
Quantum phase diagram of high-pressure hydrogen

Lorenzo Monacelli,1∗ Michele Casula,2∗ Kosuke Nakano,3,4

Sandro Sorella,4 Francesco Mauri1∗

1University of Rome, “Sapienza”, Dipartimento di Fisica,
Piaz.le Aldo Moro 5, 00185, Rome, Italy

2Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université,
CNRS UMR7590, MNHN, 4 Place Jussieu, 75005, Paris, France
3Japan Advanced Institute of Science and Technology (JAIST),

Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
4International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy

∗To whom correspondence should be addressed:
lorenzo92monacelli@gmail.com; francesco.mauri@uniroma1.it; michele.casula@impmc.upmc.fr

The interplay between electron correlation and nuclear quantum effects makes

our understanding of elemental hydrogen a formidable challenge. Here, we

present the phase diagram of hydrogen and deuterium at low temperatures

and high-pressure (P > 300 GPa) by accounting for highly accurate elec-

tronic and nuclear enthalpies. We evaluated internal electronic energies by

diffusion quantum Monte Carlo, while nuclear quantum motion and anhar-

monicity have been included by the stochastic self-consistent harmonic ap-

proximation. Our results show that the long-sought atomic metallic hydrogen,

predicted to host room-temperature superconductivity, forms at 577(10) GPa

(640(14) GPa in deuterium). Indeed, anharmonicity pushes the stability of this

phase towards pressures much larger than previous theoretical estimates or

attained experimental values. Before atomization, molecular hydrogen trans-
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forms from a conductive phase III to another metallic structure that is still

molecular (phase VI) at 422(40) GPa (442(30) GPa in deuterium). We predict

clear-cut signatures in optical spectroscopy and DC conductivity that can be

used experimentally to distinguish between the two structural transitions. Ac-

cording to our findings, the experimental evidence of metallic hydrogen has so

far been limited to molecular phases.

In 1968, Ashcroft predicted that atomic metallic hydrogen is a room temperature supercon-

ductor (1). During the last fifty years, a lot of effort was devised to synthesize atomic hydrogen

in laboratory under stable conditions. Nonetheless, the challenge proved more difficult than ex-

pected. Solid hydrogen at high pressures exhibits a very rich phase diagram with the presence

of five different molecular phases, labeled from I to V (2–4). Recently, a new phase transition

has been observed above 420 GPa into a metallic state by infrared (IR) absorption measure-

ments (5), i.e. phase VI. However, Eremets et al. (6) measured the Raman and reflectivity

spectra of hydrogen up to 480 GPa without incurring in any evidence of a sudden change in

the sample. At even larger pressures, Diaz and Silvera (7) claimed to have synthesized the

atomic metallic hydrogen from reflectivity measurements at 495 GPa, with reflectivity data in

good agreement with theoretical predictions (8), although the reliability of their observation has

been questioned (9, 10). Further uncertainties come from technical difficulties in determining

pressure at these extreme conditions, which could lead to a mismatch of up to 80 GPa (11),

jeopardizing the possibility to reproduce results by independent studies.

The structural characterization of these phases is challenging since both neutron and X-ray

diffraction experiments require sample sizes non-compatible with pressures larger than 250 GPa

(12) in hydrostatic conditions. Numerical ab initio simulations play consequently a crucial role

in understanding the phase diagram and can in principle address the following questions: Have

atomic metallic hydrogen been synthesized yet? At which pressure do we expect to stabilize it?
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What is the effect of isotope substitution?

Nevertheless, also ab initio approaches have been plagued so far by severe limitations. In-

deed, as hydrogen is the lightest element, its nucleus is subject to huge quantum fluctuations that

can largely affect its structural properties. Indeed, nuclear quantum effects have been shown to

completely reshape the Born-Oppenheimer (BO) energy landscape in hydrogen-rich materials

at high-pressure (13–15), invalidating the phase diagram obtained with classical simulations.

Furthermore, many competing structures differ in enthalpy by less than 1 meV per atom in a

broad range of pressures (16). This makes the identification of the ground state very sensitive

to approximations, like the choice of the exchange-correlation functional in density functional

theory (DFT) calculations. To overcome this issue, more sophisticated and accurate theories

are required, such as the quantum Monte Carlo (QMC) methods (17). For these reasons, the es-

tablishment of theoretical calculations fully accounting for both electron correlation energy and

lattice anharmonicity at the same level of accuracy is fundamental to determine the hydrogen

phase diagram at such high pressure.

To answer the aforementioned questions, we performed hydrogen phase-diagram calcula-

tions at a methodological cutting edge, by combining the highly accurate description of electron

correlation, within diffusion quantum Monte Carlo (DMC), and the anharmonic lattice opti-

mization accounting for nuclear quantum effects, within the stochastic self-consistent harmonic

approximation (18–21) (SSCHA). DMC is a well-established framework that provides the most

accurate internal energies of solid hydrogen (16, 22–24). Here, it has been coupled to SSCHA

in a seamless fashion with the aim of including both electronic and nuclear contributions in a

non-perturbative way. Indeed, SSCHA can outperform other approximations to compute anhar-

monic phase diagrams in hydrogen (16, 24, 25) thanks to its variational nature in determining

free energy differences and its ability to relax atomic positions and lattice vectors. In our ap-

proach, SSCHA provides both vibrational energies and average nuclear positions (centroids),
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calculated from nuclear quantum fluctuations developing on the top of a DFT-BLYP (26) energy

landscape. The resulting centroids crystal structure is used to compute DMC electronic internal

energies, that are combined with the SSCHA zero-point energies of the anharmonic lattice.

We modeled phase III as the monoclinic C2/c-24 structure (27)1, which is the best represen-

tative of this phase (Fig. 1a). Indeed, not only is it the most stable in its pressure range, but also

it reproduces optical transmission and reflectivity, Raman and IR experimental data (28).

