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1 Introduction

We all observe phase transitions in our daily lives, with hardly a second
thought. When we boil water for a cup of tea, we observe that the water
is quiescent until it reaches a certain temperature (100◦C), and then bub-
bles appear vigorously until all the water has turned to steam. Or after an
overnight snowfall, we have watched the snow melt away when temperatures
rise during the day. The more adventurous among us may have heated an iron
magnet above about 760◦C and noted the disappearance of its magnetism.

Familiar and ubiquitous as these and many related phenomena are, a little
reflection shows that they are quite mysterious and not easy to understand:
indeed, the outlines of a theory did not emerge until the middle of the 20th
century, and although much has been understood since then, active research
continues. Ice and water both consist of molecules of H2O, and we can look
up all the physical parameters of a single molecule, and of the interaction
between a pair of molecules, in standard reference texts. However, no detailed
study of this information prepares us for the dramatic change that occurs at
0◦C. Below 0◦C, the H2O molecules of ice are arranged in a regular crystalline
lattice, and each H2O molecule hardly strays from its own lattice site. Above
0◦C, we obtain liquid water, in which all the molecules are moving freely
throughout the liquid container at high speeds. Why do 1023 H2O molecules
co-operatively “decide” to become mobile at a certain temperature, leading
to the phase transition from ice to water?

We understand these phase transitions by the delicate balance between
the diverging interests of the energy, E, and the entropy, S. The principles of
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thermodynamics tell us that systems in thermal equilibrium seek to minimize
their free energy F = E − TS, where T is the temperature measured in
the absolute (Kelvin) scale. The energy is determined by the interactions
between the H2O molecules, and this is minimized in the crystalline structure
of ice. The entropy, as explained by Boltzmann, is a measure of the degree of
‘randomness’ in a phase; more precisely, it is proportional to the logarithm
of the number of microscopic arrangements of H2O molecules available at
a given total energy and volume—the entropy is clearly larger in the liquid
water phase. It is now easy to see that at low T , F = E − TS will be
smaller in the ice phase, while at higher T the contributions of the entropy
to F become more important, and the free energy of the liquid water phase
is lower. The free energies of ice and liquid water cross each other at 0◦C,
accounting for the phase transition at this temperature.

So far we have described what are more completely referred to as thermal

phase transitions, which are caused by the increasing importance of entropy
in determining the phase of a system with rising temperatures. Let us now
turn to the central topic of this article, quantum phase transitions. Such
transitions occur only at the absolute zero of temperature, T = 0◦K, where
thermodynamics tells us that the system should be in its lowest energy state
(also called the ‘ground state’). In the simple classical model of H2O dis-
cussed so far, we anticipate that there is some perfect crystalline arrangement
which minimizes the inter-molecular interaction energy, and at T = 0◦K all
the H2O molecules reside at rest on the sites of this lattice. This appears to
be a unique quiescent state, and so where then is the possibility of a phase
transition? The problem with this model is that it is incompatible with laws
of quantum mechanics, which govern the behavior of all the microscopic con-
stituents of matter. In particular, Heisenberg’s uncertainty principle tells
us that it is not possible to simultaneously specify both the position and
momentum of each molecule. If we do place the molecules precisely at the
sites of a perfect crystalline lattice (thus determining their positions), then
the momenta of the molecules are completely uncertain—they cannot be at
rest, and their kinetic energy will add an unacceptable cost to the energy
of this putative ground state. So determining the state of H2O at T = 0◦K
becomes a delicate matter of optimizing the potential and kinetic energies,
while maintaining consistency with Heisenberg’s uncertainty principle. As
in our earlier discussion of thermal phase transitions, this delicate balance
implies that, at least in principle, more than one phase is possible even at
T = 0◦K. These phases have distinct macroscopic properties, while contain-
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ing the same microscopic constituents; they are separated by quantum phase
transitions. The key difference from thermal phase transitions is that the fluc-
tuations required by the maximization of entropy at T > 0◦K have now been
replaced by quantum fluctuations demanded by the uncertainty principle. In
addition to the familiar ice phase, H2O exhibits numerous other phases at
T = 0◦K under strong applied pressure, each with a distinct crystal structure
and separated from the other phases by quantum phase transitions. We will
not describe these transitions here, because they are quite complicated, but
focus on simpler examples of quantum-uncertainty induced transitions.

Our discussion so far would seem to indicate that a quantum phase tran-
sition is a theoretical abstraction, which couldn’t possibly be of any relevance
to an understanding of materials of technological importance. After all, it is
impossible to cool any material down to 0◦K in the laboratory, and it takes
heroic effort even to get close to it. As we will discuss below, it has become
clear in the last decade that these conclusions are quite wrong. Quantum
transitions at T = 0◦K leave characteristic fingerprints in the physical prop-
erties of materials at T > 0◦K, and these fingerprints are often clearly visible
even at room temperature. A complete understanding of the physical proper-
ties of many materials emerges only upon considering the relationship of their
T > 0◦K phases to the distinct ground states and quantum phase transitions
at T = 0◦K.

2 Interacting qubits in the laboratory

We begin our discussion of quantum phase transitions with a simple example.
Rather than tackling the full complexity of atomic/molecular potential and
kinetic energies, we consider the simplest possible quantum mechanical sys-
tem, a set of interacting qubits. All computers store information as strings of
(classical) ‘bits’, which are abstract representations of the two possible states
of a classical electrical circuit, usually denoted 0 and 1. Similarly, a qubit
is the simplest quantum degree of freedom, which can be in only one of two
quantum states, which we denote |↑〉 and |↓〉. There has been much recent
discussion, much of it quite abstract and theoretical, on using coupled qubits
to perform computations; here we show that when many qubits are actually
coupled with each other in the laboratory, they undergo a quantum phase
transition.

A common physical realization of a qubit is provided by the spin of an
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electron: each electron spins on its own axis, and its angular momentum
about any fixed axis (say z) is only allowed to take the values +h̄/2 (in
the |↑〉 state) or −h̄/2 (in the |↓〉 state); here h̄ is a fundamental constant of
nature, Planck’s constant. Associated with this angular momentum is a mag-
netic moment, Mz, which produces a magnetic field that can be measured
in the laboratory. Most materials have equal numbers of electrons with spin
+h̄/2 and −h̄/2, and so the net magnetic moment is zero. However, certain
materials (like iron) have a net excess of electrons with spin +h̄/2 over −h̄/2
(say), endowing them with a macroscopic magnetic moment—this is the ex-
planation for its magnetic properties. Here, we are interested in separating
the magnetic qubits on distinct lattice sites and controlling the interactions
between them, to allow us to tune the qubits across a quantum phase tran-
sitions. Iron is not a suitable candidate for this because it is a metal, and
its electrons move freely throughout the entire crystal lattice. We need to
look at insulators, in which the individual ions have a net magnetic moment.
Reasoning in this manner, in 1991 Thomas Rosenbaum at the University of
Chicago, Gabriel Aeppli at NEC Research, and their collaborators under-
took a series of experiments on the insulator LiHoF4, the simplest of which
we shall describe below (see Fig 1). In this insulator, the Li+ and F− ions
have equal numbers of up and down spin electrons and are non-magnetic.
However, each Ho3+ ion has a net magnetic moment. This magnetic moment
has contribution from both the electron spin on its own axis, and from the
orbital motion of each electron around the Ho nucleus, and these motions
are strongly coupled to each other via the ‘spin-orbit’ interaction. We do
not need to enter these complexities here because, after the dust settles, the
Ho3+ ion on site j has only two possible magnetic states, which we denote |↑〉j
and |↓〉j. Moreover, the crystalline structure also choses a natural quantiza-
tion axis, and these states have a magnetic moment, Mz, along the preferred
crystalline axis. So each Ho3+ ion is a perfect physical realization of a qubit.

