials correspond under mirror symmetry to 3–dimensional Fano

manifolds which admit a small toric degeneration; see Batyrev [4]. These Laurent polynomials were

considered earlier by Galkin [20; 21].

Geometry & Topology, Volume 20 (2016)



Quantum periods for 3–dimensional Fano manifolds 105

and this satisfies a differential equation called the Picard–Fuchs equation,

(2)

� rX

kD0

tkPk.D/

�
�f D 0;

where the Pk are polynomials. There are 3747 Minkowski polynomials (up to mono-

mial change of variables) but Akhtar, Coates, Galkin and Kasprzyk [1] showed that

these Laurent polynomials together generate only 165 periods. That is, Minkowski

polynomials fall into 165 equivalence classes, where f and g are equivalent if and

only if they have the same period. The quantum differential equation (1) of a Kähler

manifold has the property that every complex root of the polynomial p0 is an integer —

this reflects the fact that the quantum cohomology algebra of X carries an integer

grading — and we say that a Laurent polynomial f is of manifold type if the Picard–

Fuchs operator (2) has the property that every complex root of P0 is an integer. Coates,

Galkin and Kasprzyk [14] have computed the Picard–Fuchs operators for the Minkowski

polynomials numerically. Their results, which are computer-assisted rigorous and pass

a number of stringent checks, show that exactly 98 of the 165 Minkowski periods are

of manifold type.

We conjectured, jointly with Golyshev [11], that the 98 Minkowski periods of man-

ifold type2 correspond under mirror symmetry to the 98 deformation families of

3–dimensional Fano manifolds with very ample anticanonical bundle. That is, there is a

one-to-one correspondence between deformation families of 3–dimensional Fano man-

ifolds X with very ample anticanonical bundle and equivalence classes of Minkowski

polynomials f , such that3 the Fourier–Laplace transform �GX of the quantum period

of X coincides with the period �f of f . Assuming the numerical calculations of

Minkowski periods in [14], our results here prove this conjecture.

The classification of Fano 3–folds

There are exactly 105 deformation families of Fano 3–folds. Of these, 17 parameterise

3–folds X with Picard rank �.X /D b2.X /D 1. All but one of these 17 families were

known to Fano himself. The first modern rank-1 classification, in the style of Fano’s

double projection from a line, is due to Iskovskikh [36; 37; 38]. More recently, Mukai,

in a program announced in [54] and still ongoing, re-proved the rank-1 classification

from the study of exceptional vector bundles; see [55; 56; 57; 58; 59; 60] and Mukai,

2We expect that the remaining Minkowski periods correspond to smooth 3–dimensional Fano orbifolds.
3This is a very weak notion of mirror symmetry. It is natural to conjecture much more: that the

Minkowski polynomials f give mirrors to the Fano manifolds X in the sense of Kontsevich’s homological

mirror symmetry program.
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Reid and Takagi [61]. In particular, Mukai gave new model constructions for some of

the rank-1 Fano 3–folds as linear sections of homogeneous spaces; we make use of

these models below. Mori and Mukai [50; 51; 52; 53] proved that there are precisely

88 families of nonsingular Fano 3–folds of rank � 2; their proof was a spectacular

display of the power of Mori’s then-new theory of extremal rays.

The model constructions given by Mori and Mukai are, however, not well suited for

the calculation of quantum periods. Indeed, these model constructions are in terms of

extremal rays: typically X is constructed by giving an extremal contraction f W X ! Y ,

for instance the blow up of some curve in Y . For example, consider family number 13

in the table of 3–dimensional Fano manifolds of Picard rank 3 in [53]:

Rank 3, number 13: Mori–Mukai construction X is the blow-up of a hypersurface

W � P2 � P2 with centre a curve C of bidegree .2; 2/ on it such that

C ,! W ! P2 � P2 pi�! P2

is an embedding for both i D 1, 2, where pi is the projection to the i th factor of the

product P2 � P2.

This construction, elegant though it is, and natural from the point of view of extremal

rays, is not well adapted for doing calculations in Gromov–Witten theory. There are

procedures for computing Gromov–Witten invariants of blow-ups — see Gathmann [22],

Hu [33; 34], Lai [45] and Manolache [48] — but, because they are not based on a

satisfactory structural understanding of blow-ups on the Gromov–Witten side, they are

very difficult to use. Instead, our preferred tools are those for which we have a good

structural understanding on the Gromov–Witten side: Givental’s mirror theorem [24],

the quantum Lefschetz theorem of Coates and Givental [16], and the abelian/non-

abelian correspondence of Bertram, Ciocan-Fontanine, Kim, Sabbah [8]. These tools

require that X be constructed inside the GIT quotient F D V ==G of a vector space

V by the action of a complex Lie group G as the zero-locus of a general section

of a homogeneous vector bundle E ! V ==G . Thus we rework the Mori–Mukai

classification of 3–dimensional Fano manifolds, proving:

Theorem A.1 Let X be a 3–dimensional Fano manifold. Then there exist

� a vector space V D Cn,

� a representation of G D
Qr

iD1 GLki
.C/ on V , and

� a representation � of G ,
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such that X is the vanishing locus, inside a GIT quotient F D V ==G with respect to a

suitably chosen stability condition, of a section of the vector bundle E ! F determined

by � .

We think of F as what Miles Reid would call a key variety: by construction, F is

endowed with a universal property characterising the embedding X ,! F. Both the

algebraic geometry and the Gromov–Witten theory of X are inherited from F through

the universal property.

The proof of Theorem A.1 occupies a substantial portion of this paper. For many of

the 105 families the proof is straightforward; for a few families it is rather tricky. In

the majority of cases, G D GL1.C/
r and so X is a complete intersection in a toric

variety (and in practice a complete intersection of codimension at most 3). Here is a

typical example:

Rank 3, number 13: our construction X is the codimension-3 complete intersec-

tion in P2 � P2 � P2 of general sections of the line bundles O.1; 1; 0/, O.1; 0; 1/

and O.0; 1; 1/.

An immediate consequence of Theorem A.1 is that the moduli space of 3–dimensional

Fano manifolds is unirational: the obvious map from P .H 0.F;E// to the moduli

space of X is dominant.

Highlights

With our model constructions in hand, we then compute the quantum periods. Most of

these calculations are routine, but a number are more interesting. The varieties MM2–2 ,

MM3–2 (Example D.8), MM3–5 and MM4–2 require sophisticated applications of the

quantum Lefschetz theorem. Challenging (and new) applications of the abelian/non-

abelian correspondence include Theorem F.1, which gives a uniform treatment of

seven of the 17 3–dimensional Fano manifolds of rank 1 and the varieties MM2–17 ,

MM2–20 , MM2–21 , MM2–22 and MM2–26 .

We draw the reader’s attention, too, to Section 106, where we exhibit an example of a

high-dimensional Fano manifold with non-unirational moduli space. In essence, this

means that there is no explicit4 way to write down a general Fano n–manifold for n

large.

4Our work here relies on the explicit construction of 3–dimensional Fano manifolds given in

Theorem A.1. But we hope that, in the future, a more conceptual approach will be possible. Such

an approach is likely to construct Fano manifolds via deformation methods, as in the Gross–Siebert mirror

symmetry program [27; 28; 29], as opposed to explicit descriptions in the style of Theorem A.1.
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Perspectives and future directions

As discussed above, Minkowski polynomials have a combinatorial definition and are

classified directly from this definition. Given an appropriate mirror theorem, therefore,

we could reverse the perspective of this paper and recover the classification of 3–

dimensional Fano manifolds from the classification of their mirror Laurent polynomials.

Even once such a mirror theorem has been proved, the calculations in this paper are

likely to remain a very efficient way in practice to determine the mirror partner to

a 3–dimensional Fano manifold. Our results suggest, too, that one should search

for higher-dimensional Fano manifolds systematically by searching for their Laurent

polynomial mirrors. This is discussed in our joint work with Golyshev [11], where we

outline a program to classify 4–dimensional Fano manifolds using these ideas.

We know of no a priori reason why every 3–dimensional Fano manifold admits a

construction as in Theorem A.1. At present this can be proven only post-classification,

by a case-by-case analysis. The obvious generalization of Theorem A.1 fails in high

dimensions (see Section 106 for an example in dimension 66) but it may still hold

in low dimensions. In particular, does the generalization of Theorem A.1 hold in

dimension 4? For now perhaps the following remarks are not out of place. Since

the beginning of the subject people have asked what can birational geometry do for

Gromov–Witten theory. For instance a natural question that was asked early on was how

do Gromov–Witten invariants transform under birational maps, for instance crepant

birational morphisms or blow-ups of nonsingular centres. By now we have learned that

these questions are often very subtle; in the case of blow-ups of a smooth centre we

have a procedure but not a good structural understanding of the problem. On the other

hand, in some areas, we have made good progress in Gromov–Witten calculus, the

abelian/non-abelian correspondence being the most general and best example. Perhaps

now is the right time to ask what can Gromov–Witten theory do for birational geometry:

what view of birational classification do we get if we take seriously5 the perspective of

the abelian/non-abelian correspondence? Does something like Theorem A.1 hold and,

if so, why?

Remarks on the rank 1 case

As far as we know, most of our constructions of 3–dimensional Fano manifolds of

Picard rank � 2 are new. In Picard rank 1 this is not the case: all of the models

that we give are either already in the literature or were known to Mukai. As we have

5For instance, our model constructions of the 3–dimensional Fano manifolds of Picard rank � 2 can be

used to better organise the calculations of Matsuki [49], which we found very helpful on many occasions.

We do not pursue this line here, apart from a few scattered comments in the text below.
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said, Mukai gave model constructions for some of the rank-1 3–dimensional Fano

manifolds X as linear sections of homogeneous manifolds G=P in their canonical

projective embedding. In other words, X is the complete intersection of G=P � PN

with a linear subspace of the appropriate codimension in PN. Mukai’s models are not

always the best for our purposes. The abelian/non-abelian correspondence is currently

known to hold only for Lie groups of type A, so we prefer to exhibit X as a subvariety

of F D A==G , where G is a product of groups of the form GLk.C/. Our rank-1

models are thus in some sense simpler than Mukai’s; in each case they either occur as

an intermediate step in Mukai’s published construction or were known to Mukai.

Remarks on quantum periods of Fano manifolds

Golyshev [25], based on a heuristic involving mirror symmetry and modular forms, gave

a conjectural form of the matrices of small quantum multiplication by the anticanonical

class for each of the rank-1 Fano 3–folds, and verified it by explicit calculation of

Gromov–Witten numbers (unpublished). This work is the fundamental source of the

perspective taken in this paper; it is also an important antecedent to the more precise

conjecture (joint with Golyshev) that we prove here. The regularized quantum period

of rank-1 Fano 3–folds was computed by Beauville [5], Kuznetsov (unpublished) and

Przyjalkowski [64; 65; 66]. Ciolli [10] has computed the small quantum cohomology

rings of 13 higher-rank Fano 3–folds.

Plan of the paper

Sections B–G are devoted to some preliminaries and examples, mostly to fix our

notation. In particular we summarise all the results from Gromov–Witten theory that

we need. The subsequent Sections 1–105 are self-contained essays, one for each

of the deformation families of 3–dimensional Fano manifolds, giving: the standard

known model construction; our model construction; a proof that the two constructions

coincide; the calculation of the regularized quantum period; and — where appropriate —

a match with a Minkowski period of manifold type. In more detail: Section B gives

the definition of and basic facts about quantum periods; Section C treats toric Fano

manifolds and Givental’s mirror theorem; Section D introduces notation for Fano

complete intersections in toric varieties and discusses the quantum Lefschetz theorem;

Section E provides some geometric constructions and notation that are used in our

model constructions; Section F summarizes the abelian/non-abelian correspondence;

and in Section G we compute the quantum periods for Fano manifolds of dimensions 1

and 2. The appendix describes a table, given in an online supplement [12], that exhibits

Laurent polynomial mirrors for each of the 105 deformation families of 3–dimensional

Fano manifolds.
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B The J–function and the quantum period

Let X be a smooth projective variety over C . For ˇ 2 H2.X I Z/, let X0;1;ˇ denote

the moduli space of degree-̌ stable maps to X from genus-zero curves with one

marked point (see Kontsevich [40] and Kontsevich and Manin [42]); let ŒX0;1;ˇ �
vir in

H�.X0;1;ˇI Q/ denote the virtual fundamental class of X0;1;ˇ (see Li and Tian [47]

and Behrend and Fantechi [7]); let evW X0;1;ˇ ! X denote the evaluation map at the

marked point; and let  2 H 2.X0;1;ˇI Q/ denote the first Chern class of the universal

cotangent line at the marked point. The J–function of X is a generating function for

genus-zero Gromov–Witten invariants of X :

(3) JX .� C �/D e�=ze�=z

�
1 C

X

ˇ2H2.X IZ/
ˇ¤0

Qˇehˇ;�i ev?

�
ŒX0;1;ˇ �

vir \ 1

z.z � /

��
:

Here � 2 H 0.X I Q/, � 2 H 2.X I Q/, Qˇ is the representative of ˇ in the group

ring QŒH2.X I Z/� and we expand 1=.z.z � // as the series
P

k�0 z�k�2 k. Let

ƒX denote the completion of QŒH2.X I Z/� with respect to the valuation v defined by

v.Qˇ/D hˇ; !i, where ! is the Kähler class of X. The J–function is a function on

H 0.X I Q/˚ H 2.X I Q/ that takes values in H �.X IƒX /ŒŒz
�1��. It plays a key role in

mirror symmetry; see Givental [23; 24] and Cox and Katz [18]. We have

(4) JX .� C �/D 1 C .� C �/z�1 C O.z�2/;

where 1 is the unit element in H �.X /.

Suppose now that X is a Fano manifold, ie a smooth projective variety over C such

that the anticanonical line bundle �KX is ample. Consider the component of the

J–function JX .� C �/ along the unit class 1 2 H �.X I Q/. Set � D � D 0 and z D 1

and replace Qˇ 2ƒX by t hˇ;�KX i. The resulting formal power series in the variable t
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is called the quantum period of X ,

GX .t/D 1 C
X

d�2

X

ˇ2H2.X IZ/
hˇ;�KX iDd

td h�vol � d�2iX
0;1;ˇ ;

where �vol is a top-degree cohomology class on X such that
R
X �vol D 1 and the

correlator denotes a Gromov–Witten invariant:

h�vol � d�2iX
0;1;ˇ D

Z

ŒX0;1;ˇ�vir

ev?.�vol/[ d�2:

Write the quantum period as

GX .t/D 1 C
X

d�2

cd td :

The regularized quantum period of X is

�GX .t/D 1 C
X

d�2

d!cd td :

B.1 The big J–function and the small J–function

Our J–function JX .t/ is sometimes called the “small J–function”; it coincides with the

J–function defined by Givental [24]. For the small J–function JX .t/, the parameter t is

taken to lie in H 0.X /˚H 2.X /. Other authors consider a “big J-function” J.t/, where

the parameter t ranges over all of H �.X /. The big J–functions J.t/ considered by

Coates and Givental, and Ciocan-Fontanine, Kim and Sabbah, coincide with our JX .t/,

except for an overall factor of z , when t is restricted to lie in H 0.X /˚H 2.X /: to see

this, apply the string equation and the divisor equation — see Pandharipande [63, Sec-

tion 1.2] — to the definition of the big J–function [16, Equation 11; 9, Equation 5.2.1].

The overall factor of z here comes from an unfortunate mismatch of conventions.

C Fano and nef toric manifolds

Let T D .C�/r. Write L D Hom.C�;T / for the lattice of subgroups of T and write

L_ for the dual lattice Hom.T;C�/. Elements of L_ are characters of T . Consider

an r � N integer matrix M of rank r whose columns span a strictly convex cone

C in Rr. The columns of M define characters of T , via the canonical isomorphism

L_ Š Zr and hence determine an action of T on CN. Given a stability condition

! 2 L_ ˝ R we can form the GIT quotient:

X! WD CN ==! T:
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Any smooth projective toric variety X arises via this construction for some choice

of M and ! ; we refer to the matrix M as weight data for X and to ! as a stability

condition for X.

There is a wall-and-chamber decomposition of C � L_ ˝ R, called the secondary fan,

and if stability conditions !1 and !2 lie in the same chamber then the GIT quotients

X!1
and X!2

coincide. Write ci 2 L_ for the i th column of M and hci1
; : : : ; cik

i for

the R�0 –span of the columns ci1
; : : : ; cik

. The walls of the secondary fan are given

by all cones of the form hci1
; : : : ; cik

i that have dimension r � 1. The chambers of the

secondary fan are the connected components of the complement of the walls; these are

r –dimensional open cones in C � L_ ˝ R. We always take our stability condition !

to lie in a chamber. Given such an ! , the irrelevant ideal I! � CŒx1; : : : ;xN � is

I! D .xi1
xi2

� � � xir
j ! 2 hci1

; : : : ; cir
i/

and the unstable locus is V .I!/� CN. The GIT quotient X! is

(5) X! D .CN n V .I!//=T:

The variety X! is nonsingular if and only if fci1
; : : : ; cir

g is an integer basis for L_

for each fi1; : : : ; ir g such that ! 2 hci1
; : : : ; cir

i.

Suppose now that M and ! are weight data and a stability condition for X, respec-

tively. A character � 2 L_ defines a line bundle L� on X and hence a cohomology

class c1.L�/ 2 H 2.X I Q/. Thus the columns of M define cohomology classes

D1; : : : ;DN 2 H 2.X I Q/. Define the I–function of X by

IX .�/D e�=z
X

ˇ2H2.X IZ/

Qˇehˇ;�i

QN
iD1

Q
m�0 Di C mz

QN
iD1

Q
m�hˇ;Di i Di C mz

:

Here, � 2 H 2.X I Q/ and Qˇ is, as before, the representative of ˇ in the group

ring QŒH2.X I Z/�. The I–function IX is a function on H 2.X I Q/ that takes values in

H �.X IƒX /ŒŒz
�1��. Note that all but finitely many terms in the infinite products cancel

and that

1

Di C mz
D 1

mz
� Di

.mz/2
C

D2
i

.mz/3
C � � �

is well defined as an element of H �.X /ŒŒz�1��.

Theorem C.1 (Givental) Let X be a toric manifold such that �KX is nef. Then

JX .�.�//D IX .�/
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for some function � W H 2.X I Q/ ! H 0.X IƒX /˚ H 2.X IƒX /. Furthermore, the

function � is uniquely determined by the expansion

IX .�/D 1 C �.�/z�1 C O.z�2/:

If X is Fano then �.�/D � .

Proof This follows immediately from Givental’s mirror theorem for toric varieties [24].

Corollary C.2 Let X be a Fano toric manifold and let D1; : : : ;DN 2 H 2.X I Q/ be

the cohomology classes of the torus-invariant divisors on X. The quantum period of

X is

GX .t/D
X

ˇ2H2.X IZ/
8i hˇ;Di i�0

t hˇ;�KX i

QN
iD1hˇ;Dii!

:

Proof The quantum period GX is obtained from the component of the J–function

JX .�/ along the unit class 1 2 H �.X I Q/ by setting � D 0, z D 1 and Qˇ D t hˇ;�KX i.

Now apply Theorem C.1.

Example C.3 (number 36 on the Mori–Mukai list of 3–dimensional Fano manifolds

of rank 2) Here X is the projective bundle P .O ˚ O.2// over P2. This is a toric

variety with weight data

1 1 1 –2 0 L

0 0 0 1 1 M

and nef cone Nef X spanned by L and M. The L and M next to the weight data

here denote the line bundles associated to the standard basis of L_ D Z2 ; we use

this notation, and its natural extension to the case where L_ D Zr with r ¤ 2, freely

throughout the paper. Corollary C.2 yields

GX .t/D
1X

d1D0

1X

d2D2d1

td1C2d2

.d1!/3.d2 � 2d1/!d2!

and regularizing gives

�G.t/D 1 C 2t2 C 6t4 C 60t5 C 20t6 C 840t7 C 70t8 C 7560t9 C � � � :
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D Fano toric complete intersections

Assumptions D.1 Throughout Section D, take Y to be a smooth projective toric

variety such that �KY is nef and take X to be a smooth Fano complete intersection

in Y defined by a section of E D L1 ˚ � � � ˚ Ls , where each Li is a nef line bundle.

Let �i D c1.Li/ and let ƒD �1 C � � � C �s . By the adjunction formula,

�KX D .�KY �ƒ/jX :

We assume that the line bundle �KY �ƒ on Y is nef on Y , that is, we assume that

hˇ;�KY �ƒi � 0 for all ˇ in the Mori cone of Y .

D.1 The quantum Lefschetz theorem

We will compute the quantum period of X by computing certain twisted Gromov–

Witten invariants of the ambient space Y using the quantum Lefschetz theorem of

Coates and Givental [16]. Consider the C� –action on the total space of E given by

rescaling fibres (with the trivial action on the base). Let � denote the first Chern class

of the line bundle O.1/ over CP1 Š BC�, so that the C� –equivariant cohomology

of a point is QŒ��, and let e. � / denote the C� –equivariant Euler class. Coates and

Givental [16] define a complex of C� –equivariant sheaves E0;1;ˇ on Y0;1;ˇ . In

this case E0;1;ˇ is a C� –equivariant vector bundle over Y0;1;ˇ , and there is a C� –

equivariant evaluation map E0;1;ˇ ! ev?E . Let E0
0;1;ˇ

be the kernel of this evaluation

map. The twisted J–function is

(6) Je;E.� C �/

De�=ze�=z

�
1C

X

ˇ2H2.Y IZ/
ˇ¤0

Qˇehˇ;�i ev?

�
ŒY0;1;ˇ �

vir\e.E0
0;1;ˇ/\

1

z.z � /

��
:

Here � 2 H 0.Y I Q/, � 2 H 2.Y I Q/, Qˇ is the representative of ˇ in the group

ring QŒH2.Y I Z/� and we expand 1=.z.z � // as the series
P

k�0 z�k�2 k . The

twisted J–function is6 a function on H 0.Y I Q/ ˚ H 2.Y I Q/ that takes values in

H �.Y IƒY Œ��/ŒŒz
�1��. It satisfies

(7) Je;E.� C �/D 1 C .� C �/z�1 C O.z�2/;

6Coates and Givental consider a “big twisted J–function” J
e;E.t/ , where the parameter t ranges over

all of H �.X / . Exactly as in Section B.1, this coincides with our twisted J–function, up to an overall

factor of z , when t is restricted to lie in H 0.X /˚ H 2.X / .
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where 1 is the unit element in H �.Y /. The twisted J–function admits a non-equivariant

limit JY;X , which satisfies

(8) j?JX .j
?.� C �//D JY;X .� C �/[

sY

iD1

�i :

Here, j W X ! Y is the inclusion and the equality holds after applying the homomor-

phism between ƒX and ƒY induced by j . Since we can determine the quantum

period GX from the component of JX along the unit class 1 2 H �.X /, we can

determine GX from the component of JY;X along the unit class 1 2 H �.Y /.

The quantum Lefschetz theorem determines the twisted J–function Je;E from the

twisted I–function

Ie;E.�/D
X

ˇ2H2.Y IZ/

QˇJˇ.�/

sY

iD1

hˇ;�i iY

mD1

.�C �i C mz/;

where

JY .�/D
X

ˇ2H2.Y IZ/

QˇJˇ.�/

and so, in particular, J0.�/D e�=z.

Proposition D.2 Under Assumptions D.1, we have

Ie;E.�/D A.�/C B.�/z�1 C O.z�2/

for some functions

AW H 2.Y I Q/! H 0.Y IƒY /;

BW H 2.Y I Q/! H 0.Y IƒY Œ��/˚ H 2.Y IƒY Œ��/:

If �KX is the restriction of an ample line bundle on Y , ie if hˇ;�KY �ƒi > 0 for

all ˇ in the Mori cone of Y , then A is the constant function with value the unit class

1 2 H 0.Y I Q/ and B.�/D � C C.�/1 with

C.�/D
X

ˇ2H2.Y IZ/
hˇ;�KY �ƒiD1

nˇQˇehˇ;�i

for some rational numbers nˇ . In general we have

A � 1 mod fQˇ j ˇ ¤ 0; ˇ in the Mori cone of Y g:
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Proof Combine the fact that J0.�/D e�=z D 1 C �z�1 C O.z�2/ with the fact that

Ie;E is homogeneous of degree zero with respect to the grading

deg Qˇ D hˇ;�KY �ƒi; deg z D 1; deg�D 1; deg�D k if � 2 H 2k.Y I Q/:

With respect to this grading, A.�/ is homogeneous of degree zero and B.�/ is homo-

geneous of degree one.

Theorem D.3 Under Assumptions D.1, with A, B and C as in Proposition D.2, we

have

Je;E.�.�//D Ie;E.�/

A.�/
; where �.�/D B.�/

A.�/
:

If �KX is the restriction of an ample class on Y then Je;E.�/D e�C.�/=zIe;E.�/.

Proof The first statement is a slight generalization of Corollary 7 in Coates and

Givental [16] and is proved in exactly the same way. When �KX is the restriction of

an ample class on Y , combining the first statement with Proposition D.2 gives

Je;E.� C C.�/1/D Ie;E.�/:

The string equation [63, Section 1.2] now implies that

Je;E.� C C.�/1/D eC.�/=zJe;E.�/;

completing the proof.

The twisted I–function admits a non-equivariant limit,

IY;X .�/D
X

ˇ2H2.Y IZ/

QˇJˇ.�/

sY

iD1

hˇ;�i iY

mD1

.�i C mz/:

Corollary D.4 Under Assumptions D.1, with A, B and C as in Proposition D.2, we

have

IY;X .�/D A.�/C B0.�/z�1 C O.z�2/;

where B0.�/D B.�/j�D0 , and

JY;X .�.�//D IY;X .�/

A.�/
; where �.�/D B0.�/

A.�/
:

If �KX is the restriction of an ample class on Y then JY;X .�/D e�C.�/=zIY;X .�/.

Proof Take the non-equivariant limit �! 0 of Proposition D.2 and Theorem D.3.
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Corollary D.5 Let the toric complete intersection X and the toric variety Y be such

that Assumptions D.1 holds. Let D1; : : : ;DN 2 H 2.Y I Q/ be the cohomology classes

of the torus-invariant divisors on Y and let the classes �i and ƒD �1 C � � � C �s be

as in Assumptions D.1. Suppose that the line bundles �KY and �KY �ƒ on Y are

ample. Then the quantum period of X is

GX .t/D e�ct
X

ˇ2H2.Y IZ/
8i hˇ;Di i�0

t hˇ;�KY �ƒi

Qs
jD1hˇ; �j i!

QN
iD1hˇ;Dii!

;

where c is the unique rational number such that the right-hand side has the form

1 C O.t2/.

Proof Recall that GX is obtained from the component of the J–function JX .� C �/

along the unit class 1 2 H �.X I Q/ by setting � D � D 0, z D 1 and Qˇ D t hˇ;�KX i.

In view of (8), we need the component of JY;X .0/ along 1 2 H �.Y I Q/. Computing

JY .�/ using Theorem C.1, we see that

IY;X .�/D e�=z
X

ˇ2H2.X IZ/

Qˇehˇ;�i

QN
iD1

Q
m�0 Di C mz

QN
iD1

Q
m�hˇ;Di i Di C mz

sY

jD1

hˇ;�j iY

mD1

.�j C mz/:

Applying Corollary D.4, we see that the component of JY;X .�/ along 1 2 H �.Y I Q/

is

e�C.�/=z
X

ˇ2H2.Y IZ/
8i hˇ;Di i�0

Qˇehˇ;�i

Qs
jD1

Qhˇ;�j i

mD1
.mz/

QN
iD1

Q
1�m�hˇ;Di i.mz/

;

where

C.�/D
X

ˇ2H2.Y IZ/
hˇ;�KY �ƒiD1

nˇQˇehˇ;�i

for rational numbers nˇ as in Proposition D.2. Setting � D 0, z D 1 and Qˇ D
t hˇ;�KY �ƒi yields

GX .t/D e�ct
X

ˇ2H2.Y IZ/W
8i hˇ;Di i�0

t hˇ;�KY �ƒi

Qs
jD1hˇ; �j i!

QN
iD1hˇ;Dii!

for some rational number c . We saw in Section B that the right-hand side has no linear

term in t ; this determines c .
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Remark D.6 Comparing Corollary D.5 with Corollary C.2, we see that if each of the

line bundles L1; : : : ;Ls in Corollary D.5 is a tensor power or fractional tensor power

of �KY then we can compute the quantum period GX from the quantum period GY

and the line bundles Li alone, without needing to know the full J–function JY .

Example D.7 Let X be the divisor on Y D P2 � P2 of bidegree .2; 2/. The toric

variety Y has weight data

1 1 1 0 0 0 L

0 0 0 1 1 1 M

and the nef cone Nef Y is spanned by L and M. The variety X is a member of the

ample linear system j2L C 2M j, and �.KY C X /� L C M is ample. Corollary D.5

yields

GX .t/D e�4t
1X

lD0

1X

mD0

t lCm .2l C 2m/!

.l !/3.m!/3

and regularizing gives

�GX .t/D 1 C 44t2 C 528t3 C 11292t4 C 228000t5 C 4999040t6

C 112654080t7 C 2613620380t8 C 61885803840t9 C � � � :

Example D.8 Let F be the toric variety with weight data

1 1 0 0 –1 0 0 L

0 0 1 1 –1 0 0 M

0 0 0 0 1 1 1 N

and nef cone Nef F spanned by L, M and N . Let X be a member of the nef linear

system jM C 2N j. We have that �KF D L C M C 3N is ample, so F is a Fano

variety, and that �KF �ƒ � L C N is nef but not ample on F. As is discussed in

detail in the section on MM3–2 , even though �KF �ƒ is not ample on F, it becomes

ample when restricted to X ; thus the variety X is Fano.

Write p1 , p2 , p3 2 H �.F I Z/ for the first Chern classes of L, M and N , respectively;

these classes form a basis for H 2.F I Z/. Identify the group ring QŒH2.F I Z/� with

the polynomial ring QŒQ1;Q2;Q3� via the Q–linear map that sends the element

Qˇ 2 QŒH2.F I Z/� to Qhˇ;p1i
1

Qhˇ;p2i
2

Qhˇ;p3i
3

. Theorem C.1 gives

JF .�/D e�=z
X

.l;m;n/2Z3

Ql
1Qm

2 Qn
3ehˇ;�i

Q0
kD�1.p1 C kz/2

Ql
kD�1.p1 C kz/2

Q0
kD�1.p2 C kz/2Qm
kD�1.p2 C kz/2

�
Q0

kD�1.p3 C kz/2Qn
kD�1.p3 C kz/2

Q0
kD�1.p3 � p2 � p1 C kz/

Qn�l�m
kD�1.p3 � p2 � p1 C kz/
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and, since p2
1

D p2
2

D p2
3
.p3 � p2 � p1/D 0 in the cohomology of F, this reduces to

JF .�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
ehˇ;�i

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/2

Qn
kD1.p3 C kz/2

�
Q0

kD�1.p3 � p2 � p1 C kz/
Qn�l�m

kD�1.p3 � p2 � p1 C kz/
:

Thus

Ie;E.�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
ehˇ;�i

QmC2n
kD1 .�C p2 C 2p3 C kz/

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/2

Qn
kD1.p3 C kz/2

�
Q0

kD�1.p3 � p2 � p1 C kz/
Qn�l�m

kD�1.p3 � p2 � p1 C kz/
:

We now apply Theorem D.3. Setting � D 0, we find that

Ie;E.0/D A C Bz�1 C O.z�2/;

where

A D 1 and B D .2Q3 C 6Q2Q3/1 C .p3 � p2 � p1/
X

m>0

.�1/m�1Qm
2

m

D .2Q3 C 6Q2Q3/1 C .p3 � p2 � p1/ log.1 C Q2/:

Thus

Je;E.B/D Ie;E.0/:

The string equation gives

Je;E.c1 C �/D ec=zJe;E.�/;

so

Je;E..p3 � p2 � p1/ log.1 C Q2//D e�.2Q3C6Q2Q3/=zIe;E.0/:

The twisted J–function satisfies

Je;E.t1p1 C t2p2 C t3p3/

D e.t1p1Ct2p2Ct3p3/=z

�
1 C

X

l;m;n�0

Ql
1Qm

2 Qn
3elt1emt2ent3cl;m;n

�

for classes cl;m;n 2 H �.F I QŒ��/ŒŒz�1�� that do not depend on t1 , t2 or t3 . So, substi-

tuting t1 D t2 D � log.1 C Q2/ and t3 D log.1 C Q2/, we see that

Je;E..p3 � p2 � p1/ log.1 C Q2//

D e.p3�p2�p1/ log.1CQ2/=z ŒJe;E.0/�Q1D
Q1

1CQ2
; Q2D

Q2
1CQ2

; Q3DQ3.1CQ2/
:
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The change of variables

Q1 D Q1

1 C Q2

; Q2 D Q2

1 C Q2

; Q3 D Q3.1 C Q2/

is called the mirror map; the inverse change of variables is

(9) Q1 D Q1

1 � Q2

; Q2 D Q2

1 � Q2

; Q3 D Q3.1 � Q2/;

and so

Je;E.0/D
�
e�.p3�p2�p1/ log.1CQ2/=z

�Je;E..p3�p2�p1/ log.1CQ2//
�
Q1D

Q1
1�Q2

; Q2D
Q2

1�Q2
;Q3DQ3.1�Q2/

D e.p3�p2�p1/ log.1�Q2/=z

� Œe�.2Q3C6Q2Q3/=zIe;E.0/�Q1D
Q1

1�Q2
;Q2D

Q2
1�Q2

;Q3DQ3.1�Q2/
:

Taking the non-equivariant limit yields

JF;X .0/D e.p3�p2�p1/ log.1�Q2/=ze�2Q3�4Q2Q3

�
X

l;m;n�0

Ql
1
Qm

2
Qn

3
.1 � Q2/

n�l�m
QmC2n

kD1 .p2 C 2p3 C kz/
Ql

kD1.p1 C kz/2
Qm

kD1.p2 C kz/2
Qn

kD1.p3 C kz/2

�
Q0

kD�1.p3 � p2 � p1 C kz/
Qn�l�m

kD�1.p3 � p2 � p1 C kz/
:

Recall that the quantum period GX is obtained from the component of JX .0/ along

the unit class 1 2 H �.X I Q/ by setting z D 1 and Qˇ D t hˇ;�KX i. Consider (8). To

obtain GX , therefore, we need to extract the component of JF;X .0/ along the unit

class 1 2 H �.F I Q/, set z D 1, Q1 D t , Q2 D 1 and Q3 D t . This gives

GX .t/D e�6t
1X

lD0

1X

mD0

t2lCm .2l C 3m/!