Besides C2/c-24, we took into account the Cmca-12 crystalline symmetry (Fig. 1b), a new

hexagonal structure with P62/c-24 symmetry (Fig. 1c), and the Cmca-4 structure (Fig. 1d) as

the most promising molecular geometries for phase VI. Cmca-12 has firstly been suggested by

Pickard and Needs as an alternative candidate for phase III (27), and more recently proposed

as phase VI (22). Cmca-4 (27) is the ground state in the harmonic DFT phase diagram with

common functionals (PBE and BLYP) over a large pressure range, but considerably disfavored

by the most accurate QMC internal energies (16, 22). We discovered the new P62/c-24 struc-

ture by relaxing the symmetry constraint on the C2/c-24 with quantum anharmonic fluctuations

above 320 GPa at the DFT-BLYP level of theory. It is made of graphene-like sheets alternat-

ing with molecular layers, conferring to the phase similar optical properties to graphite. It is a

saddle-point of the BO energy landscape, stabilized by quantum fluctuations (see Supplemen-

tary Materials (SM)). However, it turns out that also this crystalline symmetry is disfavored by

the QMC energies.

Finally, we simulated the atomic phase I4/amd-2, also named Cs-IV (22) (Fig. 1e). Accord-

ing to DFT, it is the most stable atomic symmetry beyond the molecular phases, and it is the

one where room-temperature superconductivity has been predicted (29). In Figure 1, we report

the centroid positions of these structures at 650 GPa with a visualization of the amplitude of

quantum fluctuations.

1In line with previous literature, we name phases with the symmetry group followed by the number of atoms in
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Figure 1: Structures considered for the low-temperature high-pressure phase diagram of hy-
drogen. Colored balls are the average centroid positions, sticks represent the H2 molecules, the
cloud of smaller gray balls is a set of 250 configurations that sample the quantum probability
distribution at 0 K. All structures, apart from the atomic one, are made of layers, of which we
report only one. P62/c-24 is made of alternating layers, one with atoms arranged in a hon-
eycomb lattice (panel b), the other with molecular H2 in a C2/c-24 arrangement (not reported
here).
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Figure 2: Phase diagram of hydrogen (H: panel a) and deuterium (D: panel b) at T = 0K. On the
top we report the phase diagram obtained by neglecting nuclear zero-point energy (static lattice) and
with the harmonic zero-point energy. For the final anharmonic phase diagram we explicitly report the
enthalpies of different phase with respect to phase III (C2/c-24). The most stable structure is the lowest
in enthalpy at a given pressure. Enthalpies are evaluated at the DMC level. Hydrogen transforms from
phase-III (C2/c-24) to phase-VI (Cmca-12) at 422(40)GPa (442(30)GPa for D), and then to the atomic
superconductive phase (Cs-IV) at 577(10)GPa (640(14)GPa for D). Anharmonicity strongly affects
the transition pressures and qualitatively affects the phase diagram of hydrogen. Stochastic errors (black
bars) are linearly propagated from DMC and SSCHA errors in total energy to pressure. Systematic
errors (red bars) are estimated by changing the reference structure for DMC calculation (see SM for
more details).
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We present the complete phase diagram for hydrogen (H) and deuterium (D) in Figs. 2(a)

and 2(b), respectively. On the top of Figure 2, we report also the phase diagram computed by

neglecting the nuclear zero-point motion (static lattice), and the one with the harmonic zero-

point energy.

Hydrogen transforms into the atomic metal at 577(15) GPa, much above the pressure pre-

dicted neglecting anharmonicity. The isotope shift of this transition is one of the biggest ever

reported, as deuterium transits into its atomic metallic state at 640(14) GPa. Anharmonicity

modifies the structure of all molecular phases, stretching the molecular bonds and softening the

H2 molecular vibrations by about 1000 cm−1 (28). Thus, the relaxation of anharmonic energy

strongly favors molecular phases.

Even though the anharmonic contributions significantly impact the energy difference be-

tween molecular and atomic phases, the latter turns out not to be as harmonic as suggested

previously (29). Indeed, we found that Cs-IV exhibits a prominent anharmonicity in the cell

shape. The only free parameter of the Cs-IV structure is the c/a ratio of the tetragonal lattice.

The anharmonicity increases the c/a ratio by about 0.12, independently of the pressure and the

level of the electronic theory employed. A recent path integral molecular dynamics calculation

also showed a nontrivial anharmonicity in the Cs-IV phase (30), in agreement with us. The cor-

rect simulation of the c/a structural parameter has relevant consequences on the superconduct-

ing properties: by varying the c/a at a fixed volume, the Cs-IV undergoes a Lifshitz transition

that enhances the density of states (DOS) at the Fermi level. Quantum anharmonic fluctuations

shift c/a away from the Lifshitz transition, preventing the enhancement of the superconducting

critical temperature in the range of pressure where this phase is stable (see SM).

Before becoming an atomic metal, hydrogen undergoes another phase transition between

two molecular phases (III→ VI). This transition occurs at 422(40) GPa for H (442(30) GPa for

the primitive cell.
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D), in agreement with the experimental results of Loubeyre et al. (5). The experimental marker

of this phase transition is a sudden drop of the transmittance in the near IR region, ascribed to

the closure of the direct bandgap in correspondence to a structural rearrangement. However,

other experiments exploring the same pressure range observed the sample under visible light

without spotting any trace of phase transition (6,10). To investigate this situation, we computed

the optical properties in the near IR and visible range for phase III (C2/c-24), and for the struc-

ture we predict to be stable above 422 GPa, namely Cmca-12. Our calculations account for

electron-phonon interaction non-perturbatively. The electronic bands are computed within the

modified Becke-Jonson meta-GGA (31), which shares a similar accuracy with hybrid function-

als and self-consistent GW calculations, by following the same methodology discussed in (28).

We find that the Cmca-12 structure does not transmit light in the IR around the transition pres-

sure, in contrast with phase III (C2/c-24), as shown in Figure 3. Our data explain the drop in

IR transmittance observed in the experiment (5) and, thus, support the assignment of phase VI

to the Cmca-12 symmetry. Moreover, both phase III and VI display an almost identical low

reflectivity in the visible window of 1.8-3.2 eV (Figure 4), so they are almost indistinguishable

under visible light. This explains why experiments that explored the required pressure did not

observe the phase transition (6, 7). We also predict a resistance drop at the phase transition, as-

sociated with an increase of the electronic DOS at the Fermi level. Conductivity measurements

on hydrogen (6) stop just before the transition pressure. The sudden rise in conductivity is an

independent feature that can unambiguously prove the transition to phase VI. Our results differ

from a previous theoretical work (32), which adopted a different approximation, where optical

electron-hole excitations involving phonons outside the center of the Brillouin zone are not in-

cluded. Interestingly, Cmca-12 is never the ground state of hydrogen with harmonic zero-point

energy, and it is stabilized by anharmonicity.

