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The topological superconducting state is a highly sought-after quantum state hosting topological
order and Majorana excitations. In this work, we explore the mechanism to realize the topological
superconductivity (TSC) in the doped Mott insulators with time-reversal symmetry (TRS). Through
large-scale density matrix renormalization group study of an extended triangular-lattice t-J model
on the six- and eight-leg cylinders, we identify a d + id-wave chiral TSC with spontaneous TRS
breaking, which is characterized by a Chern number C = 2 and quasi-long-range superconducting
order. We map out the quantum phase diagram by tuning the next-nearest-neighbor (NNN) electron
hopping and spin interaction. In the weaker NNN-coupling regime, we identify a pseudogaplike phase
with a charge stripe order coexisting with fluctuating superconductivity, which can be tuned into
d-wave superconductivity by increasing the doping level and system width. The TSC emerges in
the intermediate-coupling regime, which has a transition to a d-wave superconducting phase with
larger NNN couplings. The emergence of the TSC is driven by geometrical frustrations and hole
dynamics which suppress spin correlation and charge order, leading to a topological quantum phase
transition.

Introduction.—The fractional quantum Hall states dis-
covered in two-dimensional (2D) electron systems under
external magnetic fields [1, 2] are remarkable states of
matter demonstrating topological orders and fractional-
ized excitations [3–5]. In 2D Mott insulators, geometrical
frustration and quantum fluctuations can suppress mag-
netic order and lead to a topologically ordered quantum
spin liquid (QSL) [6–8]. Tuning Mott insulators with
doping, more exotic phases including unconventional su-
perconductivity (SC) and non-Fermi liquid emerge [9–
17], which are central topics in condensed matter physics.
Interestingly, there is a class of time-reversal-symmetry
(TRS) breaking QSL named the chiral spin liquid (CSL),
which was first proposed by Kalmeyer and Laughlin (KL)
as the analog of the fractional quantum Hall state [18].
Remarkably, doping a CSL may lead to d+id-wave topo-
logical superconductivity (TSC) through the condensa-
tion of paired fractional quasiparticles [19–21].

Recently, the KL-CSL has been theoretically discov-
ered in the kagome spin systems with competing interac-
tions [22–25], and near the metal-insulator transition in
the triangular Hubbard model [26–28] through sponta-
neous TRS breaking. Numerical studies on the doped
CSL in these systems [25, 26] have uncovered either
a Wigner crystal solid or a nonsuperconducting chiral
metal [29–31], which challenge the original proposal of
realizing a TSC [19–21] and demonstrate the richness of
doped frustrated systems [32–48]. A breakthrough comes
from density matrix renormalization group (DMRG)
studies, which have identified a d+ id-wave TSC by dop-
ing either a CSL [49, 50] or a weak Mott insulator [50]
in the triangular-lattice t-J model with three-spin chiral
coupling Jχ breaking TRS explicitly. Despite the excit-
ing progress, the mechanism of realizing TSC in the sys-
tems with TRS remains an outstanding issue, which de-

mands unbiased numerical study beyond mean-field and
variational treatments [33–40, 51–54]. Focusing on TRS
triangular systems, previous DMRG study of the doped
J1-J2 QSL identified a d-wave SC [55] while the rich inter-
play among conventional orders, hole dynamics and spin
fluctuations has not been extensively explored in such
systems, which may provide a new mechanism to realize
TSC through spontaneous TRS breaking.

Experimentally, triangular-lattice compounds are
among the most promising candidates for hosting topo-
logical states, including the QSL candidates of weak
Mott insulators [56–58], the d+ id-wave TSC candidates
NaxCoO2·yH2O [59–61] and Sn/Si(111) systems [62],
and the twisted transition metal dichalcogenides (TMD)
moiré systems which can simulate the Hubbard and re-
lated t-J model [63, 64]. The correlated insulators and
possible SC states discovered in these systems [65–67]
also call for theoretical understanding of the rich inter-
play among the experimentally tunable parameters such
as electronic hopping and interaction.

In this Letter, we study the quantum phases in the
extended triangular t-J model using DMRG simulations.
By tuning the ratios of the next-nearest-neighbor (NNN)
to nearest-neighbor (NN) hopping t2/t1 and spin inter-
action J2/J1, we find a pseudogaplike phase with charge
density wave (CDW) order at small NNN couplings,
which coexists with both the strong spin density wave
fluctuation (SDWF) and fluctuating superconductivity
(FSC) showing a tendency to develop into a d-wave SC
on wider nine-leg cylinder. With growing t2/t1 or (and)
J2/J1, we identify a phase transition to an emergent
d + id-wave TSC [19–21, 40, 68, 69] characterized by a
topological Chern number C = 2, through spontaneous
TRS breaking. The SC pairing correlations show alge-
braic decay with the power exponent KSC ≈ 1.0 domi-
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FIG. 1. Global quantum phase diagram. (a) Schematic figure
of the triangular t-J model with the NN and NNN hoppings
t1, t2 and spin interactions J1, J2. θF is the magnetic flux
threading in the cylinder. ∆a,b,c define the pairing order pa-
rameters of the NN bonds along the ea,b,c directions. (b) The
relative phases between ∆α = |∆α|eiθα (α = a, b, c), defined
as θαβ = θα − θβ . (c) The quantum phase diagram obtained
on the Ly = 6 cylinder with doping level δ = 1/12. We iden-
tify a pseudogaplike (PGL) phase with CDW + SDWF, a
d+ id-wave TSC phase, and a d-wave SC phase. The dotted
dashed line denotes J2/J1 = (t2/t1)2. The symbols mark the
studied parameters, and the cyan triangle marks the studied
parameter in Ref. [55]. (d)-(f) The charge density profile in
the three phases. n(x) is the charge density per site in each
column x, obtained on the 40× 6 cylinder with M=12000.