.l !/2.m!/2..l C m/!/2
:

Regularizing gives

�GX .t/D 1 C 58t2 C 600t3 C 13182t4 C 247440t5 C 5212300t6

C 111835920t7 C 2480747710t8 C 56184565920t9 C � � � :
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D.2 Weighted projective complete intersections

We will need also an analogue of Corollary D.5 when the ambient space is weighted

projective space, regarded as a smooth toric Deligne–Mumford stack rather than as a

singular variety.

Proposition D.9 Let Y be the weighted projective space P .w0; : : : ; wn/, let X be

a smooth Fano variety given as a complete intersection in Y defined by a section of

E D O.d1/˚� � �˚O.dm/, and let �k Dw0 C� � �Cwn �d1 �� � ��dm . Suppose that

each di is a positive integer, that �k > 0 and that

(10) wi divides dj for all i and j such that 0 � i � n and 1 � j � m:

Then the quantum period of X is

GX .t/D e�ct
X

d�0

t�kd

Qm
jD1.ddj /!Qn
iD1.dwi/!

;

where c is the unique rational number such that the right-hand side has the form

1 C O.t2/.

Proof This follows immediately from [17, Corollary 1.9]. Corollary 1.9 as stated

there is false, however, because it omits the divisibility hypothesis (10). This hypothesis

ensures that the bundle E is convex and hence ensures both (a) that the twisted J–

function denoted by J tw in [13, Corollary 5.1] admits a non-equivariant limit JY;X

and (b) that this non-equivariant limit satisfies (8); see [15, Section 5]. Both (a) and (b)

are used implicitly in the proof of [17, Corollary 1.9]. Under the additional divisibility

assumption (10), however, the proof of [17, Corollary 1.9] goes through. This proves

the proposition.

E Geometric constructions

Lemma E.1 Let G be a nonsingular algebraic variety, let V nC1 and W n be locally

free sheaves on G of ranks n C 1 and n, respectively, and let f W V ! W be a

homomorphism of sheaves. Denote by � W P .V /! G the projective space bundle of

lines in V , so that there is a tautological exact sequence

0 ! S ! �?V ! Q ! 0

with S? WD O.1/. Recall that elements of V ?, being linear functions on V , define

canonical sections of the line bundle O.1/ on P .V / and that the corresponding ho-

momorphism �?V ? ! O.1/ induces an isomorphism V ? Š �?O.1/. The section
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f 2 HomG.V;W / determines a section Qf 2 H 0.P .V /; �?W ˝O.1// by means of

the canonical identifications

HomG.V;W /DH 0.G;W ˝V ?/DH 0.G;W ˝�?O.1//DH 0.P .V /; �?W ˝O.1//:

Let F D Z. Qf / � P .V / be the subscheme of P .V / where Qf vanishes. Denote by

Z � G the subscheme where f drops rank, that is, the ideal of Z is the ideal defined

by the n C 1 minors of size n of f . Assume (a) that f has generically maximal rank;

(b) that it drops rank in codimension 2 (this is the expected codimension); and (c) that

Z is nonsingular.7 Then F is the blow-up of G along Z .

Proof The statement is local on G , so fix a point P 2 Z � G and a Zariski open

neighbourhood P 2 U D Spec A with trivializations V jU D AnC1 and W jU D An.

The morphism f jU is given by an n � .n C 1/ matrix M with entries in A. Because

Z is nonsingular, at least one of the .n � 1/� .n � 1/ minors of A is non-zero at P

and then, after changing trivializations and shrinking U if necessary, we may assume

that

M D

0
BBBBB@

1 0 � � � 0 0 0

0 1 � � � 0 0 0
:::
:::
: : :

:::
:::
:::

0 0 � � � 1 0 0

0 0 � � � 0 x y

1
CCCCCA
:

It is clear that the ideal generated by the n � n minors of M is the ideal generated

by the two rightmost minors x and y (and, since Z is nonsingular, x and y form

part of a regular system of parameters at P ). Denoting by x0; : : : ;xn the dual basis

of V ?, F jU D F \��1.U /� P .V jU /Š U �Pn is given by the n equations in nC1

variables

M �

0
B@

x0
:::

xn

1
CA D 0:

The first n � 1 equations just say x0 D � � � D xn�2 D 0, while the last equation states

that F jU is the variety .xxn�1 C yxn D 0/� U � P1
xn�1;xn

, that is, F is the blow-up

of Z � G .

We will need the following well-known construction:

Lemma E.2 Let G be a complex Lie group acting on a space A, X D A==G a

geometric quotient and �W G ! GLr .C/ a complex representation. Then:
7The last assumption (c) is probably not necessary.
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(1) � naturally induces a vector bundle E D E.�/ on X. Explicitly, E.�/ D
.A � Cr /==G , where G acts as

gW .a; v/ 7! .ga; �.g/v/:

(2) Let F D P .E/ be the bundle of 1–dimensional subspaces of the vector bundle

in (1). Then F D .A � Cr /==.G � C�/, where G acts as in (1), and C� acts

trivially on the first factor and by rescaling on the second factor.

(3) Let F D P .E/ be as in (2). The tautological line bundle O.�1/ on F is induced

as in (1) by the 1–dimensional representation of G � C� that is trivial on the

first factor and standard on the second.

We will also need to know how to compute the quantum period of a product in terms

of the quantum periods of the factors.

Proposition E.3 (The small J–function of a product) Let X and Y be smooth pro-

jective varieties over C . Recall that there is a canonical isomorphism H �.X �Y I Q/Š
H �.X I Q/˝H �.Y I Q/ and that ƒX �Y is a completion of ƒX ˝ƒY . Let �X 2 H 2.X /

and �Y 2 H 2.Y /. Then

JX �Y .�X ˝ 1 C 1 ˝ �Y /D JX .�X /˝ JY .�Y /:

Proof Combine

� the differential equations [16, Equation 16] that characterize the J–function;

� the fact that the small quantum product �� , � 2 H 2 , is uniquely determined by

three-point Gromov–Witten invariants and the divisor equation;

� the product formula for Gromov–Witten invariants [42; 6] relating three-point

Gromov–Witten invariants of X � Y to those of X and of Y .

Corollary E.4 (The quantum period of a product) Let X and Y be smooth projective

varieties over C . Then

GX �Y .t/D GX .t/GY .t/:

Notation for Grassmannians

We denote by Gr D Gr.r; n/ the manifold of r –dimensional vector subspaces of Cn.

Notation for the universal sequence is

0 ! S ! Cn ! Q ! 0;
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where S is the rank-r universal bundle of subspaces and Q is the rank-n�r universal

bundle of quotients. If �D .�1 � �2 � � � � / is a partition or Young diagram, we denote

by Z� � Gr the Schubert variety corresponding to � and by �� 2 H �
�
GrI Z

�
its class

in cohomology. It is well known that ci.S
?/D �1i and ci.Q/D �i for i D 1, 2, 3; : : : .

We will need:

� The Pieri formula: if � is a partition and k � 0 an integer then

�� � �k D
X

���
adds k boxes,

no two in a column

��:

� The following elementary facts for Gr.2; 5/:

– The Plücker embedding sends the Schubert variety

Z2 D fW j W \ he0; e1i ¤ f0gg

to the subset of P9 defined by the equations z23 D z24 D z34 D 0 and

rk

�
z02 z03 z04

z12 z13 z14

�
< 2:

– The Plücker embedding sends the Schubert variety

Z1;1 D fW j W � he0; e1; e2; e3ig Š Gr.2; 4/

to a nonsingular quadric.

F The abelian/non-abelian correspondence

Our other main tool for computing quantum periods is the abelian/non-abelian cor-

respondence of Ciocan-Fontanine, Kim and Sabbah [9]. This expresses genus-zero

Gromov–Witten invariants (or twisted Gromov–Witten invariants) of X==G , where G

is a complex reductive Lie group and X is a smooth projective variety, in terms of

genus-zero Gromov–Witten invariants (or twisted Gromov–Witten invariants) of X==T ,

where T is a maximal torus in G . The computations for X==T are typically much

easier — the methods of Sections C–D often apply, for example — so the abelian/non-

abelian correspondence is a powerful tool for calculations. Ten of the seventeen smooth

Fano 3–folds of Picard rank 1 are toric varieties or toric complete intersections and

thus can be treated using the methods of Sections C–D; the following theorem allows a

uniform treatment of the remaining seven cases.
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Theorem F.1 Let Gr denote the Grassmannian Gr.r; n/ of r –dimensional subspaces

of Cn, let S ! Gr denote the universal bundle of subspaces, and let E ! Gr denote

the vector bundle

E D .det S?/˚a ˚ .det S? ˝ det S?/˚b ˚ .S? ˝ det S?/˚c

˚ .S ˝ det S?/˚d ˚
�V2

S?
�˚e

:

Let X be the subvariety of Gr cut out by a generic section of E and suppose that

k D a C 2b C .r C 1/c C .r � 1/d C .r � 1/e � n

is strictly negative. Consider the cohomology algebra H �..Pn�1/r I Q/. Let pi

in H 2..Pn�1/r / for 1 � i � r denote the first Chern class of �?
i O.1/, where

�i W .Pn�1/r ! Pn�1 is projection to the i th factor of the product. Let p1���r D
p1 C � � � C pr and, for .l1; : : : ; lr / 2 Zr, let jl j D l1 C � � � C lr . Let

�l1;:::;lr
D

� jljY

kD1

.p1���r C k/

�a� 2jljY

kD1

.2p1���r C k/

�b� rY

jD1

jljCljY

kD1

.p1���r C pj C k/

�c

�
� rY

jD1

jlj�ljY

kD1

.p1���r � pj C k/

�d� r�1Y

iD1

rY

jDiC1

li CljY

kD1

.pi C pj C k/

�e

and let

�D
r�1Y

iD1

rY

jDiC1

.pj � pi/:

The element

(11)

1X

l1D0

� � �
1X

lr D0

.�1/jlj.r�1/t�kjlj�l1;:::;lrQr
jD1

Qlr

kD1
.pj C k/n

r�1Y

iD1

rY

jDiC1

.pj � pi C .lj � li//

of H �..Pn�1/r I Q/˝ QŒŒt �� is divisible by �. Let Itw.t/ be the scalar-valued function

obtained by dividing (11) by � and taking the component along H 0..Pn�1/r I Q/.

Then the quantum period GX of X satisfies

GX .t/D e˛tItw.t/;

where ˛ is the unique rational number such that the right-hand side has the form

1 C O.t2/.

Proof The expression (11) is divisible by � because it is totally antisymmetric in

p1; : : : ;pr . We know a priori that GX .t/ D 1 C O.t2/, so if there exists ˛ 2 Q

such that GX .t/ D e˛tItw.t/ then this ˛ is uniquely determined by the condition
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e˛tItw.t/D 1 C O.t2/. For the rest we use the abelian/non-abelian correspondence.

Consider the situation as in [9, Section 3.1] with

� the space that is denoted by X in [9] set equal to A D Crn, regarded as the

space of r � n matrices;

� G D GLr .C/, acting on A by left-multiplication;

� T D .C�/r, the diagonal torus in G ;

� the group that is denoted by S in [9] set equal to the trivial group;

� V equal to the representation

.det Vstd/
˚a ˚ .det Vstd ˝ det Vstd/

˚b ˚ .Vstd ˝ det Vstd/
˚c

˚ .V ?
std ˝ det Vstd/

˚d ˚
�V2

Vstd

�˚e
;

where Vstd is the standard representation of G .

Then A==G is the Grassmannian Gr D Gr.r; n/ and A==T is .Pn�1/r. The Weyl group

W D Sr permutes the r factors of the product .Pn�1/r. The representation V induces

the vector bundle VG D E over A==G D Gr and the representation V induces the

vector bundle

VT D .O.1; 1; : : : ; 1//˚a ˚ .O.2; 2; : : : ; 2//˚b ˚
� rM

jD1

O.1; 1; : : : ; 1/˝�?
j O.1/

�̊ c

˚
� rM

jD1

O.1; 1; : : : ; 1/˝�?
j O.�1/

�̊ d

˚
� r�1M

iD1

rM

jDiC1

�?
i O.1/˝�?

j O.1/

�̊ e

over A==T D .Pn�1/r.

We fix a lift of H �.A==GI Q/ to H �.A==T;Q/W in the sense of [9, Section 3];

there are many possible choices for such a lift and the precise choice made will

be unimportant in what follows. The lift allows us to regard H �.A==GI Q/ as a

subspace of H �.A==T;Q/W , which maps isomorphically to the Weyl-anti-invariant

part H �.A==T;Q/a of H �.A==T;Q/ via

H �.A==T;Q/W
[�

// H �.A==T;Q/a:

We compute the quantum period of X by computing the J–function of Gr D A==G

twisted [16] by the Euler class and the bundle VG , using the abelian/non-abelian

correspondence [9].

We begin by computing the J–function of A==T twisted by the Euler class and

the bundle VT . As in Section D.1, and as in [9], consider the bundles VT and VG

Geometry & Topology, Volume 20 (2016)



Quantum periods for 3–dimensional Fano manifolds 127

equipped with the canonical C� –action that rotates fibres and acts trivially on the

base. We will compute the twisted J–function Je;VT
of A==T using the quantum

Lefschetz theorem; Je;VT
was defined in (6) above and is the restriction to the locus

� 2 H 0.A==T /˚ H 2.A==T / of what was denoted by J S�C�

VT
.�/ in [9]. The toric

variety A==T is Fano, and Theorem C.1 gives

JA==T .�/D e�=z
1X

l1D0

� � �
1X

lr D0

Q
l1

1
� � � Qlr

r el1�1 � � � elr �r

Qr
jD1

Qlj
kD1

.pj C kz/n
;

where � D �1p1 C � � � C �r pr and we have identified the group ring QŒH2.A==T I Z/�

with QŒQ1; : : : ;Qr � via the Q–linear map that sends Qˇ to Qhˇ;p1i
1

� � � Qhˇ;pr i
r .

Each line bundle summand in VT is nef, and the condition k < 0 ensures that

c1.A==T /� c1.VT / is ample, so Theorem D.3 gives

(12) Je;VT
.�/D ec.Q1e�1 C���CQr e�r /=ze�=z

�
1X

l1D0

� � �
1X

lr D0

Q
l1

1
� � � Qlr

r el1�1 � � � elr �r�l1;:::;lr
.�; z/

Qr
jD1

Qlj
kD1

.pj C kz/n

for some rational number c , where

�l1;:::;lr
.�; z/D

� jljY

kD1

.�C p1���r C kz/

�a� 2jljY

kD1

.�C 2p1���r C kz/

�b

�
� rY

jD1

jljCljY

kD1

.�Cp1���r Cpj Ckz/

�c� rY

jD1

jlj�ljY

kD1

.�Cp1���r �pj Ckz/

�d

�
� r�1Y

iD1

rY

jDiC1

li CljY

kD1

.�C pi C pj C kz/

�e

:

The prefactor ec.Q1e�1 C���CQr e�r /=z in (12) comes from the prefactor e�C.�/=z in

Theorem D.3.

Consider now A==G and a point t 2 H �.A==G/. In [9, Section 6.1] the authors consider

the lift QJ S�C�

VG
.t/ of their twisted J–function J S�C�

VG
.t/ determined by a choice of

lift

H �.A==GI Q/! H �.A==T;Q/W :

We restrict to the locus t 2 H 0.A==GI Q/˚ H 2.A==GI Q/, considering the lift

QJe;VG
.t/ WD QJ S�C�

VG
.t/; t 2 H 0.A==GI Q/˚ H 2.A==GI Q/;
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of our twisted J–function Je;VG
determined by our choice of lift

H �.A==GI Q/! H �.A==T;Q/W :

Let p be the ample generator for H 2.A==GI Z/ Š Z and identify the group ring

QŒH2.A==GI Z/� with QŒq� via the Q–linear map which sends Qˇ to qhˇ;pi. Theo-

rems 4.1.1 and 6.1.2 in [9] imply that

QJe;VG
.�.t//[�D

�� r�1Y

iD1

rY

jDiC1

�
z
@

@�j
� z

@

@�i

��
Je;VT

.�/

�

�Dt;Q1D���DQr D.�1/r �1q

for some8 function � W H 2.A==GI Q/! H �.A==GIƒA==G/ such that �.0/D c0q is in

H 0.A==GI Q/˝ƒA==G . Setting t D 0 gives

QJe;VG
.c0q/[�

De˙crq=z
1X

l1D0

� � �
1X

lr D0

.�1/jlj.r�1/qjlj�l1;:::;lr
.�; z/

Qr
jD1

Qlj
kD1

.pj C kz/n

r�1Y

iD1

rY

jDiC1

.pj �piC.lj �li/z/:

The string equation gives

QJe;VG
.c0q/D ec0q=z QJe;VG

.0/

and therefore

(13) QJe;VG
.0/[�

De˛q=z
1X

l1D0

� � �
1X

lr D0

.�1/jlj.r�1/qjlj�l1;:::;lr
.�; z/

Qr
jD1

Qlj
kD1

.pj C kz/n

r�1Y

iD1

rY

jDiC1

.pj �piC.lj �li/z/;

where ˛ D �c0 ˙ cr . Note that if k < �1 then ˛ D 0, for in that case both c and c0

are zero. Note also that �l1;:::;lr
.0; 1/ coincides with what was denoted �l1;:::;lr

in the

statement of the theorem.

We saw in Example D.8 how to extract the quantum period GX from the twisted

J–function Je;VG
.0/: we take the non-equivariant limit �! 0, extract the component

along the unit class 1 2 H �.A==GI Q/, set z D 1 and set Qˇ D t hˇ;�KX i. Thus

we consider the right-hand side of (13), take the non-equivariant limit, extract the

coefficient of �, set z D 1 and set q D t�k. The theorem follows.

8The map � here is the inverse to the map denoted by ' in [9]; it is grading-preserving, where

cohomology classes have their usual degree and q has degree �2k . Furthermore, � is the identity

map modulo q . It follows that �.0/D c0q 2 H 0.A==GI Q/˝ƒA==G for some c0 2 Q and that c0 D 0

whenever k < �1 .
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G Fano manifolds of dimension 1 and 2

As a warm-up exercise, and because we will need some of these results in the 3–

dimensional calculation, we now compute the quantum periods for all Fano manifolds

of dimension 1 and 2.

Example G.1 There is a unique Fano manifold of dimension 1: the projective line P1.

This is the toric variety with weight data

1 1

and nef cone given by the non-negative half-line in R. Corollary C.2 gives

GP1.t/D
1X

dD0

t2d

.d!/2
:

Del Pezzo surfaces

There are 10 deformation families of Fano manifolds of dimension 2: these are the

del Pezzo surfaces. It is well known that, up to deformation,

� there is a unique smooth Fano surface of degree 9, being the projective plane P2 ;

� there are two smooth Fano surfaces of degree 8, being the Hirzebruch surface F1

and the product of projective lines P1 � P1 ;

� there is a unique deformation class of smooth Fano surfaces Sd of degree d ,

1 � d � 7.

Given this, it is easy to see that the del Pezzo surfaces can be constructed, and their

quantum periods calculated, as follows.

Example G.2 The del Pezzo surface P2 is the toric variety with weight data

1 1 1

and nef cone equal to the non-negative half-line. Corollary C.2 gives

GP2.t/D
1X

dD0

t3d

.d!/3
:

Example G.3 The del Pezzo surface P1 � P1 is the toric variety with weight data

1 1 0 0 L

0 0 1 1 M
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and nef cone equal to hL;M i. (Here and henceforth, hL1; : : : ;Lki denotes the cone

spanned by L1; : : : ;Lk .) Corollary C.2 gives

GP1�P1.t/D
1X

lD0

1X

mD0

t2lC2m

.l !/2.m!/2
:

Example G.4 The del Pezzo surface F1 is the toric variety with weight data

1 1 –1 0 L

0 0 1 1 M

and nef cone equal to hL;M i. Corollary C.2 gives

GF1
.t/D

1X

lD0

1X

mDl

t lC2m

.l !/2.m � l/!m!
:

Example G.5 The del Pezzo surface S7 is the toric variety with weight data

1 0 1 –1 0 L

0 1 1 0 –1 M

0 0 –1 1 1 N

and nef cone equal to hL;M;N i. Corollary C.2 gives

GS7
.t/D

1X

lD0

1X

mD0

lCmX

nDmax.l;m/

t lCmCn

l !m!.l C m � n/!.n � l/!.n � m/!
:

Example G.6 The del Pezzo surface S6 is the toric variety with weight data

1 0 0 0 1 –1 A

0 1 0 0 1 0 B

0 0 1 0 0 1 C

0 0 0 1 –1 1 D

and nef cone equal to hACB;B CC;C CD;ACB CC;B CC CDi. Corollary C.2

gives

GS6
.t/D

1X

aD0

1X

bD0

1X

cD0

aCbX

dDmax.a�c;0/

taC2bC2cCd

a!b!c!d!.a C b � d/!.c C d � a/!
:

Example G.7 The del Pezzo surface S5 is a hypersurface of bidegree .1; 2/ in P1�P2.

The ambient space P1 � P2 is the toric variety with weight data

1 1 0 0 0 L

0 0 1 1 1 M
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and nef cone equal to hL;M i, and S5 is a member of jL C 2M j on P1 � P2.

Corollary D.5 gives

GS5
.t/D e�3t

1X

lD0

1X

mD0

t lCm .l C 2m/!

.l !/2.m!/3
:

Example G.8 A complete intersection of type .2; 2/ in P4 is a del Pezzo surface S4 .

Proposition D.9 gives

GS4
.t/D e�4t

1X

dD0

td .2d/!.2d/!

.d!/5
:

Example G.9 A cubic surface in P3 is a del Pezzo surface S3 . Proposition D.9 gives

GS3
.t/D e�6t

1X

dD0

td .3d/!

.d!/4
:

Example G.10 A quartic surface in P .1; 1; 1; 2/ is a del Pezzo surface S2 . Proposition

D.9 gives

GS2
.t/D e�12t

1X

dD0

td .4d/!

.d!/3.2d/!
:

Example G.11 A sextic surface in P .1; 1; 2; 3/ is a del Pezzo surface S1 . Proposition

D.9 gives

GS1
.t/D e�60t

1X

dD0

td .6d/!

.d!/2.2d/!.3d/!
:

H Notation for 3–dimensional Fano manifolds

We fix notation for 3–dimensional Fano manifolds as follows:

� P3 denotes 3–dimensional complex projective space.

� Q3 denotes a quadric hypersurface in P4.

� Vk denotes the 3–dimensional Fano manifold of Picard rank 1, Fano index 1

and degree k .

� Bk denotes the 3–dimensional Fano manifold of Picard rank 1, Fano index 2

and degree 8k .
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� MM�–k denotes the k th entry in the Mori–Mukai list [53] of 3–dimensional

Fano manifolds of Picard rank � , with the exception of the case �D 4, where

we place the 13th entry in Mori and Mukai’s rank-4 list [53, pages 48–49] in

between the first and second elements of that list. This reordering ensures that,

for each � , the sequence MM�–1;MM�–2;MM�–3; : : : is in order of increasing

degree.

1 The Fano manifold P
3

Iskovskikh classification This is case 1 in [37, Table 6.5].

Construction The Fano toric variety X with weight data

1 1 1 1 L

and Nef X spanned by L.

The quantum period Corollary C.2 yields

GX .t/D
1X

dD0

t4d

.d!/4

and regularizing gives

�GX .t/D 1 C 24t4 C 2520t8 C 369600t12 C � � � :

Minkowski period sequence 1

2 The Fano manifold Q3

Iskovskikh classification This is case 2 in [37, Table 6.5].

Construction A divisor X of degree 2 on F D P4.

The quantum period The toric variety F has weight data

1 1 1 1 1 L

and Nef F D hLi. We have:

� F is a Fano variety.

� X � 2L is ample.

� �.KF C X /� 3L is ample.
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Corollary D.5 yields

GX .t/D
1X

dD0

t3d .2d/!

.d!/5

and regularizing gives

�GX .t/D 1 C 12t3 C 540t6 C 33600t9 C 2425500t12 C � � � :

Minkowski period sequence 3

3 The Fano manifold B1

Iskovskikh classification This is case 3 in [37, Table 6.5].

Construction A sextic hypersurface X in P .1; 1; 1; 2; 3/.

The quantum period Proposition D.9 yields

GX .t/D
1X

dD0

t2d .6d/!

.d!/3.2d/!.3d/!

and regularizing gives

�GX .t/D 1 C 120t2 C 83160t4 C 81681600t6 C 93699005400t8

C 117386113965120t10 C � � � :

Minkowski period sequence None. Note that the anticanonical line bundle of B1 is

not very ample.

4 The Fano manifold B2

Iskovskikh classification This is case 4 in [37, Table 6.5].

Construction A quartic hypersurface X in P .1; 1; 1; 1; 2/.

The quantum period Proposition D.9 yields

GX .t/D
1X

dD0

t2d .4d/!

.d!/4.2d/!
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and regularizing gives

�GX .t/D 1 C 24t2 C 2520t4 C 369600t6 C 63063000t8 C 11732745024t10 C � � � :

Minkowski period sequence 140

5 The Fano manifold B3

Iskovskikh classification This is case 5 in [37, Table 6.5].

Construction A divisor X of degree 3 on F D P4.

The quantum period The toric variety F has weight data

1 1 1 1 1 L

and Nef F D hLi. We have:

� F is a Fano variety.

� X � 3L is ample.

� �.KF C X /� 2L is ample.

Corollary D.5 yields

GX .t/D
1X

dD0

t2d .3d/!

.d!/5

and regularizing gives

�GX .t/D 1 C 12t2 C 540t4 C 33600t6 C 2425500t8 C 190702512t10 C � � � :

Minkowski period sequence 106

6 The Fano manifold B4

Iskovskikh classification This is case 6 in [37, Table 6.5].

Construction A codimension-2 complete intersection X of type .2L/\ .2L/ in the

toric variety F D P5.
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The quantum period The toric variety F has weight data

1 1 1 1 1 1 L

and Nef F D hLi. We have:

� F is a Fano variety.

� X is the complete intersection of two ample divisors on F .

� �.KF Cƒ/� 2L is ample.

Corollary D.5 yields

GX .t/D
1X

dD0

t2d .2d/!.2d/!

.d!/6

and regularizing gives

�GX .t/D 1 C 8t2 C 216t4 C 8000t6 C 343000t8 C 16003008t10 C � � � :

Minkowski period sequence 75

7 The Fano manifold B5

Iskovskikh classification This is case 7 in [37, Table 6.5].

Construction A complete intersection X in Gr.2; 5/ cut out by a section of O.1/˚3,

where O.1/ is the pullback of O.1/ on projective space under the Plücker embedding.

The quantum period The line bundle O.1/ is the ample generator of Pic.Gr.2; 5//,

hence O.1/ coincides with det S?, where S is the universal bundle of subspaces

on Gr.2; 5/. We apply Theorem F.1 with a D 3 and b D c D d D e D 0, obtaining

GX .t/D
1X

lD0

1X

mD0

.�1/lCmt2lC2m ..l C m/!/3

.l !/5.m!/5
.1 � 5.m � l/Hm/;

where Hm is the mth harmonic number. Regularizing yields

�GX .t/D 1 C 6t2 C 114t4 C 2940t6 C 87570t8 C 2835756t10 C � � � :

Minkowski period sequence 46

8 The Fano manifold V2

Iskovskikh classification This is case 8 in [37, Table 6.5].
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Construction A sextic hypersurface X in P .1; 1; 1; 1; 3/.

The quantum period Proposition D.9 yields

GX .t/D e�120t
1X

dD0

td .6d/!

.d!/4.3d/!

and regularizing gives

�GX .t/D1 C 68760t2 C 55200000t3 C 61054781400t4 C 71591389125120t5

C 88808827978814400t6 C 114426010259814758400t7

C 151686694219076253783000t8

C 205548259807393951744128000t9 C � � � :

Minkowski period sequence None. Note that the anticanonical line bundle of V2 is

not very ample.

9 The Fano manifold V4

Iskovskikh classification This is cases 9 and 10 in [37, Table 6.5]. These cases

are deformation equivalent: they can both be described as complete intersections of

type .2; 4/ in P .1; 1; 1; 1; 1; 2/.

Construction A divisor X of degree 4 on F D P4.

The quantum period The toric variety F has weight data

1 1 1 1 1 L

and Nef F D hLi. We have:

� F is a Fano variety.

� X � 4L is ample.

� �.KF C X /� L is ample.

Corollary D.5 yields

GX .t/D e�24t
1X

dD0

td .4d/!

.d!/5
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and regularizing gives

�GX .t/D 1 C 1944t2 C 215808t3 C 35295192t4 C 5977566720t5

C 1073491139520t6 C 199954313717760t7

C 38302652395770840t8 C 7497487505353251840t9 C � � � :

Minkowski period sequence 165

10 The Fano manifold V6

Iskovskikh classification This is case 11 in [37, Table 6.5].

Construction A codimension-2 complete intersection X of type .2L/\ .3L/ in the

toric variety F D P5.

The quantum period The toric variety F has weight data

1 1 1 1 1 1 L

and Nef F D hLi. We have:

� F is a Fano variety.

� X is the complete intersection of two ample divisors.

� �.KF Cƒ/� L is ample.

Corollary D.5 yields

GX .t/D e�12t
1X

dD0

td .2d/!.3d/!

.d!/6

and regularizing gives

�GX .t/D 1 C 396t2 C 17616t3 C 1217052t4 C 85220640t5

C 6349812480t6 C 490029523200t7

C 38883641777820t8 C 3152020367254080t9 C � � � :

Minkowski period sequence 164

11 The Fano manifold V8

Iskovskikh classification This is case 12 in [37, Table 6.5].
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Construction A codimension-3 complete intersection X of type .2L/\.2L/\.2L/

in the toric variety F D P6.

The quantum period The toric variety F has weight data

1 1 1 1 1 1 1 L

and Nef F D hLi. We have:

� F is a Fano variety.

� X is the complete intersection of three ample divisors.

� �.KF Cƒ/� L is ample.

Corollary D.5 yields

GX .t/D e�8t
1X

dD0

td .2d/!.2d/!.2d/!

.d!/7

and regularizing gives

�GX .t/D 1 C 152t2 C 3840t3 C 157656t4 C 6428160t5 C 280064960t6

C 12618762240t7 C 584579486680t8 C 27660007173120t9 C � � � :

Minkowski period sequence 163

12 The Fano manifold V10

Iskovskikh classification This is case 13 in [37, Table 6.5].

Construction A complete intersection X in Gr.2; 5/, cut out by a section of

O.1/˚2 ˚O.2/;

where O.1/ is the pullback of O.1/ on projective space under the Plücker embedding.

The quantum period We apply Theorem F.1 with a D 2, b D 1 and c D d D e D 0.

This yields

GX .t/D e�6t
1X

lD0

1X

mD0

.�1/lCmt lCm ..l C m/!/2.2l C 2m/!

.l !/5.m!/5
.1 � 5.m � l/Hm/;

where Hm is the mth harmonic number. Regularizing gives

�GX .t/D 1 C 78t2 C 1320t3 C 37746t4 C 1051920t5 C 31464780t6

C971757360t7 C 30859805970t8 C 1000739433120t9 C � � � :
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Minkowski period sequence 160

13 The Fano manifold V12

Iskovskikh classification This is case 14 in [37, Table 6.5].

Construction A subvariety X of Gr.2; 5/ cut out by a generic section of

.S? ˝ det S?/˚ det S?;

where S is the universal bundle of subspaces on Gr.2; 5/.