In Figure 4, we report the reflectivity data for the phases III, VI and the atomic one as
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Figure 3: Simulation of transmittance (upper panels) and the real part of optical conductivity (lower
panels) at various pressures, comparing phase III (C2/c-24, blue solid lines) with phase VI (Cmca-12, vi-
olet dashed lines). The rainbow colors match their respective energy in the visible spectrum. The arrows
highlight differences in the optical properties between the two phases. We observe the transmittance
of phase VI dropping down at lower energies than phase III. This phase is already completely opaque
at 355GPa. Also, DC conductivity is higher in phase VI than phase III. The increase of conductivity
around zero energy is the Drude peak and it is a signature of the indirect band gap closure (metallicity).
Reflectivity and electronic density of states are reported in SM (Figure 18).
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pressure increases. At each pressure, we show a photo-realistic render of high-pressure solid

hydrogen sample in vacuum, simulated by solving the Fresnel equation as implemented in the

Mitsuba2 software (33). Phase VI becomes gradually more reflective upon increasing pressure,

until it transforms into the atomic Cs-IV at about 577 GPa, where it becomes shiny, reflecting

almost 80 % of the visible light. Despite being significantly attenuated by vibrational disorder,

the sudden rise of reflectivity in the visible light is a key signature of the molecular-to-atomic

transition. Together with reflectivity, also the static conductivity gradually increases upon load-

ing pressure and jumps to higher value at the transition to the atomic Cs-IV phase (see SM). In

contrast to phase VI, the atomic phase shows no significant variation of reflectivity and conduc-

tivity with pressure. Interestingly, the quantum nuclear fluctuations have an opposite effect on

molecular phases, where they enhance reflectivity, than on the atomic phase, in which the re-

flectivity is strongly suppressed. The suppression of reflectivity in the atomic phase was already

found in other works (8, 34).

In conclusion, the hydrogen phase diagram based on both highly accurate electronic internal

energies computed by QMC and anharmonic nuclear quantum fluctuations provided by SSCHA,

confirms that hydrogen undergoes a first-order phase transition from a conductive phase III

(molecular C2/c-24) to metallic phase VI (molecular Cmca-12) at 422(40) GPa, in accordance

with experiments (5). We predict the transition towards atomic metallic hydrogen to occur at

about 577 GPa, a much larger pressure than those reached so far by experiments (7). Our results

indicate that the synthesis of atomic hydrogen has still to be fulfilled.
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Supplementary materials

Details on the Phase Diagram calculation and the role of anharmonicity and electronic

correlations In this Section, we describe in details how the phase diagram is computed, and

discuss how it changes when we adopt a different electronic theory - density functional theory

(DFT) versus diffusion quantum Monte Carlo (DMC) - with and without anharmonicity.

We relaxed each structure by including quantum fluctuations and anharmonicity through

the stochastic self-consistent harmonic approximation (SSCHA), optimizing the auxiliary force

constants, centroid positions, and lattice vectors within the constraints of the symmetry group, at

roughly every 100 GPa (from 250 GPa to 650 GPa). In the SSCHA calculations, we employed

the DFT framework with the BLYP (26) exchange-correlation functional to account for elec-

tronic energy and determine the Born-Oppenheimer (BO) potential energy surface. BLYP is one

of the most accurate DFT functionals for phase-diagram calculations of high-pressure hydro-

gen, outperforming more refined techniques such as hybrid DFT (16, 36). The full anharmonic

energy is obtained within DFT, by fitting with a parabola the difference between the BO energy

and the SSCHA total energy at fixed volume for each phase. Also the anharmonic stress tensor

is employed in the fit to increase accuracy. We then add to the static BO energy-versus-volume

curves, computed in DFT every 5 GPa, the quantum anharmonic lattice vibrational contribution

at the corresponding volume calculated from the fit. We finally perform the Legendre transform

to get the enthalpy-vs-pressure curves and the resulting phase diagram.

The static phase diagram simulated within DFT-BLYP is reported in Figure 5, while in Fig-

ure 6 we show the DFT-BLYP phase diagram with harmonic zero-point energy . We included

the harmonic contributions only for the most relevant phases: C2/c-24, Cmca-12 and Cs-IV. The

harmonic zero-point energy leaves almost unchanged the pressure of the C2/c-24 to Cmca-12

transition (phase III to VI), while it substantially shifts the atomic transition down to pressures
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even lower than the Cmca-12. The results of the anharmonic phase diagram of both hydrogen

(1H protium or H) and deuterium (2H or D) computed by DFT-BLYP and SSCHA are reported

in Figure 7. It shows that anharmonicity strongly favors the molecular phases over the atomic

one, shifting back the atomic transition to higher pressures. Between Cmca-12 and C2/c-24, an-

harmonicity favors the Cmca-12 crystal symmetry, moving the III-to-VI phase transition down

by about 150 GPa. In this case, phase VI candidates P62/c-24, Cmca-12 and Cmca-4 are al-

most degenerate up to 400 GPa, where the Cmca-4 starts dominating over the other molecular

phases.

Apart from Cmca-4, the DFT-BLYP phase diagram is in qualitative agreement if compared

to the one including the electron correlation treated at the quantum Monte Carlo (QMC) level.
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Figure 6: DFT-BLYP enthalpies including nuclear zero-point energy within the harmonic ap-
proximation for hydrogen and deuterium, shown on the left and right side, respectively.
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Figure 7: As in Fig. 6, but for the DFT-BLYP enthalpies including quantum anharmonic effects.
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Thanks to extensive DMC calculations performed at fixed structures for several phases and

volumes, we have been able to correct the DFT-BLYP internal energies, and add the contribution

coming from a nearly exact treatment of electron correlation on the top of the static, harmonic

and quantum anharmonic phase diagrams previously computed at the DFT-BLYP level. DMC

corrections are added on the total energy-versus-volume curves of the corresponding DFT (and

DFT+SSCHA) calculations. As in the DFT case, the enthalpy-versus-pressure curves are then

obtained by Legendre transform.