Before we look at the problem of many coupled qubits, let us dwell a bit
more on the physics of an isolated qubit on a single Ho3+ ion. One of the
fundamental principles of quantum mechanics is the principle of superposition

of quantum states. For a qubit, this principle implies that its state can not
only be |↑〉 or |↓〉, but also an arbitrary superposition

|ψ〉 = α |↑〉+ β |↓〉 (1)

where α, β are arbitrary complex numbers; the normalization of the state
|ψ〉 requires that |α|2 + |β|2 = 1. The state |ψ〉 has no classical analog, and
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so it is not possible to provide a picture consistent with our naive classical
intuition. An observation of the qubit in state |ψ〉 will show that it is in
state |↑〉 with probability |α|2 and in state |↓〉 with probability |β|2. But this
does not imply that the state |ψ〉 is a random statistical mixture of the |↑〉
and the |↓〉 states—for some measurements there is an additional quantum
interference term which characterize |ψ〉 as a true superposition. Crudely
speaking the qubit is both up and down “at the same time”. Of particular
interest is the state of the qubit with α = β = 1/

√
2, which we denote as

|→〉 =
1√
2

(|↑〉+ |↓〉) . (2)

This notation is suggestive: the |→〉 state has the remarkable property that
it has a magnetic moment, Mx pointing in the +x direction. So a superposi-
tion of a state with magnetic moment up (|↑〉) and down (|↓〉) has a magnetic
moment pointing right! This is a deep and special property of quantum me-
chanics, and is ultimately closely linked to Heisenberg’s uncertainty principle:
states with definite Mz (|↑〉 or |↓〉) have uncertain Mx, and conversely a state
with uncertain Mz (|→〉) has a definite Mx. Similar to (2), we will also need
the state

|←〉 =
1√
2

(|↑〉 − |↓〉) (3)

which has a magnetic moment pointing in the −x direction. One of the most
important properties of a qubit, which has no analog in classical bits, is that
the |→〉 and |←〉 states can also be used as a basis for expressing the state
of a qubit, and this basis is as legitimate as the |↑〉, |↓〉 states we have used
so far. The reader can easily see from (1,2,3) that the state |ψ〉 can also be
written as a superposition of the |→〉 and |←〉 states:

|ψ〉 = α′ |→〉+ β′ |←〉 (4)

with α′ = (α + β)/
√

2 and β′ = (α − β)/
√

2. So we can view |ψ〉 as a state
‘fluctuating’ between up and down states (as in (1)), or as a state ‘fluctuating’
between right and left states (as in (4))—a remarkable fact completely at odds
with our classical intuition, but a fundamental property of a qubit.

We are now ready to couple the qubits, residing on the Ho atoms in
LiHoF4, to each other. This coupling is described by the Hamiltonian, H,
which is a quantum-mechanical representation of the energy. This Hamil-
tonian will have two terms, which are the analogs of the kinetic and po-
tential energies of the water molecules we discussed earlier. The quantum
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phase transition occurs because of a delicate interplay between these ener-
gies, and this has a crude parallel to the interplay between E and S near a
thermal phase transition. We reiterate, however, that our discussion here of
a quantum phase transition is at T = 0◦K, and so we are always seeking the
quantum-mechanical state with the lowest total energy. We schematically
represent the Hamiltonian as

H = Hz + gHx (5)

where Hz,x are the two announced components of the Hamiltonian, and g is a
dimensionless parameter we will tune to move the qubits across the quantum
phase transition—the role of g here will parallel that of T for a thermal phase
transition. In the language of the |↑〉j, |↓〉j representation of the qubits, the
Hz term is a ‘potential’ energy i.e. it determines the optimum configuration
of the Mz magnetic moments which will minimize the energy. The term Hx

is a ‘kinetic’ energy, but unlike the case of the water molecules, it has a
very simple form because there are only two possible states of each qubit.
So the only ‘motion’ possible is a flipping of the qubit between the up and
down states: it is precisely this up-down flipping, or ‘quantum tunnelling’
which is induced by Hx. An interesting and fundamental property of Hz,x,
which will become clear from our discussion below, is that roles of kinetic
and potential energies are reversed in the |→〉j, |←〉j basis of the qubits.
In this case, the Hx will be a ‘potential’ energy, while the Hz term will
induce quantum tunnelling between the left and right states, and is thus a
’kinetic’ energy. So quantum systems have this peculiar property of looking
quite different depending upon the choice of observables, but there remains
a unique underlying state which has these different physical interpretations.

Let us first discuss the meaning ofHz further—this will give us a good pic-
ture of the ground state for g ≪ 1. In LiHoF4, Hz arises from the ‘magnetic
dipole’ interaction. Each Mz magnetic moment produces a dipolar magnetic
field (much like the familiar magnetic field patterns around a bar magnet),
and this field will tend to align the other magnetic moment parallel to itself.
For the LiHoF4, these dipolar interactions are optimized for a ‘ferromagnetic’
arrangement of the Mz moments. In other words, the ground state is

|⇑〉 = . . . |↑〉j1 |↑〉j2 |↑〉j3 |↑〉j4 |↑〉j5 . . . (6)

where the labels j1... extend over all the ∼ 1023 qubits in the lattice. There
is nothing in the Hamiltonian or the crystal structure which distinguishes up
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from down, so another ground state, with the same energy is

|⇓〉 = . . . |↓〉j1 |↓〉j2 |↓〉j3 |↓〉j4 |↓〉j5 . . . (7)

The equivalence between (6) and (7) is therefore related to a symmetry be-
tween the up and down orientations of the magnetic moments. This last
statement needs to be qualified somewhat in any realistic system. While
the perfect and infinite crystal of LiHoF4 does indeed have an unblemished
up-down symmetry, any realistic crystal will always a slight preference for
up or down induced by imperfections and boundaries. Any slight preference
is sufficient to break the symmetry, and so let us assume that the ground
state has been chosen in this manner to be |⇑〉. This is a simple example of
a common phenomenon in physics: a spontaneously broken symmetry. The
ferromagnetic arrangement of the magnetic in such a state will lead to a mag-
netic field much like that produced by everyday permanent magnets, and this
is easy to detect in the laboratory.

The alert reader will have noticed by now that our description above of
the states |⇑〉 and |⇓〉 surely cannot be the whole story: we have localized
each qubit in the up direction, and this must lead to problems with Heisen-
berg’s uncertainty principle. Won’t each qubit tunnel to the down state
occasionally, just to balance out the uncertainties in Mz and Mx? The con-
tribution Hx in (5) is one term which performs this tunnelling. For g ≪ 1
it can be shown that our discussion of the |⇑〉 and |⇓〉 states is essentially
correct, and the ferromagnetic phase is not disrupted by quantum tunnelling.
However, the story is very different for g ≫ 1. Now the state of the qubits is
determined entirely by the optimization of this tunnelling, and this happens
when the qubit is equally likely to be in the up or down states. We choose
an arbitrary phase in our definition of the qubit states to have the tunnelling
in Hx prefer the state |→〉j for all j. Thus a large tunnelling makes all the
qubits point to the ‘right’. This result also suggests a simple way in which
the value of g can be tuned in the laboratory: simple apply a magnetic field
along the +x or ‘transverse’ direction. This transverse field will enhance the
tunnelling between the |↑〉j and |↓〉j states of the qubit, and is a powerful
tool for ‘tuning’ the strength of quantum fluctuations. In a large transverse
field, g →∞, and then the ground state of H is clearly

|⇒〉 = . . . |→〉j1 |→〉j2 |→〉j3 |→〉j4 |→〉j5 . . . (8)

Note that this state is very different from the |⇑〉 and |⇓〉 and while the
relationship (2) holds for a single qubit, the analogous relationship for many
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qubits does not hold i.e.

|⇒〉 6= 1√
2

(|⇑〉+ |⇓〉) ; (9)

The correct expression for |⇒〉 is derived by inserting (2) into (8) for each
site j and then expanding out the products: one finds a very large number of
terms with up and down oriented qubits, and only two of these terms appear
on the right hand side of (9). The inequality (9), and the far more compli-
cated behavior of the many qubit system, is what allows the appearance of
a non-trivial quantum phase transition.