nating other spin and charge correlations, which are the
quasi-1D descendent states of 2D topological supercon-
ductors. For even larger NNN couplings, a nematic d-
wave SC phase emerges with anisotropic pairing correla-
tions breaking rotational symmetry, which belongs to the
same SC phase found in the doped J1-J2 QSL [55]. Our
results establish a new route to the TSC by doping either
a magnetic Mott insulator or a QSL with TRS, in which
hole dynamics and geometrical frustrations play essen-
tial roles to suppress magnetic correlations and induce
the TSC.

Theoretical model and method.—We study the follow-
ing extended t-J model on the triangular lattice

H =
∑
{ij},σ

−tij(ĉ†i,σ ĉj,σ +H.c.) +
∑
{ij}

Jij(Ŝi · Ŝj −
1

4
n̂in̂j),

where ĉ†i,σ (ĉi,σ) creates (annihilates) an electron on site
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FIG. 2. Identifying the TSC phase and phase transitions
along (t2/t1)2 = J2/J1. (a) Spin pumping simulation by
adiabatically inserting flux θF for J2/J1 = 0.05. m is the
U(1) bond dimension. By inserting a flux quantum, we ob-
tain the Chern number C = ∆Qs ≈ 2 with an error smaller
than ±0.03. The inset shows the flux dependence of ground-
state energy per site E0. (b) Coupling dependence of the
obtained Chern number with m = 8000. (c) Spin chiral order

〈χ〉 = 〈Ŝi · (Ŝj × Ŝk)〉 of the triangles in each column ver-
sus the column position x for J2/J1 = 0.05. M is the SU(2)
bond dimension. (d) Double-logarithmic plot of the pairing
correlation |Pbb(r)| obtained with M=12000.

i with spin σ = ±1/2, Ŝi is the spin-1/2 operator, n̂i =∑
σ ĉ
†
i,σ ĉi,σ is the electron number operator. We tune the

ratios of neighboring couplings t2/t1 and J2/J1 to explore
their interplay in driving different phases in the system.
We set J1 = 1 as the energy unit and t1/J1 = 3 to mimic
a strong Hubbard interaction U/t = 12.

We perform large scale DMRG simulations with charge
U(1) and spin SU(2) symmetries [70–72] on a cylinder
system, which has an open boundary in the ea or x di-
rection and periodic boundary conditions in the eb or y
direction [Fig. 1(a)]. The number of sites along the x (y)
direction is denoted as Lx (Ly) and the total number of
sites is N = Lx × Ly. The electron number Ne is re-
lated to hole doping level δ as Ne/N = 1 − δ. We focus
on the results on the Ly = 6 systems, which are supple-
mented with the studies on wider Ly = 8, 9 cylinders [73].
We keep up to M=20000 SU(2) multiplets [equivalent to
about 60000 U(1) states] to obtain accurate results with
the truncation error ε . 2×10−5; see more details in Sec.
I. of the Supplemental Material (SM) [74].

Phase diagram and Chern number characterization.—
We map out the phase diagram for δ = 1/12 based
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on the results of Chern number [50] and pairing corre-
lation. As shown in the phase diagram [Fig. 1(c)], in
the smaller J2 and t2 regime we identify a pseudogaplike
phase [75, 76] with dominant CDW order and short-range
d-wave SC fluctuation. The TSC emerges in the interme-
diate coupling regime while previously identified d-wave
SC phase [55] appears at the larger NNN couplings.

To identify the topological nature of the phases, we
perform the inserting flux simulation [23, 50] using the
infinite DMRG [77] with increasing the flux adiabatically
with θF → θF + ∆θF and ∆θF = 2π/16. We mea-
sure the accumulated spin Qs = n↑ − n↓ at left edge
for each θF (nσ is the total charge with spin σ near the
edge [50]). For a range of intermediate NNN couplings,
nonzero pumped spin ∆Qs is obtained, which increases
almost linearly with θF [Fig. 2(a)], indicating the uni-
form Berry curvature [78]. By threading a flux quantum
(θF = 0 → 2π), the Chern number C = ∆Qs ≈ 2.0
characterizes a robust TRS-breaking topological state.
The energy per site E0 varies smoothly with θF [the in-
set of Fig. 2(a)], indicating a gapped spectrum flow and
robust topological quantization [79]. Here C = 2 identi-
fies the number of chiral Majorana edge modes [68, 69].
In Fig. 2(b), we show the obtained Chern number along
(t2/t1)2 = J2/J1, where the quantized C = 2 clearly dis-
tinguishes the TSC from the topologically trivial phases
with C = 0 nearby (see more results in SM Sec. II. [74]).

We further show the chiral order 〈χ〉 = 〈Ŝi · (Ŝj × Ŝk)〉
(the sites i, j, k belong to the smallest triangle) along the
x direction [Fig. 2(c)]. The chiral orders after bond-
dimension scaling to M → ∞ limit remain finite, sup-
porting the spontaneous TRS breaking in the TSC.