For the sake of completeness, we report the static DMC-corrected phase-diagram in Fig-

ure 8, the DMC-corrected enthalpies accounting for the nuclear zero-point energy within the

harmonic approximation (Figure 9) and the full anharmonic enthalpies with DMC corrections

(Figure 10). The latter data provide the final phase diagram reported in the main text.
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Figure 8: Diffusion QMC static enthalpies (static lattic) of high-pressure hydrogen. Based on
these enthalpies, we draw the static-nuclei phase diagram reported in the main text (Figure 2).
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Figure 9: Diffusion QMC enthalpies including nuclear zero-point energy within the harmonic
approximation for hydrogen (left panel) and deuterium (right panel). Based on these enthalpies,
we draw the harmonic phase diagram reported in the main text (Figure 2). The harmonic zero-
point energies are calculated at the DFT-BLYP level and then added to the DMC energies.
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Figure 10: Diffusion QMC enthalpies, including quantum anharmonic effects for hydrogen and
deuterium, shown on the left and right side, respectively. Nuclear quantum effects are added
based on SSCHA calculations performed at the DFT-BLYP level. The corresponding phase
diagram is reported in the main text (Figure 2).
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The P62/c-24 symmetry Among other known structures, we also simulated the new P62/c-24

symmetry we discovered through the relaxation of phase III (C2/c-24) at the anharmonic level

within DFT-BLYP.

In particular, phase III becomes unstable at DFT-BLYP level after 310 GPa, when the free

energy curvature becomes negative around an IR-active nuclear vibration at Γ. In Figure 11 we

report the simulation of the C2/c-24 free energy Hessian as a function of pressure along with the

unstable nuclear vibration. The free energy Hessian at the SSCHA level is computed with the

full expression discussed in Ref. (19), including non perturbatively both three- and four-phonon

scattering vertices. Interestingly, this is a very peculiar case where the four-phonon scattering

is fundamental to have a correct result, even at a qualitative level, as the C2/c-24 is unstable at

all pressures if only three-phonon scattering processes are accounted for.

250 300 350 400 450
Pressure [GPa]

−300

−200

−100

0

100

200

Fr
eq
ue
nc
y 
[c
m
-1
]

C2/c unstable mode

300 400
Pressure [GPa]

−100000

−50000

0

50000

ω
2  
[c
m

-2
]

Figure 11: Frequency of the eigenvalue of the free energy Hessian along the unstable nuclear
vibration, obtained with DFT-BLYP. On the negative axis we report imaginary values. Inset:
the square of the frequency, which correspond to the free energy curvature. A negative value
indicates an instability.

21



The unstable mode breaks the C2/c symmetry in a Cc group with just two symmetry oper-

ations and 24 atoms in the unit cell. We performed the full anharmonic relaxation of the new

phase. The monoclinic cell becomes hexagonal, and two layers out of four in the primitive

cell transform in perfectly graphene-like sheets, with alternated stacking. The other two layers

keep their molecular feature, and the H2 molecule reduces its bond length with respect to the

C2/c geometry. The transformation of the graphene-like layer is reported in Figure 1b. The

symmetry group of the new structure is P62/c, as identified through both ISOTROPY (37) and

spglib (38) software. This phase is strongly unstable at harmonic level (it has four degenerate

imaginary frequencies at Γ above 2000i cm−1) but it is stabilized by anharmonicity. As far as

we know, this is the first example of a new structure discovered by a full quantum relaxation of

nuclear position. This is only possible thanks to the simultaneous relaxation of auxiliary force

constants, centroids, and lattice vectors.

When more accurate DMC calculations are employed to evaluate its energy, this phase be-

comes unfavoured. Therefore, the instability of C2/c-24 towards P62/c is an artifact of the

DFT-BLYP functional.

The atomic phase In the atomic phase, the only free parameter is the c/a ratio of the primitive

lattice vectors. In the following, we will then present its main properties as a function of the c/a

value.

The structure is stable at the static level, as it has a well-defined minimum. However, sup-

pose we compute phonons at the harmonic level, and use the phonon dispersion to include the

kinetic energy of ions due to the quantum zero-point motion. In that case, the total energy de-

creases with the c/a ratio until imaginary frequencies appear before the minimum is reached,

and the system becomes unstable (see Fig. 12). The Cs-IV atomic phase is, therefore, unstable

within the quasi-harmonic approximation. The SSCHA fixes this instability: the c/a increases
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Figure 12: Free energy with static lattice (upper panel) and with harmonic lattice vibrations
(lower panel) as a function of c/a. These quantities are computed with the BLYP functional
at the volume of 1.067 Å

3
per atom. The vertical dashed line indicates the c/a value where

imaginary phonons appear.

only by about 0.2 compared to the static value. This effect is, however, strongly size-dependent,

and its value becomes even smaller (c/a ≈ 0.12) when larger cells of 128 atoms are considered,

by strengthening the outcome of our analysis.

We computed the free energy Hessian at the SSCHA-relaxed c/a value, and it is stable by a

significant amount, shifting the higher energy modes down only by about 250 cm−1. Therefore,

even if the structure itself is not so anharmonic, the stability of the structure is met only within

a complete anharmonic calculation.

It turns out that the c/a equilibrium value is strongly functional dependent. Nevertheless, by
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running a SSCHA simulation either with BLYP or with PBE, we verified that the effect of the

SSCHA on the c/a parameter is additive on the functional used and, thus, the shift with respect

to the static equilibrium value is rather functional independent.