In passing, we note that the state on the right-hand-side of (9) is of-
ten referred to as “Schrödinger’s cat”. It is a quantum superposition of
two macroscopically distinct states (the |⇑〉 and |⇓〉 states), much like the
quantum superposition between a dead cat and a live cat that Schrödinger
speculated about. In practice, such “cat states” are exceedingly hard to cre-
ate, because (as we have discussed above) even a tiny external perturbation
will ‘collapse’ the system wavefunction into either |⇑〉 or |⇓〉.

We have now assembled all the ingredients necessary to understand the
quantum phase transition of the many qubit system as a function of increas-
ing g. For small g, as we discussed earlier, the qubits are in the state |⇑〉—the
most important property of this state is that it has a non-zero value of the
average magnetic moment 〈Mz〉. We expect 〈Mz〉 to evolve smoothly as the
value of g is increased. In contrast, at very large g, we have the state |⇒〉,
in which 〈Mz〉 is strictly zero, and we expect this to be a true for a range of
large g. Now imagine the functional dependence of 〈Mz〉 on g: it is impossi-
ble to connect the two limiting regimes with a smooth function. There must
be a singularity at at least one value g = gc as shown in Fig 2, where 〈Mz〉
first vanishes. This is the location of the quantum phase transition—with in-
creasing g, this is the point at which the ferromagnetic moment vanishes, the
up-down symmetry of the qubit system is restored, and we reach a ‘paramag-
netic’ state. In a very real sense, the complicated many qubit ground state
for g < gc is similar, and smoothly connected, to the state |⇑〉 for g < gc,
while for g > gc a corresponding satisfactory model is provided by |⇒〉. Only
at g = gc do we obtain a truly different ‘critical’ state, in a very complex and
‘entangled’ qubit arrangement we will not describe in any detail here.

So far we have described the physics of a quantum phase transition at
T = 0, but this is not of direct relevance to any practical experiment. It is
essential to describe the physics at T > 0, when the qubits will no longer
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reside in their lowest energy state. Describing the structure of the very large
number of higher energy (or ‘excited’) states would seem to be a hopelessly
complicated task—there are an exponentially larger number of ways in which
the qubits can rearrange themselves. Fortunately, over most of parameter
space, a powerful conceptual tool of quantum theory provides a simple and
intuitive description: the quasiparticle. A quasiparticle appears in any exper-
iment just like an particle: it is a point-like object which moves while obeying
Newton’s Laws (more precisely, their quantum genreralizations). However,
rather than being a fundamental degree of freedom in its own right, a quasi-
particle emerges from the collective behavior of many strongly coupled quan-
tum degrees of freedom (hence the ‘quasi-’): it is a ‘lump’ of excited qubits
which, when viewed from afar, moves around just like a particle. Moveover,
the spectrum of excited states of the qubits can be usefully decomposed into
states describing multiple quasiparticles moving around and colliding with
each other.

A simple description of the quasiparticle states is also possible. Consider
first the limit g ≫ 1, where the ground state is |⇒〉 as in (8). To create an
excited state, and we must flip qubits from right to left, and because it costs
a large energy (∼ g) to flip a qubit, let us flip just one at the site j; this
yields the state

|j〉 = . . . |→〉j1 |→〉j2 |←〉j |→〉j3 |→〉j4 |→〉j5 . . . (10)

The left qubit is just a stationary object at the site j above, but corrections
from Hz endow it with all the characteristics of a particle: it becomes mobile
and acquires an energy which depends its velocity (its ‘dispersion relation’).
We can now also create left-oriented qubits on other sites, and these behave
much like a gas of particles: the quasiparticles are relatively independent
of each other when they are far apart, and they collide and scatter of each
other should their paths intersect. Also, for large enough g, it should be
evident that this quasiparticle picture provides a description of all the lower
energy excited states above the |⇒〉 ground state. A somewhat more subtle
fact is that this quasiparticle description works for all points, g > gc, on
the paramagnetic side of the quantum phase transition. As we lower g, each
quasiparticle is no longer a single flipped qubit as in (10), but becomes a more
diffuse object localized around the site j; furthermore, there is a lowering of
the upper bound on the energy below which the quasiparticle picture applies.
Ultimately, as we reach g = gc from above, the size of the quasiparticle
diverges, and the upper bound on the quasiparticle picture reaches the ground
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state energy. Only strictly at g = gc does the quasiparticle picture fail
completely,1 but quasiparticles can be usefully defined and identified at all
g > gc.

Let us now turn to a description of the excited states for g < gc. Here
again, we find a quasiparticle description, but in terms of an entirely new
type of quasiparticle. The description of this quasiparticle is simplest for the
case in which the qubits are aligned along a one-dimensional chain, rather
than a three dimensional crystal, and so we restrict our discussion here to
this case. In the ground states |⇑〉 or |⇓〉, at g = 0, the interactions between
them in the magnetic dipoles aligns the qubits all parallel to each other. The
simplest excited state is then the state with exactly one pair of qubits which
are anti-aligned, and this leads to a defect (or a ‘domain wall’) between sites
j and j + 1 separating perfectly aligned qubits (we are numbering the sites
consecutively along the chain):

|j, j + 1〉 = . . . |↑〉j−2
|↑〉j−1

|↑〉j |↓〉j+1
|↓〉j+2

|↓〉j+3
. . . (11)

With a small non-zero value of g, the qubits are allowed to tunnel between the
up and down states, and it is then not difficult to see that this defect becomes
mobile i.e. it is a quasiparticle. However there is no simple relationship
between this quasiparticle and that in (10), and the qubits are organized in
very different superposition states. The behavior of the quasiparticle in (11)
with increasing g parallels that below (10) with decreasing g: the domain wall
becomes increasingly diffuse as g increases, and the quasiparticle description
holds only below an energy which goes to zero precisely at g = gc.

Collecting all the information above, we can draw a ‘phase diagram’ of
the coupled qubit model as a function of the transverse field, which is tuned
by g, and the temperature T . This is shown in Fig 3. There is a quantum
phase transition at the critical point g = gc, T = 0, flanked by ferromagnetic
and paramagnetic states on its sides. On both sides of the critical point,
there is a range of temperatures below which the quasiparticle description is
appropriate, and this upper bound in temperature corresponds is related to
the upper bound in energy discussed above by Botlzmann’s constant kB. Fur-
thermore, there is a ‘fan’ emanating from the quantum critical point where
the quasiparticle description is not appropriate and a fundamentally new ap-

1A technical aside: for the simple model under consideration here, this statement is

strictly true only in spatial dimensions d < 3. In d = 3, a modified quasiparticle picture

can be applied even at g = gc
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proach based upon the entangled state at g = gc, and its non-quasiparticle
states has to be developed.