Next, we show the evolution of the dominant spin-
singlet pairing correlations Pαβ(r) = 〈∆̂†α(r0)∆̂β(r0 +

r)〉 where the pairing order is defined as ∆̂α(r) =
(ĉr↑ĉr+eα↓ − ĉr↓ĉr+eα↑)/

√
2 (α = a, b, c). The pairing

correlation |Pbb(r)| decays very fast for t2 = J2 = 0 and
is enhanced at short distance for (t2/t1)2 = J2/J1 = 0.02
inside the CDW + SDWF phase [Fig. 2(d)]. With larger
NNN couplings in the TSC and d-wave SC phases, pair-
ing correlations are strongly enhanced at all distances.

Spin structure factor and charge occupation.—Now
we discuss the spin correlation and charge occupation.
In the CDW + SDWF phase, the spin structure fac-
tor S(k) = 1

Nm

∑
i,j〈Ŝi · Ŝj〉eik·(ri−rj) has prominent

peaks at the K points representing strong 120◦ spin fluc-
tuation [Fig. 3(a)]. In the TSC, the K point peaks
are significantly suppressed and dispersed along one of
the edges of Brillouin zone [see Fig. 3(b) and SM Sec.
III. [74]], consistent with the emergence of the CSL
in spin background. In the d-wave SC phase, weak
peaks emerge at two M points [Fig. 3(c)], indicating
nematic spin fluctuation. Furthermore, we investigate
the electron occupation number in the momentum space
n(k) = 1

Nm

∑
i,j,σ〈ĉ

†
i,σ ĉj,σ〉eik·(ri−rj) and find that from

(a) (b) (c)

(d) (e) (f)

FIG. 3. Spin structure factor S(k) and electron density in
momentum space n(k) in the three phases. The results are
obtained using the middle Nm = 24×6 sites of a long cylinder,
which are calculated with M = 12000 and well converged.
The dashed hexagon denotes the Brillouin zone. (a) and (d)
belong to the CDW + SDWF phase, (b) and (e) belong to
the TSC phase, (c) and (f) belong to the d-wave SC phase.

the CDW + SDWF phase to the TSC, the hole pock-
ets at the K points disperse along the edge of the Bril-
louin zone, while in the d-wave SC phase the hole pock-
ets concentrate at two M points [Figs. 3(d)-3(f) and SM
Sec. VII. [74]]. In real space, the charge density profile in
the CDW + SDWF phase shows a strong stripe pattern
with the wavelength λ ≈ 10 while in the SC phases, the
CDW becomes much weaker with λ ≈ 4 [Figs. 1(d)-1(f)].

Fluctuating superconductivity in the CDW + SDWF
phase.—To reveal the nature of the CDW + SDWF
phase, we focus on the correlation functions. At t2 =
J2 = 0, the extrapolated spin correlations S(r) =

〈Ŝr0 · Ŝr0+r〉 decay exponentially with a large correla-
tion length ξS ≈ 9.2 (6.9) on the Ly = 6 (9) system
[Fig. 4(a)], confirming the absence of magnetic order and
short-range SDWF. We further compare S(r) with single-
particle correlation G(r) =

∑
σ〈ĉ†r0,σ ĉr0+r,σ〉, density

correlation D(r) = 〈n̂r0 n̂r0+r〉 − 〈n̂r0〉〈n̂r0+r〉, and pair-
ing correlation |Pbb(r)| using the extrapolated M → ∞
data (rescaled with doping ratio for direct comparison)
as shown in Fig. 4(b). While the spin correlation is rela-
tively strong, single-particle |G(r)| decays exponentially
with a short correlation length ξG ≈ 3.7. Although the
pairing correlation also decays fast, it is much stronger
compared to the two single-particle correlator |G2(r)|,
indicating the more suppressed single-particle channel.

At (t2/t1)2 = J2/J1 = 0.02, |Pbb(r)| is enhanced
and decays algebraically with an exponent K ′SC ≈ 1.05
within short distance, which indicates a strong local
pairing order [Fig. 4(c) and Fig. 2(d)] representing the
FSC. Remarkably, the difference between |Pbb(r)| and
|G2(r)| dramatically increases with |Pbb(r)| larger than
|G2(r)| by around 4 orders of magnitude at large dis-
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FIG. 4. Correlation functions and SC orders in the CDW + SDWF phase with extrapolated M → ∞ data for (a) - (d). (a)
Logarithmic-linear plots of the spin correlations on the 40×6 and 24×9 cylinders, with the correlation length ξS = 9.2(2) (6.9(2))
for Ly = 6 (9). The number in the bracket gives the standard deviation from linear fitting. (b) Comparing correlations which
are rescaled with doping ratio for a direct comparison. The fittings give ξS = 9.2(2) and ξG = 3.7(6). (c) Double-logarithmic
plot of pairing correlation |Pbb(r)|. The extrapolated results with r ≤ 10 can be fitted algebraically with K′SC = 1.05(8). (d)
Comparing correlations where the fittings give ξS = 5.22(8) and ξG = 2.7(4). We choose the reference site at x0 = Lx/4 for
demonstrating correlations. (e) Different SC orders ∆α versus each column x for a system in a grand canonical ensemble with
M = 8000 and the averaged electron density n(x). The coupling parameters are the same as (d). A varying chemical potential
µi = µ(x) = µ0 + x/Lx(a+ b(x/Lx)) is used to adjust the range of n(x).

tances [Fig. 4(d)], unveiling the “pseudogap” behavior.
To further explore the FSC, we compute the SC order
in the grand canonical ensemble with varying chemical
potential H → H − ∑

i µini following the method in
Ref. [80] (see SM Sec. VIII. [74]). As shown in Fig. 4(e),
a finite d-wave SC order develops with increased Ly = 9
and the doping level over 20%.

d+ id-wave TSC phase.—Next we turn to the charac-
terization of the TSC phase. By bond-dimension extrap-
olation, we identify the algebraic decay of the pairing
correlation. For (t1/t2)2 = J1/J2 = 0.05 and Ly = 6,
we find |Pbb(r)| ∼ r−KSC with KSC ≈ 1.03 [Fig. 5(a)],
indicating a divergent SC susceptibility in the zero-
temperature limit [81]. Similar results are also obtained
on the wider Ly = 8 system (see SM Sec. V.A. [74]),
supporting the robust TSC.