A remark on the construction Mukai [58] is devoted to this case and it is shown there

that X is a complete intersection of 7 hyperplane sections of the (10–dimensional)

orthogonal Grassmannian OGr.5; 10/ in its spinor embedding in P15. This model

contains X as a linear section and, perhaps more important, is the largest hyperplane

“un-section” of X. Our construction, on the other hand, is better suited for the fast

calculation of the quantum period of X.

Write V D C5 ; in what follows, for ease of notation, we denote by O.1/ the line bundle

det S? on Gr.2;V /D Gr.2; 5/. Let †� Gr.2;V / be the vanishing locus of a general

section s of the vector bundle S? ˝O.1/. Below we sketch a general construction

of a natural linear embedding †� OGr.5; 10/; this shows that our construction and

Mukai’s construction coincide. To compute the quantum period of X, however, we

need rather less. Gromov–Witten invariants are deformation-invariant so, since there is

a unique deformation family of manifolds of type V12 [36; 37], it suffices to show that

our construction gives a smooth member of this family. In other words, it suffices to

prove that † is a rank-1 Fano 4–fold of Fano index 2 — hence coindex 3 in Mukai’s

terminology — and degree 12.

The Picard rank of † is 1 by Sommese’s theorem — see Lazarsfeld [46, Theorem

7.1.1] — and, from the exact sequence

0 ! T† ! TGr.2;5/

ˇ̌
†

! S? ˝O.1/
ˇ̌
†

! 0

we get that

�K† D
�
�KGr.2;5/ ˝

V2
.S ˝O.�1//

�ˇ̌
†

D O†.2/:

That is, † is a Fano 4–fold of Fano index 2. It remains to show that † has degree 12;

this is a small calculation in Schubert calculus,

Œ†�D c2.S
? ˝ det S?/D �1;1 C 2�2

1 D 3�1;1 C 2�2
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and, therefore,

deg†D Œ†��4
1 D �1;1�

4
1 C 2�5

1 D 2 C 10 D 12:

We next sketch the promised construction of a linear embedding † � OGr.5; 10/.

The first task is to construct a rank-5 vector bundle on †; the bundle that will be the

pull-back of the tautological sub-bundle of OGr.5; 10/.

We claim that Ext1†.S
?;Q/D C and take E to be the unique nontrivial extension. To

calculate this Ext group consider the Koszul resolution of O† ,

0 ! O.�3/! S ˝O.�1/! OGr.2;V / ! O† ! 0:

Tensoring by S ˝Q and using H 1.Gr.2;V /I S ˝Q/D H 2.Gr.2;V /I S ˝Q/D f0g
and H 2.Gr.2;V /I S ˝ Q ˝O.�3// D H 3.Gr.2;V /I S ˝ Q ˝O.�3// D f0g (both

due to the Borel–Weil–Bott theorem) we get

Ext1†.S
?;Q/D H 1.†I S ˝ Q/D H 2.Gr.2;V /I S ˝ Q ˝ S ˝O.�1//D C;

again by Borel–Weil–Bott.

As anticipated, denote now by E the unique nontrivial rank-5 extension,

0 ! Q ! E ! S? ! 0:

The bundle E fits into a natural self-dual “diagram of 9”:

0

��

0

��

0

��

0 // S

��

// E?

��

// Q?

��

// 0

0 // V

��

// W

��

// V ?

��

// 0

0 // Q

��

// E

��

// S? //

��

0

0 0 0

where W D V ˚ V ?. The diagram makes it clear that E � V ˚ V ? is isotropic when

V ˚ V ? is equipped with the canonical nondegenerate symmetric bilinear form. Thus

E induces a map †! OGr.5;V ˚ V ?/.
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The quantum period We apply Theorem F.1 with a D c D 1 and b D d D e D 0.

This yields

GX .t/D e�5t
X

l;m�0

.�t/lCm
1X

lD0

1X

mD0

.l C m/!.2l C m/!.l C 2m/!

.l !/5.m!/5

� .1 C .m � l/.H2lCm C 2HlC2m � 5Hm//;

where Hk denotes the k th harmonic number. Regularizing gives

�GX .t/D 1 C 48t2 C 600t3 C 13176t4 C 276480t5 C 6259800t6 C 146064240t7

C 3505282200t8 C 85882130880t9 C � � � :

Minkowski period sequence 150

14 The Fano manifold V14

Iskovskikh classification This is case 15 in [37, Table 6.5].

Construction A complete intersection X in Gr.2; 6/, cut out by a section of O.1/˚5,

where O.1/ is the pullback of O.1/ on projective space under the Plücker embedding

[57; 30; 31].

The quantum period We apply Theorem F.1 with a D 5 and b D c D d D e D 0.

This yields

GX .t/D e�4t
X

l;m�0

.�1/lCmt lCm ..l C m/!/5

.l !/6.m!/6
.1 � 6.m � l/Hm/;

where Hm is the mth harmonic number. Regularizing gives

�GX .t/D 1 C 32t2 C 312t3 C 5520t4 C 91680t5 C 1651640t6 C 30604560t7

C 583436560t8 C 11352768000t9 C � � � :

Minkowski period sequence 147

15 The Fano manifold V16

Iskovskikh classification This is case 16 in [37, Table 6.5].
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Construction The vanishing locus X of a general section of the vector bundle

V2
S? ˚ .det S?/˚3

on Gr.3; 6/.

A remark on the construction Mukai [60] is devoted to this case and it is shown

there that X is a complete intersection of 3 hyperplane sections of the (6–dimensional)

symplectic Grassmannian SpGr.3; 6/ of complex Lagrangian 3–dimensional subspaces

W � C6 , where C6 is equipped with the standard symplectic form ! 2
V2

C6 ?,

in the Plücker embedding inherited from Gr.3; 6/. Indeed, the natural surjectionV2
C6 ? !

V2
S? induces an isomorphism

H 0
�
Gr.3; 6/I

V2
C6 ?

�
Š H 0

�
Gr.3; 6/I

V2
S?

�

that allows us to view ! as an element of H 0
�
Gr.3; 6/I

V2
S?

�
with zero locus

SpGr.3; 6/. Thus the construction given above coincides with that given by Mukai [60].

The quantum period We apply Theorem F.1 with a D 3, b D c D d D 0 and e D 1.

This yields

GX .t/D1C12t2C32t3C121t4C336t5C2548
3

t6C1888t7C60481
16

t8C185350
27

t9C� � � :

Regularizing gives

�GX .t/D 1 C 24t2 C 192t3 C 2904t4 C 40320t5 C 611520t6 C 9515520t7

C 152412120t8 C 2491104000t9 C � � � :

Minkowski period sequence 143

16 The Fano manifold V18

Iskovskikh classification This is case 17 in [37, Table 6.5].

Construction The vanishing locus X of a general section of the vector bundle

.S ˝ det S?/˚ .det S?/˚2

on Gr.5; 7/.
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A remark on the construction The paper [61] is devoted to this case and it is shown

there that X is a complete intersection of 2 hyperplane sections of a (5–dimensional)

homogeneous space †DG2=P for the exceptional Lie group G2 . It is not hard to argue

from first principles that † is the vanishing locus of a general section of S? ˝ det S?.

We sketch this here, assuming that the reader is acquainted with basic facts about the

geometry of the Lie group G2 . Fix a 7–dimensional complex vector space V D C7

and a 3–form ' 2 ^3V ? in the generic GL7.C/–orbit; we may take

' D dx124 C dx235 C dx346 C dx457 C dx561 C dx672 C dx713;

where dxijk D dxi ^ dxj ^ dxk . Then

†D fW 2 Gr.2;V / j '.w1; w2; � /� 0 for all w1; w2 2 W g:

As usual denote by 0 ! S ! V ! Q ! 0 the tautological sequence on Gr.2;V /.

Note that rk S? D 2, hence
V3

S? D 0, and therefore there is a natural homomorphismV3
V ? ! Q? ˝

�V2
S?

�
. This homomorphism allows us to

� view ' as an element s' 2 H 0.Gr.2; 7/I Q? ˝ det S?/; and

� identify † with Z.s'/.

Finally, we get our construction upon identifying Gr.2;V / with Gr.5;V ?/.

The quantum period We apply Theorem F.1 with a D 2, d D 1 and b D c D e D 0.

This yields

GX .t/D 1C9t2C20t3C 261
4

t4C153t5C 1317
4

t6C621t7C 67581
64

t8C 351641
216

t9C� � � :

Regularizing gives

�GX .t/D 1 C 18t2 C 120t3 C 1566t4 C 18360t5 C 237060t6 C 3129840t7

C 42576030t8 C 590756880t9 C � � � :

Minkowski period sequence 124

17 The Fano manifold V22

Iskovskikh classification This is case 18 in [37, Table 6.5].

Construction The vanishing locus X of a general section of the vector bundle

.S ˝ det S?/˚ 3

on Gr.3; 7/ (cf [56; 59]).
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The quantum period We apply Theorem F.1 with d D 3 and a D b D c D e D 0.

This yields

GX .t/D 1 C 6t2 C 10t3 C 53
2

t4 C 48t5 C 977
12

t6 C 120t7 C 5117
32

t8 C 5210
27

t9 C � � � :

Regularizing gives

�GX .t/D 1 C 12t2 C 60t3 C 636t4 C 5760t5 C 58620t6

C 604800t7 C 6447420t8 C 70022400t9 C � � � :

Minkowski period sequence 113

18 The Fano manifold MM2–1

Mori–Mukai construction The blow-up of B1 with centre an elliptic curve which

is the intersection of two members of
ˇ̌
�1

2
KB1

ˇ̌
.

Our construction A divisor X of bidegree .1; 1/ in the product P1 � B1 .

The two constructions coincide Apply Lemma E.1 with V D OB1
˚ OB1

, W D
�1

2
KB1

and f W V ! W the map given by the two sections of �1
2
KB1

that define the

elliptic curve.

The quantum period Combining Example G.1, the calculation for B1 and Corollary

E.4, we have

GP1�B1
.t/D

1X

lD0

1X

mD0

t2lC2m .6m/!

.l !/2.m!/3.2m/!.3m/!
:

Applying Remark D.6 yields

GX .t/D e�61t
1X

lD0

1X

mD0

t lCm .6m/!.l C m/!

.l !/2.m!/3.2m/!.3m/!

and regularizing gives

�GX .t/D 1 C 10380t2 C 2082840t3 C 650599740t4 C 199351017360t5

C 64604751907800t6 C 21521865311226000t7

C 7344504146141322300t8 C 2554251417295177437600t9 C � � � :

Minkowski period sequence None. Note that the anticanonical line bundle of X is

not very ample.
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19 The Fano manifold MM2–2

Mori–Mukai construction A double cover of P1 � P2 branched along a divisor of

bidegree .2; 4/.

Our construction A member X of j2L C 4M j in the toric variety F with weight

data
x0 x1 y0 y1 y2 w

1 1 0 0 0 1 L

0 0 1 1 1 2 M

and Nef F D hL;L C 2M i. We have:

� �KF D 3L C 5M is ample, that is, F is a smooth Fano orbifold.9

� X � 2L C 4M is nef.

� �.KF C X /� L C M is ample.

The two constructions coincide Consider the defining equation of X to be w2 Df2;4 ,

where f2;4 is a bihomogeneous polynomial of degrees 2 in x0 and x1 and 4 in y0 , y1

and y2 . Let pW F Ü P1 � P2 be the rational map which sends (contravariantly)

the homogeneous co-ordinate functions Œx0;x1;y0;y1;y2� on P1
x0;x1

� P2
y0;y1;y2

to

Œx0;x1;y0;y1;y2�. The restriction of p to X is a morphism, which exhibits X as a

double cover of P1 � P2 branched over the locus .f2;4 D 0/� P1
x0;x1

� P2
y0;y1;y2

.

Remarks on our construction Next we make some comments on the geometry of X

and the embedding X � F that are not logically necessary for the computation of

the quantum period; this subsection can safely be skipped by the impatient reader. In

particular we explain why in this case Nef F is a proper subset of Nef X. The toric

variety F is defined by the requirement that Nef F D hL;LC2M i; the unstable locus

is .x0 D x1 D 0/[ .y0 D y1 D y2 D w D 0/ and

F D Œ.C�/2 � .C�/4=T2�:

Note that F is itself a Fano variety — or, more precisely, a smooth Fano orbifold — and

X is a nef divisor on F such that �.KF C X / is ample, so the given model is well

adapted for computing the quantum cohomology of X via quantum Lefschetz. The

linear system jLjDjx0;x1j defines a morphism f W F !P1
x0;x1

with fibre the weighted

9By “smooth orbifold”, we mean “smooth Deligne–Mumford stack over C ”. Excellent introductions

to Deligne–Mumford stacks can be found in [19; 72, Appendix]; note that in the latter reference Deligne–

Mumford stacks are called “algebraic stacks”. By “smooth Fano orbifold”, we mean “smooth orbifold

such that the coarse moduli space is a Fano variety”.
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projective space P .1; 1; 1; 2/; the restriction f jX W X ! P1 is one of the two extremal

contractions of X. On the other hand, the linear system jM j D jy0;y1;y2j is not

basepoint-free on F : the base locus is a section C of the morphism f . When restricted

to X, however, this linear system is free and it defines the “other” extremal contraction

X ! P2. In particular, we see that hL;L C 2M i D Nef F ¨ Nef X D hL;M i. How

can we see the rest of Nef X ?

Let us denote by F 0 the toric variety corresponding to the “other” chamber, so that

Nef F 0 DhLC2M;M i and the unstable locus is .y0Dy1Dy2D0/[.x0Dx1DwD0/.

Note that F 0 is the flip of F along the curve C D .y0 D y1 D y2 D 0/ � F. X is

a member of j2L C 4M j, a nef linear system on F 0 , but �.KF 0 C X / is not nef

on F 0 and so this construction of X is not well adapted for computing the quantum

cohomology of X via quantum Lefschetz. Nevertheless, Nef X D Nef F C Nef F 0, so

we need F 0 to see all of Nef X. The linear system jy0;y1;y2j is free on F 0 and it

defines an extremal contraction gW F 0 ! P2 with fibre P2 ; this also gives the missing

extremal contraction of X.

The quantum period If we assume a mirror theorem for toric orbifolds in the form

[35, Conjecture 4.3] then we can apply the quantum Lefschetz theorem for orbifolds [13],

exactly as in Proposition D.9, to obtain

GX .t/D e�14t
1X

lD0

1X

mD0

t lCm .2l C 4m/!

.l !/2.m!/3.l C 2m/!
:

Regularizing gives

(14) �GX .t/D 1 C 470t2 C 21216t3 C 1562778t4

C 114717120t5 C 9003183140t6 C 731280419520t7

C 61092935052730t8 C 5214279501137280t9 C � � � :

Minkowski period sequence None. Note that the anticanonical line bundle of X is

not very ample.

The quantum period, alternative construction There is as yet no proof of [35,

Conjecture 4.3] in the literature, so we give an alternative calculation of the quantum

period for X. This uses a different model of X, as a member of j2N j in the toric

variety F with weight data

x0 x1 y0 y1 y2 w z

1 1 0 0 0 –1 0 L

0 0 1 1 1 –2 0 M

0 0 0 0 0 1 1 N
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and Nef F D hL;M;N i. The variety F is the projective bundle

P .OP1�P2.�1;�2/˚OP1�P2/

over P2. Let pW F ! P1�P2 be the projection map and consider the defining equation

of X to be
z2 �w2f2;4 D 0;

where f2;4 is a bihomogeneous polynomial of degrees 2 in x0 and x1 and 4 in y0 , y1

and y2 . The restriction pj
X

W X ! P1 � P2 exhibits X as a double cover of P1 � P2

branched over the locus .f2;4 D 0/� P1
x0;x1

� P2
y0;y1;y2

.

We now compute the quantum period of X. Let p1 , p2 , p3 2 H �.F I Z/ denote

the first Chern classes of L, M and N, respectively; these classes form a basis

for H 2.F I Z/. Write � 2 H 2.F I Q/ as � D �1p1 C �2p2 C �3p3 and identify the

group ring QŒH2.F I Z/� with the polynomial ring QŒQ1;Q2;Q3� via the Q–linear

map that sends the element Qˇ 2 QŒH2.F I Z/� to Qhˇ;p1i
1

Qhˇ;p2i
2

Qhˇ;p3i
3

. The toric

variety F is Fano; Theorem C.1 gives

JF .�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/3

Qn
kD1.p3 C kz/

�
Q0

kD�1.p3 � p1 � 2p2 C kz/
Qn�l�2m

kD�1 .p3 � p1 � 2p2 C kz/

and hence

Ie;E.�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

Q2n
kD1.�C 2p3 C kz/

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/3

Qn
kD1.p3 C kz/

�
Q0

kD�1.p3 � p1 � 2p2 C kz/
Qn�l�2m

kD�1 .p3 � p1 � 2p2 C kz/

We have

Ie;E.�/D A.�/C B.�/z�1 C O.z�2/;

where

A.�/D
1X

nD0

Qn
3en�3

.2n/!

.n!/2
D .1 � 4Q3e�3/�

1
2 ;

B.�/D
1X

nD1

Q1e�1Qn
3en�3

.2n/!

n!.n � 1/!
C

1X

nD2

Q2e�2Qn
3en�3

.2n/!

n!.n � 2/!

C
1X

nD0

Qn
3en�3

.2n/!

.n!/2
..�C 2p3/H2n � p3Hn � .p3 � p1 � 2p2/Hn/
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and Hm is the mth harmonic number. In the notation of Corollary D.4, we have

A.�/D.1 � 4Q3e�3/�
1
2 ;

B0.�/D
1X

nD1

Q1e�1Qn
3en�3

.2n/!

n!.n � 1/!
C

1X

nD2

Q2e�2Qn
3en�3

.2n/!

n!.n � 2/!

C
1X

nD0

Qn
3en�3

.2n/!

.n!/2
.p3.2H2n � Hn/� .p3 � p1 � 2p2/Hn/

D2Q1e�1Q3e�3.1 � 4Q3e�3/�
3
2 C 12Q2e�2Q2

3e2�3.1 � 4Q3e�3/�
5
2

� p3.1 � 4Q3e�3/�
1
2 log.1 � 4Q3e�3/

� .p3 � p1 � 2p2/

1X

nD0

Qn
3en�3

.2n/!

.n!/2
Hn:

Corollary D.4 gives

JY;X .�.�//D .1 � 4Q3e�3/
1
2 IY;X .�/;

where

�.�/D � C 2Q1e�1Q3e�3

1 � 4Q3e�3
C

12Q2e�2Q2
3
e2�3

.1 � 4Q3e�3/2

� p3 log.1 � 4Q3e�3/� .p3 � p1 � 2p2/F;

F D .1 � 4Q3e�3/
1
2

1X

nD0

Qn
3en�3

.2n/!

.n!/2
Hn

and

IY;X .�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

Q2n
kD1.2p3 C kz/

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/3

Qn
kD1.p3 C kz/

�
Q0

kD�1.p3 � p1 � 2p2 C kz/
Qn�l�2m

kD�1 .p3 � p1 � 2p2 C kz/
:

From (8), we have that

j?JX .j
?�.�//D 2p3.1 � 4Q3e�3/1=2IY;X .�/;

where j W X ! F is the inclusion map and equality holds after applying the map

of coefficient rings ƒX ! ƒF induced by j . Note that j ?.p3 � p1 � 2p2/ D 0;

this reflects the fact that X is disjoint from the divisor w D 0. Consider the classes

p0
1

D j ?p1 and p0
2

D j ?p2 . These form a basis for H 2.X /, and we identify the

group ring QŒH2.X I Z/� with the polynomial ring QŒq1; q2� via the Q–linear map

that sends the element Qˇ 2 QŒH2.F I Z/� to qhˇ;p0
1
i

1
qhˇ;p0

2
i

2
. The map ƒX ! ƒF
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induced by j sends q1 to Q1Q3 and q2 to Q2Q2
3
. We have

j ?�.�/D .�1 C �3/p
0
1 C .�2 C 2�3/p

0
2 C 2Q1e�1Q3e�3

1 � 4Q3e�3
C

12Q2e�2Q2
3
e2�3

.1 � 4Q3e�3/2

� .p0
1 C 2p0

2/ log.1 � 4Q3e�3/

and thus, from (3)

JX .j
?�.�//

D exp

��
2Q1e�1Q3e�3

1 � 4Q3e�3
C

12Q2e�2Q2
3
e2�3

.1 � 4Q3e�3/2

�
z�1

�

� JX ..�1 C �3/p
0
1 C .�2 C 2�3/p

0
2/

ˇ̌
ˇ̌
Q1D

Q1

1�4Q3e
�3

;Q2D
Q2

.1�4Q3e
�3 /2

:

Making the inverse change of variables Q1 DQ1.1�4Q3e�3/, Q2 DQ2.1�4Q3e�3/2,

we see that10

(15) j?JX .0/D e�.2Q1Q3C12Q2Q2
3
/=z

� 2p3.1 � 4Q3/
1
2 IY;X .0/

ˇ̌
Q1DQ1.1�4Q3/;Q2DQ2.1�4Q3/2 :

Recall that the quantum period GX is obtained from the component of JX .0/ along

the unit class 1 2 H �.X I Q/ by setting z D 1 and Qˇ D t hˇ;�KX i. To obtain GX ,

therefore, we need to extract the coefficient of 2p3 on the right-hand side of (15) and

set z D 1,

Q1Q2 D t and Q1Q2
3 D t

(this amounts to setting q1 D q2 D t and then applying the map of coefficient rings

ƒX !ƒF induced by the inclusion j ). Observe that p3.p3�p1�2p2/D0 in H �.F /.

Taking the coefficient of 2p3 on the right-hand side of (15) and setting z D 1 thus gives

e�.2Q1Q3C12Q2Q2
3
/

1X

lD0

1X

mD0

1X

nDlC2m

Ql
1Qm

2 Qn
3.1 � 4Q3/

lC2mC 1
2

� .2n/!

.l !/2.m!/3n!.n � l � 2m/!

D e�.2Q1Q3C12Q2Q2
3
/

1X

lD0

1X

mD0

Ql
1
Qm

2
QlC2m

3
.1 � 4Q3/

lC2mC 1
2

.l !/2.m!/3

�
1X

nDlC2m

Qn�l�2m
3

.2n/!

n!.n � l � 2m/!

10The right-hand side of (15) depends on Q1 , Q2 and Q3 only through the products Q1Q3

and Q2Q2
3

, but this is not manifest from the formula. We will see it explicitly below for the coefficient of

2p3 in (15).
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D e�.2Q1Q3C12Q2Q2
3
/

1X

lD0

1X

mD0

Ql
1
Qm

2
QlC2m

3
.1 � 4Q3/

lC2mC 1
2

.l !/2.m!/3

�
�

d

dQ3

�lC2m

.1 � 4Q3/
� 1

2

D e�.2Q1Q3C12Q2Q2
3
/

1X

lD0

1X

mD0

Ql
1Qm

2 QlC2m
3

.2l C 4m/!

.l !/2.m!/3.l C 2m/!
:

Setting Q1Q3 D t , Q1Q2
3

D t yields

GX .t/D e�14t
1X

lD0

1X

mD0

t lCm .2l C 4m/!

.l !/2.m!/3.l C 2m/!

and regularizing gives (14), as before.

20 The Fano manifold MM2–3

Mori–Mukai construction The blow-up of B2 with centre an elliptic curve that is

the intersection of two members of
ˇ̌
�1

2
KB2

ˇ̌
.

Our construction A divisor X of bidegree .1; 1/ in the product P1 � B2 .

The two constructions coincide Apply Lemma E.1 with V D OB2
˚ OB2

, W D
�1

2
KB2

and f W V ! W the map given by the two sections of �1
2
KB2

that define the

elliptic curve.

The quantum period Combining Example G.1, the calculation for B2 and Corollary

E.4, we have

GP1�B2
.t/D

1X

lD0

1X

mD0

t2lC2m .4m/!

.l !/2.m!/4.2m/!
:

Applying Remark D.6 yields

GX .t/D e�13t
1X

lD0

1X

mD0

t lCm .4m/!.l C m/!

.l !/2.m!/4.2m/!

and regularizing gives

�GX .t/D 1 C 300t2 C 8472t3 C 438588t4 C 21183120t5 C 1115221080t6

C 60512230800t7 C 3385779824700t8 C 193681282922400t9 C � � � :
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Minkowski period sequence None. Note that the anticanonical line bundle of X is

not very ample.

21 The Fano manifold MM2–4

Mori–Mukai construction The blow-up of P3 with centre an intersection of two

cubics.

Our construction A member X of jL C 3M j in the toric variety F D P1 � P3.

The two constructions coincide Apply Lemma E.1 with V D OP3 ˚ OP3 , W D
OP3.3/ and f W V ! W given by the two cubics that define the centre of the blow-up.

The quantum period The toric variety F has weight data

1 1 0 0 0 0 L

0 0 1 1 1 1 M

and Nef F D hL;M i. We have:

� F is a Fano variety.

� X � L C 3M is ample.

� �.KF C X /� L C M is ample.

Corollary D.5 yields

GX .t/D e�7t
1X

lD0

1X

mD0

t lCm .l C 3m/!

.l !/2.m!/4

and regularizing gives

�GX .t/D 1 C 90t2 C 1518t3 C 46086t4 C 1327320t5 C 41383350t6

C 1329442380t7 C 43944315030t8 C 1483208104560t9 C � � � :

Minkowski period sequence 161

22 The Fano manifold MM2–5

Mori–Mukai construction The blow-up of B3 with centre a plane cubic on it.
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Our construction A member X of j3M j in the toric variety F with weight data

s0 s1 x x2 x3 x4

1 1 –1 0 0 0 L

0 0 1 1 1 1 M

and Nef F D hL;M i. We have:

� �KF D L C 4M is ample, that is, F is a Fano variety.

� X � 3M is nef.

� �.KF C X /� L C M is ample.

The two constructions coincide The notation makes it clear that s0 and s1 are

sections of L; xs0 , xs1 , x2 , x3 and x4 are sections of M; and F is a scroll

over P1 with fibre P3. The morphism F ! P4 that sends (contravariantly) the

homogeneous co-ordinate functions Œx0; : : : ;x4� to Œxs0;xs1;x2;x3;x4� is the blow-

up along x0 D x1 D 0.

The quantum period Corollary D.5 yields

GX .t/D e�6t
1X

lD0

1X

mDl

t lCm .3m/!

.l !/2.m � l/!.m!/3

and regularizing gives

�GX .t/D 1 C 66t2 C 816t3 C 20214t4 C 449640t5 C 11050500t6

C278336520t7 C 7229175030t8 C 191680807920t9 C � � � :

Minkowski period sequence 158

23 The Fano manifold MM2–6

Mori–Mukai construction Either

(a) a divisor of bidegree .2; 2/ on P2 � P2 ; or

(b) a double cover of W � P2 � P2 (the divisor of bidegree (1,1) on P2 � P2/

whose branch locus is a member of j�KW j.

Our construction A member X of j2L C 2M j in the toric variety F D P2 � P2.

The two constructions coincide Obvious.
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The quantum period This is Example D.7. We have

�GX .t/D 1 C 44t2 C 528t3 C 11292t4 C 228000t5 C 4999040t6

C 112654080t7 C 2613620380t8 C 61885803840t9 C � � � :

Minkowski period sequence 149

24 The Fano manifold MM2–7

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P4 with centre

the intersection of two members of jOQ.2/j.

Our construction A codimension-2 complete intersection X of type

.2M /\ .L C 2M /

on the toric variety F D P1 � P4.

The two constructions coincide Apply Lemma E.1 with V DOQ˚OQ , W DOQ.2/

and f W V ! W given by the two sections of OQ.2/ that define the centre of the blow-

up. This shows that X is a divisor of bidegree .1; 2/ on P1 � Q or, in other words, a

complete intersection of type .2M /\ .L C 2M / on P1 � P4.

The quantum period The toric variety F has weight data

1 1 0 0 0 0 0 L

0 0 1 1 1 1 1 M

and Nef F D hL;M i. We have:

� F is a Fano variety.

� X is the complete intersection of two nef divisors on F .

� �.KF Cƒ/� L C M is ample.

Corollary D.5 yields

GX .t/D e�5t
1X

lD0

1X

mD0

t lCm .2m/!.l C 2m/!

.l !/2.m!/5

and regularizing gives

�GX .t/D 1 C 36t2 C 348t3 C 6516t4 C 110880t5 C 2069820t6

C 39606000t7 C 780530100t8 C 15697106880t9 C � � � :
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Minkowski period sequence 148

25 The Fano manifold MM2–8

Mori–Mukai construction

(i) A double cover of B7 (the blow-up of P3 at a point) with branch locus a

member B of j�KB7
j such that B\D is nonsingular, where D is the exceptional

divisor of the blow-up B7 ! P3.

(ii) A specialization of (a) where B \ D is reduced but singular.

Our construction A member X of j2L C 2M j in the toric variety F with weight

data
s0 s1 s2 x x3 w

1 1 1 –1 0 1 L

0 0 0 1 1 1 M

and Nef F D hL;L C M i. We have:

� �KF D 3.LCM / is nef and big but not ample, so that F is not a Fano variety.

� X � 2.L C M / is nef.

� �.KF C X /� L C M is nef and big but not ample.

The two constructions coincide Consider the equation of X in the form

w2 D x2
3a2 C x3xb3 C x2c4;

where a2 , b3 , and c4 are generic homogeneous polynomials in s0 , s1 and s2 of

degrees 2, 3 and 4, respectively. The locus .w D 0/ � F is a copy of B7 and the

branch locus meets the exceptional divisor D D .x D w D 0/Š P2 in a nonsingular

conic.

Remarks on the birational geometry of X Next we make a few comments on the

geometry of X and the embedding X � F that are not logically necessary for the com-

putation of the quantum period. The discussion is similar to the discussion of MM2–2

above; it in particular shows that X is a Fano variety, which is not immediately clear

from our construction.

The secondary fan manifestly has three maximal cones. By definition, Nef F D
hL;L C M i. The irrelevant ideal is .wsi ;x3si ;xsi/ and the unstable locus is

.s0 D s1 D s2 D 0/[ .w D x D x3 D 0/:
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The linear system jLj D js0; s1; s2j defines a morphism f W F ! P2 with fibre P2

and f jX is a conic bundle (in particular, an extremal contraction in the Mori category).

The linear system jL C M j D jw;x3si ;xsisj j gives a flopping contraction of … D
.x D x3 D 0/ Š P2 with normal bundle O.�1/ ˚ O.�2/. Note, however, that

X \…D ¿: this contraction maps X isomorphically onto its image.

Denote by F 0 the toric variety such that Nef F 0 D hLCM;M i. The irrelevant ideal is

.x3w;xw;x3si ;xsi/

and the unstable locus is

.x D x3 D 0/[ .s0 D s1 D s2 D w D 0/:

The linear system jL C M j defines the flop of F. On the other hand, jM j defines a

contraction gW F ! P .1; 1; 1; 1; 2/ which sends (contravariantly) the homogeneous

co-ordinate functions Œx0;x1;x2;x3;y� on P .1; 1; 1; 1; 2/ to Œs0x; s1x; s2x;x3; wx�.

The restriction gjX maps X to the variety Y with equation

y2 D x2
3a2.x0;x1;x2/C x3b3.x0;x1;x2/C c4.x0;x1;x2/;

so Y is the double cover of P3 branched along a general quartic surface B with an

ordinary node at .0; 0; 0; 1/ and gjX W X ! Y is an extremal divisorial contraction

contracting X \ .x D 0/ D
�
w2 D x2

3
a2.s0; s1; s2/

�
Š P1 � P1 to the node just

mentioned.

It follows from the preceding discussion that Nef X D Nef F C Nef F 0 D hL;M i; in

particular, therefore, X is Fano.

Finally the chamber hM;M � Li is “hollow”, that is, taking the GIT quotient with

respect to a stability condition from the interior of this chamber leads to a rank-1 toric

variety.

The quantum period Let p1 , p2 2 H �.F I Z/ denote the first Chern classes of L and

L ˝ M , respectively; these classes form a basis for H 2.F I Z/. Write � 2 H 2.F I Q/

as � D �1p1 C �2p2 and identify the group ring QŒH2.F I Z/� with the polynomial

ring QŒQ1;Q2� via the Q–linear map that sends the element Qˇ 2 QŒH2.F I Z/� to

Qhˇ;p1i
1

Qhˇ;p2i
2

. We have

IF .�/D e�=z
X

l;m�0

Ql
1
Qm

2
el�1em�2

Ql
kD1.p1 C kz/3

Qm
kD1.p2 C kz/

�
Q0

kD�1.p2 � p1 C kz/
Qm�l

kD�1.p2 � p1 C kz/

Q0
kD�1.p2 � 2p1 C kz/

Qm�2l
kD�1.p2 � 2p1 C kz/

D 1 C �z�1 C O.z�2/:
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Assumptions D.1 hold and, in the notation of Proposition D.2, we have A.�/D 1 and

B.�/D � . We now proceed exactly as in the proof of Corollary D.5, obtaining

IF;X .�/D e�=z
X

l;m�0

Ql
1
Qm

2
el�1em�2

Q2lC2m
kD1 .2p1 C 2p2 C kz/

Ql
kD1.p1 C kz/3

Qm
kD1.p2 C kz/

�
Q0

kD�1.p2 � p1 C kz/
Qm�l

kD�1.p2 � p1 C kz/

Q0
kD�1.p2 � 2p1 C kz/

Qm�2l
kD�1.p2 � 2p1 C kz/

and

GX .t/D e�2t
1X

lD0

1X

mD2l

tm .2m/!