The description of this new quantum-critical regime has been the focus of
much research in recent years. Some models display a remarkable universality
in their properties in this regime i.e. some observable properties of the qubits
are independent of the precise couplings between them. For example, we can
ask for the value of the qubit relaxation rate, ΓR which is the inverse time
it takes for a perturbation from thermal equilibrium to die away; this rate is
given by

ΓR = CQ
kBT

h̄
(12)

where h̄ is Planck’s constant and CQ is a dimensionless universal number
which depends only on some known, gross features of the model (such as its
spatial dimensionality), but is independent of the details of the couplings in
H. So remarkably, a macroscopic collective dynamic property of 1023 qubits is
determined only by the absolute temperature and by fundamental constants
of nature. It is worth noting here that it is only in this quantum-critical
region that the qubits are strongly entangled with each other, in a sense
similar that required for quantum computation. The dynamics of the qubits
here is actually quite ‘incoherent’ here, and overcoming such decoherence
effects is one of the major challenges on the road to building a quantum
computer in the laboratory.

Extensions of the simple phase diagram in Fig 3, and of its physical
properties, have been explored in the experiments of Rosenbaum, Aeppli and
collaborators. A good understand now exists of very clean crystals of LiHoF4.
However, crystals which have been intentionally doped with impurities have
a far more complicated interactions between the qubits, and their study
remains an active topic of research.

3 Squeezing the Bose-Einstein condensate

Prompted by communications with S. N. Bose in 1924, Albert Einstein con-
sidered the problem of cooling a gas in a container to very low temperatures.
At room temperature, a gas such as helium consists of rapidly moving atoms,
and can be visualized as classical billiard balls which collide with the walls
of the container and occasionally with each other. As the temperature is
lowered, the atoms slow down, and their quantum-mechanical characteristics

11



become important: de Broglie taught us that each atom is represented by
a wave, and the de Broglie wavelength of the helium atoms becomes larger
as the temperature is lowered. This has dramatic macroscopic consequences
when the wavelength becomes comparable to the typical distance between
the atoms. Now we have to think of the atoms as occupying specific quantum
states which extend across the entire volume of the container. We are faced
with the problem of cataloging all such many-atom states. The atoms are
indistinguishable from each other, and quantum mechanics requires that we
interpret two states which differ only by the exchange of the position of a
pair of atoms as not being two distinct states at all, but as components of a
single state. Furthermore, if the atoms are ‘bosons’ (any atom with an even
total number of electrons, protons, and neutrons is a boson, as is helium) an
arbitrary number of them can occupy any single quantum state i.e. there
is no exclusion principle as there is for ‘fermions’ such as electrons. If the
temperature is low enough then the many atom system will search for its
lowest energy state, and for bosons this means that every atom will occupy
the same lowest energy wavelike quantum state extending across the entire
container. A macroscopic number of atoms occupying a single microscopic
state is a Bose-Einstein condensate. Einstein showed that the Bose-Einstein
condensate appeared below a critical temperature which was roughly deter-
mined by the condition that the de Broglie wavelength of an atom equal the
mean atomic spacing.

Unbeknownst to Bose and Einstein, the Bose-Einstein condensate had
actually already been discovered in the laboratory over a decade before their
theoretical work, but several more decades would pass before this connection
between theory and experiment was clearly understood—a striking exam-
ple of how convoluted the progress of science can often be, and how things
that seem obvious in retrospect can go unnoticed for a long time. It had
been noted by Kammerlingh Onnes that liquid helium at very low tem-
peratures displayed the remarkable property of superfluidity: the ability to
flow without any appreciable viscosity. However, it was not until 1938 that
Fritz London first proposed that superfluidity was linked to the formation
of a Bose-Einstein condensate of helium atoms. This proposal was met with
skepticism: the Bose-Einstein theory was for an ideal gas of non-interacting
bosons, while there was no doubt that the helium interacted strongly with
each other. Subsequent theoretical developments have since shown that Lon-
don was essentially correct: interactions between the bosons do deplete the
condensate (not all atoms are in the lowest energy single boson state), but
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the condensate remains intact in the sense that it retains a finite fraction,
i.e. a macroscopic number of atoms.

In the last decade, a beautiful new realization of the Bose-Einstein con-
densate has been created in the laboratory. In 1995, Eric Cornell, Carl Wie-
mann and collaborators succeeded in trapping and cooling a gas of rubidium
(Rb) atoms to a high enough density and low enough temperature to induce
them to form a Bose-Einstein condensate. Unlike the truly macroscopic con-
densate of 1023 atoms in liquid helium, this condensate is a much more fragile
and delicate object: it exists only in a trap containing 103−6 atoms carefully
isolated from the world around it and cooled to temperatures extremely close
to absolute zero. Indeed, it is not a simple matter to know that atoms have
formed a Bose-Einstein condensate. In their experiments, Cornell and Wie-
mann released the atoms from their trap, and then measured the velocities
of the escaping atoms: at low enough temperatures, they found a large en-
hancement in the number of atoms with velocities close to zero, as would be
the case for atoms which emerged from the Bose-Einstein condensate. See
Fig 4. A more quantitative description of the velocity distribution function
is in good agreement with the theory of the interacting Bose gas, and so
Fig 4 is convincing evidence for the formation of a Bose-Einstein condensate
of trapped Rb atoms.

Nothing we have said so far in this section relates to a quantum phase
transition: any collection of bosons, when cooled to sufficiently low tem-
peratures, will always reach the same quantum state—a Bose-Einstein con-
densate. Strong repulsive interactions between the bosons can deplete the
condensate, but they never annihilate it, and the system as a whole remains
a perfect superfluid. Is there any way to reach a different ground state of
bosons and possibly also a quantum phase transition?

The key to the formation of the Bose-Einstein condensate is that some
of the atoms move freely throughout the entire system in the same quantum
state. This suggests that if we were able to disrupt the motion of the atoms
by a set of microscopic barriers, we may be able to destroy the condensate
and reach a new ground state. The precise implementation of this idea was
discussed by Sebastian Doniach in 1981 in a slightly different context, and
extended to the boson systems of interest here by Matthew Fisher and col-
laborators in 1989. For the trapped gas of Rb atoms we have discussed here,
this idea was demonstrated in a remarkable recent experiment by Immanuel
Bloch and collaborators in Munich, and so we will discuss the idea using
their implementation.
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Bloch and collaborators impeded the motion of the Rb bosons by applying
a periodic array of barriers within the trap; more precisely they applied a
periodic potential to the Rb atoms. In the two-dimensional view shown in
Fig 5, we can visualize the Rb atoms as moving across an egg-carton: there is
an array of sites at which the Rb atoms prefer to reside to lower their potential
energy, and they have go over a barrier to move from any site to its neighbor.
In Bloch’s laboratory, this periodic potential was created by standing waves
of light: along each direction there were two counter-propagating laser beams
(and so a total of six lasers) whose interference produces an effective periodic
potential for the Rb atoms.

In the presence of a weak periodic potential, Bloch observed only a minor,
but significant, change in the state of the Rb atoms. The atoms were released
from the trap, as in the experiment of Cornell and Wiemann, and then their
velocity distribution function was observed. Bloch observed the distribution
shown in Fig 6. Note that it has a large peak near zero velocity, as Fig 4,
and this is a tell-tale signature of the Bose-Einstein condensate. However,
there is also a lattice of satellite peaks, and these record the influence of
the periodic potential. Crudely speaking, the quantum state into which the
atoms condense has ‘diffracted’ off the period potential, and the satellite
peaks in Fig 6 represent the diffraction pattern of the periodic potential.
So the shape of the condensate has adjusted to the periodic potential, but
otherwise the Bose-Einstein condensate retains its integrity: this will change
at stronger periodic potentials, as we shall discuss shortly.