To identify the pairing symmetry, we rewrite ∆α(r) =
|∆α(r)| eiθα(r) and Pαβ(r) = |Pαβ(r)| eiφαβ(r) with the
relative phases φαβ(r) = θβ(r0 + r) − θα(r0). Thus,
θαβ(r) ≡ θα(r) − θβ(r) = φαα(r) − φαβ(r) (see
Fig. 1(b)). As shown in Fig. 5(b), φαβ(r) are nearly
uniform in real space and are obtained as [φbb, φbc, φba] =
[0.000(4), 0.61(2)π,−0.61(2)π] ≈ [0, 23π,− 2

3π] for Ly = 6,
which give θba = θac = θcb ≈ 2π/3 characterizing an
isotropic d+id-wave pairing symmetry, while θba = θcb =
π is observed in the d-wave SC phase. We also confirm
this robust pairing symmetry on the wider N = 36 × 8
system [see Fig. 5(b) and SM Sec. V.A. [74]], provid-
ing compelling evidence for the emergent TSC through
spontaneous TRS breaking. Furthermore, as shown in
Fig. 5(c), we find that |Pba(r)/Pbb(r)| and |Pbc(r)/Pbb(r)|
averaged over r are around 1.2 for the near isotropic TSC
phase, while they drop to around 0.45 in the nematic d-
wave SC phase.

In comparison, both spin and single-particle correla-
tions decay exponentially with small correlation lengths
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FIG. 5. Correlation functions for (t2/t1)2 = J2/J1 = 0.05
in the TSC phase using the extrapolated data. (a) Double-
logarithmic plot of the pairing correlations |Pbb(r)| obtained
by keeping different SU(2) bond dimensions. The extrapo-
lated correlations decay algebraically with KSC = 1.03(6).
(b) d+ id-wave pairing symmetry identified by the phase dif-
ferences of pairing correlations on the Ly = 6 (8) cylinder
using bond dimensions M=15000 (20000). (c) The ratios of
the magnitudes of the pairing correlations at different bonds.
The dashed dotted line indicates the averaged ratio of 1.2(1)
for the TSC phase. The dotted line indicates the averaged ra-
tio of 0.45(5) for the d-wave SC phase. We choose r ≤ Lx/2
to calculate the averages to minimize the boundary effect. (d)
Comparing the correlations which are rescaled with the dop-
ing ratio. The fittings give ξS = 2.2(1) and ξG = 3.3(2). We
choose x0 = Lx/4 and fit the data to the distance r = Lx/2
to avoid a boundary effect.
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[Fig. 5(d)] while the density correlations seem also to de-
cay algebraically but with a large exponent KCDW ≈ 2.4,
showing that the pairing correlation dominates all other
correlations.

Summary and discussion.—Through DMRG simula-
tion on the extended triangular t-J model, we identify
a d + id-wave TSC through spontaneous TRS breaking,
by doping either a magnetic order state or a time-reversal
symmetric QSL. The driving mechanism is the balanced
spin frustrations and hole dynamics induced by NNN
couplings, which suppress magnetic correlations and lead
to the TSC for doping level δ = 1/12−1/8 (see additional
results in SM Sec. V.B. [74]). Physically, frustration to
spin background can be built up by NNN coupling J2,
or t2, or both terms acting jointly. Our findings open
a new route for discovering TSC in correlated materials,
with the TMD Moiré superlattices [64–67] being the most
promising platform [63].

We also reveal the pseudogaplike physics in the CDW
+ SDWF phase, which demonstrates a tendency to evolve
into d-wave SC by increasing the phase coherence of
pairing correlations. Our work suggests a new direction
for future studies on doped Mott insulators [72, 80–89],
which may provide insights to the challenging issues re-
lated to the normal states of the high-Tc cuprate super-
conductors [75, 76].

Data and simulation code are available from the cor-
responding author upon reasonable request.
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Note added.—Recently, we noticed a related work,
Ref. [90], which studies possible superconductivity with
different hopping signs.
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Supplemental Material for “Quantum phase diagram and spontaneously
emergent topological chiral superconductivity in the doped triangular

lattice Mott insulators”

In the Supplemental Materials, we provide more numerical details to support the conclusions we have discussed in
the main text. In Sec. I, we show the good convergence of density matrix renormalization group (DMRG) calculations
and the details of the finite bond-dimension extrapolation of physical quantities. In Sec. II, we present more data
of the inserting flux simulation. In Sec. III, we discuss the common nature of spin correlation functions in different
phases. In Sec. IV, we present more results of the various correlation functions to characterize the quantum phase
transition from the charge density wave (CDW) phase with strong spin density wave fluctuation (SDWF) to the
topological superconducting (TSC) phase. In Sec. V, we provide more numerical results to identify the d + id-wave
TSC on different Ly = 6 and 8 systems, as well as for the doping level δ = 1/8. In Sec. VI, we examine and compare SC
pairing correlations on further neighboring bonds. In Sec. VII, we show more detailed results regarding the evolution
of the electron occupation number in the momentum space with tuning the next-nearest-neighbor (NNN) couplings.
In Sec. VIII, we show more detailed results on the pseudogap-like (PGL) phase to d-wave SC phase transition by
increasing Ly and doping level, which are obtained in the grand canonical ensemble. Sec. IX contains the data
availability statement.