Interestingly, the atomic phase is in the proximity of a Lifshitz transition, signaled by a

sudden jump of the DOS, which is indeed located very close to the Fermi level (εF ). This is

reported in Figure 13. In particular, although the DOS at εF steadily increases with c/a, the

Lifshitz transition gets further away from εF . The PBE and BLYP functionals predict the same

electronic DOS at εF but slightly different locations for the Lifshitz transition, whose energy is

systematically closer to the Fermi level in PBE. The same behavior is found also for the other

volumes studied for the atomic phase, as reported in Figure 14. Only at the largest volume

taken into account, i.e. V=1.259 Å3/atom, the PBE functional triggers the Lifshitz transition, as

shown in the bottom-left panel of Figure 14. However, the c/a value reported there corresponds

to the BLYP equilibrium geometry of the static lattice. The PBE equilibrium geometry has a

larger c/a value, which pushes the Lifshitz transition energy above the Fermi level.
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Figure 13: Electronic DOS for c/a values corresponding to BLYP static equilibrium geometry
(left panel) and to BLYP equilibrium geometry including also nuclear fluctuations (right panel).
The DOS increases when increasing c/a. However, we get further away from the Lifshitz tran-
sition for larger c/a values, and this happens for both BLYP (blue lines) and PBE (red lines)
functionals.
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Figure 14: DOS plotted for different volumes and c/a values corresponding to the BLYP static
equilibrium geometry (left-hand side), and the BLYP equilibrium geometry with nuclear fluc-
tuations (right-hand side). For these geometries, the DOS is computed with both BLYP (blue
lines) and PBE (red lines) functionals.
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Figure 15: Distance of the Lifshitz transition from the Fermi level. In the left panel, this is
plotted as a function of c/a. On the right panel, the origin of the c/a axis is set to the equilibrium
value of c/a for each volume and functional. The abscissa at which the curves cross the y = 0
line is the c/a value when the system undergoes the Lifshitz transition. This is neither volume
nor functional universal.

There is a strong linear correlation between the energy location of the Lifshitz transition and

the c/a value, as revealed by plotting the distance of the Lifshitz transition energy from εF as a

function of c/a for all volumes and functionals taken into account (Figure 15). This correlation

allows us to estimate the exact c/a value at which the Lifshitz transition occurs for each volume,

as obtained by fitting the results in Figure 15 and extrapolating the Lifshitz transition energy to

εF (Figure 16).

Care must be taken in evaluating the distance of the Lifshitz transition energy from the

Fermi level. Indeed, the Fermi level determination could be affected by the choice of the

smearing parameter. In our analysis, we employed the so-called "cold" smearing (aka the

Marzari-Vanderbilt scheme). We repeated the calculation for three volumes by using the Gaus-

sian smearing and the Fermi-Dirac smearing, and compared their outcome for the Fermi energy

determination. It turns out that the difference in the Fermi level is at most 20 meV. The data

are reported in Table 1. This Fermi energy uncertainty converts into an error on the c/a value

for the Lifshitz transition of 0.008, much smaller than the variations plotted in Fig. 16.

26



1.10 1.15 1.20 1.25

Volume [Å3 per H]

2.2

2.3

2.4

2.5

2.6
c/
a

BLYP

1.10 1.15 1.20 1.25

Volume [Å3 per H]

c/
a

PBE

Lifshitz transition
c/a equilibrium (DFT)
c/a equilibrium (QMC)

Figure 16: The c/a value at which the Lifshitz transition occurs, causing a sudden increase of
the electronic DOS at the Fermi level. We compare the Lifshitz transition with the equilibrium
c/a value as yielded by BLYP, PBE, and DMC. Quantum fluctuations move the equilibrium c/a
ratio by about 0.1-0.2 towards larger values, independently on the choice of the DFT functional,
driving the system away from the transition.

Volume per H Marzari-Vanderbilt Gaussian Fermi-Dirac
1.067 Å

3
17.115 eV 17.161 eV 17.156 eV

1.116 Å
3

16.403 eV 16.401 eV 16.387 eV

1.259 Å
3

14.394 eV 14.402 eV 14.371 eV

Table 1: Fermi level computed with different smearing schemes and volumes for the atomic
Cs-IV phase. The electronic temperature is 0.03 Ry and a 48 × 48 × 48 grid has been used as
a k-mesh. The error on the Fermi-level that comes from the choice of the smearing scheme is
lower than 0.03 eV.
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The knowledge of the actual volume dependence of the c/a equilibrium value is of paramount

importance, because this could potentially have a strong impact on the electronic properties of

the atomic metallic phase of hydrogen. Indeed, the sudden increase of the DOS yielded by the

Lifshitz transition could affect the superconducting critical temperature. This is a fascinating

scenario whose chance of occurrence needs to be addressed by a more accurate method such as

QMC. With the aim of determining the exact c/a equilibrium value, we studied the c/a energy

curve of BLYP, PBE, and LDA functionals, and compared them with reference results obtained

by DMC calculations (Figure 17).
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Figure 17: Energy profile as a function of the c/a parameter for different volumes and electronic
theories. Three of the c/a points taken in the DMC calculations are the static equilibrium value
in BLYP, the SSCHA equilibrium value for deuterium and the one for protium.
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From the comparison with the DMC results, one can notice that the BLYP robustness in

providing accurate equilibrium geometry deteriorates at small volumes, corresponding to pres-

sures above 560 GPa. The PBE curves show instead the opposite behavior, as they become

more and more accurate as the volume shrinks. For the smallest volumes, the PBE results are

the most accurate. Therefore, by looking at the right panel of Fig. 16, which reports the PBE

equilibrium c/a values compared with the critical c/a values for the Lifshitz transition, we can

safely disregard the occurrence of this transition in the pressure range where the atomic metallic

phase becomes favorable. Indeed, nuclear quantum effects move the atomic phase further away

from the transition.

Optical properties We report here additional information regarding the optical properties of

phase III, phase VI and the atomic one.

To complete the analysis presented in the main text about the comparison between phase

III and VI, in Figure 18 we show the electronic density of states (DOS) and the reflectivity of

both phases. As mentioned in the main text, phases III and VI are almost indistinguishable from

reflectivity measurements in the visible range, but they present differences in the IR frequency

range, where reflectivity is enhanced in phase VI. Also, the DOS at the Fermi level of phase VI

is higher, resulting in a better DC conductivity of this phase, as reported in Figure 3 of the main

text.