In preparation for our description of the quantum phase transition, it
is useful to explicitly write down the quantum state of the Bose-Einstein
condensate. Let us assume that the atoms are only able to occupy a single
quantum state in each minimum of the periodic potential (this is actually an
excellent approximation). If atom number n (we number the atoms in some
order) occupies the state in the j’th minimum of the periodic potential (we
also number the minima of the periodic potential in some order), we denote
this state by |j〉n. In the Bose-Einstein condensate, each atom will actually
occupy the same state: the state which is a linear superposition of the states
in every well. So the Bose-Einstein condensate (BEC) of bosons numbered
n1, n2, n3 . . . in potential wells j1, j2, j3 . . . is

|BEC〉 = . . .
(

. . . |j1〉n1
+ |j2〉n1

+ |j3〉n1
. . .

)

×
(

. . . |j1〉n2
+ |j2〉n2

+ |j3〉n2
. . .

)
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×
(

. . . |j1〉n3
+ |j2〉n3

+ |j3〉n3
. . .

)

. . . (13)

Upon expanding out the products above, note that the number of bosons in
any given well fluctuates considerably e.g. one of the terms in the expansion
is . . . |j1〉n1

|j1〉n2
|j1〉n3

. . . in which all three of the bosons numbered n1,2,3 are
in the well j1 and none in the wells j2 or j3. The |BEC〉 state is a quantum
mechanical superposition of all these states in which the number of bosons
fluctuate strongly in each well. This is another way of characterizing the
Bose-Einstein condensate, and is indeed the essential property which leads
to an understanding of its superfluidity: the strong number fluctuations mean
that particles are able to flow across the system with unprecedented ease, and
without resistance.

Now turn up the strength of the periodic potential. Theory tells us that
there is a critical strength at which there is a quantum phase transition, and
beyond this point there is no superfluidity–the Bose-Einstein condensate has
disappeared. What has taken its place? As in our discussion in Section 2 we
can understand the structure of this state by looking at a limiting case: the
state should be qualitatively similar to that in the presence of a very strong
periodic potential. In such a situation, we expect the tunnelling between
neighboring minima of the periodic potential to be strongly suppressed. This,
combined with the repulsive interactions between the bosons in the same
potential well should lead to a strong suppression of the number fluctuations
in the quantum state. An idealized state, with no number fluctuations has
the form

|I〉 = . . . |j1〉n1
|j2〉n2

|j3〉n3
. . .+ . . . |j1〉n1

|j2〉n3
|j3〉n2

. . .

+ . . . |j1〉n2
|j2〉n1

|j3〉n3
. . .+ . . . |j1〉n2

|j2〉n3
|j3〉n1

. . .

+ . . . |j1〉n3
|j2〉n2

|j3〉n1
. . .+ . . . |j1〉n3

|j2〉n1
|j3〉n2

. . .+ . . . . (14)

Now each site j1,2,3 has exactly one of the particles n1,2,3 in all the terms.
Indeed, any one of the terms above suffices to describe the configuration of
the particles in the ground state, because the particles are indistinguishable
and we can never tell which particular particle is residing in any given well—
we need all the permutations in (14) simply to ensure that physical results
are independent of our arbitrary numbering of the particles. Note also that
all terms in |I〉 are also present in |BEC〉—the difference between the states
is that |BEC〉 has many more terms present in its quantum superposition,
representing the number fluctuations. In this sense, the inequality between
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|BEC〉 and |I〉 is similar to the inequality (9) between the states on the
either side of the transition in the coupled qubit model.

What is the physical interpretation of |I〉? The complete suppression of
number fluctuations now means that the bosons are completely unable to
flow across the system. If the bosons were electrically charged, there would
be no current flow in response to an applied electric field i.e. it is an insulator.
Alternatively, in the atom trapping experiments of Bloch, if we were to ‘tilt’
the optical lattice potential (in two dimensions, we tilt the egg-carton of
Fig 5), there would be no flow of bosons in the state |I〉. In contrast, bosons
would flow without any resistance in the state |BEC〉. The quantum phase
transition we have described in this section is therefore a superfluid-insulator

transition.
It has not yet been possible to observe flows of atoms directly in the

experiments by Bloch and collaborators. However, as in the state |BEC〉,
the velocity distribution function of the atoms in the state |I〉 can be eas-
ily measured, and this is shown in Fig 7. Now there is no sharp peak near
zero velocity (or at its diffractive images): the absence of a Bose-Einstein
condensate means that all the particles have large velocities. This can be
understood as a consequence of Heisenberg’s uncertainty principle: the par-
ticle positions are strongly localized within single potential wells, and so their
velocities become very uncertain.

For future experimental studies, and analogous to our discussion in Fig 3
for the coupled qubits, we can now sketch a phase diagram as a function of
the strength of the periodic potential and the temperature: this is shown
in Fig 8. For weak periodic potentials, we have a superfluid ground state:
above this, at finite temperature, there are excitations involving superflow
over long length scales. At large periodic potentials, we have an insulating
ground state: the excitations now involve small number fluctuations between
neighboring pairs of sites, which cost a finite energy per number fluctuation.
In the intermediate quantum-critical regime, we have behavior analogous to
that in Fig 3. The characteristic relaxation rate for boson number fluctua-
tions obeys an expression analogous to (12): the dynamics of the bosons is
strongly dissipative (with velocities proportional to applied forces) and so we
have christened this yet-to-be-observed regime as Bose molasses.
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4 The cuprate superconductors

Electricity is the flow of electrons in wires. The wires are made of metals,
like copper, in which each metallic atom ‘donates’ a few of its electrons, and
these electrons move freely, in quantum-mechanical wavelike states, through
the entire wire. However, single electrons are not bosons, but fermions which
obey the exclusion principle, and so more than one electron cannot occupy
the same quantum state to form a Bose-Einstein condensate. The motion of
electrons in a metal has a small but finite resistance; this arises from scat-
tering of the electrons off the ever-present defects in the crystalline arrange-
ment of atoms in a metal. Consequently metals are conductors but not
superconductors.

However, in 1911, Kammerlingh Onnes, cooled the metal mercury below
4.2◦K and found that its electrical resistance dropped precipitously to an
immeasurably small value—he had discovered a superconductor. An expla-
nation of this phenomenon eluded physicists until 1957 when John Bardeen,
Leon Cooper and Robert Schrieffer proposed a theory which again invoked
the Bose-Einstein condensate. However the condensate was not of single
electrons, but the analog condensate of pairs of electrons (now called Cooper
pairs): each electron in the metal finds a partner, and the pairs then occupy
the same quantum state which extends across the system. While individ-
ual electrons are fermions, pairs of electrons obey Bose statistics at long
length scales, and this allows them to form an analog of the Bose-Einstein
condensate. Strong fluctuations in the numbers of the Cooper pairs in differ-
ent regions of the wire are then responsible for superconductivity, just as we
found in Section 3 that superfluidity was linked to fluctuations in the number
of Rb atoms between different minima of the periodic potential.

The phenomenon of superconductivity clearly raises the possibility of
many exciting technological applications: resistanceless flow of electricity
would have tremendous impact on electrical power transmission, high fre-
quency electrical circuits behind the wireless communication revolution, and
in medical applications like magnetic resonance imaging (MRI) which re-
quire large magnetic fields, to name but a few. Many such applications are
already in the marketplace, and the main obstacle to more widespread usage
is the low temperature required to obtain superconductor. Raising the max-
imum critical temperature below which superconductivity appears has been
a central research goal for physicists since Kammerlingh Onnes.