I. DMRG CONVERGENCE AND BOND-DIMENSION EXTRAPOLATION

First of all, we show the obtained ground-state energy per site E0 versus the inverse DMRG bond dimension (1/M),
where M is the number of the kept SU(2) multiplets. For the Ly = 6 system, we keep the bond dimensions up to
M = 15000. In Fig. S1, we show the energies in both the CDW/SDWF and the TSC phase. The energies converge
smoothly with bond dimension and the extrapolated energies are very close to the lowest energies we obtain, indicating
the good convergence of the results.

In the DMRG calculation of correlation functions on wide systems, it is important to perform the finite bond-
dimension scaling to extrapolate the results in the infinite-bond-dimension limit (M → ∞). Here we show the
extrapolation in more details. For each given distance r, the correlations are extrapolated by the second-order
polynomial function C(1/M) = C(0) + a/M + b/M2, where C(0) is the extrapolated result in the M → ∞ limit.
Typical examples on the Ly = 6 cylinder are shown in Figs. S2(a) and S2(b), for pairing and density correlation,
respectively.

For the calculations of the Ly = 9 cylinder in the CDW/SDWF phase and the Ly = 8 cylinder in the TSC phase, we
keep the bond dimensions up to M = 20000. Although the fully convergence of all the quantities is still challenging,
we find that the dominant correlations converge faster. For example, spin correlations in the CDW/SDWF phase
converge quickly, which provide strong evidence to identify the spin density wave fluctuation as shown in Fig. 4(a)
of the main text. For the TSC phase, the pairing correlations dominate other correlations, which also converge with
increasing bond dimension. The finite bond-dimension scaling of the pairing correlations on the Ly = 8 cylinder and
that of the spin correlations on the Ly = 9 cylinder are shown in Figs. S2(c) and S2(d), respectively.

In additional, we would like to mention that in the simulation of the CDW/SDWF phase on the Ly = 6 cylinder
the system length Lx should be compatible with the CDW wavelength λ ≈ 10; otherwise, nonuniform electron density
would be obtained with higher energy. Therefore, we choose Lx = 40 to demonstrate our results in the CDW/SDWF
phase.

II. INSERTING FLUX SIMULATION AND CHERN NUMBER

In DMRG simulation, the flux θF is introduced by using the twisted boundary conditions along the circumference
direction of the cylinder. Different from the periodic boundary conditions ĉx,y,σ = ĉx,y+Ly,σ, the twisted boundaries
require ĉx,y+Ly,σ = eiθFσ ĉx,y,σ, where σ takes +1 for spin up and −1 for spin down. Therefore, the spin flip terms
couple to doubled flux 2θF . In the main text, we have shown the results of spin pumping simulation by adiabatically
threading a flux in the cylinder, from which one can obtain the quantized Chern number. We have also shown how
to distinguish the three phases along the line with (t2/t1)2 = J2/J1 by using the obtained Chern number. Here, we
show the spin pumping results for more parameter points. By tuning either J2/J1 or t2/t1 to enter the TSC phase,
the spin pumping curves are always smooth and give the quantized Chern number C = 2, as shown in Fig. S3 for
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FIG. S1. Extrapolation of the ground-state energy per site E0 versus the inverse bond dimension in DMRG calculation. (a)
(t2/t1)2 = J2/J1 = 0, δ = 1/12 on the Ly = 6 cylinder. (b) (t2/t1)2 = J2/J1 = 0.05, δ = 1/12 on the Ly = 6 cylinder. M is
the SU(2) bond dimension, which corresponds to M = 6000, 8000, 10000, 12000, 15000.

t2/t1 = 0, J2/J1 = 0.14 and t2/t1 = 0.224, J2/J1 = 0. For the parameter points in the CDW/SDWF phase and away
from the phase boundary, Chern number C = 0 is always obtained. Near the phase boundary to the TSC phase, we
obtain C = 1 which may indicate a tiny transition region with averaged nonzero Chern number. We present more
details about the quantum phase transition in Sec. IV.

III. SPIN STRUCTURE FACTOR AND SPIN CORRELATION FUNCTION

In the main text, we have demonstrated the spin structure factor S(k) in the different phases, along the parameter
line with (t2/t1)2 = J2/J1. Here, we show S(k) at more parameter points in Fig. S4. In the CDW/SDWF phase
[Figs. S4(a)-S4(d)], S(k) always has the peaks at the K points, which can also be verified by the spin correlations in
real space. As shown in Fig. S5(a), the reference site is denoted by the green circle, and the blue and red circles indicate
the positive and negative spin correlations, respectively. The spin correlation of the 120◦ configuration is unveiled by
the same sign of the spin correlations in each sublattice, in which the sites are connected by the NNN bonds. These
results indicate that although the doping suppresses long-range magnetic order, the short-range magnetic pattern in
spin background is preserved.