.l !/3m!.m � l/!.m � 2l/!
:

Regularizing gives

�GX .t/D 1 C 26t2 C 216t3 C 3582t4 C 54480t5 C 874700t6

C 15000720t7 C 256965310t8 C 4576672800t9 C � � � :

Minkowski period sequence 144

26 The Fano manifold MM2–9

Mori–Mukai construction The blow-up of P3 with centre a curve � of degree 7

and genus 5 that is an intersection of cubics.

Our construction A codimension-2 complete intersection X of type

.L C M /\ .2L C M /

in the toric variety F D P3 � P2.

The two constructions coincide The curve � is cut out by the equations:

rk

�
l0 l1 l2
q0 q1 q2

�
< 2;

where the li are linear forms and the qj are quadratic forms. Lemma E.1 implies that

X is the complete intersection given by the two equations

�
l0y0 C l1y1 C l2y2 D 0;

q0y0 C q1y1 C q2y2 D 0;

in P3 � P2, where the first factor has co-ordinates x0 , x1 , x2 , x3 and the second

factor has co-ordinates y0 , y1 , y2 . In other words, X is a complete intersection of

type .L C M /\ .2L C M / in P3 � P2.
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The quantum period The toric variety F has weight data

1 1 1 1 0 0 0 L

0 0 0 0 1 1 1 M

and Nef F D hL;M i. We have:

� F is a Fano variety.

� X is the complete intersection of two ample divisors on F .

� �.KF Cƒ/� L C M is ample.

Corollary D.5 yields

GX .t/D e�3t
1X

lD0

1X

mD0

t lCm .l C m/!.2l C m/!

.l !/4.m!/3

and regularizing gives

�GX .t/D 1 C 22t2 C 174t3 C 2514t4 C 34200t5 C 501070t6

C 7586880t7 C 117858370t8 C 1870811040t9 C � � � :

Minkowski period sequence 139

27 The Fano manifold MM2–10

Mori–Mukai construction The blow-up of B4 � P5 with centre an elliptic curve

that is an intersection of two hyperplane sections.

Our construction A codimension-2 complete intersection X of type .2M /\ .2M /

in the toric variety F with weight data

s0 s1 x x2 x3 x4 x5

1 1 –1 0 0 0 0 L

0 0 1 1 1 1 1 M

and Nef F D hL;M i. We have:

� �KF D L C 5M is ample, that is, F is a Fano variety.

� X is the complete intersection of two nef divisors on F .

� �.KF Cƒ/� L C M is ample.
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The two constructions coincide The notation makes it clear that s0 and s1 are sec-

tions of L; xs0 , xs1 , x2 , x3 , x4 and x5 are sections of M; and F is a scroll over P1

with fibre P4. The morphism F ! P4 that sends (contravariantly) the homogeneous co-

ordinate functions Œx0;x1;x2;x3;x4;x5� to Œxs0;xs1;x2;x3;x4;x5� is the blow-up

along .x0 D x1 D 0/� P4.

The quantum period Corollary D.5 yields

GX .t/D e�4t
1X

lD0

1X

mDl

t lCm .2m/!.2m/!

.l !/2.m � l/!.m!/4

and regularizing gives

�GX .t/D 1 C 28t2 C 216t3 C 3516t4 C 49680t5 C 783640t6

C 12594960t7 C 208898620t8 C 3533634720t9 C � � � :

Minkowski period sequence 145

28 The Fano manifold MM2–11

Mori–Mukai construction The blow-up of B3 � P4 with centre a line on it.

Our construction A member X of jLC2M j in the toric variety F with weight data

s0 s1 s2 x x3 x4

1 1 1 –1 0 0 L

0 0 0 1 1 1 M

and Nef F D hL;M i. We have:

� �KF D 2L C 3M is ample, that is, F is a Fano variety.

� X � L C 2M is ample.

� �.KF C X /� L C M is ample.

The two constructions coincide The notation makes it clear that s0 , s1 and s2 are

sections of L; xs0 , xs1 , xs2 , x3 and x4 are sections of M; and F is a scroll over P2

with fibre P2. The morphism F ! P4 that sends (contravariantly) the homogeneous co-

ordinate functions Œx0;x1;x2;x3;x4� to Œxs0;xs1;xs2;x3;x4� is the blow-up along

the line `D .x0 D x1 D x2 D 0/� P4. We construct X as the proper transform of a

general cubic B3 � P4 containing the line `. This B3 has an equation of the form

x0A C x1B C x2C D 0;
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where A, B and C are homogeneous quadratic polynomials in the variables x0; : : : ;x4 .

Thus X is given in F by the equation:

s0A.s0x;s1x;s2x;x3;x4/Cs1B.s0x;s1x;s2x;x3;x4/Cs2C.s0x;s1x;s2x;x3;x4/D0

The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mDl

t lCm .l C 2m/!

.l !/3.m � l/!.m!/2

and regularizing gives

�GX .t/D 1 C 14t2 C 108t3 C 1074t4 C 13440t5 C 154760t6

C 1951320t7 C 24999730t8 C 325321920t9 C � � � :

Minkowski period sequence 120

29 The Fano manifold MM2–12

Mori–Mukai construction The blow-up of P3 with centre a curve � of degree 6

and genus 3 that is an intersection of cubics.

Our construction A codimension-3 complete intersection X of type

.L C M /\ .L C M /\ .L C M /

in the toric variety F D P3 � P3.

The two constructions coincide The curve � � P3
x0;x1;x3

is given by the condition

rk

0
@

l00 l01 l02 l03

l10 l11 l12 l13

l20 l21 l22 l23

1
A< 3;

where the lij are linear forms in x0; : : : ;x3 . Lemma E.1 implies that X is a co-

dimension-3 complete intersection in P3
x0;x1;x2;x3

� P3
y0;y1;y2;y3

given by the three

equations 8
<
:

l00y0 C l01y1 C l02y2 C l03y3 D 0;

l10y0 C l11y1 C l12y2 C l13y3 D 0;

l20y0 C l21y1 C l22y2 C l23y3 D 0:

In other words, X is a complete intersection of type .L C M /\ .L C M /\ .L C M /

in P3 � P3. An equivalent description of this variety was given by Qureshi [67,

Proposition 6.4.1].
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The quantum period The toric variety F has weight data

1 1 1 1 0 0 0 0 L

0 0 0 0 1 1 1 1 M

and Nef F D hL;M i. We have that:

� F is a Fano variety.

� X is the complete intersection of three ample divisors on F .

� �.KF Cƒ/� L C M is ample.

Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mD0

t lCm ..l C m/!/3

.l !/4.m!/4

and regularizing gives

�GX .t/D 1 C 14t2 C 72t3 C 882t4 C 8400t5 C 95180t6

C 1060080t7 C 12389650t8 C 146472480t9 C � � � :

Minkowski period sequence 118

30 The Fano manifold MM2–13

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P4 with centre a

curve � of degree 6 and genus 2.

Our construction A codimension-3 complete intersection X of type

.L C M /\ .L C M /\ .2M /

in the toric variety F D P2 � P4.

The two constructions coincide Let Œs0; s1;y� be homogeneous co-ordinates on

P .1; 1; 3/. We have that � D P .1; 1; 3/\ Q, where the embedding P .1; 1; 3/ ,! P4

sends (contravariantly) the homogeneous co-ordinate functions

Œx0; : : : ;x4� 7! Œs3
0 ; s

2
0s1; s0s2

1 ; s
3
1 ;y�:

Thus P .1; 1; 3/� P4 is given by the condition

rk

�
x0 x1 x2

x1 x2 x3

�
< 2:
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By Lemma E.1, the blow-up G of P4 along P .1; 1; 3/ is the complete intersection in

P2
y0;:::;y2

� P4
x0;:::;x4

cut out by the equations

�
x0y0 � x1y1 C x2y2 D 0;

x1y0 � x2y1 C x3y2 D 0:

Our Fano variety X is the complete intersection of G with a quadric q.x0;x1;x2;x3;x4/.

Thus X is a complete intersection of type .L C M /\ .L C M /\ .2M / in P2 � P4.

The quantum period The toric variety F has weight data

1 1 1 0 0 0 0 0 L

0 0 0 1 1 1 1 1 M

and Nef F D hL;M i. We have that:

� F is a Fano variety.

� X is the complete intersection of three nef divisors on F .

� �.KF Cƒ/� L C M is ample.

Corollary D.5 yields

GX .t/D e�3t
1X

lD0

1X

mD0

t lCm .2m/!..l C m/!/2

.l !/3.m!/5

and regularizing gives

�GX .t/D 1 C 14t2 C 84t3 C 930t4 C 9720t5 C 108680t6

C 1259160t7 C 14951650t8 C 181377840t9 C � � � :

Minkowski period sequence 119

31 The Fano manifold MM2–14

Mori–Mukai construction The blow-up of B5 � P6 with centre an elliptic curve

that is an intersection of two hyperplane sections.

Our construction A divisor11 X of bidegree .1; 1/ on B5 � P1.

11This is one of six cases of families of rank-2 Fano 3–folds (MM2–14 , MM2–17 , MM2–20 ,

MM2–21 , MM2–22 , MM2–26 ) where the generic member is not a complete intersection in a toric

variety. Of these, four (MM2–14 , MM2–20 , MM2–22 , MM2–26 ) are blow-ups of B5 along a curve: a

complete intersection, a twisted cubic, a conic and a line. Fano 3–folds in families MM2–17 and MM2–21

are blow-ups of a quadric 3–fold.
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The two constructions coincide Let Œx0; : : : ;x6� be homogeneous co-ordinates on

P6 and let F ! P6 be the blow-up in the complete intersection .x0 D x1 D 0/. Our

Fano variety X is the proper transform of B5 � P6 under the blow-up. Applying

Lemma E.1 with V D OP6 ˚OP6 , W D OP6.1/ and f W V ! W the map given by

.x0;x1/ shows that F is the subvariety of P6
x0;:::;x6

� P1
y0;y1

given by the equation

x0y0 C x1y1 D 0.

The quantum period Combining Example G.1, the calculation for B5 and Corollary

E.4, we have

GB5�P1.t/D
1X

lD0

1X

mD0

1X

nD0

.�1/lCmt2lC2mC2n ..l C m/!/3

.l !/5.m!/5.n!/2
.1 � 5.m � l/Hm/;

where Hm is the mth harmonic number. Applying Remark D.6 yields

GX .t/De�4t
1X

lD0

1X

mD0

1X

nD0

.�1/lCmt lCmCn .l C m C n/!..l C m/!/3

.l !/5.m!/5.n!/2
.1�5.m�l/Hm/

and regularizing gives

�GX .t/D 1 C 16t2 C 90t3 C 1104t4 C 11460t5 C 133990t6

C 1588860t7 C 19463920t8 C 242996040t9 C � � � :

Minkowski period sequence 122

32 The Fano manifold MM2–15

Mori–Mukai construction The blow-up of P3 with centre the intersection of a

quadric A and a cubic B .

Our construction A member X of j2LCM j in the toric variety F with weight data

s0 s1 s2 s3 x x4

1 1 1 1 –1 0 L

0 0 0 0 1 1 M

and Nef F D hL;M i. We have:

� �KF D 3L C 2M is ample, that is, F is a Fano variety.

� X � 2L C M is ample.

� �.KF C X /� L C M is ample.

Geometry & Topology, Volume 20 (2016)



Quantum periods for 3–dimensional Fano manifolds 163

The two constructions coincide Apply Lemma E.1 with V D OP3.�1/ ˚ OP3 ,

W D OP3.2/ and f W V ! W the map given by the matrix .B A/.

The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mDl

t lCm .2l C m/!

.l !/4.m � l/!m!

and regularizing gives

�GX .t/D 1 C 12t2 C 36t3 C 564t4 C 3600t5 C 41700t6

C 360360t7 C 3839220t8 C 37749600t9 C � � � :

Minkowski period sequence 109

33 The Fano manifold MM2–16

Mori–Mukai construction The blow-up of B4 � P5 with centre a conic on it.

Our construction A codimension-2 complete intersection X of type .LCM /\.2M /

in the toric variety F with weight data

s0 s1 s2 x x3 x4 x5

1 1 1 –1 0 0 0 L

0 0 0 1 1 1 1 M

and Nef F D hL;M i. We have:

� �KF D 2L C 4M is ample, that is F is a Fano variety.

� X is the complete intersection of two nef divisors on F .

� �.KF Cƒ/� L C M is ample.

The two constructions coincide The morphism F ! P5 that sends (contravariantly)

the homogeneous co-ordinate functions Œx0;x1; : : : ;x5� to Œs0x; s1x; s2x;x3;x4;x5�

blows up the plane …D .x0 D x1 D x2 D 0/. We realise X as the complete intersection

of the proper transform of a quadric containing … and a generic quadric.

The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mDl

t lCm .l C m/!.2m/!

.l !/3.m � l/!.m!/3
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and regularizing gives

�GX .t/D 1 C 10t2 C 60t3 C 510t4 C 4920t5 C 47080t6

C 473760t7 C 4908190t8 C 51641520t9 C � � � :

Minkowski period sequence 104

34 The Fano manifold MM2–17

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P4 with centre an

elliptic curve � of degree 5 on it.

Our construction The vanishing locus X of a general section of the vector bundle

.S? �OP3.1//˚ .det S? �OP3.1//˚ .det S? �OP3/

on the key variety F D Gr.2; 4/� P3, where S is the universal bundle of subspaces

on Gr.2; 4/.

The two constructions coincide First consider Gr.2; 4/ with tautological rank-2 sub-

bundle S � C4 : it is well known that the vanishing locus Z D Z.s/ of a general

section s 2 �.Gr.2; 4/I E/, where

E D S? ˝ det S?

is a del Pezzo surface of degree 5. Indeed, this can be shown as follows: the adjunction

formula immediately implies that �KZ D �.KX ˝det E/jZ D det S? is ample, that is,

Z is a del Pezzo surface, and a small exercise in Schubert calculus shows that K2
Z

D 5.

Next we blow up Z �Gr.2; 4/. Consider the P1 –bundle pW P .E?/!Gr.2; 4/ of lines

in E? : under p?E ! O.1/ we can identify s 2 �.Gr.2; 4/I E/ D �.P .E?/;O.1//

with a section Qs of O.1/ on P .E?/ and, by Lemma E.1,

pW Y D Z.Qs/� P .E?/! Gr.2; 4/ blows up Z D Z.s/� Gr.2; 4/:

Next, identify:

� P .E?/D P .S ˝ det S/ with P .S/. Write V D C4 with basis e0; : : : ; e3 and

note that the tautological sequence

0 ! S ! V ! Q ! 0

on Gr.2; 4/ identifies V ? with �
�
Gr.2; 4/I S?

�
. In this notation, we can now

also identify

P .S/D Z.�/� Gr.2;V /� P .V ?/;
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where � D e0x0 C � � � e3x3 2 �.Gr.2;V / � P .V ?/I S? � O.1// is a general

section.

� The line bundle O.1/ on P .E?/ with the line bundle det S?.1/ on P .S/ and

Qs with a section that, abusing notation, we still denote by Qs :

Qs 2 �.P .S/I det S?.1//:

Combining all of the above we identify the blow-up Y of a del Pezzo surface of

degree 5, Z � Gr.2; 4/, with the vanishing locus of a general section .�; Qs/ of the

bundle

.S? �OP3.1//˚ .det S? �OP3.1//

on Gr.2; 4/� P3. It follows easily from this that our construction and the Mori–Mukai

construction coincide.

Abelianization Consider Gr.2; 4/ as the geometric quotient C8==GL2.C/, where

we regard C8 as the space M.2; 4/ of 2 � 4 complex matrices and GL2.C/ acts by

multiplication on the left. The universal bundle S of subspaces on Gr.2; 4/ is the

bundle on C8==GL2.C/ determined by V ?
std , where Vstd is the standard representation

of GL2.C/. Consider the situation as in [9, Section 3.1] with

� the space that is denoted by X in [9] set equal to A D C12, regarded as the

space of pairs

f.M; w/ j M is a 2 � 4 complex matrix and w 2 C4 is a vectorgI

� G D GL2.C/� C�, acting on A as

.g; �/W .M; w/ 7! .gM; �w/I

� T D .C�/3, the diagonal subtorus in G ;

� the group that is denoted by S in [9] set equal to the trivial group;

� V equal to the representation of G given by

.Vstd � Vstd/˚ .det Vstd � Vstd/˚ det Vstd � Vtriv;

where Vtriv is the trivial 1–dimensional representation of C�.

It is clear that A==G D F, whereas A==T D P3 � P3 � P3. The non-trivial element

in the Weyl group W D Z=2Z permutes the first and second factors in the product

P3 � P3 � P3. The representation V induces the vector bundle VG D E over F,

whereas the representation V induces the vector bundle

VT D O.1; 0; 1/˚O.0; 1; 1/˚O.1; 1; 1/˚O.1; 1; 0/

over A==T .
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The abelian/non-abelian correspondence Let pi 2H 2.A==T I Q/, 1� i �3, denote

the first Chern class of �?
i OP3.1/, where �i W A==T ! P3 is projection to the i th

factor of the product A==T D P3 � P3 � P3. Set � D .p2 � p1/. We fix a lift of

H �.A==GI Q/ to H �.A==T;Q/W in the sense of [9, Section 3]. As in the proof of

Theorem F.1 there are many possible choices for such a lift and the precise choice made

will be unimportant in what follows. The lift allows us to regard H �.A==GI Q/ as a

subspace of H �.A==T;Q/W , which maps isomorphically to the Weyl-anti-invariant

part H �.A==T;Q/a of H �.A==T;Q/ via

H �.A==T;Q/W
[�

// H �.A==T;Q/a:

We compute the quantum period of X by computing the J–function of F D A==G

twisted [16] by the Euler class and the bundle VG , using the abelian/non-abelian

correspondence [9]. An alternative method of calculation has been given by Andrew

Strangeway [69].

We first compute the J–function of A==T twisted by the Euler class and the bundle VT .

As in the proof of Theorem F.1, consider the bundles VT and VG equipped with the

canonical C� –action that rotates fibres and acts trivially on the base, and consider

the twisted J–function Je;VT
of A==T . Je;VT

was defined in (6) above, and is the

restriction to the locus � 2 H 0.A==T /˚H 2.A==T / of what was denoted by J S�C�

VT
.�/

in [9]. The toric variety A==T D P3 � P3 � P3 is Fano and Theorem C.1 gives

(16) JA==T .�/D e�=z
1X

l1D0

1X

l2D0

1X

l3D0

Q
l1

1
Q

l2

2
Q

l3

3
el1�1el2�2el3�3

Q3
jD1

Qlj
kD1

.pj C kz/4
;

where � D �1p1 C�2p2 C�3p3 and we have identified the group ring QŒH2.A==T I Z/�

with QŒQ1;Q2;Q3� via the Q–linear map that sends Qˇ to Qhˇ;p1i
1

Qhˇ;p2i
2

Qhˇ;p3i
3

.

Each line bundle summand in VT is nef and c1.A==T /�c1.VT / is ample, so Theorem

D.3 gives

(17) Je;VT
.�/D e�.Q1e�1 CQ2e�2 CQ3e�3 /=ze�=z

�
1X

l1D0

1X

l2D0

1X

l3D0

Q
l1

1
Q

l2

2
Q

l3

3
el1�1el2�2el3�3

�
Q

1�i<j�3

Qli Clj
kD1

.�C pi C pj C kz/
Q3

jD1

Qlj
kD1

.pj C kz/4

�
l1Cl2Cl3Y

kD1

.�C p1 C p2 C p3 C kz/:

Consider now F D A==G D Gr.2; 4/�P3 and a point t 2 H �.F /. Let �1 2 H 2.F I Q/

be the pullback to F (under projection to the first factor) of the ample generator
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of H 2.Gr.2; 4// and let �2 2 H 2.F I Q/ be the pullback to F (under projection

to the second factor) of the ample generator of H 2.P3/. Identify the group ring

QŒH2.F I Z/� with QŒq1; q2� via the Q–linear map which sends Qˇ to qhˇ;�1i
1

qhˇ;�2i
2

.

In [9, Section 6.1] the authors consider the lift QJ S�C�

VG
.t/ of their twisted J–function

J S�C�

VG
.t/ determined by a choice of lift H �.A==GI Q/! H �.A==T;Q/W . We restrict

to the locus t 2 H 0.A==GI Q/˚ H 2.A==GI Q/, considering the lift

QJe;VG
.t/ WD QJ S�C�

VG
.t/; t 2 H 0.A==GI Q/˚ H 2.A==GI Q/;

of our twisted J–function Je;VG
determined by our choice of lift

H �.A==GI Q/! H �.A==T;Q/W :

Theorems 4.1.1 and 6.1.2 in [9] imply that

QJe;VG
.�.t//[�D

��
z
@

@�2
� z

@

@�1

�
Je;VT

.�/

�

�Dt;Q1DQ2D�q1;Q3Dq2

for some12 function � W H 2.A==GI Q/ ! H �.A==GIƒA==G/ such that �.0/ is in

H 0.A==GI Q/˝ƒA==G . Setting t D 0 gives

(18) QJe;VG
.�.0//[�

De�.2q1Cq2/=z
1X

l1D0

1X

l2D0

1X

l3D0

.�1/l1Cl2q
l1Cl2

1
q

l3

2

�
Q

1�i<j�3

Qli Clj
kD1

.�CpiCpj Ckz/
Q3

jD1

Qlj
kD1

.pj C kz/4

�
� l1Cl2Cl3Y

kD1

.�C p1 C p2 C p3 C kz/

�
.p2 � p1 C .l2 � l1/z/:

The left-hand side here takes the form

.p2 � p1/.1 C �.0/z�1 C O.z�2//

whereas the right-hand side is

(19) .p2 � p1/.1 � q1z�1 C O.z�2//:

12As in Theorem F.1, the map � is grading-preserving and satisfies � � id modulo q1; q2 . We will

need only that �.0/ 2 H 0.A==GI Q/˝ƒA==G , however, and we will see this explicitly below.
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We conclude that �.0/D �q1 and hence, via the string equation, that

(20) QJe;VG
.0/[�

D e�.q1Cq2/=z
1X

l1D0

1X

l2D0

1X

l3D0

.�1/l1Cl2q
l1Cl2

1
q

l3

2

�
Q

1�i<j�3

Qli Clj
kD1

.�CpiCpj Ckz/
Q3

jD1

Qlj
kD1

.pj C kz/4

�
� l1Cl2Cl3Y

kD1

.�C p1 C p2 C p3 C kz/

�
.p2 � p1 C .l2 � l1/z/:

We saw in Example D.8 how to extract the quantum period GX from the twisted

J–function Je;VG
.0/: we take the non-equivariant limit �! 0, extract the component

along the unit class 1 2 H �.A==GI Q/, set z D 1 and set Qˇ D t hˇ;�KX i. Thus

we consider the right-hand side of (20), take the non-equivariant limit, extract the

coefficient of � and set z D 1 and q1 D q2 D t . This yields

GX .t/De�2t
1X

l1D0

1X

l2D0

1X

l3D0

.�1/l1Cl2 t l1Cl2Cl3
.l1Cl2/!.l1Cl3/!.l2Cl3/!.l1Cl2Cl3/!

.l1!/4.l2!/4.l3!/4

�.1C.l2�l1/.Hl2Cl3
�4Hl2

//;

where Hk is the k th harmonic number. Regularizing gives

�GX .t/D 1 C 10t2 C 42t3 C 414t4 C 3300t5 C 29890t6

C 275940t7 C 2608270t8 C 25305000t9 C � � � :

Minkowski period sequence 101

35 The Fano manifold MM2–18

Mori–Mukai construction A double cover of P1 � P2 with branch locus a divisor

of bidegree .2; 2/.

Our construction A member X of j2L C 2M j in the toric variety F with weight

data
x0 x1 x2 y0 y1 w

1 1 1 0 0 1 L

0 0 0 1 1 1 M

and Nef F D hL;L C M i. We have:

� �KF D 4L C 3M is ample, that is F is a Fano variety.
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� X � 2L C 2M is nef.

� �.KF C X /� 2L C M is ample.

The two constructions coincide The defining equation of X is

w2 D f2;2.x0;x1;x2I y0;y1/

and so the morphism X ! P2 � P1 which sends the point Œx0 W x1 W x2 W y0 W y1 W w�
of X to the point Œx0 W x1 W x2 W y0 W y1� of P2 � P1 exhibits X as a double cover of

P2 � P1 branched over a divisor of bidegree .2; 2/.

The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mD0

t2lCm .2l C 2m/!

.l !/3.m!/2.l C m/!

and regularizing gives

�GX .t/D 1 C 6t2 C 48t3 C 282t4 C 2400t5 C 22020t6

C 184800t7 C 1684410t8 C 15798720t9 C � � � :

Minkowski period sequence 74

36 The Fano manifold MM2–19

Mori–Mukai construction The blow-up of B4 � P5 with centre a line on it.

Our construction A codimension-2 complete intersection X of type

.L C M /\ .L C M /

in the toric variety F with weight data

s0 s1 s2 s3 x x4 x5

1 1 1 1 –1 0 0 L

0 0 0 0 1 1 1 M

and Nef F D hL;M i. We have:

� �KF D 3L C 3M is ample, that is, F is a Fano variety.

� X is the complete intersection of two ample divisors on F .

� �.KF Cƒ/� L C M is ample.
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The two constructions coincide The morphism F ! P5 that sends (contravariantly)

the homogeneous co-ordinate functions Œx0; : : : ;x5� to Œxs0; : : : ;xs3;x4;x5� blows up

the line .x0 D � � � D x3 D 0/ in P5. Now take the proper transform of a B4 containing

this line.

The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mDl

t lCm .l C m/!.l C m/!

.l !/4.m � l/!.m!/2

and regularizing gives

�GX .t/D 1 C 8t2 C 30t3 C 240t4 C 1920t5 C 13490t6

C 121800t7 C 953680t8 C 8465520t9 C � � � :

Minkowski period sequence 86

37 The Fano manifold MM2–20

Mori–Mukai construction The blow-up of B5 � P6 with centre a twisted cubic on

it.

Our construction The vanishing locus X of a general section of the vector bundle

E D .S? �OP2.1//˚ .det S? �OP2/˚3

on the key variety F D Gr.2; 5/� P2, where S is the universal bundle of subspaces

on Gr.2; 5/.

The two constructions coincide Consider C5 with basis e0; : : : ; e4 . Let M.2; 5/�

denote the space of 2 � 5 complex matrices of full rank. As is customary we represent

a point W in Gr.2;C5/ by a matrix
�

a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

�
2 M.2; 5/�

up to the action of GL2.C/ from the left. A basis element ei of C5 gives a section of

the rank-2 vector bundle S? that evaluates as

ei.W /D
�

ai

bi

�
:

Consider now the section

s D e0x0 C e1x1 C e2x2 2 �.Gr.2; 5/� P2I S? �O.1//:
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Let Y � Gr.2; 5/� P2 be the vanishing locus of s and let pW Y ! Gr.2; 5/ be the

projection. Y consists of pairs .W;x/ 2 M.2; 5/� � P2 such that x D .x0;x1;x2/ is

a solution of the system

W �

0
BBBB@

x0

x1

x2

0

0

1
CCCCA

D 0;

that is, pW Y ! Gr.2; 5/ blows up the locus Z � Gr.2; 5/ consisting of those W such

that

rk

�
a0 a1 a2

b0 b1 b2

�
< 2:

In Plücker co-ordinates

xij D det

�
ai aj

bi bj

�
;

this is the locus where x01 D x02 D x12 D 0. Thus, Z is the cubic scroll defined by

x01 D x02 D x12 D 0 and rk

�
x03 x13 x14

x04 x14 x24

�
< 2:

Intersecting with 3 more hyperplane sections in the Plücker embedding, we get the

blow-up of B5 along a twisted cubic.

Abelianization Consider Gr.2; 5/ as the geometric quotient C10==GL2.C/, where

we regard C10 as the space M.2; 5/ of 2 � 5 complex matrices and GL2.C/ acts by

multiplication on the left. The universal bundle S of subspaces on Gr.2; 5/ is the

bundle on C10==GL2.C/ determined by V ?
std , where Vstd is the standard representation

of GL5.C/. Consider the situation as in [9, Section 3.1] with

� the space that is denoted by X in [9] set equal to A D C13, regarded as the

space of pairs

f.M; w/ j M is a 2 � 5 complex matrix and w 2 C3 is a vectorgI

� G D GL2.C/� C�, acting on A as

.g; �/W .M; w/ 7! .gM; �w/I

� T D .C�/3, the diagonal subtorus in G ;

� the group that is denoted by S in [9] set equal to the trivial group;
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� V equal to the representation of G given by

.Vstd � Vstd/˚ .det Vstd � Vtriv/
˚3;

where Vtriv is the trivial 1–dimensional representation of C�.

It is clear that A==G D F, whereas A==T D P4�P4�P2. The Weyl group W D Z=2Z

permutes the first and second factors of the product P4 � P4 � P2. The representation

V induces the vector bundle VG D E over F, whereas the representation V induces

the vector bundle

VT D O.1; 0; 1/˚O.0; 1; 1/˚O.1; 1; 0/˚3

over A==T .

The abelian/non-abelian correspondence We proceed exactly as for MM2–17 , re-

placing:

� P3 � P3 � P3 by P4 � P4 � P2, throughout.

� Equation (16) by

JA==T .�/

D e�=z
1X

l1D0

1X

l2D0

1X

l3D0

Q
l1

1
Q

l2

2
Q

l3

3
el1�1el2�2el3�3

Ql1

kD1
.p1Ckz/5

Ql2

kD1
.p2Ckz/5

Ql3

kD1
.p3Ckz/3

:

� Equation (17) by

Je;VT
.�/D e�.Q1e�1 CQ2e�2 CQ3e�3 /=ze�=z

�
1X

l1D0

1X

l2D0

1X

l3D0

Q
l1

1
Q

l2

2
Q

l3

3
el1�1el2�2el3�3

�
Ql1Cl2

kD1
.�Cp1Cp2Ckz/3

Ql1

kD1
.p1Ckz/5

Ql2

kD1
.p2Ckz/5

�
Ql3

kD1
.p3Ckz/3

�
l1Cl3Y

kD1

.�C p1 C p3 C kz/

l2Cl3Y

kD1

.�C p2 C p3 C kz/:

� Gr.2; 4/� P3 by Gr.2; 5/� P2, throughout.
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� Equation (18) by

QJe;VG
.�.0//[�

De�.2q1Cq2/=z
1X

l1D0

1X

l2D0

1X

l3D0

.�1/l1Cl2q
l1Cl2

1
q

l3

2

�
Ql1Cl2

kD1
.�Cp1Cp2Ckz/3

Ql1

kD1
.p1Ckz/5

Ql2

kD1
.p2Ckz/5

�
Ql3

kD1
.p3Ckz/3

�
l1Cl3Y

kD1

.�Cp1Cp3Ckz/

l2Cl3Y

kD1

.�Cp2Cp3Ckz/.p2�p1C.l2�l1/z/:

� Equation (19) by

.p2 � p1/.1 C O.z�2//:

� The conclusion �.0/D �q1 by �.0/D 0 and (20) by

QJe;VG
.0/[�

De�.2q1Cq2/=z
1X

l1D0

1X

l2D0

1X

l3D0

.�1/l1Cl2q
l1Cl2

1
q

l3

2

�
Ql1Cl2

kD1
.�Cp1Cp2Ckz/3

Ql1

kD1
.p1Ckz/5

Ql2

kD1
.p2Ckz/5

�
Ql3

kD1
.p3Ckz/3

�
l1Cl3Y

kD1

.�Cp1Cp3Ckz/

l2Cl3Y

kD1

.�Cp2Cp3Ckz/.p2�p1C.l2�l1/z/:

This yields

GX .t/D e�3t
1X

l1D0

1X

l2D0

1X

l3D0

.�1/l1Cl2 t l1Cl2Cl3
..l1 C l2/!/

3.l1 C l3/!.l2 C l3/!

.l1!/5.l2!/5.l3!/3

� .1 C .l2 � l1/.Hl2Cl3
� 5Hl2

//;

where Hk is the k th harmonic number. Regularizing gives

�GX .t/D 1 C 8t2 C 36t3 C 288t4 C 2220t5 C 18260t6

C 154560t7 C 1348480t8 C 11977560t9 C � � � :

Minkowski period sequence 87
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38 The Fano manifold MM2–21

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P4 with centre a

rational normal curve of degree 4 on it.

Our construction The vanishing locus X of a general section of the vector bundle

E D .S? �OP4.1//˚2 ˚ .det S? �OP4/

on the key variety F D Gr.2; 4/� P4, where S is the universal bundle of subspaces

on Gr.2; 4/.