A dramatic improvement in the temperature required for superconductiv-
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ity came in 1987 in a breakthrough by Georg Bednorz and Alex Müller (see
Fig 9). These IBM researchers discovered a new series of compounds (the
‘cuprates’) which became superconductors at temperatures as high as 120◦K;
the highest temperature on record prior to their work had been 15◦K. This
revolutionary discovery sparked a great deal of theoretical and experimental
work, and many important questions remain subject to debate today. Here
we will discuss the current understanding of the quantum ground states of
these compounds, the role played by quantum phase transitions, and point
out some of the open questions.

The best place to begin our discussion is the insulating compound La2CuO4,
whose crystal structure is shown in Fig 10. Despite its complexity, most of
its electronic properties are controlled by a simple substructure—a single
layer of Cu ions which reside on the vertices of a square lattice. The crystal
consists of an infinite number of such layers stacked on top of each other,
but the coupling between neighboring layers is small enough that we can
safely ignore it, and concentrate on a single layer. A further simplification is
that we need focus on only a single 3d orbital on each Cu ion. In La2CuO4

each such orbital has precisely one electron. The Coulomb repulsion between
the electrons prevents them from hopping between Cu sites, and this is the
reason La2CuO4 is a very good insulator. The reader should notice a simple
parallel to our discussion of Rb atoms in Section 3: there, when the periodic
potential was strong enough, each Rb atom was localized in a single well, and
the ground state was an insulator. Here, the periodic potential is provided by
the existing lattice of positively charged Cu ions, and one electron is trapped
on each such ion.

So how do we get a superconductor? Generalizing the discussion of
Section 3, the naive answer is: force La2CuO4 to undergo a insulator-to-
superfluid quantum transition. However, unlike Section 3, we do not have
any available tools to tune the strength of the periodic potential experi-
enced by the electrons. Bednorz and Müller accomplished the equivalent by
chemical substitution: the compound La2−δSrδCuO4 has a concentration δ
of trivalent La ions replaced by divalent Sr ions, and this has the effect of
removing some electrons from each square lattice of Cu ions, and creating
‘holes’ in the perfect insulating configuration of La2CuO4. With the holes
present, it is now possible to easily transfer electrons from site to site, and
across the crystal, without having to pay the expensive price in energy as-
sociated with putting two electrons on the same site. This should be clear
from the ‘egg-carton’ model of the insulator in Fig 5: the reader can verify
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that if a carton is not full of eggs, we can move any egg across the carton
only by ‘hops’ of eggs between neighboring sites, and without ever putting
two eggs on the same site. With holes present, it becomes possible for elec-
trons to move across the crystal, and when the concentration of holes, δ,
is large enough, this material is a ‘high temperature’ superconductor. We
now know that La2−δSrδCuO4 undergoes an insulator-to-superfluid quantum
phase transition with increasing δ at the hole concentration δ = 0.055. In
some phenomenological aspects, this transition is similar to the superfluid-
insulator transition discussed in Section 3, but it should be clear from our
discussion here that the microscopic interpretation is quite different.

However there is a complication here which makes the physics much more
involved than that of a single insulator-superfluid quantum phase transition.
As we noted in Section 2, each electron has two possible spin states, with
angular momenta ±h̄/2, and these act like a qubit. It is essential to also
pay attention to the magnetic state of these spin-qubits in La2−δSrδCuO4.
We discussed in Section 2 how such coupled qubits could display a quantum
phase transition between magnetic and paramagnetic quantum ground states
in LiHoF4. The spin-qubits in La2−δSrδCuO4 also display a related magnetic
quantum phase transition with increasing δ; the details of the magnetic and
paramagnetic states here are, however, quite different from those on LiHoF4,
and we will describe them further below. So with increasing δ, a descrip-
tion of the quantum ground state of La2−δSrδCuO4 requires not one, but at
least two quantum phase transitions. One is the insulator-superfluid transi-
tion associated with the motion of the electron charge, while the second is
a magnetic transition associated with the electron spin. (Numerous other
competing orders have also been proposed for La2−δSrδCuO4 and related
compounds, and it is likely that the actual situation is even more compli-
cated). Furthermore, these transitions are not independent of each other,
and much of the theoretical difficulty resides in understanding the interplay
between the fluctuations of the different transitions.

For now, let us just focus on just the state of electron spin qubits in
the insulator La2CuO4, and discuss the analog of the qubit quantum phase
transition in Section 2. In this insulator, there is precisely one such qubit
on each Cu site. However, unlike the qubit on the Ho site in LiHoF4, there
is no preferred orientation of the electron spin, and the qubit of a single Cu
ion is free to rotate in all directions. We know from experiments that in the
ground state of La2CuO4, the ‘exchange’ couplings between the qubits are
such that they arrange themselves in an antiferromagnet, as shown in Fig 11.
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Unlike the parallel ferromagnetic arrangement of qubits in LiHoF4, now the
couplings between the Cu ions prefer that each qubit align itself anti-parallel
to its neighbor. The checkerboard arrangement in La2CuO4 is optimizes
this requirement, and each qubit has all its neighbors anti-parallel to it.
While this arrangement satisfactorily minimizes the potential energy of the
spins, the reader will not be surprised to learn that Heisenberg’s uncertainty
relation implies that all is not perfect: there is an energy cost in localizing
each qubit along a definite spin direction, and there are ever-present quantum
fluctuations about the quiescent state pictured in Fig 11. In La2CuO4 these
fluctuations are not strong enough to destroy the antiferromagnetic order in
Fig 11, and the resulting checkerboard arrangement of magnetic moments
can and has been observed by scattering magnetic neutrons off a La2CuO4

crystal.
These neutron scattering experiments can also follow the magnetic state

of the spin qubits with increasing δ. For large enough δ, when the ground
state is a superconductor, it is also known that there is no average magnetic
moment on any site. So there must be at least one quantum phase tran-
sition at some intermediate δ at which the antiferromagnetic arrangement
of magnetic moments in La2CuO4 is destroyed: this is the antiferromagnet-
paramagnet quantum transition. This transition is clearly coupled to the on-
set of superconductivity in some manner, and a simple description is therefore
not straightforward.

With the insulator-superfluid and antiferromagnet-paramagnet quantum
phase transitions in hand, and with each critical point being flanked by two
distinct types of quantum order, we can now envisage a phase diagram with at
least 4 phases. These are the antiferromagnetic insulator, the paramagnetic
insulator, the antiferromagnetic superfluid, and the paramagnetic superfluid
(see Fig 12). Of these, La2CuO4 is the antiferromagnetic insulator, and the
high temperature superconductor at large δ is the paramagnetic superfluid;
note that these states differ in both types of quantum order. The actual phase
diagram turns out to be even more complex, as there are strong theoretical
arguments implying that at least one additional order must exist, and we
will briefly review one of these below.

One strategy for navigating this complexity is to imagine that, like the
simpler system studied in Section 2, we did indeed have the freedom to
modify the couplings between the spin qubits in undoped La2CuO4, so that
we can tune the system across a quantum phase transition to a paramag-
net, while it remains an insulator. This gives us the luxury of studying the
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antiferromagnet-paramagnet quantum phase transition in a simpler context,
and decouples it from the insulator-superfluid transition. It is also reasonable
to expect that the insulating paramagnet is a better starting point for un-
derstanding the superconducting paramagnet, because these two states differ
only by a single type of order, and so can be separated by a single quantum
phase transition.