With growing t2/t1 or (and) J2/J1, the system has a transition to the TSC phase, which is accompanied with a
remarkable change of spin correlation. While the peaks of S(k) at the K points are strongly suppressed, the intensities
tend to extend along one of the boundaries of the Brillouin zone, as shown in Figs. S4(e)-S4(i). This feature of S(k)
seems to be common in the TSC phase. We further analyze the spin correlation functions in real space, and we find
that in most region of the TSC phase the spin correlations have a common pattern as shown in Fig. S5(b), which
suggests that tuning either t2/t1 or J2/J1 plays the similar role in the suppression of the 120◦ SDWF. We compare
this correlation pattern with that of the 120◦ SDWF in Fig. S5(a), and we mark the different signs of the long-distance
correlations by the dashed squares. The spin correlations in the TSC phase also show a periodic pattern but with
enlarged periods along all the three bond directions.
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FIG. S2. Extrapolation of correlation functions versus the inverse bond dimension. (a) and (b) show the extrapolations of the
pairing correlation function |Pbb(r)| and the density correlation function D(r) for (t2/t1)2 = J2/J1 = 0.05, δ = 1/12 on the
Ly = 6 cylinder. M is the SU(2) bond dimension, which corresponds to M = 8000, 10000, 12000, 15000 here. (c) shows the
extrapolations of the pairing correlation function |Pbb(r)| for (t2/t1)2 = J2/J1 = 0.05 on the N = 24×8 cylinder with δ = 1/12.
(d) shows the extrapolations of the spin correlation function S(r) for (t2/t1)2 = J2/J1 = 0 on the N = 24 × 9 cylinder with
δ = 1/12. The different symbols denote the correlations at different distances r. For each given distance r, the correlations
obtained by different bond dimensions are extrapolated by the second-order polynomial function C(1/M) = C(0)+a/M+b/M2.

IV. QUANTUM PHASE TRANSITIONS FROM THE CDW/SDWF TO THE TSC PHASE ALONG
DIFFERENT PARAMETER LINES

In the main text, we have shown the fluctuating superconductivity in the CDW/SDWF phase and the dominant SC
pairing correlations in the TSC phase with d+id-wave pairing symmetry, along the parameter line of J2/J1 = (t2/t1)2.
Here in Fig. S6, we demonstrate more numerical results of correlation functions regarding the quantum phase transition
from the CDW/SDWF to the TSC by tuning either J2/J1 or t2/t1. We observe the characteristic features of the two
phases by tuning either J2/J1 from 0.1 to 0.12 [Figs. S6(a) and S6(b)] or (t2/t1)2 from 0.03 to 0.06 [Figs. S6(c) and

S6(d)], respectively. In the CDW/SDWF phase, the spin correlations S(r) = 〈Ŝr0 · Ŝr0+r〉, charge density correlation
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FIG. S3. Inserting flux simulation and spin pumping results for different couplings. Both the parameters t2/t1 = 0, J2/J1 = 0.14
and t2/t1 = 0.224, J2/J1 = 0 are in the TSC phase. With the adiabatically inserted flux, the pumped spin in a period of
flux θF = 0 → 2π is ∆Qs ≈ 2. For t2/t1 = 0, J2/J1 = 0.1 in the CDW/SDWF phase, the pumped spin is zero. For
(t2/t1)2 = J2/J1 = 0.02 in the CDW/SDWF phase but close to the phase boundary, the pumped spin is ∆Qs ≈ 1. All the
calculations are performed on the Ly = 6 cylinders with δ = 1/12 and the U(1) bond dimension m = 8000.

D(r) = 〈n̂r0 n̂r0+r〉 − 〈n̂r0〉〈n̂r0+r〉, and SC pairing correlation |Pbb(r)| are all relatively strong, and they decay much
slower than the two single-particle correlator G2(r) (G(r) = 〈∑σ ĉ

†
r0,σ ĉr0+r,σ〉), which further confirm that the strong

spin fluctuation, the fluctuating SC, and the more suppressed single-particle channel are common properties in the
CDW/SDWF phase. Remarkably, the long-distance magnitudes of |Pbb(r)| are always larger than G2(r) by more than
two orders, which demonstrates that the “pseudogap” behavior is also universal in the CDW/SDWF phase.

With increasing either J2/J1 or t2/t1, the system has a transition to the TSC phase. The pairing correlation
becomes dominant, and the single-particle correlation remains pretty weak and decays exponentially. This phase
transition can also be verified by the pairing symmetry. In the CDW/SDWF phase, the pairing symmetry agrees
with the dx2−y2-wave symmetry as illustrated by the signs of pairing correlations [Fig. S6(e)]. In the TSC phase,
it becomes an isotropic d + id-wave with the relative pairing phases close to ±2π/3 as shown in Fig. S6(f). These
features presented in Fig. S6 are robust for all the bond dimensions (M = 8000− 12000) we have checked.

This quantum phase transition happens with the changes of charge order, SC pairing symmetry, and topological
Chern number, which imply that the transition may be first order. We leave the more quantitative understanding of
the transition to future studies. Interestingly, if we consider additional three-spin chiral interaction Jχ, we will find a
transition from the CDW/SDWF phase to a TSC phase with Chern number C = 1. This C = 1 TSC phase has been
identified in recent DMRG study [50].