To compute the optical properties of phase III and VI, we used supercells containing 324

atoms, where phonons are accounted for as static disorder (adiabatic approximation). We eval-

uated the refractive index and the transmitted light through a 1.5 µm thick sample. This is the

typical thickness of experimental samples at the target pressures. To avoid the systematic un-

derestimation of the empty bands energy in the DFT calculation, we employed the modified

Becke-Johnson meta-GGA exchange-correlation functional (31), which is known to perform as
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Figure 18: Reflectivity (upper row) and DOS (lower row) of phase III (C2/c-24) and phase VI
(Cmca-12) at different pressures.
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well as more established (and more computationally expensive) methods like the HSE06 hybrid

functional or the GW calculations (39). All the calculations details, the equations employed and

software used are the same as those discussed in the Methods Section of Ref. (28).

As far as the comparison between phase IV and the atomic phase is concerned, we comple-

ment the data reported in the main text by including the optical conductivity (real and imaginary

part) computed for the Cmca-12 and Cs-IV between 460 GPa and 660 GPa in Figure 19.

As mentioned in the paper, our results on the optical properties are at variance with the ones

of Ref. (32). This could be explained by the different approach used. Indeed, in Ref. (32) the

authors computed the optical properties on a smaller cell of 96 atoms and measured the optical

gap by accounting for electron-hole pair excitations at the same point in the Brillouin zone of

the 12-atom cell unfolded bands. In this way, scattering processes involving phonon momenta
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Figure 19: Real and imaginary part of the conductivity of Cmca-12 and Cs-IV phases.
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q 6= Γ are not included, where the excited electron-hole pair has a non-zero total momentum.

In ordinary materials like silicon, these effects contribute as a small perturbation. However, this

is not the case of hydrogen, where the electron-phonon interaction shifts the bands by 2 eV.

We carried out a thorough study of the convergence of the Cs-IV reflectivity with respect to

the number of k-points, the smearing (Figure 20), and the electronic temperature (Figure 21).

The reflectivity shown in the main text has been obtained by employing a 729 k-mesh with a

smearing of 0.05 eV. The reflectivity depends weakly on the electronic temperature when its

value is lower than the smearing. Thus, at 300 K, the temperature used in our analysis, the

reflectivity is fully converged in its temperature dependence.
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Figure 20: Convergence of the reflectivity as a function of smearing and number of k-points in
the Cs-IV phase at approximately 660 GPa.
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Figure 21: Convergence of the reflectivity as a function of the electronic temperature and smear-
ing in the Cs-IV phase at approximately 660 GPa.
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The most important dependence introduced by the finite smearing is the drop of reflectivity

at low frequency. This is due to the strong but trivial dependence of the Drude peak. In Figure 22

we show this effect, by plotting the real part of the conductivity as a function of smearing.
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Figure 22: Convergence of the real conductivity as a function of smearing and number of k-
points in the Cs-IV phase at approximately 660 GPa.
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Details on the DFT calculations For the DFT calculations we employed the Quantum Espresso

(40, 41) software suite, using a plane-wave basis set with a cutoff on the kinetic energy of

1088 eV (4353 eV for the electronic density). We employed a norm-conserving pseudo-potential

from the Pseudo Dojo library (42). To sample nuclear fluctuations within the SSCHA, the su-

percell contains 96 atoms for all the molecular structures (54 atoms for the atomic hydrogen

with finite-size convergence checked against a 128 atoms supercell). The electronic k mesh is

reported for each structure in Table 2. In all cases, a Marzari-Vanderbilt smearing of 0.41 eV

has been employed. Convergence of the energy with smearing and k-points is reported in Fig-

ure 23 and 24 for the Cmca-4 and Cs-IV structures, respectively. The Cmca-4 and Cs-IV phases

are the ones with the most prominent metallic character, requiring the largest k-point sampling

to converge.

k-mesh
C2/c-24 12× 12× 6
P62/c-24 12× 12× 6
Cmca-12 12× 12× 12

Cs-IV 48× 48× 48
Cmca-4 36× 24× 24

Table 2: k-mesh employed for the DFT simulation of each phase. The Cmca-4 mesh is per-
formed in the conventional unit cell containing 8 atoms.
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Figure 23: Molecular metallic Cmca-4 phase. DFT energy versus smearing and number of
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Figure 24: Atomic metallic Cs-IV phase. DFT energy versus smearing and number of k-points
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Details on the DMC calculations QMC calculations have been performed using the Tur-

boRVB package (43). We carried out extensive DMC simulations in the lattice regularized

DMC (LRDMC) flavor (44), to project the initial many-body wave function towards the ground

state of the system within the fixed-node approximation (FNA) (45), and compute its energy.

As starting many-body state, we employed a Jastrow-Slater variational wave function Ψk(R) =

exp{−U(R)} det{φk
j (r↑i )} det{φk

j (r↓i )} for i, j ∈ {1, . . . , N/2}, whereN is the number of elec-

trons in the unpolarized supercell, k is the twist belonging to a Monkhorst-Pack (MP) grid of

the supercell Brillouin zone, and R = {r↑1, . . . , r
↑
N/2, r

↓
1, . . . , r

↓
N/2} is the N -electron coordinate.

U is the Jastrow function, which is split into electron-nucleus, electron-electron, and electron-

electron-nucleus parts: U = Uen+Uee+Ueen. The electron-nucleus function has an exponential

decay and it reads as Uen =
∑

iI J1b(riI) + U no-cusp
en , where the index i(I) runs over electrons

(nucleus), riI is the electron-nucleus distance, and J1b(r) = α(1−exp{−r/α}), with α a varia-

tional parameter. J1b cures the nuclear cusp conditions, and allows the use of the bare Coulomb

potential in our QMC framework. The electron-electron function has a Padé form and it reads

as Uee = −
∑

i 6=j J2b(rij), where the indices i and j run over electrons, rij is the electron-

electron distance, and J2b(r) = 0.5r/(1 + βr), with β a variational parameter. This two-body

Jastrow term fulfills the cusp conditions for antiparallel electrons. The last term in the Jastrow

factor is the electron-electron-nucleus function: Ueen =
∑

(i 6=j)I
∑

γδMγδIχγI(riI)χδI(rjI),

with MγδI a matrix of variational parameters, and χγI(r) a (2s, 2p, 1d) Gaussian basis set, with

orbital index γ, centered on the nucleus I . Analogously, the electron-nucleus cusp-free contri-

bution to the Jastrow function, U no-cusp
en , is developed on the same Gaussian basis set, such that

U no-cusp
en =

∑
iI

∑
γ VγIχγI(riI), where VγI is a vector of parameters. The J1b and J2b Jastrow

functions have been periodized using a r→ r′ mapping that makes the distances diverge at the

border of the unit cell, as explained in Ref (43). For the inhomogeneous Ueen part, the Gaussian

basis set χ has been made periodic by summing over replicas translated by lattice vectors.