To study the insulating antiferromagnet-paramagnet quantum phase tran-
sition we need to modify the couplings between the qubits on the Cu sites,
while retaining the full symmetry of the square lattice—in this manner we
perturb the antiferromagnetic ground state in Fig 11. As this perturbation
is increased, the fluctuations of the qubits about this simple checkerboard
arrangement will increase, and the average magnetic moment on each site
will decrease. Eventually, we will reach a quantum critical point, beyond
which the magnetic moment on every site is precisely zero i.e. a paramag-
netic ground state. What is the nature of this paramagnet? A sketch of the
quantum state of this paramagnet, predicted by theory, is shown in Fig 13.
The fundamental object in Fig 13 is a singlet valence bond between qubits—
this valence bond has many similarities to the covalent bond which is the
basis of organic chemistry. As in Section 2, we represent the states of the
electron spin on site j, by |↑〉j and |↓〉j, and the valence bond between spins
on sites i and j is a state in which the spin qubits are entangled as below:

|V 〉ij =
1√
2

(

|↑〉i |↓〉j − |↓〉i |↑〉j
)

(15)

Note that in both states in the superposition in (15), the spins are anti-
parallel to each other—this minimizes the potential energy of their inter-
action. However, each qubit fluctuates equally between the up and down
states—this serves to appease the requirements of Heisenberg uncertainty
principle, and lowers the total energy of the pair of qubits. Another impor-
tant property of (15) is that it is invariant under rotations in spin space;
it is evident that each qubit has no definite magnetic moment along the z
direction, but we saw in Section 2 that such qubits could have a definite
moment along the x direction. That this is not the case here can be seen by
the identity

|V 〉ij =
1√
2

(

|→〉i |←〉j − |←〉i |→〉j
)

; (16)

the reader can verify that substituting (2) and (3) into (16) yields precisely
(15). So the singlet valence band has precisely the same structure in terms
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of the ±x oriented qubits as between the ±z oriented qubits–it is the unique
combination of two qubits which does not have any preferred orientation in
spin space. This is one of the reasons it is an optimum arrangement of a pair
of qubits. However, the disadvantage of a valence bond is that a particular
qubit can form a valence bond with only a single partner, and so has to make
choice between its neighbors. In the antiferromagnetic state in Fig 11, the
arrangement of any pair of spins is not optimal, but the state has the advan-
tage that each spin is anti-parallel to all four of its neighbors. The balance
of energies shifts in the state in Fig 13, and now the spins all form singlet
bonds in the rotationally invariant paramagnet. For the state illustrated in
the figure, the spins have chosen their partner in a regular manner, leading
to a crystalline order of the valence bonds. Detailed arguments for these, and
related orderings of the valence bonds, appear in the theoretical works, and
some of the physics is briefly discussed in the Side Panel. A significant prop-
erty of the resulting bond-ordered paramagnet is that while spin rotation
invariance has been restored, the symmetry of the square lattice has been
broken. This bond order is an example the promised third quantum order.
The interplay between the spin-rotation and square lattice symmetries in the
antiferromagnet-paramagnet quantum transition makes its theory far more
complicated than that for the ferromagnet-paramagnet transition described
in Section 2.

Tests of these theoretical ideas for the quantum transition between the
states in Fig 11 and 13 have been quite difficult to perform. Most computer
studies of models of such antiferromagnets suffer from the ‘sign’ problem i.e.

the interference between different quantum histories of the qubits makes it
very difficult to estimate the nature of the quantum state across the tran-
sition. In 2002, Anders Sandvik and collaborators succeeded in finding a
model for which the sign problem could be conquered. This model displayed
a quantum transition between a magnetically ordered state, as in Fig 11, and
a paramagnet with bond order, as in Fig 13.

To summarize, the physics of the spin-qubits residing on the Cu sites is a
competition between two very different types of insulating quantum states.
The first is the antiferromagnet in Fig 11 which is found in La2CuO4: there
is an average magnetic moment on each Cu site, and the ‘up’ and ‘down’
moments are arranged like the black and white squares on a chess board.
The second state is a paramagnet in which the spins are paired in valence
bonds described by the quantum state (15).

With this understanding in hand, we can now address the physics of the
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electron charge, and the insulator-superconductor quantum transition with
increasing δ in La2−δSrδCuO4. A picture of the insulating state was already
shown in Fig 11. We show an analogous picture of the superconductor in
Fig 14. Note first that there are Cu sites with no electrons: these are the
holes, and as we have discussed earlier, they are able hop rapidly across the
entire crystal without paying the price associated occupancy of two electrons
on the same Cu site. The motion of these holes clearly perturbs the regular
arrangement of magnetic moments at δ = 0 in Fig 11, and this enhances their
quantum fluctuations and reduces the average magnetic moment on every
site. Eventually, the magnetic moment vanishes, and we obtain a paramagnet
in which the electrons are all paired in singlet bonds, as has been shown in
Fig 14. Unlike the valence bonds in Fig 13, the valence bonds in Fig 14 are
mobile and can transfer charge across the system—this is illustrated in Fig 15
where the motion of the holes has rearranged the valence bonds and resulted
in the net transfer of electronic charge in direction opposite to the motion of
the holes. This suggests an alternative interpretation of the valence bonds:
they are the Cooper pairs of electrons, which can move freely, as a pair,
across the system with holes present. Their facile motion suggests that these
composite bosons will eventually undergo Bose-Einstein condensation, and
the resulting state will be a superconductor. We have therefore presented
here a simple picture of the crossover from the insulator to a superconductor
with increasing δ.

The essence of our description of the insulator-superconductor transition
was the ‘dual life’ of a valence bond pair. In the insulator, these valence
bonds usually prefer to crystallize in regular bond-ordered states, as shown
in Fig 13, and in the results of Sandvik and collaborators. The valence bonds
do resonate among themselves, and thus change their orientation, but this
resonance does not lead to motion of any charge. In the superconductor,
the valence bonds become mobile, and rather longer-ranged, and transmute
into the Cooper pairs of the theory of Bardeen, Cooper, and Schrieffer. The
Bose-Einstein condensation of these pairs then leads to high temperature
superconductivity.

While this picture is appealing, does it have any practical experimental
consequences? Can the dual interpretation of a valence bond be detected ex-
perimentally? One theoretical proposal was made in 2001 by Eugene Demler,
Kwon Park, Ying Zhang and the author, reasoning as follows. Imagine an
experiment in which we are locally able to impede the motion of the Cooper
pairs. In the vicinity of such a region, the valence bonds will become less
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mobile, and so should behave more like the valence bonds of the paramag-
netic insulator. As we have seen in Fig 13, such ‘stationary’ valence bonds
are likely to crystallize in a regular bond ordered arrangement. An experi-
mental probe which can investigate the electronic states at the scale of the
Cu lattice spacing (which is a few angstroms; an angstrom is 10−10 meters)
should be able to observe a regular modulation associated with the bond
order. We also proposed a specific experimental mechanism for impeding the
motion of the Cooper pairs: apply a strong magnetic field transverse to the
sample—this induces vortices around which there is a supercurrent of Cooper
pairs, but the cores of the vortices are regions in which the superconductivity
is suppressed. These cores should nucleate a halo of bond order. Matthias
Vojta had studied the relative energies of different types of bond order in
the superconductor, and found that in addition to the modulation with a
period of 2 lattice spacings shown in Fig 13, states with a period of 4 lattice
spacings were stable over an especially large range of doping.