V. CORRELATION FUNCTIONS IN THE TSC PHASE: ON VARIOUS SYSTEMS SIZES AND
DOPING LEVELS

In this part, we demonstrate more results of correlation functions in the TSC phase, including the results on the
wider systems with N = 24× 8 and 36× 8 at the doping level δ = 1/12, and the results for N = 32× 6 at δ = 1/8.
These results further support the robust d+ id-wave TSC phase.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. S4. Spin structure factor S(k) at different couplings. The results are obtained using the middle 24×6 sites on the Ly = 6
long cylinder with doping ratio δ = 1/12. The dashed hexagon denotes the Brillouin zone. The parameter points in (a)-(d)
locate in the CDW/SDWF phase. (e)-(i) belong to the TSC phase. Here we use the M = 10000 data, which are well converged.

A. N = 36× 8 and N = 24× 8 at δ = 1/12

To explore the size effect, we also investigate the TSC phase on the wider Ly = 8 systems. As shown in Fig. S7(a),
for the bond dimensions M = 8000 to 20000, we find that the pairing correlations increase with M relatively fast.
We also show the algebraic fitting of the extrapolated M → ∞ data up to the distance r ≤ Lx/2 to minimize the
boundary effect. The fitting gives the power exponent KSC ≈ 1.06, consistent with the exponent on the Ly = 6
system. We also identify the SC pairing symmetry by analyzing the complex phases of the pairing correlations on
different bonds, as shown in Fig. S7(b). An important detail is that, the relative phases −φba and φbc are moving
closer to 2π/3 with increased bond dimension, confirming an isotropic chiral d + id-wave TSC phase on these larger
systems. By comparing the correlation functions in Figs. S7(c) and S7(d) for the system sizes N = 24× 8 and 36× 8,
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(a) (t2/t1)  = J2/J1 = 0.02, Ly = 6, 1/12 doping level2

(b) (t2/t1) = J2/J1 = 0.05, Ly = 6, 1/12 doping level2

λa = 12

λb = 6

λc = 12

FIG. S5. Spin correlation functions in the CDW/SDWF phase and the TSC phase. The green circle denotes the reference
site near the left boundary of the cylinder. The blue and red circles indicate the positive and negative values of the spin
correlations. Here we do not show the sites on the left of the reference site. (a) (t2/t1)2 = J2/J1 = 0.02 in the CDW/SDWF
phase. (b) (t2/t1)2 = J2/J1 = 0.05 in the TSC phase. The results are obtained on the Ly = 6 cylinder with δ = 1/12 doping
level. The blue squares in (b) denote the long-distance sites in which the spin correlations have the opposite sign compared
with the same-site correlations in (a). λa,b,c denote the periods of the spin correlation pattern along the three bond directions.
We use M = 12000 for obtaining these data.

we find that the SC pairing correlations strongly dominate other correlations, which agree with the results on the
Ly = 6 systems.

B. N = 32× 6 at δ = 1/8

While we have established the phase diagram and identified the TSC phase at the doping level δ = 1/12, here we
provide evidence to identify the TSC at δ = 1/8, showing that this TSC is robust in a range of doping level. As shown
in Fig. S8(a) forN = 32×6 cylinder, the SC pairing correlations of the extrapolatedM →∞ results decay algebraically
with a small power exponent KSC ≈ 1.5. In addition, the relative phases of the different pairing correlations along
different bond directions are also consistent with the complex pairing symmetry, as shown in Fig. S8(b). Noticing
that complex phases may take opposite signs in different runs of DMRG simulations, it may realize either d + id-
or d − id-wave superconducting symmetry due to spontaneously breaking time-reversal symmetry. Furthermore, we
also compare the different correlations in Fig. S8(c). The behaviors of the correlations are qualitatively consistent
with our observations on the Ly = 6 system at δ = 1/12, and the SC pairing correlations still dominant over other
correlations at long distance. The averaged ratios between the magnitudes of pairing correlations for different bonds
in Fig. S8(d) become larger than 1, which suggests that the dxy component is larger than the dx2−y2 component. In
comparison, the ratio is closer to 1 at δ = 1/12 doping level.

VI. SC PAIRING CORRELATIONS OF THE FURTHER-NEIGHBOR BONDS

We examine the SC pairing correlations of the further-neighbor bonds which are illustrated in Fig. S9(a). As shown
in Figs. S9(b) and S9(c), the SC pairing correlations on the nearest-neighbor bond are over ten times larger than the
ones on the next-nearest-neighbor and next-next-nearest-neighbor bonds in both the TSC and d-wave SC phase. Our
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FIG. S6. Comparing the correlation functions with the quantum phase transition from the CDW/SDFW to the TSC by tuning
either t2/t1 or J2/J1. (a) and (b) show the transition with tuning J2/J1. (c) and (d) show the transition with tuning t2/t1.
(e) and (f) show the SC pairing symmetries on different bonds as defined in the main text for the CDW/SDWF and TSC,
respectively. All the results are obtained on the Ly = 6 cylinders with doping ratio δ = 1/12. We use the M = 12000 data.
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FIG. S7. Correlation functions for the TSC on the N = 24×8 and N = 36×8 cylinders. (t2/t1)2 = J2/J1 = 0.05 and δ = 1/12.
(a) Double-logarithmic plot of the SC pairing correlations |Pbb(r)|. We fit the extrapolated data from bond dimensions of
M = 8000 − 20000, which give the power exponent KSC = 1.06(7). (b) The relative phases of the pairing correlations for
different bond dimensions and different system lengths. (c) Comparison of the rescaled correlation functions for N = 24 × 8,
which are obtained with M = 20000. (d) Comparison of the rescaled correlation functions for N = 36× 8, which are obtained
with M = 15000.

results indicate the dominant role of the nearest-neighbor pairing induced by the stronger spin interaction.