The two constructions coincide Consider C4 with basis e0; : : : ; e3 . Let M.2; 4/�

denote the space of 2 � 4 complex matrices of full rank and represent a point W in

Gr.2;C4/ by

W D
�

a0 a1 a2 a3

b0 b1 b2 b3

�
2 M.2; 4/�

up to the action of GL2.C/ from the left. A basis element ei , 0 � i � 3, of C4 gives

a section of the rank-2 vector bundle S? that evaluates as

ei.W /D
�

ai

bi

�
:

Let x0; : : : ;x4 be homogeneous co-ordinates on P4 and consider the two sections

s1 D e0x0 C e1x1 C e2x2 C e3x3 and s2 D e0x1 C e1x2 C e2x3 C e3x4

in �.Gr.2; 4/�P4I S? �O.1//. Let Y � Gr.2; 4/�P4 denote the locus on which s1

and s2 both vanish, and let pW Y ! Gr.2; 4/ and qW Y ! P4 denote the projections to

the two factors of Gr.2; 4/�P4. The locus Y consists of pairs .W;x/2 M.2; 4/��P4

such that

W � Ker

0
BB@

x0 x1

x1 x2

x2 x3

x3 x4

1
CCA :

It follows that qW Y ! P4 blows up the locus Z given by the condition

rk

�
x0 x1 x2 x3

x1 x2 x3 x4

�
< 2;

that is, the rational normal curve. Intersecting with p?.H /, where H 2 jdet S?j, gives

the proper transform of a quadric 3–fold containing Z .
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Abelianization Consider Gr.2; 4/ as the geometric quotient C8==GL2.C/, where

we regard C8 as the space M.2; 4/� of 2 � 4 complex matrices and GL2.C/ acts

by multiplication on the left. The universal bundle S of subspaces on Gr.2; 4/ is the

bundle on C8==GL2.C/ determined by V ?
std , where Vstd is the standard representation

of GL2.C/. Consider the situation as in [9, Section 3.1] with

� the space that is denoted by X in [9] set equal to A D C13 , regarded as the

space of pairs

f.M; w/ j M is a 2 � 4 complex matrix and w 2 C5 is a vectorgI

� G D GL2.C/� C�, acting on A as

.g; �/W .M; w/ 7! .gM; �w/I

� T D .C�/3, the diagonal subtorus in G ;

� the group that is denoted by S in [9] set equal to the trivial group;

� V equal to the representation of G D GL2.C/� C� given by

.Vstd � Vstd/
˚2 ˚ .det Vstd � Vtriv/;

where Vtriv is the trivial 1–dimensional representation of C�.

It is clear that A==G D F, whereas A==T D P3�P3�P4. The Weyl group W D Z=2Z

permutes the first and second factors of the product P3 � P3 � P4. The representation

V induces the vector bundle VG D E over F, whereas the representation V induces

the vector bundle

VT D O.1; 0; 1/˚2 ˚O.0; 1; 1/˚2 ˚O.1; 1; 0/

over A==T D P3 � P3 � P4.

The abelian/non-abelian correspondence Again we proceed as for MM2–17 , replac-

ing:

� P3 � P3 � P3 by P3 � P3 � P4, throughout.

� Equation (16) by

JA==T .�/

D e�=z
1X

l1D0

1X

l2D0

1X

l3D0

Q
l1

1
Q

l2

2
Q

l3

3
el1�1el2�2el3�3

Ql1

kD1
.p1Ckz/4

Ql2

kD1
.p2Ckz/4

Ql3

kD1
.p3Ckz/5

:
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� Equation (17) by

Je;VT
.�/D e�.Q1e�1 CQ2e�2 CQ3e�3 /=ze�=z

�
1X

l1D0

1X

l2D0

1X

l3D0

Q
l1

1
Q

l2

2
Q

l3

3
el1�1el2�2el3�3

�
Ql1Cl2

kD1
.�Cp1Cp2Ckz/

Ql1

kD1
.p1Ckz/4

Ql2

kD1
.p2Ckz/4

�
Ql3

kD1
.p3Ckz/5

�
l1Cl3Y

kD1

.�C p1 C p3 C kz/2
l2Cl3Y

kD1

.�C p2 C p3 C kz/2:

� Gr.2; 4/� P3 by Gr.2; 4/� P4, throughout.

� Equation (18) by

QJe;VG
.�.0//[�

De�.2q1Cq2/=z
1X

l1D0

1X

l2D0

1X

l3D0

.�1/l1Cl2q
l1Cl2

1
q

l3

2

�
Ql1Cl2

kD1
.�Cp1Cp2Ckz/

Ql1

kD1
.p1Ckz/4

Ql2

kD1
.p2Ckz/4

�
Ql3

kD1
.p3Ckz/5

�
l1Cl3Y

kD1

.�Cp1Cp3Ckz/2
l2Cl3Y

kD1

.�Cp2Cp3Ckz/2.p2�p1C.l2�l1/z/:

� Equation (19) by

.p2 � p1/.1 � 2q1z�1 C O.z�2//:

� The conclusion �.0/D �q1 by �.0/D �2q1 , and (20) by

QJe;VG
.0/[�

D e�q2=z
1X

l1D0

1X

l2D0

1X

l3D0

.�1/l1Cl2q
l1Cl2

1
q

l3

2

Ql1Cl2

kD1
.�Cp1Cp2Ckz/

Ql1

kD1
.p1Ckz/4

Ql2

kD1
.p2Ckz/4

�
Ql3

kD1
.p3Ckz/5

�
l1Cl3Y

kD1

.�C p1 C p3 C kz/2

�
l2Cl3Y

kD1

.�C p2 C p3 C kz/2.p2 � p1 C .l2 � l1/z/:
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This yields

GX .t/D e�t
1X

l1D0

1X

l2D0

1X

l3D0

.�1/l1Cl2 t l1Cl2Cl3
.l1 C l2/!..l1 C l3/!/

2..l2 C l3/!/
2

.l1!/4.l2!/4.l3!/5

� .1 C .l2 � l1/.2Hl2Cl3
� 4Hl2

//;

where Hk is the k th harmonic number. Regularizing gives

�GX .t/D 1 C 8t2 C 24t3 C 240t4 C 1440t5 C 11960t6

C 89040t7 C 731920t8 C 5913600t9 C � � � :

Minkowski period sequence 84

39 The Fano manifold MM2–22

Mori–Mukai construction The blow-up of B5 � P6 with centre a conic on it.

Our construction A complete intersection X of type L \ M \ M \ M in the flag

manifold Fl D Fl.1; 2I C5/, where pW Fl ! P4 and qW Fl ! Gr D Gr.2; 5/ are the

natural projections, L D p?O.1/, M D q? det S? and S is the universal bundle of

subspaces on Gr.

The two constructions coincide Note that Fl D P .S/ is the projectivization of the

universal bundle S of subspaces on Gr. On Fl we have a natural surjection of vector

bundles:

q?S? ! L inducing H 0.Fl; q?S?/Š H 0.Fl;L/

Let s 2 H 0.Fl;L/ be a general section and Y be the locus .s D 0/ � Fl. It is clear

that qW Y ! Gr blows up Z D .Qs D 0/ � Gr, where Qs “is” s , now thought of as

an element of H 0.Gr;S?/. We are done, as Z D Z1;1 maps to a quadric under the

Plücker embedding.

Abelianization Consider the situation as in [9, Section 3.1] with

� the space that is denoted by X in [9] set equal to A D C12, regarded as the

space of pairs

f.v; w/ j v 2 C2 is a row vector and w is a 2 � 5 complex matrixgI

� G D C� � GL2.C/, acting on A as

.�;g/W .v; w/ 7! .�vg�1;gw/I
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� T D .C�/3, the diagonal subtorus in G ;

� the group that is denoted by S in [9] set equal to the trivial group;

� V equal to the representation of G given by the direct sum of one copy of the

standard representation of the first factor C� and three copies of the determinant

of the standard representation of the second factor GL2.C/.

Then A==G is the flag manifold Fl D Fl.1; 2I C5/, whereas A==T is the toric variety

with weight data

1 1 1 1 1 0 0 0 0 0 –1 0 L1

0 0 0 0 0 1 1 1 1 1 0 –1 L2

0 0 0 0 0 0 0 0 0 0 1 1 H

and NefDhL1;L2;H i; that is, A==T is the projective bundle P .O.�1; 0/˚O.0;�1//

over P4�P4. The non-trivial element of the Weyl group W DZ=2Z exchanges the two

factors of P4 � P4. The representation V induces the vector bundle VG D L ˚ M ˚3

over A==G D Fl, whereas the representation V induces the vector bundle VT D
H ˚ .L1 C L2/

˚3 over A==T .

The abelian/non-abelian correspondence Let p1 , p2 , p3 2 H 2.A==T I Q/ denote

the first Chern classes of the line bundles L1 , L2 and H , respectively. We fix a lift of

H �.A==GI Q/ to H �.A==T;Q/W in the sense of [9, Section 3]; there are many possible

choices for such a lift and the precise choice made will be unimportant in what follows.

The lift allows us to regard H �.A==GI Q/ as a subspace of H �.A==T;Q/W , which

maps isomorphically to the Weyl-anti-invariant part H �.A==T;Q/a of H �.A==T;Q/

via

H �.A==T;Q/W
[.p2�p1/

// H �.A==T;Q/a:

We compute the quantum period of X by computing the J–function of Fl D A==G

twisted [16] by the Euler class and the bundle VG , using the abelian/non-abelian

correspondence [9].

Our first step is to compute the J–function of A==T twisted by the Euler class and

the bundle VT . As in Section D.1, and as in [9], consider the bundles VT and VG

equipped with the canonical C� –action that rotates fibres and acts trivially on the

base. We will compute the twisted J–function Je;VT
of A==T using the quantum

Lefschetz theorem; Je;VT
was defined in (6) above and is the restriction to the locus

� 2 H 0.A==T /˚ H 2.A==T / of what was denoted by J S�C�

VT
.�/ in [9]. The toric
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variety A==T is Fano, so Theorem C.1 gives

JA==T .�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2em�3

Ql
kD1.p1 C kz/5

Qm
kD1.p2 C kz/5

Q0
kD�1.p3 � p1 C kz/

Qn�l
kD�1.p3 � p1 C kz/

�
Q0

kD�1.p3 � p2 C kz/Qn�m
kD�1.p3 � p2 C kz/

;

where � D �1p1 C�2p2 C�3p3 and we have identified the group ring QŒH2.A==T I Z/�

with QŒQ1;Q2;Q3� via the Q–linear map that sends Qˇ to Qhˇ;p1i
1

Qhˇ;p2i
2

Qhˇ;p3i
3

.

The line bundles L1 , L2 and H are nef, and c1.A==T / � c1.VT / is ample, so

Theorem D.3 gives

Je;VT
.�/D e�Q3e�3 =ze�=z

X

l;m;n�0

Ql
1Qm

2 Qn
3el�1em�2em�3

�
Qn

kD1.�Cp3Ckz/
QlCm

kD1.�Cp1Cp2Ckz/3

Ql
kD1.p1Ckz/5

Qm
kD1.p2Ckz/5

�
Q0

kD�1.p3�p1Ckz/
Qn�l

kD�1.p3�p1Ckz/

Q0
kD�1.p3�p2Ckz/Qn�m
kD�1.p3�p2Ckz/

:

Consider now F D A==G D Fl and a point t 2 H �.F /. Recall that Fl D P .S/ is the pro-

jectivization of the universal bundle S of subspaces on Gr. Let �1 2 H 2.F I Q/ be the

pullback to F (under the projection map qW Fl ! Gr) of the ample generator of H 2.Gr/

and let �2 2 H 2.F I Q/ be the first Chern class of OP.S/.1/. Identify the group ring

QŒH2.F I Z/� with QŒq1; q2� via the Q–linear map which sends Qˇ to qhˇ;�1i
1

qhˇ;�2i
2

.

In [9, Section 6.1] the authors consider the lift QJ S�C�

VG
.t/ of their twisted J–function

J S�C�

VG
.t/ determined by a choice of lift H �.A==GI Q/! H �.A==T;Q/W . We restrict

to the locus t 2 H 0.A==GI Q/˚ H 2.A==GI Q/, considering the lift

QJe;VG
.t/ WD QJ S�C�

VG
.t/; t 2 H 0.A==GI Q/˚ H 2.A==GI Q/;

of our twisted J–function Je;VG
determined by our choice of lift

H �.A==GI Q/! H �.A==T;Q/W :

Theorems 4.1.1 and 6.1.2 in [9] imply that

QJe;VG
.�.t//[ .p2 � p1/D

��
z
@

@�2
� z

@

@�1

�
Je;VT

.�/

�

�Dt;Q1DQ2D�q1;Q3Dq2
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for some13 function � W H 2.A==GI Q/! H �.A==GIƒG/. Setting t D 0 gives

QJe;VG
.�.0//[.p2�p1/

D e�q2=z
X

l;m;n�0

.�1/lCmqlCm
1

qn
2

Qn
kD1.�Cp3Ckz/

QlCm
kD1.�Cp1Cp2Ckz/3

Ql
kD1.p1Ckz/5

Qm
kD1.p2Ckz/5

�
Q0

kD�1.p3�p1Ckz/
Qn�l

kD�1.p3�p1Ckz/

Q0
kD�1.p3�p2Ckz/Qn�m
kD�1.p3�p2Ckz/

�.p2�p1C.m�l/z/:

For symmetry reasons the right-hand side here is divisible by p2 �p1 ; it takes the form

.p2 � p1/.1 C q1z�1 C O.z�2//;

whereas

QJe;VG
.�.0//[ .p2 � p1/D .p2 � p1/.1 C �.0/z�1 C O.z�2//:

We conclude that �.0/D q1 and hence, via the string equation, that

Je;VG
.�.0//D eq1=zJe;VG

.0/:

Thus

(21) QJe;VG
.0/[.p2�p1/

D e�.q1Cq2/=z
X

l;m;n�0

.�1/lCmqlCm
1

qn
2

�
Qn

kD1.�Cp3Ckz/
QlCm

kD1.�Cp1Cp2Ckz/3

Ql
kD1.p1Ckz/5

Qm
kD1.p2Ckz/5

�
Q0

kD�1.p3�p1Ckz/
Qn�l

kD�1.p3�p1Ckz/

Q0
kD�1.p3�p2Ckz/Qn�m
kD�1.p3�p2Ckz/

�.p2�p1C.m�l/z/:

We saw in Example D.8 how to extract the quantum period GX from the twisted

J–function Je;VG
.0/: we take the non-equivariant limit, extract the component along

the unit class 1 2 H �.A==GI Q/ and set z D 1 and Qˇ D t hˇ;�KX i. Thus, we consider

the right-hand side of (21), take the non-equivariant limit, extract the coefficient of

13In fact the mirror map � takes values in H 0.A==GIƒG/˚ H 2.A==GIƒG/ . This follows from

homogeneity considerations, as in the proof of Proposition D.2. We will see explicitly that �.0/2H 0˚H 2.
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p2 � p1 and set z D 1 and q1 D q2 D t , obtaining

GX .t/D e�2t
1X

lD0

1X

mD0

1X

nDmax.l;m/

.�1/lCm n!..lCm/!/3

.l !/5.m!/5.n�l/!.n�m/!
t lCmCn

Ce�2t
1X

lD0

1X

mDlC1

1X

nDm

.�1/lCm n!..lCm/!/3.m�l/

.l !/5.m!/5.n�l/!.n�m/!

�.5Hl�5HmCHn�m�Hn�l/t
lCmCn

Ce�2t
1X

lD0

1X

mD0

m�1X

nDl

.�1/lCn n!..lCm/!/3.m�l/.m�n�1/!

.l !/5.m!/5.n�l/!
t lCmCn:

Regularizing yields

�GX .t/D 1 C 6t2 C 24t3 C 138t4 C 1080t5 C 6540t6

C 50400t7 C 362250t8 C 2713200t9 C � � � :

Minkowski period sequence 69

40 The Fano manifold MM2–23

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P4 with centre an

intersection of A 2 jOQ.1/j and B 2 jOQ.2/j such that either

(a) A is nonsingular, or

(b) A is singular.

Our construction A codimension-2 complete intersection X of type .LCM /\.2L/

in the toric variety F with weight data

s0 s1 s2 s3 s4 x x5

1 1 1 1 1 –1 0 L

0 0 0 0 0 1 1 M

and Nef F D hL;M i. We have:

� �KF D 4L C 2M is ample, that is F is a Fano variety.

� X is the intersection of two nef divisors on F .

� �.KF Cƒ/� L C M is ample.
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The two constructions coincide Apply Lemma E.1 with V DOQ.�1/˚OQ , W D
OQ.1/ and f W V ! W given by the matrix .B A/. This exhibits X as a mem-

ber of j�?W .1/j on P .V / or, in other words, as a complete intersection of type

.L C M /\ .2L/ on the toric variety F.

The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mDl

t lCm .l C m/!.2l/!

.l !/5.m � l/!m!

and regularizing gives

�GX .t/D 1 C 8t2 C 12t3 C 216t4 C 720t5 C 8540t6

C 42000t7 C 410200t8 C 2503200t9 C � � � :

Minkowski period sequence 78

41 The Fano manifold MM2–24

Mori–Mukai construction A divisor of bidegree .1; 2/ on P2 � P2.

Our construction A member X of jL C 2M j in the toric variety F D P2 � P2.

The two constructions coincide Obvious.

The quantum period The toric variety F has weight data

1 1 1 0 0 0 L

0 0 0 1 1 1 M

and Nef F D hL;M i. We have:

� F is a Fano variety.

� X � L C 2M is ample.

� �.KF C X /� 2L C M is ample.

Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mD0

t2lCm .l C 2m/!

.l !/3.m!/3
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and regularizing gives

�GX .t/D 1 C 4t2 C 24t3 C 132t4 C 780t5 C 5800t6

C 40320t7 C 283780t8 C 2105880t9 C � � � :

Minkowski period sequence 44

42 The Fano manifold MM2–25

Mori–Mukai construction The blow up of P3 with centre an elliptic curve that is

an intersection of two quadrics.

Our construction A member X of jL C 2M j in the toric variety F D P1 � P3.

The two constructions coincide Apply Lemma E.1 with V D OP3 ˚ OP3 , W D
OP3.2/ and f W V ! W the map given by the two quadrics that define the elliptic

curve.

The quantum period The toric variety F has weight data

1 1 0 0 0 0 L

0 0 1 1 1 1 M

and Nef F D hL;M i. We have:

� F is a Fano variety.

� X � L C 2M is ample.

� �.KF C X /� L C 2M is ample.

Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mD0

t lC2m .l C 2m/!

.l !/2.m!/4

and regularizing gives

�GX .t/D 1 C 4t2 C 24t3 C 60t4 C 720t5 C 3640t6

C 21840t7 C 175420t8 C 1024800t9 C � � � :

Minkowski period sequence 43
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43 The Fano manifold MM2–26

Mori–Mukai construction The blow-up of B5 � P6 with centre a line on it.

Our construction Let S be the universal bundle of subspaces over Gr D Gr.2; 4/

and let E be the rank-3 vector bundle E D C ˚S? on Gr. Let qW P .E/! Gr denote

the projection. Then X is the vanishing locus of a general section of

q? det S? ˚ ..q? det S?/˝OP.E/.1//
˚2

on the key variety F D P .E/.

The two constructions coincide Write V D C5 with basis e0; : : : ; e4 and write

C4 D V =Ce0 . Consider Gr as the Grassmannian of 2–dimensional subspaces of

this C4. There is an exact sequence

0 ! T ! q?E? ! OP.E/.1/! 0

on F D P .E/, where T is a rank-2 vector bundle.

First we construct a morphism pW F ! Gr.2;V / D Gr.2;C5/. Let U denote the

universal bundle of subspaces on Gr.2; 5/. The morphism p arises, by the universal

property of Gr.2;C5/, from the inclusion

T � q?E? D C ˚ q?S � C ˚ q?C4 D Ce0 ˚ C4 D C5;

ie there is a unique pW F ! Gr.2;C5/ such that S D p?U.

Next we claim that the morphism pW F ! Gr.2; 5/ that we just constructed is the

blow-up of Gr.2; 5/ along the locus

Z D fW2 � C5 j e0 2 W2g

of 2–dimensional vector subspaces that contain e0 . Denote by � W C5 ! C5=Ce0 the

natural projection. Indeed, for W2 2 Gr.2; 5/, either

� e0 62 W2 , in which case �.W2/D V2 � C4 is a 2–dimensional subspace and p

is an isomorphism above W2 , or

� e0 2 W2 , in which case �.W2/ is a 1–dimensional subspace and

q.p�1W2/D fV2 2 Gr.2; 4/ j �.W2/� V2g:

The statement follows easily from the claim just shown. Indeed, on the one hand

Z Š P3 and the Plücker embedding of Gr.2; 5/ embeds Z linearly in P9. In other
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words, pW F ! Gr.2; 5/ is the blow up of Gr.2; 5/� P9 along a P3 � Gr.2; 5/. On

the other hand, the rational map

qp�1W Gr.2; 5/Ü Gr.2; 4/� P5;

where Gr.2; 4/� P5 is the Plücker embedding of Gr.2; 4/, is the map corresponding to

the linear system of hyperplane sections of Gr.2; 5/�P9 — in its Plücker embedding —

that contain Z .

In other words, let Y � Gr.2; 4/ be a general hyperplane section and H1 , H2 � Gr.2; 5/

be two general hyperplane sections of Gr.2; 5/; then

pW q�1.Y /\ p�1.H1 \ H2/! pq�1.Y /\ H1 \ H2

is the blow-up of B5 D pq�1.Y /\ H1 \ H2 � Gr.2; 5/ along the line Z \ B5 .

Abelianization Consider the situation as in [9, Section 3.1] with

� the space that is denoted by X in [9] set equal to A D C11, regarded as the

space of pairs

f.v; w/ j v is a 2 � 4 complex matrix and w 2 C3 is a column vectorgI

� G D GL2.C/� C?, acting on A as

.g; �/W .v; w/ 7! .gv; ��.g/w/;

where GL2.C/ acts by left multiplication on M.2; 4/ and � D �std ˚ 0 is the

direct sum of a copy of the standard representation of GL2.C/ and a copy of

the trivial representation;

� T D .C�/3, the diagonal subtorus in G ;

� the group that is denoted by S in [9] set equal to the trivial group;

� V equal to the representation of G given by

 ˚ .�3 ˝ /˚2;

where  W G ! C� is det �std on the first factor and trivial on the second factor,

and �3W G ! C� is trivial on the first factor and the identity on the second

factor.

Then, by Lemma E.2, A==G is the key variety F D P .E/ introduced above, whereas

A==T is the toric variety with weight data

1 1 1 1 0 0 0 0 1 0 0 L1

0 0 0 0 1 1 1 1 0 1 0 L2

0 0 0 0 0 0 0 0 1 1 1 L3
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and Nef D hL1;L2;L1 C L2 C L3i, that is, A==T is the projective bundle

P .O.�1; 0/˚O.0;�1/˚O.�1;�1//

over P3 � P3. The Weyl group W D Z=2Z exchanges the first and second factors

of P3 � P3, that is, it exchanges the first set of four co-ordinates with the second

set of four co-ordinates in the table giving the weight data. The representation V

induces the vector bundle q? det S? ˚ ..q? det S?/.1//˚2 over A==G D F, whereas

the representation V induces the vector bundle

.L1 C L2/˚ .L1 C L2 C L3/
˚2

on A==T .

The abelian/non-abelian correspondence Let p1 , p2 , p3 2 H 2.A==T I Q/ denote

the first Chern classes of the line bundles L1 , L2 and L1 ˝ L2 ˝ L3 , respectively.

We fix a lift of H �.A==GI Q/ to H �.A==T;Q/W in the sense of [9, Section 3]; as

before there are many possible choices for such a lift and the precise choice made

will be unimportant in what follows. The lift allows us to regard H �.A==GI Q/ as a

subspace of H �.A==T;Q/W , which maps isomorphically to the Weyl-anti-invariant

part H �.A==T;Q/a of H �.A==T;Q/ via

H �.A==T;Q/W
[.p2�p1/

// H �.A==T;Q/a:

We compute the quantum period of X by computing the J–function of Fl D A==G

twisted [16] by the Euler class and the bundle VG , using the abelian/non-abelian

correspondence [9].

We begin by computing the J–function of A==T twisted by the Euler class and the

bundle VT . Consider the bundles VT and VG equipped with the canonical C� –action

that rotates fibres and acts trivially on the base. We will compute the twisted J–function

Je;VT
of A==T using the quantum Lefschetz theorem; Je;VT

was defined in (6) above

and is the restriction to the locus � 2 H 0.A==T /˚ H 2.A==T / of what was denoted

by J S�C�

VT
.�/ in [9]. The toric variety A==T is Fano, so Theorem C.1 gives

JA==T .�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2em�3

Ql
kD1.p1Ckz/4

Qm
kD1.p2Ckz/4

Q0
kD�1.p3�p2Ckz/Qn�m
kD�1.p3�p2Ckz/

�
Q0

kD�1.p3�p1Ckz/
Qn�l

kD�1.p3�p1Ckz/

Q0
kD�1.p3�p1�p2Ckz/

Qn�l�m
kD�1.p3�p1�p2Ckz/

;

where � D �1p1 C�2p2 C�3p3 and we have identified the group ring QŒH2.A==T I Z/�

with QŒQ1;Q2;Q3� via the Q–linear map that sends Qˇ to Q
hˇ;p1i
1

Q
hˇ;p2i
2

Q
hˇ;p3i
3

.
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The line bundles L1 C L2 and L1 ˝ L2 ˝ L3 are nef, and c1.A==T /� c1.VT / is

ample, so Theorem D.3 gives

Je;VT
.�/D e�Q3e�3 =ze�=z

X

l;m;n�0

Ql
1Qm

2 Qn
3el�1em�2em�3

�
QlCm

kD1.�Cp1Cp2Ckz/
Qn

kD1.�Cp3Ckz/2

Ql
kD1.p1Ckz/4

Qm
kD1.p2Ckz/4

�
Q0

kD�1.p3�p2Ckz/Qn�m
kD�1.p3�p2Ckz/

Q0
kD�1.p3�p1Ckz/

Qn�l
kD�1.p3�p1Ckz/

�
Q0

kD�1.p3�p1�p2Ckz/
Qn�l�m

kD�1.p3�p1�p2Ckz/
:

Consider now F D A==G D P .E/ and a point t 2 H �.F /. Let �1 2 H 2.F I Q/

be the pullback to F (under the projection map qW P .E/ ! Gr.2; 4/) of the am-

ple generator of H 2.Gr.2; 4//, and let �2 2 H 2.F I Q/ be the first Chern class

of .q? det S?/ ˝ OP.E/.1/. Identify the group ring QŒH2.F I Z/� with QŒq1; q2�

via the Q–linear map which sends Qˇ to qhˇ;�1i
1

qhˇ;�2i
2

. In [9, Section 6.1] the

authors consider the lift QJ S�C�

VG
.t/ of their twisted J–function J S�C�

VG
.t/ deter-

mined by a choice of lift H �.A==GI Q/ ! H �.A==T;Q/W . We restrict to the lo-

cus t 2 H 0.A==GI Q/˚ H 2.A==GI Q/, considering the lift QJe;VG
.t/ WD QJ S�C�

VG
.t/,

t 2 H 0.A==GI Q/˚ H 2.A==GI Q/, of our twisted J–function Je;VG
determined by

our choice of lift H �.A==GI Q/! H �.A==T;Q/W . Theorems 4.1.1 and 6.1.2 in [9]

imply that

QJe;VG
.�.t//[ .p2 � p1/D

��
z
@

@�2
� z

@

@�1

�
Je;VT

.�/

�

�Dt;Q1DQ2D�q1;Q3Dq2

for some14 function � W H 2.A==GI Q/! H �.A==GIƒA==G/. Setting t D 0 gives

QJe;VG
.�.0//[.p2�p1/

D e�q2=z
X

l;m;n�0

.�1/lCmqlCm
1

qn
2

QlCm
kD1.�Cp1Cp2Ckz/

Qn
kD1.�Cp3Ckz/2

Ql
kD1.p1Ckz/4

Qm
kD1.p2Ckz/4

�
Q0

kD�1.p3�p2Ckz/Qn�m
kD�1.p3�p2Ckz/

Q0
kD�1.p3�p1Ckz/

Qn�l
kD�1.p3�p1Ckz/

�
Q0

kD�1.p3�p1�p2Ckz/
Qn�l�m

kD�1.p3�p1�p2Ckz/
.p2�p1C.m�l/z/:

14As in Theorem F.1 and note 12, the map � is grading-preserving and satisfies � � id modulo q1; q2 .
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The left-hand side here takes the form

.p2 � p1/.1 C �.0/z�1 C O.z�2//;

whereas the right-hand side is

.p2 � p1/.1 C O.z�2//;

and therefore �.0/D 0. Thus

(22) QJe;VG
.0/[.p2�p1/

D e�q2=z
X

l;m;n�0

.�1/lCmqlCm
1

qn
2

QlCm
kD1.�Cp1Cp2Ckz/
Ql

kD1.p1Ckz/4

�
Qn

kD1.�Cp3Ckz/2Qm
kD1.p2Ckz/4

Q0
kD�1.p3�p2Ckz/Qn�m
kD�1.p3�p2Ckz/

�
Q0

kD�1.p3�p1Ckz/
Qn�l

kD�1.p3�p1Ckz/

Q0
kD�1.p3�p1�p2Ckz/

Qn�l�m
kD�1.p3�p1�p2Ckz/

�.p2�p1C.m�l/z/:

We saw in Example D.8 how to extract the quantum period GX from the twisted

J–function Je;VG
.0/: we take the non-equivariant limit �! 0, extract the component

along the unit class 1 2 H �.A==GI Q/, set z D 1, and set Qˇ D t hˇ;�KX i . Thus

we consider the right-hand side of (22), take the non-equivariant limit, extract the

coefficient of p2 � p1 and set z D 1 and q1 D q2 D t . This yields

GX .t/D e�t
1X

lD0

1X

mD0

1X

nDlCm

.�1/lCmt lCmCn .l C m/!.n!/2

.l !/4.m!/4.n � m/!.n � l/!.n � l � m/!

� .1 C .m � l/.Hn�m � 4Hm//;

where Hk is the k th harmonic number. Regularizing gives

�GX.t/D1C6t2C12t3C114t4C540t5C3480t6C22680t7C137970t8C978600t9C� � �:

Minkowski period sequence 58

44 The Fano manifold MM2–27

Mori–Mukai construction The blow up of P3 with centre a twisted cubic.
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Our construction A codimension-2 complete intersection X of type

.L C M /\ .L C M /

in the toric variety F D P3 � P2.

The two constructions coincide The twisted cubic in P3 with co-ordinates x0 , x1 ,

x2 , x3 is given by the condition

rk

�
x0 x1 x2

x1 x2 x3

�
< 2:

Applying Lemma E.1 with V DO
˚3
P3 , W DOP3.1/˚2 and the map f W V ! W given

by �
x0 x1 x2

x1 x2 x3

�
;

we see that X is cut out of P .V / by a section of �?W ˝OP.E/.1/. In other words,

X is a complete intersection in P3 � P2 of type .L C M /\ .L C M /.

The quantum period The toric variety F has weight data

1 1 1 1 0 0 0 L

0 0 0 0 1 1 1 M

and Nef F D hL;M i. We have that:

� F is a Fano variety.

� X is the intersection of two ample divisors on F .

� �.KF Cƒ/� 2L C M is ample.

Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mD0

t2lCm .l C m/!.l C m/!

.l !/4.m!/3

and regularizing gives

�GX .t/D1C2t2C18t3C30t4C240t5C1730t6C5880t7C41230t8C262080t9C� � � :

Minkowski period sequence 19

45 The Fano manifold MM2–28

Mori–Mukai construction The blow-up of P3 with centre a plane cubic.
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Our construction A member X of jL C M j in the toric variety F with weight data

s0 s1 s2 s3 x y

1 1 1 1 –2 0 L

0 0 0 0 1 1 M

and Nef F D hL;M i. We have:

� �KF D 2L C 2M is ample, that is, F is a Fano variety.

� X � L C M is ample.

� �.KF C X /� L C M is ample.

The two constructions coincide Suppose that the centre of the blow-up is defined by

the simultaneous vanishing of A and B , where A is a member of OP3.3/ and B is

a member of OP3.1/. Apply Lemma E.1 with V D OP3.�2/˚OP3 , W D OP3.1/

and the map f W V ! W given by .A B/.

The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mD2l

t lCm .l C m/!

.l !/4.m � 2l/!m!

and regularizing gives

�GX .t/D 1 C 18t3 C 24t4 C 1350t6 C 3780t7 C 2520t8 C 141120t9 C � � � :

Minkowski period sequence 5

46 The Fano manifold MM2–29

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P3 with centre a

conic on it.

Our construction A member X of j2M j in the toric variety F with weight data

s0 s1 x x2 x3 x4

1 1 –1 0 0 0 L

0 0 1 1 1 1 M

and Nef F D hL;M i. We have:

� �KF D L C 4M is ample, that is, F is a Fano variety.

� X � 2M is nef and big.

� �.KF C X /� L C 2M is ample.
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The two constructions coincide The morphism F ! P4 that sends (contravariantly)

the homogeneous co-ordinate functions Œx0; : : : ;x4� to Œxs0;xs1;x2;x3;x4� blows up

the plane .x0 D x1 D 0/ in P4. Thus a generic member of j2M j on F is the blow-up

of a quadric 3–fold with centre a conic on it.