37



The one-body orbitals φ are expanded on a primitive (4s, 2p, 1d) Gaussian basis set, which

we contracted into 6 hybrid orbitals, by using the geminal embedding orbitals (GEO) contrac-

tion scheme (46) at the Γ point. φs’ are made periodic by using the same scheme as for the χs’.

We verified that this basis set yields a FN-LRDMC bias in the energy differences smaller than

the target error of 1 meV per atom. For each k belonging to the MP grid of a given supercell, we

performed independent DFT calculations in the local density approximation (LDA) to generate

{φk
j}j=1,...,N/2 for all occupied states. Note that these LDA calculations are done for an ab initio

Hamiltonian with bare Coulomb potential for the electron-ion interactions. This is thanks to

the one-body Jastrow factor included in the DFT wave function, with α ≈ 2.5. In presence of

a Coulomb divergence, fulfilling the ion cusp conditions accelerates enormously the basis set

convergence already at the DFT level.

Before running LRDMC calculations, we optimized the α, β and MγδI parameters, by min-

imizing the variational energy of the wave function Ψ within the QMC linear optimization

method (47), by keeping the orbitals φk
i fixed. All k twists belonging to the same system share

the same set of optimal variational parameters for the Jastrow factor. The LRDMC projection

is carried out at the lattice space a = 0.25a0, which yields converged energy differences. The

projection algorithm has been implemented with a fixed population of 256 walkers per twist for

the largest system sizes. The population bias, falling within the error bars, has been corrected

by the “correcting factors” scheme (48).

For each lattice symmetry and volume V , we performed a size-scaling analysis to extrapo-

late the energies to the thermodynamic limit (see Fig. 25). LetNx×Ny×Nz be the electronic k-

mesh yielding converged DFT results. In QMC, we used the same k-meshes reported in Tab. 2,

except for the Cs-IV and Cmca-4 symmetries, where we used a slightly smaller 24×24×24 and

18× 12× 12 mesh, respectively. To further reduce finite-size errors, the k-mesh of the metallic

Cs-IV symmetry has been centered at (π, π, π), while the other k-grids are centred at Γ. We
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Figure 25: QMC finite-size scaling and extrapolation to the thermodynamic limit. KZK-
corrected LRDMC energies for 4 crystalline symmetries (C2/c-24, Cmca-12, Cmca-4, and Cs-
IV) plotted as a function of 1/N , where N is the number of atoms, with respect to their value
at N = 96, taken as reference. The energies are twisted-averaged in the canonical ensemble
over a k-grid that has been rescaled according to the size of the supercell, as explained in the
text. Note that despite the KZK correction and the canonical k-average, there is a residual size
dependence beyond N = 96, larger than the target accuracy of 1 meV per atom, that needs to
be extrapolated. As expected, this residual dependence is stronger in the atomic metallic phase
and in the molecular phases under high pressure, where the metallic character is enhanced.

then took supercells with volume Vs = LxLyLzV , where Li are the number of unit-cell replica

in the i-th direction. Accordingly, the twists have been taken as belonging to theMx×My×Mz

MP k mesh with Mi = int[Ni/Li], where int is the integer function. The ground state energies

have been extrapolated by using supercells as large as N = 768 for the molecular phases, while

for atomic I4/amd-2 symmetry we used supercells as large as N = 1024. The final extrapo-
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lations have been performed by a linear fitting in 1/N , computed with Kwee-Zhang-Krakauer

(KZK)-corrected energies (49).

We also investigated the role of the FNA in DMC, by exploiting the capabilities of Tur-

boRVB for optimizing the Slater orbitals φk
i . Due to the increased cost of these simulations,

we performed the nodal optimization by the variational Monte Carlo energy minimization at

the special k-point only (50). The corresponding DMC energies computed by projecting wave

functions with relaxed nodes prove that the FN bias does not affect the relative energies between

molecular phases. However, the optimization of the FNA with respect to the LDA nodes in the

QMC wave function shifts the atomic-phase energy upwards by about 3 meV per atom (see

Tab. 3), also shifting the transition pressure by 20 GPa towards higher pressures (the correct

value is accounted for in the phase diagram of Figure 2).

symmetry 1.416 Å3 1.259 Å3 1.115 Å3

C2/c-24 6.2 (± 1.7) - -
P62/c-24 6.0 (± 1.7) - -
Cmca-4 5.9 (± 1.5) - -
Cmca-12 7.2 (± 1.1) 6.5 (± 1.1) 6.1 (± 1.0)

Cs-IV - 3.4 (± 0.8) 3.2 (± 0.8)

Table 3: Fixed node LRDMC energy gain (in meV/H) at different volumes with respect to the
LDA nodes after full wave function optimization at the special k point. The energy optimization
has been performed at the variational Monte Carlo level for supercells up to N = 288. It turns
out that the LRDMC energy gain due to the nodal optimization has a very weak system size
dependence. N = 96 gives already converged results for the FN energy gain.

We ran all LRDMC calculations long enough to reach a stochastic error bar around the target

accuracy of 1 meV per atom.
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DMC correction of the DFT exchange-correlation energy To correct for the DFT exchange-

correlation error, we computed DMC energies at each centroids structure. For each structure,

we fitted the energy difference between DFT and DMC for the same structure as a function of

the density, and added it on the top of the DFT energy-volume relationship, computed on a much

denser volume grid thanks to the cheaper cost of DFT. With this procedure, we do not rely on

any phenomenological definition of the equation of states (EOS), such as the Birch-Murnaghan

or Vinet EOS, in order to get QMC-interpolated energy-versus-volume curves. Fitting the DMC

corrections with respect to an underlying ab initio theory is easier than fitting directly the DMC

total energies. Indeed, total energies show a much larger dependence on the volume than energy

corrections. The plot of the QMC corrections is reported in Figure 26. In this plot, the QMC

corrections are obtained from DMC energies computed within the fixed-node approximation

(FNA) and with DFT-LDA nodes.