VII. ELECTRON OCCUPATION NUMBER IN THE MOMENTUM SPACE

In Fig. S10, we show the electron occupation number in the momentum space n(k) of different couplings for δ = 1/12
on the Ly = 6 cylinder. n(k) is obtained by taking the Fourier transformation for the single-particle correlations of

the middle 24 × 6 sites on a long cylinder, namely n(k) =
∑
i,j,σ〈ĉ

†
i,σ ĉj,σ〉eik·(ri−rj)/Nm (Nm is the number of sites

for computing the electron correlations). In the CDW/SDWF phase, the electron density has a large electron pocket
around the Γ = (0, 0) point and small hole pockets near the K points. n(k) also shows an approximate C3 rotational
symmetry. These features seem to be universal and independent of the tuning couplings in the CDW/SDWF phase,
as shown in Figs. S10(a)-S10(d). The hole pockets at the K points suggest that the hole distribution may be related
to the prominent SDWF. In the d + id-wave TSC phase, tuning J2/J1 and t2/t1 seem to change n(k) differently.
With tuning J2/J1 for small t2/t1, the hole pockets still concentrate at the K points but n(k) shows an approximate
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FIG. S8. Correlation functions for the TSC at δ = 1/8 doping level. (t2/t1)2 = J2/J1 = 0.05 on the N = 32× 6 cylinder. (a)
Double-logarithmic plot of the SC pairing correlations |Pbb(r)|. We fit the extrapolated data from bond dimensions of M = 6000
- 12000, which give the power exponent KSC = 1.5(1). (b) The relative phases of the pairing correlations for M = 12000. (c)
Comparison of the rescaled correlation functions with the extrapolated data. (d) The ratios of the magnitudes of the pairing
correlations at different bonds for M = 12000. The dotted line indicates the averaged ratio around 1.7(4) at δ = 1/8 doping.
The dashed dotted line indicates the averaged ratio around 1.2(1) at δ = 1/12 doping. We choose r ≤ Lx/2 to calculate the
averages to minimize the boundary effect.

C6 rotational symmetry [Figs. S10(e)-S10(g)]. On the other hand, the growing t2/t1 leads the hole pockets to extend
along the boundaries of the Brillouin zone [Figs. S10(h) and S10(i)]. These observations illustrate the common and
distinct hole dynamics in different quantum phases. In the mean-field theories, the change of the Chern number is
usually associated with the change of the Fermi surface topology. Our results indicate that the pairing gap function in
the momentum space may change its shape with tuning couplings, but the gap remains opened so there is no change
of the Chern number.

VIII. EMERGENT d-WAVE SUPERCONDUCTIVITY FROM THE CDW/SDWF WITH
PSEUDOGAP-LIKE BEHAVIORS BY INCREASING DOPING LEVEL AND SYSTEM WIDTH

In support of the Fig. 4(e) of the main text, we compare the SC orders ∆α(x) and the electron density n(x)
on different column x with tuning the chemical potential. As shown in Figs. S11 (a) and S11(c), the SC order has
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FIG. S9. SC pairing correlations of the further-neighbor bonds. (a) The illustration of the nearest-neighbor b, next-nearest-
neighbor b′ and next-next-nearest-neighbor-bond b′′. (b) Comparing SC pairing correlations on different bonds in the TSC
phase at (t2/t1)2 = J2/J1 = 0.05, which are obtained with M = 15000. The averaged ratio of |Pbb/Pb′b′ | is around 62 and the
averaged ratio of |Pbb/Pb′′b′′ | is around 15. (c) Comparing SC pairing correlations on different bonds in the d-wave SC phase at
(t2/t1)2 = J2/J1 = 0.08, which are obtained with M = 12000. The averaged ratio of |Pbb/Pb′b′ | is around 38 and the averaged
ratio of |Pbb/Pb′′b′′ | is around 214. The averages are obtained from the data at the distance r = 5− 24.

sudden increase when electron density is below 0.8, which corresponds to the doping level of 20%. Similar results on
a different Lx can be seen by comparing Figs. S11 (b) and S11(d), confirming that the CDW/SDWF with PGL phase
has a tendency to evolve into d-wave SC by increasing doping level and cylinder width Ly.

IX. NUMERICAL DATA AND PROGRAM CODE AVAILABILITY

Results of our study are presented within the article and its Supplementary. The digital data and the codes
implementing the calculations are available on GitHub.

https://github.com/hyx15903/TSC_Tri_t1t2J1J2
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FIG. S10. Electron densities in the momentum space n(k) of different couplings at δ = 1/12. n(k) is calculated by taking
the Fourier transformation for the single-particle correlations of the middle 24 × 6 sites (Ly = 6). The dashed white hexagon
denotes the Brillouin zone. The parameter points in (a)-(d) locate in the CDW/SDWF phase. (e)-(i) belong to the TSC phase.
The M = 10000 data are shown here, which converges well with bond dimension.
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FIG. S11. The SC order and electron density at (t2/t1)2 = J2/J1 = 0.02 on the (a)/(c) N = 36 × 9 cylinder and the (b)/(d)
N = 40× 9 cylinder. Results are obtained with M = 8000 in the grand canonical ensemble.
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