The quantum period Corollary D.5 yields

GX .t/D
1X

lD0

1X

mDl

t lC2m .2m/!

.l !/2.m � l/!.m!/3

and regularizing gives

�GX .t/D 1C4t2C12t3C36t4C360t5C940t6C8400t7C38500t8C210000t9C� � � :

Minkowski period sequence 35

47 The Fano manifold MM2–30

Mori–Mukai construction The blow-up of P3 with centre a conic.

Our construction A member X of jL C M j in the toric variety F with weight data

s0 s1 s2 s3 x x4

1 1 1 1 –1 0 L

0 0 0 0 1 1 M

and Nef F D hL;M i. We have:

� �KF D 3L C 2M is ample, that is, F is a Fano variety.

� X � L C M is ample.

� �.KF C X /� 2L C M is ample.

The two constructions coincide Suppose that the centre of the blow-up is defined by

the simultaneous vanishing of A and B , where A is a member of OP3.2/ and B is

a member of OP3.1/. Apply Lemma E.1 with V D OP3.�1/˚OP3 , W D OP3.1/

and the map f W V ! W given by .A B/.

The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mDl

t2lCm .l C m/!

.l !/4.m � l/!m!

and regularizing gives

�GX .t/D 1 C 12t3 C 24t4 C 540t6 C 2520t7 C 2520t8 C 33600t9 C � � � :
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Minkowski period sequence 4

48 The Fano manifold MM2–31

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P4 with centre a

line on it.

Our construction A member X of jL C M j in the toric variety F with weight data

s0 s1 s2 x x3 x4

1 1 1 –1 0 0 L

0 0 0 1 1 1 M

and Nef F D hL;M i. We have:

� �KF D 2L C 3M is ample, that is, F is a Fano variety.

� X � L C M is ample.

� �.KF C X /� L C 2M is ample.

The two constructions coincide The morphism F ! P4 that sends (contravariantly)

the homogeneous co-ordinate functions Œx0; : : : ;x4� to Œxs0;xs1;xs2;x3;x4� blows

up the line .x0 D x1 D x2 D 0/ in P4, and X is the proper transform of a quadric

containing this line.

The quantum period Corollary D.5 yields

GX .t/D
1X

lD0

1X

mDl

t lC2m .l C m/!

.l !/3.m � l/!.m!/2

and regularizing gives

�GX .t/D 1C2t2 C12t3 C6t4 C180t5 C560t6 C1680t7 C16870t8 C46200t9 C� � � :

Minkowski period sequence 15

49 The Fano manifold MM2–32 (also known as W )

Mori–Mukai construction The divisor W of bidegree .1; 1/ on P2 � P2.

Our construction A member X of jL C M j on the toric variety F D P2 � P2.
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The two constructions coincide Obvious.

The quantum period The toric variety F has weight data

1 1 1 0 0 0 L

0 0 0 1 1 1 M

and Nef F D hL;M i. We have that:

� F is a Fano variety.

� X � L C M is ample.

� �.KF C X /� 2L C 2M is ample.

Corollary D.5 yields

GX .t/D
1X

lD0

1X

mD0

t2lC2m .l C m/!

.l !/3.m!/3

and regularizing gives

�GX .t/D 1 C 4t2 C 60t4 C 1120t6 C 24220t8 C 567504t10 C � � � :

Minkowski period sequence 24

50 The Fano manifold MM2–33

Mori–Mukai construction The blow-up of P3 with centre a line.

Our construction The toric Fano variety X with weight data

s0 s1 x x2 x3

1 1 –1 0 0 L

0 0 1 1 1 M

and Nef X D hL;M i.

The two constructions coincide The blow-up X ! P3 sends (contravariantly) the

homogeneous co-ordinate functions Œx0;x1;x2;x3� to Œxs0;xs1;x2;x3�.

The quantum period Corollary C.2 yields

GX .t/D
1X

lD0

1X

mDl

t lC3m

.l !/2.m � l/!.m!/2

and regularizing gives

�GX .t/D 1 C 6t3 C 24t4 C 90t6 C 1260t7 C 2520t8 C 1680t9 C � � � :
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Minkowski period sequence 2

51 The Fano manifold MM2–34

Mori–Mukai construction P1 � P2 .

Our construction P1 � P2 .

The quantum period X D P1 � P2 is the toric Fano variety with weight data

1 1 0 0 0 L

0 0 1 1 1 M

and Nef X D hL;M i. Corollary C.2 yields

GX .t/D
1X

lD0

1X

mD0

t2lC3m

.l !/2.m!/3

and regularizing gives

�GX .t/D 1 C 2t2 C 6t3 C 6t4 C 120t5 C 110t6 C 1260t7 C 5110t8 C 11760t9 C � � � :

Minkowski period sequence 10

52 The Fano manifold MM2–35 (also known as B7)

Mori–Mukai construction B7 , the blow-up of P3 at a point; equivalently, the P1 –

bundle P .O CO.1// over P2.

Our construction The toric Fano variety X with weight data

s0 s1 s2 x x3

1 1 1 –1 0 L

0 0 0 1 1 M

and Nef X D hL;M i.

The two constructions coincide The blow-up X ! P3 sends (contravariantly) the

homogeneous co-ordinate functions Œx0;x1;x2;x3� to Œxs0;xs1;xs2;x3�.
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The quantum period Corollary C.2 yields

GX .t/D
1X

lD0

1X

mDl

t2lC2m

.l !/3.m � l/!m!

and regularizing gives

�GX .t/D 1 C 2t2 C 30t4 C 380t6 C 5950t8 C 101052t10 C � � � :

Minkowski period sequence 7

53 The Fano manifold MM2–36

Mori–Mukai construction The blow-up of the Veronese cone W4 � P6 with centre

the vertex; equivalently, the P1 –bundle P .O ˚O.2// over P2.

Our construction The toric Fano variety X with weight data

s0 s1 s2 x y

1 1 1 –2 0 L

0 0 0 1 1 M

and Nef F D hL;M i.

The two constructions coincide Obvious.

The quantum period Corollary C.2 yields

GX .t/D
1X

lD0

1X

mD2l

t lC2m

.l !/3.m � 2l/!m!

and regularizing gives

�GX .t/D 1 C 2t2 C 6t4 C 60t5 C 20t6 C 840t7 C 70t8 C 7560t9 C � � � :

Minkowski period sequence 6

54 The Fano manifold MM3–1

Mori–Mukai construction A double cover of P1 �P1 �P1 branched along a divisor

of tridegree .2; 2; 2/.
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Our construction A member X of j2L C 2M C 2N j in the toric variety F with

weight data

x0 x1 y0 y1 z0 z1 w

1 1 0 0 0 0 1 L

0 0 1 1 0 0 1 M

0 0 0 0 1 1 1 N

and Nef F D hL;M;L C M C N i. The secondary fan for F has three maximal

cones; the corresponding three toric varieties are isomorphic. It is easy to see that

Nef X D hL;M;N i. We have:

� �KF D 3.L C M C N / is nef and big but not ample.

� X � 2.L C M C N / is nef and big but not ample.

� �.KF C X /� L C M C N is nef and big but not ample.

The two constructions coincide Consider the equation w2 Df .x0;x1;y0;y1;z0;z1/,

where f is a generic polynomial of degree 2 in x0 and x1 , degree 2 in y0 and y1 ,

and degree 2 in z0 and z1 .

The quantum period Let p1 , p2 , p3 2 H �.F I Z/ denote the first Chern classes of

L, M and L ˝ M ˝ N , respectively; these classes form a basis for H 2.F I Z/. Write

� 2 H 2.F I Q/ as � D �1p1 C �2p2 C �3p3 and identify the group ring QŒH2.F I Z/�

with the polynomial ring QŒQ1;Q2;Q3� via the Q–linear map that sends the element

Qˇ 2 QŒH2.F I Z/� to Qhˇ;p1i
1

Qhˇ;p2i
2

Qhˇ;p3i
3

. We have

IF .�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/2

Qn
kD1.p3 C kz/

�
Q0

kD�1.p3 � p1 � p2 C kz/2

Qn�l�m
kD�1.p3 � p1 � p2 C kz/2

D 1 C �z�1 C O.z�2/:

Theorem C.1 gives

JF .�/D IF .�/

and hence

Ie;E.�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

Q2n
kD1.�C 2p3 C kz/

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/2

Qn
kD1.p3 C kz/

�
Q0

kD�1.p3 � p1 � p2 C kz/2

Qn�l�m
kD�1.p3 � p1 � p2 C kz/2

:
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Since

Ie;E.�/D 1 C .� C 2Q3 C 2Q1Q3 C 2Q2Q3/z
�1 C O.z�2/;

applying Theorem D.3 yields

Je;E.� C 2Q3 C 2Q1Q3 C 2Q2Q3/D Ie;E.�/:

The string equation now implies that

Je;E.�/D e�.2Q3C2Q1Q3C2Q2Q3/=zIe;E.�/

and taking the non-equivariant limit �! 0 gives

JF;X .�/D e�.2Q3C2Q1Q3C2Q2Q3/=ze�=z

�
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

Q2n
kD1.2p3 C kz/

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/2

Qn
kD1.p3 C kz/

�
Q0

kD�1.p3 � p1 � p2 C kz/2

Qn�l�m
kD�1.p3 � p1 � p2 C kz/2

:

We now proceed exactly as in the proof of Corollary D.5, obtaining

GX .t/D e�6t
1X

lD0

1X

mD0

1X

nDlCm

tn .2n/!

.l !/2.m!/2n!..n � l � m/!/2
:

Regularizing gives

�GX .t/D 1 C 54t2 C 672t3 C 15642t4 C 336960t5 C 7919460t6

C 191177280t7 C 4751272890t8 C 120527514240t9 C � � � :

Minkowski period sequence 154

55 The Fano manifold MM3–2

Mori–Mukai construction A member of jŁ˝2 ˝O
P1�P1

OP1�P1.2; 3/j on the P2 –

bundle

P .OP1�P1 ˚OP1�P1.�1;�1/˚2/

over P1 � P1 such that X \ Y is irreducible, where Ł is the tautological line bundle

(that is, the fibrewise O.1/ on the P2 –bundle) and Y is a member of jŁj.
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M

N

N � L � M

L

Figure 1: The M secondary fan for F in MM3–2 .

Our construction A member X of jM C 2N j in the toric variety F with weight

data
x0 x1 y0 y1 t t0 t1

1 1 0 0 –1 0 0 L

0 0 1 1 –1 0 0 M

0 0 0 0 1 1 1 N

and Nef F D hL;M;N i.

We have:

� �KF D L C M C 3N is ample, that is, F is a Fano variety.

� X � M C 2N is nef and big.

� �.KF C X / � L C N is nef and big but not ample on F (it is ample when

restricted to X ).

The two constructions coincide Mori and Mukai use different weight conventions

to ours, so their construction exhibits X as a member of j2L0 C 3M 0 C 2N 0j in the

toric variety with weight data

1 1 0 0 0 1 1 L0

0 0 1 1 0 1 1 M 0

0 0 0 0 1 1 1 N 0

and Nef F D hL0;M 0;L0 C M 0 C N 0i. Changing basis yields our construction.

Remarks on our construction Note that the secondary fan for F has three maximal

cones, as in Figure 1.

The following table gives more detail about the irrelevant ideal, unstable locus and

quotient variety corresponding to each of the maximal cones of the secondary fan:
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Chamber Irrelevant ideal Unstable locus C7==!T

hL;M;N i .xiyj tk ;xiyj t/ .x0 D x1 D 0/[.y0 D y1 D 0/[.t D t0 D t1 D 0/ F

hL;N;N �L�M i .xi tk t;xiyj t/ .t D 0/[.x0 D x1 D 0/[.y0 D y1 D t0 D t1 D 0/ G

hM;N;N �L�M i .yj tk t;xiyj t/ .t D 0/[.y0 D y1 D 0/[.x0 D x1 D t0 D t1 D 0/ G0

The shape of the unstable locus shows that the second and third maximal cones are

“hollow”, that is, taking the GIT quotient with respect to these stability conditions leads

to toric varieties of Picard rank 2. We discuss briefly the variety G , which is the most

relevant for understanding the geometry of X. Since t 6D 0, we can use the M–torus to

reduce to t D 1 and eliminate t . We are left with the toric variety G with weight data

x0 x1 u0 u1 t0 t1

1 1 –1 –1 0 0 L0

0 0 1 1 1 1 N 0

and Nef G D hL0;N 0i. The morphism f W F ! G is given (contravariantly) by

Œx0;x1;u0;u1; t0; t1� 7! Œx0;x1; ty0; ty1; t0; t1�

and we have L D f ?L0 and N D f ?N 0.

The divisor that Mori and Mukai denote by Y is, in our notation,

.t D 0/Š P1
x0;x1

� P1
y0;y1

� P1
t0;t1

:

The complete linear system j�.KF C X /j defines the morphism f W F ! G , which

(a) contracts the divisor Y to P1
x0;x1

� P1
t0;t1

and (b) is an isomorphism of X to its

image. Under f W F ! G , X maps isomorphically to a member X 0 of j�L0 C 3N 0j
on G . This makes it clear that X is Fano, because �.KG C X 0/D L0 C N 0 is ample

on G ; however, because X 0 is not nef on G , this construction, economical though it is,

is useless for calculating the quantum cohomology of X, as the convexity assumption

on the bundle in quantum Lefschetz is not satisfied.

The quantum period This is Example D.8. We have

�GX .t/D 1 C 58t2 C 600t3 C 13182t4 C 247440t5 C 5212300t6

C 111835920t7 C 2480747710t8 C 56184565920t9 C � � � :

Minkowski period sequence 157
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56 The Fano manifold MM3–3

Mori–Mukai construction A divisor of tridegree .1; 1; 2/ on P1 � P1 � P2.

Our construction A member X of jLCM C2N j on the toric variety F with weight

data

1 1 0 0 0 0 0 L

0 0 1 1 0 0 0 M

0 0 0 0 1 1 1 N

and Nef F D hL;M;N i.

The two constructions coincide Obvious.

The quantum period We have:

� F is a Fano variety.

� X � L C M C 2N is ample.

� �.KF C X /� L C M C N is ample.

Corollary D.5 yields

GX .t/D e�4t
1X

lD0

1X

mD0

1X

nD0

t lCmCn .l C m C 2n/!

.l !/2.m!/2.n!/3

and regularizing gives

�GX .t/D 1 C 20t2 C 132t3 C 1812t4 C 21720t5 C 289100t6

C 3927840t7 C 54999700t8 C 785606640t9 C � � � :

Minkowski period sequence 135

57 The Fano manifold MM3–4

Mori–Mukai construction The blow-up of the variety MM2–18 with centre a smooth

fibre of the composition

MM2–18
double cover

// P2 � P1
projection

// P2:
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N � M

M M � LL

N

Figure 2: The secondary fan for F in MM3–4 .

Our construction A member X of j2N j on the toric variety F with weight data

t0 t1 x x2 y0 y1 z

1 1 –1 0 0 0 0 L

0 0 1 1 –1 –1 0 M

0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. The secondary fan has four maximal cones, as in Figure 2.

We have:

� �KF D L C 3N is nef and big but not ample.

� X � 2N is nef and big but not ample.

� �.KF C X /� L C N is nef and big but not ample.

The two constructions coincide Recall15 that MM2–18 is a member of jN j in the

toric variety G with weight data

x0 x1 x2 y0 y1 z

1 1 1 –1 –1 0 M

0 0 0 1 1 1 N

and Nef G D hM;N i. The unstable locus is .x0 D x1 D x2 D 0/[.y0 D y1 D z D 0/.

The linear system jM j D jx0;x1;x2j manifestly defines a morphism G ! P2
x0;x1;x2

with fibre P2. If F is the blow-up of G along .x0 D x1 D 0/ then X is the proper

transform of MM2–18 . It is clear that F is a toric variety with the weight data given

above and that the morphism F ! G is given by x0 D xt0 , x1 D xt1 .

15The description here differs from the weight data MM2–18 by a change of lattice basis and by

relabelling of co-ordinates.
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The quantum period Let p1 , p2 , p3 2 H �.F I Z/ denote the first Chern classes

of L, M and N, respectively; these classes form a basis for H 2.F I Z/. Write

� 2 H 2.F I Q/ as � D �1p1 C �2p2 C �3p3 and identify the group ring QŒH2.F I Z/�

with the polynomial ring QŒQ1;Q2;Q3� via the Q–linear map that sends the element

Qˇ 2 QŒH2.F I Z/� to Qhˇ;p1i
1

Qhˇ;p2i
2

Qhˇ;p3i
3

. We have

IF .�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/

Qn
kD1.p3 C kz/

�
Q0

kD�1.p2 � p1 C kz/
Qm�l

kD�1.p2 � p1 C kz/

Q0
kD�1.p3 � p2 C kz/2Qn�m
kD�1.p3 � p2 C kz/2

:

Since

IF .�/D 1 C �z�1 C O.z�2/;

Theorem C.1 gives

JF .�/D IF .�/:

We now proceed exactly as in the case of MM3–1 , obtaining

GX .t/D e�4t
1X

lD0

1X

nD0

nX

mDl

t lCn .2n/!

.l !/2m!n!.m � l/!..n � m/!/2
:

Regularizing gives

�GX .t/D 1 C 24t2 C 156t3 C 2280t4 C 27960t5 C 387060t6

C 5450760t7 C 79246440t8 C 1175608560t9 C � � � :

Minkowski period sequence 142

58 The Fano manifold MM3–5

Mori–Mukai construction The blow-up of P1 � P2 with centre a curve C of bi-

degree .5; 2/ such that the composition C ,! P1 � P2 ! P2 with projection to the

second factor is an embedding.

Our construction A codimension-2 complete intersection X of type

.M C N /\ .M C N /
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in the toric variety F with weight data

t0 t1 y0 y1 y2 x x0 x1

1 1 0 0 0 –1 0 0 L

0 0 1 1 1 –1 0 0 M

0 0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. The secondary fan for F is the same as for the toric variety

in Section 55 (ie our ambient toric variety for MM3–2 ) and is in Figure 1. We have:

� �KF D L C 2M C 3N is ample, that is F is a Fano variety.

� X is complete intersection of two nef divisors on F .

� �.KF Cƒ/D L C N is nef and big but not ample on F.

The two constructions coincide Apply Lemma E.1 with G D P1 � P2 and

V D OP1�P2.�1;�1/˚OP1�P2 ˚OP1�P2 ;

W D OP1�P2.0; 1/˚OP1�P2.0; 1/;

with f W V ! W given by the matrix
�

t0A2.y/ y0 y1

t1B2.y/ y1 y2

�
;

where Œt0 W t1� are homogeneous co-ordinates on P1 and Œy0 W y1 W y2� are homogeneous

co-ordinates on P2. This exhibits X as the blow-up of P1 �P2 in the locus Z defined

by the condition

rk

�
t0A2.y/ y0 y1

t1B2.y/ y1 y2

�
< 2

and it is easy to see that C is described in this way. For instance, it is immediate that

Z projects isomorphically to a conic in P2 and that the projection to P1 has degree 5.

The quantum period We proceed as in Example D.8. Let p1 , p2 , p3 2 H �.F I Z/

denote the first Chern classes of L, M and N , respectively; these classes form a basis

for H 2.F I Z/. Write � 2 H 2.F I Q/ as � D �1p1C�2p2C�3p3 and identify the group

ring QŒH2.F I Z/� with the polynomial ring QŒQ1;Q2;Q3� via the Q–linear map that

sends the element Qˇ 2 QŒH2.F I Z/� to Q
hˇ;p1i
1

Q
hˇ;p2i
2

Q
hˇ;p3i
3

. Theorem C.1 gives

JF .�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/3

Qn
kD1.p3 C kz/2

�
Q0

kD�1.p3 � p1 � p2 C kz/
Qn�l�m

kD�1.p3 � p1 � p2 C kz/
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and hence

Ie;E.�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

QmCn
kD1 .�C p2 C p3 C kz/2

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/3

Qn
kD1.p3 C kz/2

�
Q0

kD�1.p3 � p2 � p1 C kz/
Qn�l�m

kD�1.p3 � p2 � p1 C kz/
:

Note that

Ie;E.0/D A C Bz�1 C O.z�2/;

where

A D 1 and B D .Q3 C 4Q2Q3/1 C .p3 � p2 � p1/
X

m>0

.�1/m�1Qm
2

m

D Q3.1 C 4Q2/1 C .p3 � p2 � p1/ log.1 C Q2/:

Arguing exactly as in Example D.8, we find that

Je;E..p3 � p2 � p1/ log.1 C Q2//D e�Q3.1C4Q2/=zIe;E.0/

and

Je;E..p3 � p2 � p1/ log.1 C Q2//

D e.p3�p2�p1/ log.1CQ2/=z ŒJe;E.0/�Q1D
Q1

1CQ2
;Q2D

Q2
1CQ2

;Q3DQ3.1CQ2/
:

Hence, using the inverse mirror map (9), we have

Je;E.0/D
�
e�.p3�p2�p1/ log.1CQ2/=z

�Je;E..p3 �p2 �p1/ log.1CQ2//
�
Q1D

Q1
1�Q2

;Q2D
Q2

1�Q2
;Q3DQ3.1�Q2/

D e.p3�p2�p1/ log.1�Q2/=z

� Œe�Q3.1C4Q2/=zIe;E.0/�Q1D
Q1

1�Q2
;Q2D

Q2
1�Q2

;Q3DQ3.1�Q2/
:

Taking the non-equivariant limit yields

JF;X .0/D e.p3�p2�p1/ log.1�Q2/=ze�Q3.1C3Q2/

�
X

l;m;n�0

Ql
1
Qm

2
Qn

3
.1 � Q2/

n�l�m
QmCn

kD1 .p2 C p3 C kz/2

Ql
kD1.p1 C kz/2

Qm
kD1.p2 C kz/3

Qn
kD1.p3 C kz/2

�
Q0

kD�1.p3 � p2 � p1 C kz/
Qn�l�m

kD�1.p3 � p2 � p1 C kz/
:
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Recall that the quantum period GX is obtained from the component of JX .0/ along

the unit class 1 2 H �.X I Q/ by setting z D 1 and Qˇ D t hˇ;�KX i. In view of (8),

therefore, to obtain GX we extract the component of JF;X .0/ along the unit class

1 2 H �.Y I Q/ and set z D Q2 D 1 and Q1 D Q3 D t . This gives

GX .t/D e�4t
1X

lD0

1X

mD0

t2lCm .l C 2m/!.l C 2m/!

.l !/2.m!/3..l C m/!/2
:

Regularizing gives

�GX .t/D 1 C 22t2 C 126t3 C 1722t4 C 18780t5 C 236470t6

C 2998380t7 C 39440170t8 C 528743880t9 C � � � :

Minkowski period sequence 138

59 The Fano manifold MM3–6

Mori–Mukai construction The blow-up of P3 with centre a disjoint union of a line

and an elliptic curve of degree 4.

Our construction A member X of j2M C N j in the toric variety with weight data

s0 s1 x x2 x3 y0 y1

1 1 –1 0 0 0 0 L

0 0 1 1 1 0 0 M

0 0 0 0 0 1 1 N

and Nef F D hL;M;N i. The secondary fan for F has two maximal cones, as in

Figure 3.

We have:

� �KF D L C 3M C 2N is ample, that is, F is a Fano variety.

� X � 2M C N is nef.

� �.KF C X /� L C M C N is ample.

N

LMM � L

Figure 3: The secondary fan for F in MM3–6 .
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The two constructions coincide An elliptic curve � � P3 is a .2; 2/–complete

intersection in P3, so X is constructed by applying Lemma E.1 twice. In more detail,

the equation of X has the form

y0A.s0x; s1x;x2;x3/C y1B.s0x; s1x;x2;x3/D 0;

where A and B are homogeneous quadratic polynomials in the variables x0 D s0x ,

x1 D s1x , x2 and x3 . The obvious morphism X ! P3
x0;x1;x2;x3

blows up the line

x0 D x1 D 0 and the elliptic curve A D B D 0.

The quantum period Corollary D.5 yields

GX .t/D e�3t
1X

lD0

1X

nD0

1X

mDl

t lCmCn .2m C n/!

.l !/2.m � l/!.m!/2.n!/2

and regularizing gives

�GX .t/D 1 C 14t2 C 66t3 C 762t4 C 6960t5 C 73490t6

C 780360t7 C 8578570t8 C 96096000t9 C � � � :

Minkowski period sequence 117

60 The Fano manifold MM3–7

Mori–Mukai construction The blow-up of W � P2 � P2 with centre an elliptic

curve which is an intersection of two members of
ˇ̌
�1

2
KW

ˇ̌
. Here W is a divisor of

bidegree .1; 1/ in P2 � P2.

Our construction A complete intersection X of type .M C N /\ .L C M C N / in

the toric variety F D P1 � P2 � P2.

The two constructions coincide Apply Lemma E.1.

The quantum period The toric variety F has weight data

1 1 0 0 0 0 0 0 L

0 0 1 1 1 0 0 0 M

0 0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. We have:

� F is a Fano variety.

� X is the complete intersection of two nef divisors on F .
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� �.KF Cƒ/D L C M C N is ample on F.

Corollary D.5 yields

GX .t/D e�3t
1X

lD0

1X

mD0

1X

nD0

t lCmCn .l C m C n/!.m C n/!

.l !/2.m!/3.n!/3

and regularizing gives

�GX .t/D 1 C 10t2 C 48t3 C 438t4 C 3720t5 C 33940t6

C 320040t7 C 3096310t8 C 30581040t9 C � � � :

Minkowski period sequence 103

61 The Fano manifold MM3–8

Mori–Mukai construction A member of the linear system jp?
1
g?O.1/˝ p?

2
O.2/j

on F1 � P2, where pi .i D 1; 2/ is the projection to the i th factor and gW F1 ! P2 is

the blow-up.

Our construction A member X of jM C 2N j in the toric variety F with weight

data
s0 s1 x x2 y0 y1 y2

1 1 –1 0 0 0 0 L

0 0 1 1 0 0 0 M

0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. The secondary fan for F is the same as for the toric variety

in Section 59 (ie our ambient toric variety for MM3–6 ) and is in Figure 3. We have:

� �KF D L C 2M C 3N is ample, that is, F is a Fano variety.

� X � M C 2N is nef.

� �.KF C X /� L C M C N is ample.

The two constructions coincide Obvious.

The quantum period Corollary D.5 yields

GX .t/D e�3t
1X

lD0

1X

mDl

1X

nD0

t lCmCn .m C 2n/!

.l !/2.m � l/!m!.n!/3

and regularizing gives

�GX .t/D 1 C 12t2 C 54t3 C 540t4 C 4620t5 C 43770t6

C 425880t7 C 4256700t8 C 43462440t9 C � � � :
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Minkowski period sequence 112

62 The Fano manifold MM3–9

Mori–Mukai construction The blow-up of the cone W4 � P6 over the Veronese

surface R4 � P5 with centre a disjoint union of the vertex and a quartic in R4 Š P2.

Our construction A member X of j2M j in the toric variety F with weight data

s0 s1 s2 x y0 y1

1 1 1 –2 0 0 L

0 0 0 1 1 1 M

and Nef F D hL;M i.

We have:

� �KF D L C 3M is ample, so F is a Fano variety.

� X � 2M is nef.

� �.KF C X /� L C M is ample.

The two constructions coincide The variety X is cut out by

y0y1 C x2A4.s0; s1; s2/D 0;

where A4 is a generic homogeneous polynomial of degree 4 in s0 , s1 ands2 . Note the

morphisms � W F ! P2 , given by the linear system jLj, and f W F ! P .1; 1; 1; 2; 2/,

given (contravariantly) by Œx0;x1;x2;y0;y1� 7! Œs0

p
x; s1

p
x; s2

p
x;y0;y1�. The

exceptional set of f is the divisor E D .x D 0/ D P2
s0;s1;s2

� P1
y0;y1

that maps to

P1
y0;y1

�P .1; 1; 1; 2; 2/. Note that E\X is two copies of P2, one above Œy0 Wy1�D Œ1 W0�
and one above Œy0 W y1�D Œ0 W 1�. This explains how X has rank 3 when F has rank 2.

To see that our construction coincides with the construction of Mori and Mukai, set

W D f .X /, note that

W D
�
y0y1 C A4.x0;x1;x2/D 0

�
� P .1; 1; 1; 2; 2/

and note that the morphism f W X ! W contracts one copy of P2, with normal bundle

O.�2/, to each of the two singular points W \P1
y0;y1

. Consider the rational projection

gW P .1; 1; 1; 2; 2/Ü P .1; 1; 1; 2/x0;x1;x2;y0

which omits the homogeneous co-ordinate y1 . It is clear that gj
W

W W Ü P .1; 1; 1; 2/

extends to a morphism after blowing up the singular point Œ0 W 0 W 0 W 0 W 1� 2 W , and

that this morphism contracts the surface .y0 D A4.x0;x1;x2/D 0/� W to the curve

.y0 D A4.x0;x1;x2/D 0/� P .1; 1; 1; 2/.
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The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mD2l

t lCm .2m/!

.l !/3.m � 2l/!.m!/2

and regularizing gives

�GX .t/D 1 C 2t2 C 36t3 C 198t4 C 840t5 C 9200t6

C 79800t7 C 520870t8 C 4289040t9 C � � � :

Minkowski period sequence 22

63 The Fano manifold MM3–10

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P4 with centre a

disjoint union of two conics on it.

Our construction A member X of j2N j in the toric variety F with weight data

s0 s1 t2 t3 x y x4

1 1 0 0 –1 0 0 L

0 0 1 1 0 –1 0 M

0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. The secondary fan for F has 4 maximal cones, as in Figure 4.

We have:

� �KF D L C M C 3N is ample, so that F is a Fano variety.

� X � 2N is nef.

� �.KF C X /� L C M C N is ample.

N � M

L M

N

N � L

Figure 4: The secondary fan for F in MM3–10 .
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The two constructions coincide We take Q to be the locus x0x1 Cx2x3 Cx2
4

D 0 in

P4
x0;x1;x2;x3;x4

and take the conics to be cut out of Q by the two complete intersections

.x0 D x1 D 0/ and .x2 D x3 D 0/; note that the intersection of these two planes

misses Q. The morphism F ! P4 given (contravariantly) by

Œx0 W x1 W x2 W x3 W x4� 7! Œs0x W s1x W t2y W t3y W x4�

blows up the planes .x0 D x1 D 0/ and .x2 D x3 D 0/. Taking the proper transform

of Q yields X.

The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mD0

1X

nDmax.l;m/

t lCmCn .2n/!

.l !/2.m!/2n!.n � l/!.n � m/!

and regularizing gives

�GX .t/D 1 C 10t2 C 36t3 C 366t4 C 2640t5 C 23320t6

C 200760t7 C 1815310t8 C 16611840t9 C � � � :

Minkowski period sequence 99

64 The Fano manifold MM3–11

Mori–Mukai construction The blow–up of B7 (see MM2–35 ) with centre an elliptic

curve that is the intersection of two members of
ˇ̌
�1

2
KB7

ˇ̌
.

Our construction A member X of jLCM CN j in the toric variety F with weight

data
s0 s1 s2 x x3 y0 y1

1 1 1 –1 0 0 0 L

0 0 0 1 1 0 0 M

0 0 0 0 0 1 1 N

and Nef F D hL;M;N i. In other words, F Š B7 �P1. The secondary fan of F is the

same as that of the toric variety in Section 59 (ie our ambient toric variety for MM3–6 )

and is shown in Figure 3 .

We have:

� �KF D 2L C 2M C 2N is ample, so F is a Fano variety.

� X � L C M C N is ample.

� �.KF C X /� L C M C N is ample.
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The two constructions coincide Recall that B7 (MM2–35 ) is the toric variety with

weight data

s0 s1 s2 x x3

1 1 1 –1 0 L

0 0 0 1 1 M

and Nef B7 D hL;M i. Now apply Lemma E.1 with V D OB7
˚OB7

, W D �1
2
KB7

and f W V ! W given by .A B/, where A and B are the sections of �1
2
KB7

that

define the centre of the blow-up.

The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

nD0

1X

mDl

t lCmCn .l C m C n/!

.l !/3.m � l/!m!.n!/2

and regularizing gives

�GX .t/D 1 C 6t2 C 30t3 C 186t4 C 1380t5 C 10230t6

C 78540t7 C 620970t8 C 5020680t9 C � � � :

Minkowski period sequence 72

65 The Fano manifold MM3–12

Mori–Mukai construction The blow-up of P3 with centre a disjoint union of a line

and a twisted cubic.

Our construction A codimension-2 complete intersection X of type

.M C N /\ .M C N /

in the toric variety F with weight data

s0 s3 x x1 x2 y0 y1 y2

1 1 –1 0 0 0 0 0 L

0 0 1 1 1 0 0 0 M

0 0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. The secondary fan of F is the same as of the toric variety in

Section 59 (ie our ambient toric variety for MM3–6 ) and is in Figure 3. We have:

� �KF D L C 3M C 3N is ample, so F is a Fano variety.

� X is the complete intersection of two nef divisors on F .