Fig. 26 shows that the difference between phases smears out when the density increases,

pointing toward a better DFT description above densities corresponding to 800 GPa, where the

electronic behavior of the system is more similar to the jellium model. This regime, however,

kicks in at pressures above the range of interest for this work. It is worth noting that the smallest

absolute values of the DMC correction with respect to DFT-BLYP are found for the atomic and

Cmca-4 phases. This is the reason why accounting for DMC corrections is fundamental to

correctly reproduce the hydrogen atomization: all molecular phases, except for Cmca-4, are

lowered in energy with a consequent shift of the atomization transition toward higher pressures.

We have mentioned that the QMC corrections reported in Figure 26 are based on DMC

calculations within the FNA and with DFT-LDA nodes. As explained in the QMC calculations

details, we assessed the quality of the DFT-LDA wave-function nodes that are kept fixed during

the DMC projection in the FNA. This is the only bias present in the DMC energies, which would

otherwise have been exact. We have been able to relax the nodes at the variational Monte Carlo
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Figure 26: QMC energy corrections. Electronic energy differences between DFT-BLYP and
DMC calculations at hydrogen centroid positions obtained from SSCHA nuclear quantum fluc-
tuations evaluated at the DFT-BLYP level. The DMC energies are computed within the FNA
with DFT-LDA nodes. The fit is a straight line for all phases.
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level, and then use improved nodes in DMC. According to Tab. 3, a systematic gain of 3meV/H

is found after nodal optimization in DMC energies for the molecular phases with respect to the

atomic one. It appears that the gain is the same for all molecular structures (within the error

bars) and it is volume independent in the range of pressures explored in this work. This 3meV/H

shift is added to the QMC corrections in Fig. 26 to yield the final corrections, used to compute

the QMC phase diagram of Figure 2. It adds up to further disfavor the atomic phase, whose

stability is pushed up to higher pressures in the phase diagram.

DMC+SSCHA systematic errors Our approach of combining DMC energy corrections and

SSCHA anharmonic vibrational contributions in an additive way relies upon the hypothesis

that DMC corrections depend mainly on the phase and pressure (or volume), and very weakly

on the particular atomic displacement around the centroids within a given phase. To test this

hypothesis and give an estimate of the systematic error introduced by this approximation, we

repeated the same calculations by choosing a different reference structure to compute the DMC

shifts. Therefore, we replaced the SSCHA centroids of hydrogen with those of deuterium to

change reference structure, and we went again through all steps by using this time the DMC

correction computed on the D centroids, for validation and error quantification.

In Figure 27, we compare the DMC corrections computed for the SSCHA centroids of H

and D, respectively, employing supercells of 96 nuclei in the DMC calculations. In this way,

we can check whether the DMC shifts are independent of specific ionic distortion, by retaining

a dependence only on the overall arrangement, i.e. on the crystalline symmetry. The plots in

panels a) and b) show that the shift between C2/c-24 and Cmca-12 depends only slightly on

the centroid position, while the atomic phase is more sensitive to the choice of the centroid.

This discrepancy is mainly due to the difference in the c/a equilibrium values of Cs-IV between

DMC and DFT-BLYP (see Section on the Cs-IV phase).
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Figure 27: Electronic energy difference per atom between DMC and DFT calculations on the
same BLYP structures. Here, we used the KZK-corrected LRDMC energies computed at N =
96 for all phases reported in the plot, before full thermodynamic extrapolation. This allows for a
direct comparison with deuterium, where we did not perform an explicit finite-size extrapolation
as we did in hydrogen (see Fig. 25). Panel a: the energy shift per atom is computed on the
SCHA centroid positions with mass equal to hydrogen. Panel b: the energy shift is computed
on structures with SCHA centroid positions for deuterium.
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Figure 28: Full phase diagram, considering DMC corrections and nuclear quantum effects.
DMC corrections are evaluated using the SSCHA centroids of deuterium.

In Figure 28, we show the phase diagram obtained by considering the DMC correction on

the D centroids. Here, the DMC energies computed on the D centroids are extrapolated to the

thermodynamic limit by assuming the same 1/N dependence as found in protium. Therefore,

the most accurate DMC correction of the BLYP exchange-correlation energy is obtained for the

H-centroids geometries, where an explicit and computational time-consuming extrapolation to

the thermodynamic limit has been performed explicitly. Nonetheless, the phase diagram in Fig-

ure 28 is valuable for estimating the systematic errors. This can be done by direct comparison

with the phase diagram drawn in Figure 10, obtained instead by relying upon the H-centroids

DMC correction.

Based on the phase diagrams plotted in Figs. 10 and 28, we report the phase-transition

pressures for hydrogen and deuterium in Tabs. 4 and 5, respectively. The discrepancies between

the results is used as an estimate of the systematic error in the final phase diagram, shown in

Figure 2.
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III→ VI VI→ ATOMIC
H-centroids DMC correction 422 GPa 575 GPa
D-centroids DMC correction 404 GPa 616 GPa

Table 4: The final phase-transition pressures for H obtained with DMC energy correction es-
timated based on H or D centroids. The results obtained from the H-centroids based DMC
correction are taken as the most accurate in the main text. The ones obtained from the D-
centroids based DMC correction provide an estimation of systematic error introduced by the
approximation.

III→ VI VI→ ATOMIC
H-centroids DMC correction 452 GPa 646 GPa
D-centroids DMC correction 432 GPa 683 GPa

Table 5: Same transition pressures as in Fig. 4, but for deuterium. The results obtained from the
H-centroids based DMC correction are taken as the most accurate in the main text. The ones
obtained from the D-centroids based DMC correction provide an estimation of systematic error
introduced by the approximation.
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