� �.KF Cƒ/� L C M C N is ample.
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The two constructions coincide The twisted cubic � is cut out of P3
x0;:::;x3

by the

equations

rk

�
x0 x1 x2

x1 x2 x3

�
< 2:

By Lemma E.1 the blow up of P3 along � is cut out of P3
x0;:::;x3

� P2
y0;y1;y2

by the

equations
�

x0 x1 x2

x1 x2 x3

�
�

0
@

y0

y1

y2

1
A D 0:

Observe that � is disjoint from the line .x0 D x3 D 0/. We therefore blow up

P3
x0;:::;x3

� P2
y0;y1;y2

along the locus x0 D x3 D 0, obtaining the toric variety F. The

equations defining X inside F are

�
s0x x1 x2

x1 x2 s3x

�
�

0
@

y0

y1

y2

1
A D 0

and so X is a complete intersection of type .M C N /\ .M C N /.

The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

nD0

1X

mDl

t lCmCn .m C n/!.m C n/!

.l !/2.m � l/!.m!/2.n!/3

and regularizing gives

�GX .t/D 1 C 8t2 C 30t3 C 240t4 C 1740t5 C 13130t6

C 106680t7 C 862960t8 C 7248360t9 C � � � :

Minkowski period sequence 85

66 The Fano manifold MM3–13

Mori–Mukai construction The blow-up of W � P2 � P2 with centre a curve C of

bidegree .2; 2/ on it such that C ,! W ! P2�P2 pi�!P2 is an embedding for i D 1, 2.

Here W is a divisor of bidegree .1; 1/ in P2 �P2 and pi W P2 �P2 ! P2 is projection

to the i th factor.

Our construction A codimension-3 complete intersection X of type

.L C M /\ .L C N /\ .M C N /

in P2 � P2 � P2.
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The two constructions coincide First choose co-ordinates x0 , x1 , x2 , y0 , y1 , y2

on P2 �P2 such that the curve C is contained in the surface † given by the condition

rk

�
x0 x1 x2

y0 y1 y2

�
< 2:

Note that † is just P2 embedded diagonally in P2 � P2. In these co-ordinates,

W1;1 D ff1;1.x;y/ D 0g, where f1;1 2 �.P2 � P2IO.1; 1// is a general section

and C D† � W1;1 . By Lemma E.1, X is given by the equations

8
<̂

:̂

x0z0 C x1z1 C x2z2 D 0;

y0z0 C y1z1 C y2z2 D 0;

f1;1.x;y/D 0;

in P2
x0;x1;x2

� P2
y0;y1;y2

� P2
z0;z1;z2

.

The quantum period F D P2 � P2 � P2 is the toric variety with weight data

1 1 1 0 0 0 0 0 0 L

0 0 0 1 1 1 0 0 0 M

0 0 0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. We have:

� F is a Fano variety.

� X is the complete intersection of three nef divisors on F .

� �.KF Cƒ/� L C M C N is ample.

Corollary D.5 yields

GX .t/D e�3t
1X

lD0

1X

mD0

1X

nD0

t lCmCn .l C m/!.l C n/!.m C n/!

.l !/3.m!/3.n!/3

and regularizing gives

�GX .t/D 1 C 6t2 C 24t3 C 162t4 C 1080t5

C 7620t6 C 55440t7 C 415170t8 C 3166800t9 C � � � :

Minkowski period sequence 70

67 The Fano manifold MM3–14

Mori–Mukai construction The blow-up of P3 with centre a union of a cubic in a

plane S and a point not in S .
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N M

L

�L C M�2L C N

�2L C 2M C N

Figure 5: The secondary fan for F in MM3–14 .

Our construction A member X of jM CN j in the toric variety F with weight data

s0 s1 s2 x x3 u v

1 1 1 –1 0 –2 0 L

0 0 0 1 1 0 0 M

0 0 0 0 0 1 1 N

and Nef F D hL;M;N i. The secondary fan of F is shown in Figure 5.

We have:

� �KF D 2M C 2N is nef and big but not ample.

� X � M C N is nef and big but not ample.

� �.KF C X /� M C N is nef and big but not ample.

The two constructions coincide The variety X is cut out by

vx3 C uxA3.s0; s1; s2/D 0:

Note the obvious morphism � W F ! B7 with fibre P1
u;v , where B7 is the toric variety

with weight data

s0 s1 s2 x x3

1 1 1 –1 0 L

0 0 0 1 1 M

and Nef B7 D hL;M i. (The weight data and co-ordinates for B7 here are exactly

as in Section 52.) The birational morphism B7 ! P3 given (contravariantly) by

Œx0; : : : ;x3� 7! Œs0x; s1x; s2x;x3� identifies B7 with the blow-up of P3 at the point

Œ0 W0 W0 W1�. The equation defining X is of degree 1 in P1
u;v ; it follows that the morphism

�j
X

W X ! B7 is birational and blows up the locus16 .x3 D A3.s0; s1; s2/D 0/� B7 .

16With our choice of stability condition for F, .x3 D x D 0/� C7 is part of the unstable locus.
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The quantum period Let p1 , p2 , p3 2 H �.F I Z/ denote the first Chern classes

of L, M and N , respectively; these classes form a basis for H 2.F I Z/. Write

� 2 H 2.F I Q/ as � D �1p1 C �2p2 C �3p3 and identify the group ring QŒH2.F I Z/�

with the polynomial ring QŒQ1;Q2;Q3� via the Q–linear map that sends the element

Qˇ 2 QŒH2.F I Z/� to Qhˇ;p1i
1

Qhˇ;p2i
2

Qhˇ;p3i
3

. We have

IF .�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

Ql
kD1.p1 C kz/3

Qm
kD1.p2 C kz/

Qn
kD1.p3 C kz/

�
Q0

kD�1.p2 � p1 C kz/
Qm�l

kD�1.p2 � p1 C kz/

Q0
kD�1.p3 � 2p1 C kz/2

Qn�2l
kD�1.p3 � 2p1 C kz/2

:

Since

IF .�/D 1 C �z�1 C O.z�2/

Theorem C.1 gives

JF .�/D IF .�/:

We now proceed exactly as in the case of MM3–1 , obtaining:

GX .t/D e�2t
1X

lD0

1X

mDl

1X

nD2l

tmCn .m C n/!

.l !/3m!n!.m � l/!.n � 2l/!

Regularizing gives

�GX.t/D1C2t2C18t3C102t4C420t5C2810t6C21000t7C129430t8C813960t9C� � �:

Minkowski period sequence 21

68 The Fano manifold MM3–15

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P4 with centre a

disjoint union of a line and a conic on it.

Our construction A member X of jL C N j in a toric variety F with weight data

s0 s1 s2 t3 t4 y z

1 1 1 0 0 –1 0 L

0 0 0 1 1 0 –1 M

0 0 0 0 0 1 1 N

and Nef F D hL;M;N i. The secondary fan for F is the same as that for the toric

variety in Section 63 (ie our ambient toric variety for MM3–10 ) and is shown in Figure 4.

We have:
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� �KF D 2L C M C 2N is ample, that is, F is a Fano variety.

� X � N C L is nef.

� �.KF C X /� L C M C N is ample on F.

The two constructions coincide The morphism F ! P4 given (contravariantly) by

Œx0;x1;x2;x3;x4� 7! Œs0y; s1y; s2y; t3z; t4z�

is the blow-up of P2 along the disjoint union of the line .x0 D x1 D x2 D 0/ and the

plane .x3 D x4 D 0/. X is the proper transform of the (nonsingular) quadric defined

by the equation:

x2
0 C x1x3 C x2x4 D 0

Note that this quadric contains the line x0 D x1 D x2 D 0.

The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mD0

1X

nDmax.l;m/

t lCmCn .l C n/!

.l !/3.m!/2.n � l/!.n � m/!

and regularizing gives

�GX .t/D 1 C 6t2 C 18t3 C 138t4 C 780t5 C 5370t6

C 36120t7 C 253050t8 C 1811880t9 C � � � :

Minkowski period sequence 67

69 The Fano manifold MM3–16

Mori–Mukai construction The blow-up of B7 (MM2–35 ) with centre the strict trans-

form of a twisted cubic passing through the centre of the blow-up B7 ! P3.

Our construction A complete intersection X of type N \ N in the toric variety F

with weight data

s1 s2 s3 x x0 y0 y1 y2

1 1 1 –1 0 0 –1 –1 L

0 0 0 1 1 –1 0 0 M

0 0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. The secondary fan for F is shown schematically in Figure 6.

We have:
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L �M C N

N

M �L C N

�L C M

Figure 6: The secondary fan for F in MM3–16 .

� �KF D M C 3N is nef and big but not ample.

� X is the complete intersection of two nef divisors on F .

� �.KF C X /� M C N is nef and big but not ample on F.

The two constructions coincide Consider the rational normal curve

� D
�

rk

�
x0 x1 x2

x1 x2 x3

�
< 2

�

in P3
x0;x1;x2;x3

and note that P D Œ1 W 0 W 0 W 0� lies on � . Recall that B7 is the toric

variety with weight data

s1 s2 s3 x x0

1 1 1 –1 0 L

0 0 0 1 1 M

and Nef B7 D hL;M i, and that the blow-up morphism B7 ! P3 is given (contravari-

antly) by Œx0;x1;x2;x3� 7! Œx0; s1x; s2x; s3x�. The proper transform of the curve �

is the curve � 0 defined by the condition:

rk

�
x0 s1 s2

xs1 s2 s3

�
< 2

Now apply Lemma E.1 with G D B7 , V D M �1 ˚L�1 ˚L�1 , W D OG ˚OG and

the map f W V ! W given by the matrix:

�
x0 s1 s2

xs1 s2 s3

�
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The quantum period Let p1 , p2 , p3 2 H �.F I Z/ denote the first Chern classes

of L, M and N , respectively; these classes form a basis for H 2.F I Z/. Write

� 2 H 2.F I Q/ as � D �1p1 C �2p2 C �3p3 and identify the group ring QŒH2.F I Z/�

with the polynomial ring QŒQ1;Q2;Q3� via the Q–linear map that sends the element

Qˇ 2 QŒH2.F I Z/� to Qhˇ;p1i
1

Qhˇ;p2i
2

Qhˇ;p3i
3

. We have

IF .�/D e�=z
X

l;m;n�0

Ql
1
Qm

2
Qn

3
el�1em�2en�3

Ql
kD1.p1 C kz/3

Qm
kD1.p2 C kz/

Q0
kD�1.p2 � p1 C kz/

Qm�l
kD�1.p2 � p1 C kz/

�
Q0

kD�1.p3 � p2 C kz/Qn�m
kD�1.p3 � p2 C kz/

Q0
kD�1.p3 � p1 C kz/2

Qn�l
kD�1.p3 � p1 C kz/2

and, since IF .�/D 1 C �z�1 C O.z�2/, Theorem C.1 gives

JF .�/D IF .�/:

We now proceed exactly as in the case of MM3–1 , obtaining

GX .t/D e�t
1X

lD0

1X

nDl

nX

mDl

tmCn n!n!

.l !/3mr.m � l/!.n � m/!..n � l/!/2
:

Regularizing gives

�GX .t/D1C4t2C18t3C84t4C540t5C3190t6C20160t7C130900t8C859320t9C � � �:

Minkowski period sequence 42

70 The Fano manifold MM3–17

Mori–Mukai construction A nonsingular divisor on P1 � P1 � P2 of tridegree

.1; 1; 1/.

Our construction A member X of jLCM CN j on the toric variety F with weight

data

1 1 0 0 0 0 0 L

0 0 1 1 0 0 0 M

0 0 0 0 1 1 1 N

and Nef F D hL;M;N i.

The two constructions coincide Obvious.
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The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mD0

1X

nD0

t lCmC2n .l C m C n/!

.l !/2.m!/2.n!/3

and regularizing gives

�GX .t/D1C4t2C12t3C84t4C360t5C2380t6C13440t7C83860t8C512400t9C � � �:

Minkowski period sequence 39

71 The Fano manifold MM3–18

Mori–Mukai construction The blow-up of P3 with centre the disjoint union of a

line and a conic.

Our construction A member X of jM CN j on the toric variety F with weight data

s0 s1 x x2 x3 y0 y1

1 1 –1 0 0 0 0 L

0 0 1 1 1 –1 0 M

0 0 0 0 0 1 1 N

and Nef F D hL;M;N i. The secondary fan of F is the same as that of the toric variety

in Section 57 (ie out ambient toric variety for MM3–4 ) and it is shown in Figure 2. We

have:

� �KF D L C 2M C 2N ample, that is, F is a Fano variety.

� X � M C N is nef.

� �.KF C X /� L C M C N is ample.

The two constructions coincide We construct X, for example, as the blow-up of

P3
x0;x1;x2;x3

along the (disjoint) union of the line .x0 D x1 D 0/ and the conic

.x0x1 C x2
2

D x3 D 0/. Thus X is given in F by the equation

y0.s0s1x2 C x2
2/C y1x3 D 0;

where the morphism F ! P3 is given (contravariantly) by

Œx0;x1;x2;x3� 7! Œs0x; s1x;x2;x3�:
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The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mDl

1X

nDm

t lCmCn .m C n/!

.l !/2.m � l/!.m!/2.n � m/!n!

and regularizing gives

�GX .t/D1C4t2C18t3C60t4C480t5C2470t6C14280t7C94780t8C564480t9C� � � :

Minkowski period sequence 41

72 The Fano manifold MM3–19

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P4 with centre

two points P1 and P2 on it which are not collinear.

Our construction A member X of j2M j in the rank-2 toric variety F with weight

data
s0 s1 s2 x x3 x4

1 1 1 –1 0 0 L

0 0 0 1 1 1 M

and Nef F D hL;M i. We have:

� �KF D 2L C 3M is ample, that is, F is a Fano variety.

� X � 2M is nef.

� �.KF C X /� 2L C M is ample.

The two constructions coincide F is manifestly the blow-up of P4
x0;x1;x2;x3;x4

along the line .x0 D x1 D x2 D 0/, and X is the strict transform of a general quadric.

The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mDl

t2lCm .2m/!

.l !/3.m � l/!.m!/2

and regularizing gives

�GX .t/D1C2t2C12t3C54t4C240t5C1280t6C7560t7C42070t8C235200t9C� � � :

Minkowski period sequence 18
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73 The Fano manifold MM3–20

Mori–Mukai construction The blow-up of a quadric 3–fold Q � P4 with centre

two disjoint lines on it.

Our construction A member X of jL C M j in the toric variety F with weight data

s0 s1 t2 t3 u4 x y

1 1 0 0 1 –1 0 L

0 0 1 1 1 0 –1 M

0 0 0 0 –1 1 1 N

and Nef F D hL;M;N i. The secondary fan of F is the same as that for F in MM3–16 ;

it is shown schematically in Figure 7.

We have:

� �KF D 2L C 2M C N is ample, that is, F is a Fano variety.

� X � L C M is nef.

� �.KF C X /� L C M C N is ample.

The two constructions coincide We blow up the disjoint union of the two lines

.x2 D x3 D x4 D 0/ and .x0 D x1 D x4 D 0/ in P4
x0;x1;x2;x3;x4

and take X to be the

proper transform of the quadric x0x3 C x1x2 C x2
4

D 0 constructed to contain the two

lines. The morphism F ! P4 is given (contravariantly) by

Œx0;x1;x2;x3;x4� 7! Œs0x; s1x; t2y; t3y;u4xy�:

�M C N �L C N

N

L M

L C M � N

Figure 7: The secondary fan for F in MM3–20 .
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The quantum period Corollary D.5 yields

GX .t/D
1X

lD0

1X

mD0

lCmX

nDmax.l;m/

t lCmCn .l C m/!

.l !/2.m!/2.l C m � n/!.n � l/!.n � m/!

and regularizing gives

�GX .t/D1C4t2C12t3C60t4C360t5C1660t6C10920t7C57820t8C361200t9C � � �:

Minkowski period sequence 38

74 The Fano manifold MM3–21

Mori–Mukai construction The blow-up of P1 � P2 with centre a curve of bi-

degree .2; 1/.

Our construction A member X of jM CN j on the toric variety F with weight data

x0 x1 y0 y1 y2 s t

1 1 0 0 0 0 –1 L

0 0 1 1 1 0 –1 M

0 0 0 0 0 1 1 N

and Nef F D hL;M;N i. The secondary fan of F is the same as of the toric variety in

Section 55 (ie our ambient toric variety for MM3–2 ) and is shown in Figure 1. We have:

� �KF D L C 2M C 2N is ample, that is, F is a Fano variety.

� X � M C N is nef.

� �.KF C X /� L C M C N is ample.

The two constructions coincide A complete intersection of type .0; 1/\ .1; 2/ on

P1 � P2 is a curve of bidegree (2,1). Apply Lemma E.1 with G D P1
x0;x1

� P2
y0;y1;y2

,

V D OP1�P2 ˚OP1�P2.�1;�1/, W D OP1�P2.0; 1/ and f W V ! W given by the

matrix .y0 x0q0 C x1q1/, where q0 and q1 are homogeneous quadratic polynomials

in y0 , y1 and y2 .

The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mD0

1X

nDlCm

t lCmCn .m C n/!

.l !/2.m!/3n!.n � l � m/!

and regularizing gives

�GX .t/D1C6t2C6t3C114t4C240t5C3030t6C9660t7C95970t8C394800t9C� � � :
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Minkowski period sequence 49

75 The Fano manifold MM3–22

Mori–Mukai construction The blow-up of P1 � P2 with centre a conic in t � P2

(t 2 P1 ).

Our construction A member X of jN j on the toric variety F with weight data

x0 x1 y0 y1 y2 s t

1 1 0 0 0 –1 0 L

0 0 1 1 1 0 –2 M

0 0 0 0 0 1 1 N

and Nef F D hL;M;N i. The secondary fan of F is similar to that of our ambient

toric variety for MM3–10 ; cf Figure 4. We have:

� �KF D L C M C 2N is ample, that is, F is a Fano variety.

� X � N is nef.

� �.KF C X /� L C M C N is ample.

The two constructions coincide Apply Lemma E.1 with G D P1
x0;x1

� P2
y0;y1;y2

,

V D OP1�P2.�1; 0/˚OP1�P2.0;�2/, W D OP1�P2 and f W V ! W given by the

matrix .x0 � tx1 y0y2 � y2
1
/.

The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mD0

1X

nDmax.l;2m/

t lCmCn n!

.l !/2.m!/3.n � l/!.n � 2m/!

and regularizing gives

�GX .t/D 1C2t2C6t3C54t4C180t5C830t6C4620t7C26950t8C140280t9C� � � :

Minkowski period sequence 13

76 The Fano manifold MM3–23

Mori–Mukai construction The blow-up of B7 (MM2–35 ) with centre a conic passing

through the centre of the blow-up B7 ! P3.
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Our construction A member X of jL C N j in the toric variety F with weight data

s1 s2 s3 x x0 u v

1 1 1 –1 0 0 0 L

0 0 0 1 1 –1 0 M

0 0 0 0 0 1 1 N

and Nef F D hL;M;N i. The secondary fan for F is the same as that of the toric

variety in Section 57 (ie our ambient toric variety for MM3–4 ) and is shown in Figure 2.

We have:

� �KF D 2L C M C 2N is ample, that is, F is a Fano variety.

� X � L C N is nef.

� �.KF C X /� L C M C N is ample.

The two constructions coincide Consider the conic � given by .x3 Dx0x1Cx2
2

D0/

in P3
x0;:::;x3

and note that P D Œ1 W 0 W 0 W 0� lies on � . Recall that B7 is the toric variety

with weight data
s1 s2 s3 x x0

1 1 1 –1 0 L

0 0 0 1 1 M

and Nef B7 D hL;M i, and that the blow-up morphism B7 ! P3 is given (contravari-

antly) by Œx0;x1;x2;x3� 7! Œx0; s1x; s2x; s3x�. The proper transform of the curve �

is the curve � 0 defined by the equations

s3 D x0s1 C xs2
2 D 0:

Now apply Lemma E.1 with G D B7 , V D M �1 ˚ OG , W D L and the map

f W V ! W given by the matrix .x0s1 C xs2
2

s3/.

The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mDl

1X

nDm

t lCmCn .l C n/!

.l !/3.m � l/!m!.n � m/!n!

and regularizing gives

�GX .t/D 1C2t2C12t3C30t4C180t5C920t6C4200t7C22750t8C121800t9C� � � :

Minkowski period sequence 17
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77 The Fano manifold MM3–24

Mori–Mukai construction The fibre product W �P2 F1 , where W ! P2 is a P1 –

bundle and pW F1 ! P2 is the blow-up. Here W (MM2–32 ) is a divisor of bidegree

.1; 1/ on P2 � P2.

Our construction A member X of jM CN j on the toric variety F1 �P2, where M

is the line bundle p?O.1/ on F1 and N D O.1/. In other words, X is a member of

jM C N j on the toric variety F with weight data

s0 s1 x x2 y0 y1 y2

1 1 –1 0 0 0 0 L

0 0 1 1 0 0 0 M

0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. We have:

� �KF D L C 2M C 3N is ample, that is, F is a Fano variety.

� X � M C N is nef.

� �.KF C X /� L C M C 2N is ample.

The two constructions coincide First we show that X is the blow-up of P1 � P2

along a curve of bidegree .1; 1/. Note that X is cut out of P2
x0;x1;x2

�P2
y0;y1;y2

�P1
s0;s1

by the equations �
y0x0 C y1x1 C y2x2 D 0;

s0x0 C s1x1 D 0:

The first equation here cuts W out of P2
x0;x1;x2

� P2
y0;y1;y2

; the second equation cuts

F1 out of P2
x0;x1;x2

� P1
s0;s1

, as it is the equation defining the blow-up of P2 at the

point Œ0 W 0 W 1�. We now exhibit X as the blow-up of a curve in P2
y0;y1;y2

�P1
s0;s1

. The

projection to P2
y0;y1;y2

�P1
s0;s1

is an isomorphism away from the locus where the matrix
�

y0 y1 y2

s0 s1 0

�

drops rank. This locus is �
y2 D 0;

y0s1 � y1s0 D 0;

ie a curve in of bidegree .1; 1/, as claimed. We can further simplify things by writing

X as a hypersurface in F1 � P2 : the two equations defining X (given above) reduce

to the single equation

s0xy0 C s1xy1 C x2y2 D 0

in F1 � P2.
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The quantum period Corollary D.5 yields

GX .t/D e�t
1X

lD0

1X

mDl

1X

nD0

t lCmC2n .m C n/!

.l !/2.m � l/!m!.n!/3

and regularizing gives

�GX .t/D 1C4t2C6t3C60t4C180t5C1210t6C5460t7C30940t8C165480t9C� � � :

Minkowski period sequence 31

78 The Fano manifold MM3–25

Mori–Mukai construction The blow-up of P3 with centre two disjoint lines; equiv-

alently,17 P .O.1; 0/˚O.0; 1// over P1 � P1.

Our construction The toric variety X with weight data

s0 s1 t2 t3 x y

1 1 0 0 –1 0 L

0 0 1 1 0 –1 M

0 0 0 0 1 1 N

and Nef X D hL;M;N i.

The two constructions coincide The morphism X ! P3 that sends (contravariantly)

the homogeneous co-ordinate functions Œx0;x1;x2;x3� to Œs0x; s1x; t2y; t3y� mani-

festly blows up the union of the line .x0 D x1 D 0/ and the line .x2 D x3 D 0/. These

lines are disjoint.

The quantum period Corollary C.2 yields

GX .t/D
1X

lD0

1X

mD0

1X

nDmax.l;m/

t lCmC2n

.l !/2.m!/2.n � l/!.n � m/!

and regularizing gives

�GX .t/D 1C2t2C12t3C30t4C120t5C920t6C3360t7C16030t8C99120t9C� � � :

Minkowski period sequence 16

17Note that Mori and Mukai use different weight conventions for projective bundles than we do.
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79 The Fano manifold MM3–26

Mori–Mukai construction The blow-up of P3 with centre a disjoint union of a point

and a line.

Our construction The toric variety X with weight data

s0 s1 t2 u3 x y

1 1 0 1 –1 0 L

0 0 1 1 0 –1 M

0 0 0 –1 1 1 N

and Nef X D hL;M;N i. The secondary fan of X is the same as that of the toric

variety in MM3–20 and it is shown in Figure 7.

The two constructions coincide The morphism to P3 is given by the complete

linear system jN j on X ; it sends (contravariantly) the homogeneous co-ordinates

Œx0;x1;x2;x3� to Œs0x; s1x; t2y;u3xy�. The divisor .x D0/�X contracts to the point

Œ0 W 0 W 1 W 0�2 P3 and the divisor .y D 0/� X contracts to the line .x2 D x3 D 0/� P3.

The quantum period Corollary C.2 yields

GX .t/D
1X

lD0

1X

mD0

lCmX

nDmax.l;m/

t2lCmCn

.l !/2m!.l C m � n/!.n � l/!.n � m/!

and regularizing gives

�GX .t/D 1C2t2 C6t3 C30t4 C120t5 C470t6 C2520t7 C10990t8 C57120t9 C� � � :

Minkowski period sequence 12

80 The Fano manifold MM3–27

Mori–Mukai construction P1 � P1 � P1 .

Our construction The toric variety X with weight data

1 1 0 0 0 0 L

0 0 1 1 0 0 M

0 0 0 0 1 1 N

and Nef X D hL;M;N i.
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The two constructions coincide Obvious.

The quantum period Corollary C.2 yields

GX .t/D
1X

lD0

1X

mD0

1X

nD0

t2lC2mC2n

.l !/2.m!/2.n!/2

and regularizing gives

�GX .t/D 1 C 6t2 C 90t4 C 1860t6 C 44730t8 C 1172556t10 C � � � :

Minkowski period sequence 45

81 The Fano manifold MM3–28

Mori–Mukai construction P1 � F1 .

Our construction The toric variety X with weight data

1 1 0 0 0 0 L

0 0 1 1 –1 0 M

0 0 0 0 1 1 N

and Nef X D hL;M;N i.

The two constructions coincide Obvious.

The quantum period Corollary C.2 yields

GX .t/D
1X

lD0

1X

mD0

1X

nDm

t2lCmC2n

.l !/2.m!/2.n � m/!n!

and regularizing gives

�GX .t/D 1C4t2 C6t3 C36t4 C180t5 C490t6 C4200t7 C11620t8 C89880t9 C� � � :

Minkowski period sequence 28

82 The Fano manifold MM3–29

Mori–Mukai construction The blow-up of B7 (MM2–35 ) with centre a line on the

exceptional divisor D Š P2 of the blow-up B7 ! P3.
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�2M C N �L C N

N

L M

L C M � N

Figure 8: The secondary fan for X in MM3–29 .

Our construction The toric variety X with weight data

x0 s1 s2 t3 x y

1 0 0 –1 0 1 L

0 1 1 0 –2 1 M

0 0 0 1 1 –1 N

and Nef X D hL;M;N i. The secondary fan of X is shown schematically in Figure 8.

The two constructions coincide The morphism X ! P3 sends (contravariantly) the

homogeneous co-ordinate functions Œx0;x1;x2;x3� to Œx0; s1xy; s2xy; t3xy2�.

The quantum period Corollary C.2 yields

GX .t/D
1X

lD0

1X

mD0

lCmX

nDmax.l;2m/

t lCmCn

l !.m!/2.n � l/!.n � 2m/!.l C m � n/!

and regularizing gives

�GX .t/D 1 C 2t2 C 30t4 C 60t5 C 380t6 C 840t7 C 5950t8 C 22680t9 C � � � :

Minkowski period sequence 8
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83 The Fano manifold MM3–30

Mori–Mukai construction The blow-up of B7 (MM2–35 ) with centre the strict trans-

form of a line passing through the centre of the blow-up B7 ! P3.

Our construction The toric variety X with weight data

t0 t1 x s2 y x3

1 1 –1 0 0 0 L

0 0 1 1 –1 0 M

0 0 0 0 1 1 N

The two constructions coincide The morphism X ! P3 sends (contravariantly) the

homogeneous co-ordinate functions Œx0;x1;x2;x3� to Œt0xy; t1xy; s2y;x3�.

The quantum period Corollary C.2 yields

GX .t/D
1X

lD0

1X

mDl

1X

nDm

t lCmC2n

.l !/2.m � l/!m!.n � m/!n!

and regularizing gives

�GX .t/D 1 C 2t2 C 6t3 C 30t4 C 60t5 C 470t6 C 1680t7 C 7630t8 C 34440t9 C � � � :

Minkowski period sequence 11

84 The Fano manifold MM3–31

Mori–Mukai construction The blow-up of the cone over a nonsingular quadric sur-

face in P3 with centre the vertex; equivalently, the P1 –bundle P .O ˚O.1; 1// over

P1 � P1.

Our construction The toric variety X with weight data

s0 s1 t0 t1 x y

1 1 0 0 –1 0 L

0 0 1 1 –1 0 M

0 0 0 0 1 1 N

and Nef X D hL;M;N i.

The two constructions coincide Obvious.
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The quantum period Corollary C.2 yields

GX .t/D
1X

lD0

1X

mD0

1X

nDlCm

t lCmC2n

.l !/2.m!/2.n � l � m/!n!

and regularizing gives

�GX .t/D 1C2t2 C12t3 C6t4 C120t5 C560t6 C840t7 C10150t8 C38640t9 C� � � :

Minkowski period sequence 14

85 The Fano manifold MM4–1

Mori–Mukai construction A divisor of multidegree .1; 1; 1; 1/ in P1�P1�P1�P1.

Our construction A member X of jA C B C C C Dj in the toric variety F with

weight data

1 1 0 0 0 0 0 0 A

0 0 1 1 0 0 0 0 B

0 0 0 0 1 1 0 0 C

0 0 0 0 0 0 1 1 D

and Nef X D hA;B;C;Di.

The two constructions coincide Obvious.

The quantum period Corollary D.5 yields

GX .t/D e�4t
1X

aD0

1X

bD0

1X

cD0

1X

dD0

taCbCcCd .a C b C c C d/!

.a!/2.b!/2.c!/2.d!/2

and regularizing gives

�GX .t/D 1 C 12t2 C 48t3 C 540t4 C 4320t5

C 42240t6 C 403200t7 C 4038300t8 C 40958400t9 C � � � :

Minkowski period sequence 111

86 The Fano manifold MM4–2

Mori–Mukai construction The blow-up of P1 � P1 � P1 with centre a curve of

tridegree .1; 1; 3/.18

18Mori and Mukai initially missed this variety [50; 53]. We put it where it belongs in their scheme.
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Our construction A member X of jB C C C Dj in the toric variety F with weight

data
x0 x1 y0 y1 z0 z1 u v

1 1 0 0 0 0 –1 0 A

0 0 1 1 0 0 –1 0 B

0 0 0 0 1 1 0 0 C

0 0 0 0 0 0 1 1 D

and Nef F D hA;B;C;Di. We have:

� �KF D A C B C 2C C 2D is ample, that is, F is a Fano variety.

� X � B C C C D is nef.

� �.KF C X /� A C C C D is nef and big but not ample.

The two constructions coincide The curve is a complete intersection of type

.1; 2; 1/\ .0; 1; 1/

in P1 � P1 � P1, so X is constructed by applying Lemma E.1 with

G D P1 � P1 � P1;

V D OP1�P1�P1.�1;�1; 0/˚OP1�P1�P1 ;

W D OP1�P1�P1.0; 1; 1/;

and f W V ! W given by the matrix .A B/, where

A2�.P1�P1�P1IOP1�P1�P1.1; 2;1//; B 2�.P1�P1�P1IOP1�P1�P1.0;1;1//;

are the sections that define the centre of the blow-up.

The quantum period Let p1 , p2 , p3 , p4 2 H �.F I Z/ denote the first Chern classes

of A, B , C and D , respectively; these classes form a basis for H 2.F I Z/. Write

� 2 H 2.F I Q/ as � D �1p1 C �2p2 C �3p3 C �4p4 and identify the group ring

QŒH2.F I Z/� with the polynomial ring QŒQ1;Q2;Q3;Q4� via the Q–linear map that

sends the element Qˇ 2QŒH2.F I Z/� to Qhˇ;p1i
1

Qhˇ;p2i
2

Qhˇ;p3i
3

Qhˇ;p4i
4

. Theorem C.1

gives

JF .�/

D e�=z
X

a;b;c;d�0

Qa
1
Qb

2
Qc

3
Qd

4
ea�1eb�2ec�3ed�4

Qa
kD1.p1Ckz/2

Qb
kD1.p2Ckz/2

Qc
kD1.p3Ckz/2

Qd
kD1.p4Ckz/

�
Q0

kD�1.p4�p1�p2Ckz/
Qd�a�b

kD�1.p4�p1�p2Ckz/
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and hence

Ie;E.�/

D e�=z
X

a;b;c;d�0

Qa
1
Qb

2
Qc

3
Qd

4
ea�1eb�2ec�3ed�4

QbCcCd
kD1 .�Cp2Cp3Cp4Ckz/

Qa
kD1.p1Ckz/2

Qb
kD1.p2Ckz/2

Qc
kD1.p3Ckz/2

Qd
kD1.p4Ckz/

�
Q0

kD�1.p4�p1�p2Ckz/
Qd�a�b

kD�1.p4�p1�p2Ckz/
:

Note that, much as in Example D.8, we have

Ie;E.0/D 1C ..Q3 CQ4 C2Q3Q4/1C .p4 �p1 �p2/ log.1CQ2//z
�1 CO.z�2/:

Arguing exactly as in Example D.8, we find that

Je;E..p4 � p2 � p1/ log.1 C Q2//D e�.Q3CQ4C2Q2Q4/=zIe;E.0/

and

Je;E..p3 � p2 � p1/ log.1 C Q2//

D e.p4�p2�p1/ log.1CQ2/=z ŒJe;E.0/�Q1D
Q1

1CQ2
;Q2D

Q2
1CQ2

;Q3DQ3;Q4DQ4.1CQ2/
:

Hence, using the inverse mirror map

Q1 D Q1

1 � Q2

; Q2 D Q2

1 � Q2

; Q3 D Q3 and Q4 D Q4.1 � Q2/;

we have that Je;E.0/ is equal to

�
e�.p4�p2�p1/ log.1CQ2/=z

� Je;E..p4 � p2 � p1/ log.1 C Q2//
�
Q1D

Q1
1�Q2

;Q2D
Q2

1�Q2
;Q3DQ3;Q4DQ4.1�Q2/

D e.p4�p2�p1/ log.1�Q2/=z

�
�
e�.Q3CQ4C2Q2Q4/=zIe;E.0/

�
Q1D

Q1
1�Q2

;Q2D
Q2

1�Q2
;Q3DQ3;Q4DQ4.1�Q2/

:

Taking the non-equivariant limit yields

JY;X .0/

D e.p4�p2�p1/ log.1�Q2/=ze�.Q3CQ4CQ2Q4/

�
X

a;b;c;d�0

Qa
1
Qb

2
Qc

3
Qd

4
.1 � Q2/

d�a�b
QbCcCd

kD1 .p2 C p3 C p4 C kz/
Qa

kD1.p1 C kz/2
Qb

kD1.p2 C kz/2
Qc

kD1.p3 C kz/2
Qd

kD1.p4 C kz/

�
Q0

kD�1.p4 � p1 � p2 C kz/
Qd�a�b

kD�1.p4 � p1 � p2 C kz/
:
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We saw in Example D.8 how to obtain the quantum period GX from JY;X .0/: we ex-

tract the component along the unit class 12H �.Y I Q/ and set z D1 and Qˇ D t hˇ;�KX i

(ie set Q1 D Q2 D Q3 D t and Q2 D 1). This yields

GX .t/D e�3t
1X

aD0

1X

bD0

1X

cD0

t2aCbCc .a C 2b C c/!

.a!/2.b!/2.c!/2.a C b/!
:

Regularizing gives

�GX .t/D 1 C 12t2 C 42t3 C 468t4 C 3360t5 C 31350t6

C 275940t7 C 2599380t8 C 24566640t9 C � � � :

Minkowski period sequence 110

87 The Fano manifold MM4–3

Mori–Mukai construction The blow-up of the cone Y over a smooth quadric surface

S in P3 with centre the disjoint union of the vertex and an elliptic curve on S .

Our construction A member X of j2N j in the toric variety with weight data

s0 s1 t0 t1 x y0 y1

1 1 0 0 –1 0 0 L

0 0 1 1 –1 0 0 M

0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. The toric variety F is the same as for MM3–3 and the

secondary fan for F is shown in Figure 1.

We have:

� �KF D L C M C 3N is ample, so F is a Fano variety.

� X � 2N is nef.

� �.KF C X /� L C M C N is ample.

The two constructions coincide The variety X is cut out by

y0y1 C x2A2;2.s0; s1I t0; t1/D 0;

where A2;2 is a generic bihomogeneous polynomial of degrees 2 in s0 and s1 , and 2

in t0 and t1 . Note the obvious morphism � W F ! P1
s0;s1

� P1
t0;t1

and the morphism

f W F ! G to the double cone G � P5 over P1 � P1 given (contravariantly) by

Œy0;y1;y2;y3;y4;y5� 7! Œy0;y1; s0t0x; s0t1x; s1t0x; s1t1x�. The exceptional set of
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f is the divisor E D .x D 0/D P1
s0;s1

�P1
t0;t1

�P1
y0;y1

that maps to P1
y0;y1

� G . Note

that E \X is two copies of P1
s0;s1

�P1
t0;t1

, one above Œy0 W y1�D Œ1 W 0� and one above

Œy0 W y1�D Œ0 W 1�. This explains how X has rank 4 when F has rank 3.

To see that our construction coincides with the construction of Mori and Mukai, set

W D f .X /, note that

W D .y0y1 C QA2.y2;y3;y4;y5/D 0/� G

for some degree-2 homogeneous polynomial QA2 and note that the morphism f W X !W

contracts one copy of P1
s0;s1

�P1
t0;t1

, with normal bundle O.�1;�1/, to each of the two

singular points W \ P1
y0;y1

. Consider next the rational projection gW G Ü P4
y1;:::;y5

which omits the homogeneous co-ordinate y0 . It is clear that gj
W

W W Ü P4 is

birational onto its image Y (the cone over P1 � P1 ), that it extends to a morphism

after blowing up the singular point Œ1 W 0 W 0 W 0 W 0 W 0� 2 W and that this mor-

phism contracts the surface
�
y1 D QA2.y2;y3;y4;y5/D 0

�
� W to the elliptic curve�

y1 D QA2.y2;y3;y4;y5/D 0
�

� Y .

The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mD0

1X

nDlCm

t lCmCn .2n/!

.l !/2.m!/2.n � l � m/!.n!/2

and regularizing gives

�GX .t/D 1 C 10t2 C 24t3 C 318t4 C 1680t5 C 16300t6

C 115920t7 C 1040830t8 C 8403360t9 C � � � :

Minkowski period sequence 88

88 The Fano manifold MM4–4

Mori–Mukai construction The blow-up of P1 � P1 � P1 with centre a curve � of

tridegree .1; 1; 2/.

Our construction A member X of jA C B C Dj in the toric variety F with weight

data
x0 x1 y0 y1 z0 z1 u v

1 1 0 0 0 0 0 0 A

0 0 1 1 0 0 0 0 B

0 0 0 0 1 1 –1 0 C

0 0 0 0 0 0 1 1 D

Geometry & Topology, Volume 20 (2016)



236 Tom Coates, Alessio Corti, Sergey Galkin and Alexander Kasprzyk

and Nef F D hA;B;C;Di. We have:

� �KF D 2A C 2B C C C 2D is ample, that is, F is a Fano variety.

� X � A C B C D is nef.

� �.KF C X /� A C B C C C D is ample.

The two constructions coincide We can take � � P1
x0;x1

� P1
y0;y1

� P1
z0;z1

to be

parameterised as

Œx0 W x1 W y0 W y1 W z0 W z1� 7! Œs0 W s1 W s0 W s1 W s2
0 W s2

1 �;

so � is the complete intersection in P1�P1�P1 given by the equations x0y1�x1y0 D
z1x0y0 � z0x1y1 D 0. Now apply Lemma E.1 with

G D P1 � P1 � P1;

V D OP1�P1�P1.0; 0;�1/˚OP1�P1�P1 ;

W D OP1�P1�P1.1; 1; 0/;

and f W V ! W given by the matrix .z1x0y0 � z0x1y1 x0y1 � x1y0/.

The quantum period Corollary D.5 yields

GX .t/D e�3t
1X

aD0

1X

bD0

1X

cD0

1X

dDc

taCbCcCd .a C b C d/!

.a!/2.b!/2.c!/2.d � c/!d!

and regularizing gives

�GX .t/D 1 C 8t2 C 24t3 C 216t4 C 1320t5 C 10160t6

C 74760t7 C 584920t8 C 4598160t9 C � � � :

Minkowski period sequence 83

89 The Fano manifold MM4–5

Mori–Mukai construction The blow-up of MM3–19 — which is the blow-up of a

quadric 3–fold Q�P4 with centre two points P1 and P2 on it which are not collinear —

with centre the strict transform of a conic containing P1 and P2 .
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Our construction A member X of j2N j in the toric variety F with weight data

s0 s1 x x2 y x3 y4

1 1 –1 0 0 0 0 L

0 0 1 1 –1 0 0 M

0 0 0 0 1 1 1 N

and Nef F D hL;M;N i. We have:

� �KF D L C M C 3N is ample, that is, F is a Fano variety.

� X � 2N is nef.

� �.KF C X /� L C M C N is ample.

The two constructions coincide The complete linear system jN j defines a mor-

phism F ! P4 which sends (contravariantly) the homogeneous co-ordinate functions

Œx0;x1;x2;x3;x4� to

Œs0xy; s1xy;x2y;x3;x4�:

This morphism identifies F with the blow-up of the line .x2 D x3 D x4 D 0/� P4

followed by the blow up of the proper transform of the plane .x3 D x4 D 0/. The

variety X is the strict transform of a general quadric in P4 ; in other words, X is a

general member of the linear system j2N j on F.

Remark Note that X has rank 4 even though the ambient space F has rank 3; there

is no contradiction here because 2N is not ample on F.

The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

lD0

1X

mDl

1X

nDm

t lCmCn .2n/!

.l !/2.m � l/!m!.n � m/!.n!/2

and regularizing gives

�GX .t/D 1 C 6t2 C 24t3 C 138t4 C 960t5 C 6180t6

C 43680t7 C 311850t8 C 2274720t9 C � � � :

Minkowski period sequence 68

90 The Fano manifold MM4–6

Mori–Mukai construction The blow-up of P2 � P1 with centre two disjoint curves,

one of bidegree .1; 2/ and the other of bidegree .0; 1/.
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Our construction A member X of jC C Dj in the toric variety with weight data

s0 s1 t0 t1 x x2 u v

1 1 0 0 –1 0 –1 0 A

0 0 1 1 0 0 –1 0 B

0 0 0 0 1 1 0 0 C

0 0 0 0 0 0 1 1 D

and Nef F D hA;B;C;Di. We have:

� �KF D B C 2C C 2D is nef and big but not ample.

� X � C C D is nef and big but not ample.

� �.KF C X /� B C C C D is nef and big but not ample.

The two constructions coincide The variety X is cut out by

vx2 C uxA2;1.s0; s1I t0; t1/D 0:

Note the obvious morphism � W F ! G with fibre P1
u;v , where G is the toric variety

with weight data

s0 s1 t0 t1 x x2

1 1 0 0 –1 0 A

0 0 1 1 0 0 B

0 0 0 0 1 1 C

and Nef G D hA;B;C i. The birational morphism G ! P2
x0;x1;x2

� P1
t0;t1

given

(contravariantly) by Œx0;x1;x2; t0; t1� 7! Œs0x; s1x;x2; t0; t1� identifies G with the

blow-up of the curve fŒ0 W 0 W 1�g � P1 � P2 � P1 ; this curve has bidegree .0; 1/. The

equation defining X has degree 1 in P1
u;v ; it follows that the morphism �jX W X ! G

is birational and blows up the locus19 .x2 D A2;1.s0; s1I t0; t1/D 0/� G .

The quantum period Let p1 , p2 , p3 , p4 2 H �.F I Z/ denote the first Chern classes

of A, B , C and D , respectively; these classes form a basis for H 2.F I Z/. Write

� 2 H 2.F I Q/ as � D �1p1 C �2p2 C �3p3 C �4p4 and identify the group ring

QŒH2.F I Z/� with the polynomial ring QŒQ1;Q2;Q3;Q4� via the Q–linear map that

19With our choice of stability condition for F, .x2 D x D 0/� C8 is part of the unstable locus.
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sends the element Qˇ 2 QŒH2.F I Z/� to Qhˇ;p1i
1

Qhˇ;p2i
2

Qhˇ;p3i
3

Qhˇ;p4i
4

. We have

IF .�/

D e�=z
X

a;b;c;d�0

Qa
1
Qb

2
Qc

3
Qd

4
ea�1eb�2ec�3ed�4

Qa
kD1.p1Ckz/2

Qb
kD1.p2Ckz/2

Qc
kD1.p3Ckz/

Qd
kD1.p4Ckz/

�
Q0

kD�1.p3�p1Ckz/Qc�a
kD�1.p3�p1Ckz/

Q0
kD�1.p4�p1�p2Ckz/

Qd�a�b
kD�1.p4�p1�p2Ckz/

:

Since

IF .�/D 1 C �z�1 C O.z�2/;

Theorem C.1 gives

JF .�/D IF .�/:

We now proceed exactly as in the case of MM3–1 , obtaining

GX .t/D e�2t
1X

aD0

1X

bD0

1X

cDa

1X

dDaCb

tbCcCd .c C d/!

.a!/2.b!/2c!d!.c � a/!.d � a � b/!
:

Regularizing gives

�GX .t/D 1 C 8t2 C 18t3 C 192t4 C 960t5 C 7550t6

C 49980t7 C 374080t8 C 2741760t9 C � � � :

Minkowski period sequence 81

91 The Fano manifold MM4–7

Mori–Mukai construction The blow-up of P1 � P1 � P1 with centre the curve of

tridegree .1; 1; 1/.

Our construction A codimension-2 complete intersection X of type D \ D in the

toric variety F with weight data

x0 x1 y0 y1 z0 z1 u0 u1 u2

1 1 0 0 0 0 –1 0 0 A

0 0 1 1 0 0 0 –1 0 B

0 0 0 0 1 1 0 0 –1 C

0 0 0 0 0 0 1 1 1 D

and Nef F D hA;B;C;Di. We have:

� �KF D A C B C C C 3D is ample, that is, F is a Fano variety.

Geometry & Topology, Volume 20 (2016)



240 Tom Coates, Alessio Corti, Sergey Galkin and Alexander Kasprzyk

� X is complete intersection of two nef divisors on F.

� �.KF Cƒ/� A C B C C C D is ample.

The two constructions coincide Without loss of generality, the curve to be blown up

is defined in P1
x0;x1

� P1
y0;y1

� P1
z0;z1

by the condition

rk

�
x0 y0 z0

x1 y1 z1

�
< 2:

Now apply Lemma E.1 with

G D P1 � P1 � P1;

V D OP1�P1�P1.�1; 0; 0/˚OP1�P1�P1.0;�1; 0/˚OP1�P1�P1.0; 0;�1/;

W D OP1�P1�P1 ˚OP1�P1�P1 ;

and the map f W V ! W given by the matrix

�
x0 y0 z0

x1 y1 z1

�
:

The quantum period Corollary D.5 yields

GX .t/De�t
1X

aD0

1X

bD0

1X

cD0

1X

dDmax.a;b;c/

taCbCcCd .d!/2

.a!/2.b!/2.c!/2.d �a/!.d �b/!.d �c/!

and regularizing gives

�GX .t/D 1 C 6t2 C 18t3 C 114t4 C 720t5 C 4290t6

C 28980t7 C 193410t8 C 1320480t9 C � � � :

Minkowski period sequence 65

92 The Fano manifold MM4–8

Mori–Mukai construction The blow-up of W (or MM2–32 , a divisor of bidegree

.1; 1/ in P2 � P2 ) with centre two disjoint curves on it of bidegrees .0; 1/ and .1; 0/.
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Our construction A member X of jB C Dj in the toric variety F with weight data

s0 s1 x x2 t0 t1 y y2

1 1 –1 0 0 0 0 0 A

0 0 1 1 0 0 0 0 B

0 0 0 0 1 1 –1 0 C

0 0 0 0 0 0 1 1 D

and Nef F D hA;B;C;Di. We have:

� �KF D A C 2B C C C 2D is ample, that is, F is a Fano variety.

� X � B C D is nef.

� �.KF C X /� A C B C C C D is ample.

The two constructions coincide We take W to be the divisor:

W D .x0y0 C x1y1 C x2y2 D 0/� P2
x0;x1;x2

� P2
y0;y1;y2

It is clear that the morphism f W F ! P2 � P2 which sends (contravariantly)

Œx0;x1;x2;y0;y1;y2� 7! Œs0x; s1x;x2; t0y; t1y;y2�

blows up the disjoint union of .x0 D x1 D 0/ and .y0 D y1 D 0/ in P2 � P2. This

morphism induces the required blow-up of W .

The quantum period Corollary D.5 yields

GX .t/D e�2t
1X

aD0

1X

bDa

1X

cD0

1X

dDc

taCbCcCd .b C d/!

.a!/2.b � a/!b!.c!/2.d � c/!d!

and regularizing gives

�GX .t/D 1 C 6t2 C 12t3 C 114t4 C 480t5 C 3480t6

C 19320t7 C 131250t8 C 819840t9 C � � � :

Minkowski period sequence 57

93 The Fano manifold MM4–9

Mori–Mukai construction The blow-up of P1 � P1 � P1 with centre a curve of

tridegree .0; 1; 1).
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Our construction A member X of jDj in the toric variety F with weight data

x0 x1 y0 y1 z0 z1 u v

1 1 0 0 0 0 0 –1 A

0 0 1 1 0 0 0 –1 B

0 0 0 0 1 1 –1 0 C

0 0 0 0 0 0 1 1 D

and Nef F D hA;B;C;Di. We have:

� �KF D A C B C C C 2D is ample, that is, F is a Fano variety.

� X � D is nef.

� �.KF C X /� A C B C C C D is ample.

The two constructions coincide The curve to be blown up is the complete intersection

.z0 D x0y0 C x1y1 D 0/� P1
x0;x1

� P1
y0;y1

� P1
z0;z1

:

We apply Lemma E.1 with

G D P1 � P1 � P1;

V D OP1�P1�P1.0; 0;�1/˚OP1�P1�P1.�1;�1; 0/;

W D OP1�P1�P1 ;

and the map f W V ! W given by the matrix .z0 x0y0Cx1y1/.

The quantum period Corollary D.5 yields

GX .t/D e�t
1X

aD0

1X

bD0

1X

cD0

1X

dDmax.aCb;c/

taCbCcCd d!

.a!/2.b!/2.c!/2.d � c/!.d � a � b/!

and regularizing gives

�GX .t/D1C6t2C12t3C90t4C480t5C2400t6C16800t7C88410t8C608160t9C� � � :

Minkowski period sequence 54

94 The Fano manifold MM4–10

Mori–Mukai construction The blow-up of MM3–25 — which is the blow-up of

P3 with centre two disjoint lines — with centre an exceptional line of the blow-up

MM3–25 ! P3.
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Our construction The toric variety X with weight data

s0 s1 t2 t3 x y z

1 1 0 0 –1 0 0 A

0 0 1 1 0 –1 0 B

0 0 0 –1 0 1 1 C

0 0 0 1 1 0 –1 D

and Nef X D hA;B;C;Di.

The two constructions coincide The morphism X ! P3 is given by the complete

linear system jC j. It sends (contravariantly) the homogeneous co-ordinate functions

Œx0;x1;x2;x3� to Œs0xz; s1xz; t2y; t3yz�. The morphism blows up first the lines

.x0 D x1 D 0/ (the image of the divisor x D 0 in X ) and .x2 D x3 D 0/ (the

image of the divisor y D 0 in X ), and then the fibre over the point Œ0 W 0 W 1 W 0� (the

image of the divisor z D 0 in X ).

The quantum period Corollary C.2 yields

GX .t/D
1X

aD0

1X

bD0

1X

dDa

bCdX

cDmax.b;d/

taCbCcCd

.a!/2b!.b � c C d/!.d � a/!.c � b/!.c � d/!

and regularizing gives

�GX .t/D1C4t2C12t3C60t4C300t5C1660t6C8820t7C51100t8C293160t9C� � � :

Minkowski period sequence 37

95 The Fano manifold MM4–11

Mori–Mukai construction S7 � P1 .

Our construction S7 � P1 .

The quantum period Combining Corollary E.4 with Examples G.1 and G.5 yields

GX .t/D
X

a�0

X

b�0

aCbX

cDmax.a;b/

X

d�0

taCbCcC2d

a!b!.a C b � c/!.c � a/!.c � b/!.d!/2
:

Regularizing gives

�GX.t/D 1C6t2C6t3C90t4C240t5C1950t6C8400t7C53130t8C288960t9C � � �:
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Minkowski period sequence 48

96 The Fano manifold MM4–12

Mori–Mukai construction The blow-up of P1 �F1 with centre t � e , where t 2 P1

and e is the exceptional curve on F1 .

Our construction The toric variety X with weight data

y0 y0
1

s0 s1 x0 x2 w

1 0 0 0 –1 0 1 A

0 0 1 1 –1 0 0 B

0 –1 0 0 0 1 1 C

0 1 0 0 1 0 –1 D

and Nef X D hA;B;C;Di.

The two constructions coincide Let Œy0 W y1� be homogeneous co-ordinates on P1,

and recall that F1 is the toric variety with weight data:

s0 s1 x x2

1 1 –1 0 L

0 0 1 1 M

The morphism X ! P1 � F1 is given (contravariantly) by

Œy0;y1; s0; s1;x;x2� 7! Œy0;y
0
1w; s0; s1;x

0w;x2�:

The quantum period Corollary C.2 yields

GX .t/D
1X

aD0

1X

bD0

1X

cD0

aCcX

dDmax.aCb;c/

taCbCcCd

a!.d � c/!.b!/2.d � a � b/!c!.a C c � d/!

and regularizing gives

�GX .t/D 1C4t2C12t3C36t4C300t5C940t6C6300t7C31780t8C157080t9C� � � :

Minkowski period sequence 34

97 The Fano manifold MM4–13

Mori–Mukai construction The blow-up of MM2–33 — which is the blow-up of P3

with centre a line — with centre two exceptional lines of the blow-up MM2–33 ! P3.
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Our construction The toric variety X with weight data

s0 s1 x y2 y3 u v

1 1 –1 0 0 0 0 A

0 0 –1 0 0 1 1 B

0 0 1 1 0 –1 0 C

0 0 1 0 1 0 –1 D

and Nef X D hA;B;C;Di.

The two constructions coincide Recall that MM2–33 is the toric variety with weight

data

s0 s1 x x2 x3

1 1 –1 0 0

0 0 1 1 1

and the morphism MM2–33 ! P3 sends (contravariantly) the homogeneous co-ordinate

functions Œx0;x1;x2;x3� on P3 to Œs0x; s1x;x2;x3�. The blow-up X ! MM2–33 is

given (again contravariantly) by Œs0; s1;x;x2;x3� 7! Œs0; s1;uvx;ux2; vx3�.

The quantum period Corollary C.2 yields

GX .t/D
1X

aD0

1X

bD0

bX

cD0

bX

dDmax.0;aCb�c/

taCbCcCd

.a!/2.c C d � a � b/!c!d!.b � c/!.b � d/!

and regularizing gives

�GX .t/D 1C4t2C6t3C60t4C120t5C1210t6C3360t7C27580t8C97440t9C� � � :

Minkowski period sequence 29

98 The Fano manifold MM5–1

Mori–Mukai construction The blow-up of MM2–29 — which is the blow-up of a

quadric 3–fold Q � P3 with centre a conic on it — with centre three exceptional lines

of the blow-up MM2–29 ! Q.
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Our construction A member X of j2A C 2B C C C D C Ej in the toric variety F

with weight data

z0 z1 z2 s3 s4 x t12 t02 t01

1 1 1 1 1 0 0 0 0 A

1 1 1 0 0 1 0 0 0 B

1 0 0 0 0 0 1 0 0 C

0 1 0 0 0 0 0 1 0 D

0 0 1 0 0 0 0 0 1 E

and

Nef F D hA; A C B C D C E; A C B C C C E; A C B C C C D;

A C B C C C D C E; 2A C 2B C C C D C Ei:
We have:

� �KF D 5AC4B C2C C2D C2E D 2.2AC2B CC CD CE/C .A/ is nef

and big but not ample.

� X � 2A C 2B C C C D C E is nef.

� �.KF C X /� 3A C 2B C C C D C E is nef and big but not ample.

The two constructions coincide There is a morphism20 F ! P4 given by the com-

plete linear system jACB CC CD CEj; it sends (contravariantly) the homogeneous

co-ordinate functions Œx0;x1;x2;x3;x4� on P4 to

Œz0t02t01; z1t12t01; z2t12t02; s3xt12t02t01; s3xt12t02t01�:

This morphism can be factorized by first blowing up the plane …D .x3 D x4 D 0/� P4,

and subsequently blowing up the three fibres over the co-ordinate points

P0 D Œ1 W 0 W 0 W 0 W 0�; P1 D Œ0 W 1 W 0 W 0 W 0� and P2 D Œ0 W 0 W 1 W 0 W 0�

in …. Thus we can take X to be the proper transform of any quadric Q�P4 containing

the three points P0 , P1 and P2 but not containing the plane …, for instance the quadric

given by the equation

x0x1 C x1x2 C x2x0 C x2
3 C x2

4 D 0:

20The class �KF belongs to 7 simplicial cones and a non-simplicial cone (the one that we chose to

be Nef F ). It turns out that the class 2A C 2B C C C D C E also belongs to all of these cones. However,

only one of these cones contains A C B C C C D C E ; this is the cone that we chose to be Nef F.
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The quantum period Corollary D.5 yields

GX .t/D e�3t
1X

aD0

1X

bD0

1X

cD0

1X

dD0

1X

eD0

t3aC2bCcCdCe

� .2aC2bCcCdCe/!

.aCbCc/!.aCbCd/!.aCbCe/!.a!/2b!c!d!e!

and regularizing gives

�GX .t/D 1 C 10t2 C 42t3 C 342t4 C 2640t5 C 21250t6

C 180600t7 C 1562470t8 C 13851600t9 C � � � :

Minkowski period sequence 100

99 The Fano manifold MM5–2

Mori–Mukai construction The blow-up of MM3–25 — which is the blow-up of P3

with centre two disjoint lines — with centre two exceptional lines ` and `0 of the

blow-up f W MM3–25 ! P3 such that ` and `0 lie on the same irreducible component

of the exceptional set of f .

Our construction The toric variety X with weight data

s0 s1 t2 t3 x y u v

1 1 0 0 –1 0 0 0 A

0 0 1 1 0 –1 0 0 B

0 0 0 1 1 0 –1 0 C

0 0 1 0 1 0 0 –1 D

0 0 –1 –1 –1 1 1 1 E

and Nef X D hA;B;C;D;E;B C C C D � Ei.

The two constructions coincide Consider the morphism f W X ! P3 given by the

complete linear system E . The morphism f sends (contravariantly) the homogeneous

co-ordinate functions Œx0;x1;x2;x3� on P3 to Œs0xuv; s1xuv; t2yv; t3yu�; it contracts

� the divisors .x D 0/ and .y D 0/ to the lines x0 D x1 D 0 and x2 D x3 D 0,

and

� the divisors .u D 0/ and .v D 0/ to the points P0 D Œ0 W 0 W 0 W 1� and P1 D
Œ0 W 0 W 1 W 0�.
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The quantum period Corollary D.5 yields

GX .t/D
1X

aD0

1X

bD0

1X

cD0

1X

dD0

min.bCc;bCd;cCd�a/X

eDmax.b;c;d/

taCbCcCd

.a!/2.bCd�e/!.bCc�e/!.cCd�a�e/!

� 1

.e�b/!.e�c/!.e�d/!

and regularizing gives

�GX .t/D 1 C 6t2 C 18t3 C 114t4 C 660t5 C 3930t6

C 25620t7 C 163170t8 C 1101240t9 C � � � :

Minkowski period sequence 64

100 The Fano manifold MM5–3

Mori–Mukai construction S6 � P1 .

Our construction S6 � P1 .

The quantum period Combining Corollary E.4 with Examples G.1 and G.6 yields

GX .t/D
1X

aD0

1X

bD0

1X

cD0

aCbX

dDmax.a�c;0/

1X

eD0

taC2bC2cCdC2e

a!b!c!d!.a C b � d/!.c C d � a/!.e!/2
:

Regularizing gives

�GX .t/D 1 C 8t2 C 12t3 C 168t4 C 600t5 C 5300t6

C 27720t7 C 210280t8 C 1308720t9 C � � � :

Minkowski period sequence 76

101 The Fano manifold MM6–1

Mori–Mukai construction S5 � P1 .

Our construction S5 � P1 .
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The quantum period Combining Corollary E.4 with Examples G.1 and G.7 yields

GX .t/D e�3t
1X

lD0

1X

mD0

1X

nD0

t lCmC2n .l C 2m/!

.l !/2.m!/3.n!/2
:

Regularizing gives

�GX .t/D 1 C 12t2 C 30t3 C 396t4 C 2160t5 C 20370t6

C 149520t7 C 1315020t8 C 10864560t9 C � � � :

Minkowski period sequence 107

102 The Fano manifold MM7–1

Mori–Mukai construction S4 � P1 .

Our construction S4 � P1 .

The quantum period Combining Corollary E.4 with Examples G.1 and G.8 yields

GX .t/D e�4t
1X

lD0

1X

mD0

t lC2m .2l/!.2l/!

.l !/5.m!/2
:

Regularizing gives

�GX .t/D 1 C 22t2 C 96t3 C 1434t4 C 12480t5 C 148900t6

C 1606080t7 C 18905530t8 C 220617600t9 C � � � :

Minkowski period sequence 136

103 The Fano manifold MM8–1

Mori–Mukai construction S3 � P1 .

Our construction S3 � P1 .

The quantum period Combining Corollary E.4 with Examples G.1 and G.9 yields

GX .t/D e�6t
1X

lD0

1X

mD0

t lC2m .3l/!

.l !/4.m!/2
:

Regularizing gives

�GX .t/D 1 C 56t2 C 492t3 C 10536t4 C 168600t5 C 3180980t6

C 58753800t7 C 1129788520t8 C 21955158960t9 C � � � :
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Minkowski period sequence 155

104 The Fano manifold MM9–1

Mori–Mukai construction S2 � P1 .

Our construction S2 � P1 .

The quantum period Combining Corollary E.4 with Examples G.1 and G.10 yields

GX .t/D e�12t
1X

lD0

1X

mD0

t lC2m .4l/!

.l !/3.2l/!.m!/2
:

Regularizing gives

�GX .t/D 1 C 278t2 C 6816t3 C 317850t4 C 12989760t5 C 578870180t6

C 26074520640t7 C 1202038745530t8 C 56188933046400t9 C � � � :

Minkowski period sequence None. Note that the anticanonical line bundle of S2�P1

is not very ample.

105 The Fano manifold MM10–1

Mori–Mukai construction S1 � P1 .

Our construction S1 � P1 .

The quantum period Combining Corollary E.4 with Examples G.1 and G.11 yields

GX .t/D e�60t
1X

lD0

1X

mD0

t lC2m .6l/!

.l !/2.2l/!.3l/!.m!/2
:

Regularizing gives

�GX .t/D 1 C 10262t2 C 2021280t3 C 618997146t4 C 184490852160t5

C 57894898611620t6 C 18577980262739520t7

C 6078628630941923770t8 C 2017980469547810194560t9 C � � � :

Minkowski period sequence None. Note that the anticanonical line bundle of S1�P1

is not very ample.

Geometry & Topology, Volume 20 (2016)



Quantum periods for 3–dimensional Fano manifolds 251

Conclusion

This completes the calculation of the quantum periods for all 3–dimensional Fano

manifolds, and the proof of Theorem A.1. It also completes the proof of our conjecture

with Golyshev [11]: there is a one-to-one correspondence between deformation families

of smooth 3–dimensional Fano manifolds X with very ample anticanonical bundle

and equivalence classes of Minkowski polynomials f of manifold type such that the

regularized quantum period �GX of X coincides with the period �f of f .

106 A Fano manifold with non-unirational moduli space

We conclude by giving an example of a Fano manifold X such that the moduli space

of X is not unirational. The manifold X has complex dimension 66 and, since

unirationality of moduli spaces is a straightforward consequence of Theorem A.1,

this example shows that the analogue of Theorem A.1 fails in dimension 66. The

same technique allows one to construct Fano manifolds X3k of dimension 3k , for

every k � 22, such that the moduli space of X3k is not unirational. Let C be a smooth

curve of genus 23, let L be a line bundle of degree 1 on C and let X be the moduli

space of stable vector bundles over C of rank 2 with fixed determinant L. It is known

that X is a non-singular projective variety [62] which is Fano [68]. The moduli space

of X is isomorphic to the moduli space of curves of genus 23 [71, Section 2], which

has non-negative Kodaira dimension [32] and thus is not unirational.

Appendix: Laurent polynomial mirrors for 3–dimensional

Fano manifolds

A table given in an online supplement [12] exhibits Laurent polynomial mirrors for

each of the 105 deformation families of 3–dimensional Fano manifolds. The “Method”

column summarizes the method by which we computed the quantum period in each

case: “quantum Lefschetz” means “quantum Lefschetz with Fano ambient space and no

mirror map”; “quantum Lefschetz with weak Fano ambient” means “quantum Lefschetz

with non-Fano but weak Fano ambient space”; “quantum Lefschetz with mirror map”

means “quantum Lefschetz with non-trivial mirror map”; the other entries should be

self-explanatory. The “Minkowski ID” column records the ID in the Graded Ring

Database [14] of the corresponding Minkowski period sequence of manifold type; there

are only 98 non-trivial entries in this column as only the 98 deformation families

of 3–dimensional Fano manifolds with very ample anticanonical bundle give rise to
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Minkowski polynomial mirrors. There are in general many Minkowski polynomials

(and infinitely many other Laurent polynomials) mirror to a given 3–dimensional Fano

manifold, but we have listed only one such Laurent polynomial in each case.
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