On the experimental side, Jennifer Hoffman, Seamus Davis and collabo-
rators carried out experiments at the University of California in Berkeley ex-
amining the electronic structure in an around the vortex cores on the surface
of the high temperature superconductor Bi2Sr2CaCu2O8+δ (closely related
experiments have also been carried out by Craig Howald, Aharon Kapitul-
nik and collaborators at Stanford University). In a remarkable experimental
tour-de-force, they were able to obtain sub-angstrom scale resolution of elec-
tronic states at each energy by moving a ‘scanning tunnelling microscope’
across a clean surface of Bi2Sr2CaCu2O8+δ. A picture of the observed struc-
ture of the electronic states around a single vortex is shown in Fig 16. Notice
the clear periodic modulation, with a period which is approximately four
lattice spacings. Is this an experimental signal of the bond order we have
discussed above? While this is certainly a reasonable possibility, the issue
has not yet been conclusively settled. There continues to be much debate
in the community on the proper interpretation of these experiments, and on
the relative role of single quasiparticle and valence bond excitations. What-
ever the final answer turns out to be, it is exciting to be involved in a de-
bate which involves fundamental theoretical issues of the physics of quantum
phase transitions coupled with remarkable experiments at the cutting edge
of technology.
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5 Conclusions

This chapter has given a simple overview of our efforts to understand ‘quan-

tum matter’. Quantum mechanics was originally invented as a theory of
small numbers of electrons interacting with each other, with many features
that jarred our classical intuition. Here, we have hopefully convinced the
reader that many of these counter-intuitive features of quantum mechanics
are also apparent in the bulk properties of macroscopic matter. We have
discussed macroscopic phases whose characterizations are deep consquences
of the quantum mechanical principle of superposition, and which can un-
dergo phase transitions driven entirely by Heisenberg’s uncertainty principle.
Theoretical work on the classification of distinct phases of quantum matter
continues today: many examples which make intricate use of quantum su-
perpositions to produce new states of matter have been found. Some of this
work is coupled with experimental efforts on new materials, and this bodes
well for much exciting new physics in the century ahead.

Further reading

Technical information and original references to the literature can be found in
the article by S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Reviews
of Modern Physics 69, 315-333 (1997) and in the book Quantum Phase Tran-

sitions, S. Sachdev, Cambridge University Press, Cambridge (1999). A more
detailed discussion of the application of the theory of quantum phase tran-
sition to the cuprate superconductors appears in Order and quantum phase

transitions in the cuprate superconductors, S. Sachdev, Reviews of Modern
Physics, July 2003, http://arxiv.org/abs/cond-mat/0211005. A related per-
spective on ‘fluctuating order’ near quantum critical points is given in How

to detect fluctuating order in the high-temperature superconductors, by S. A.
Kivelson, E. Fradkin, V. Oganesyan, I. P. Bindloss, J. M. Tranquada, A.
Kapitulnik, and C. Howald, http://arxiv.org/abs/cond-mat/0210683. For a
review of quantum phase transitions in metals see Quantum phase transitions

by Thomas Vojta, http://arxiv.org/abs/cond-mat/0010285.
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Side panel: Resonance between valence bonds

The first example of ‘resonance’ in chemistry appeared in the planar hexago-
nal structures proposed in 1872 by Kekulé for the benzene molecule C6H6—
note that this predates the discovery of quantum mechanics by many years.
The structures are represented by the bonding diagrams in Fig 17. Of partic-
ular interest is (what we now call) the π-orbital bond between the neighboring
C atoms. This bond involves two electrons and its quantum mechanical state
is similar to the valence bond in (15) or (16) (the main difference is that the
electronic charges are not so well localized on the two C atoms, and there
are also contributions from states with both electrons on the same C atom).
There are two possible arrangements of this bond, as shown in Fig 17. With
the knowledge of quantum mechanics, and the work of Linus Pauling on
the physics of the chemical bond, we know that the bonds tunnel back-and-
forth between these two configuration, and this enhances the stability of the
benzene structure. Moreover, the final structure of benzene has a perfect
hexagonal symmetry, which is not present in either of the two constituent
structures.

In 1974, Patrick Fazekas and Philip Anderson applied the theory of reso-
nance between valence bonds to quantum antiferromagnets; specific applica-
tions to the high temperature superconductors were proposed in 1987 by G.
Baskaran and Anderson and also by Steven Kivelson, Daniel Rokhsar, and
James Sethna. The idea was that singlet valence bonds form between the spin
qubits on neighboring Cu ions, and these resonate between different possible
pairings of nearest-neighbor qubits, as shown in Fig 18. It was argued by
Nicholas Read and the author that in many cases the consequences of these
resonances on the square lattice are very different from those in benzene.
Whereas in benzene, the final ground state has full hexagonal symmetry,
here the resonances actually lead to bond order with structures like those in
Fig 13, which break the symmetry of the square lattice. The reason for this
is illustrated in Fig 18: regular bond-ordered configurations have more possi-
bilities of plaquettes for resonance, and this lowers the energy of states with
higher symmetry. Of course, each bond-ordered state has partners related
to it by the symmetry of the square lattice (e.g. the state in Fig 13 has 3
partners obtained by rotating it by multiples of 90◦ about any lattice point),
but the tunnelling amplitude between these macroscopically distinct states
is completely negligible.
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Figure 1: Locations of the Ho ions in the insulator LiHoF4: the Li and F ions
are not shown, and are located in the spaces in between. Each Ho ion has a
magnetic moment which can be oriented ‘up’ (in the +z direction) or ‘down’.
This acts a qubit. The magnetic fields degenerated by the qubits couple them
together to create an interacting qubit system. A quantum phase transition
is induced in this system by applying a transverse magnetic field (oriented
in the +x direction.
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Figure 2: Dependence of the average magnetic moment along the z axis on
the strength of the applied transverse magnetic field at T = 0. There is
a quantum phase transition at g = gc. For g < gc, the ground state is a
ferromagnet, with a wavefunction qualitatively similar to |⇑〉 in Eq. (6) or
to |⇓〉 in Eq. (7): small imperfections choose between the nearly equivalent
possibilities, and thus break the up-down symmetry of the crystal. For g > gc,
the ground state is a paramagnet, with a state qualitatively similar to |⇒〉
in Eq. (8).
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Figure 3: Phase diagram for a one-dimensional chain of coupled qubits as a
function of the parameter g and the absolute temperature, T . The ground
state at T = 0 is as described in Fig 2. The flipped qubit quasiparticles
have a state similar to (10), while the domain wall quasiparticles have a
state similar to (11). No quasiparticle picture works in the quantum-critical
region, but we have relaxational dynamics characterized by (12).
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Figure 4: Velocity distribution function of Rb atoms measured after the
atoms were released from a trap at very low temperatures. The left plot is
at 400×10−9 ◦K, the middle at 200×10−9 ◦K and the right plot at 50×10−9

◦K. The large peak near zero velocity at the lower temperatures is a tell-tale
signature of a Bose-Einstein condensate. (Figure from M. H. Anderson, J.
R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269,
198 (1995) - need permission.
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Figure 5: Two-dimensional section of Rb atoms moving in a periodic poten-
tial created by standing waves of laser light. The Rb atoms are like eggs
which prefer to reside only at specific sites of an ‘egg-carton’. The superfluid
is a superposition of states with strong fluctuations in the number of atoms
in any given minimum of the periodic potential, as is expressed in (13). The
insulator has a fixed number of atoms in each minima, as expressed in (14).
(From H.T.C. Stoof, Nature 415, 25 (2002), permission needed).
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Figure 6: Velocity distribution function of Rb atoms released from a trap
in the presence of a weak periodic potential. The large central peak is the
signal of the Bose-Einstein condensate. The satellite peaks result from the
diffraction of this condensate off the periodic potential. This signal repre-
sents observation of the state |BEC〉 in (13). Figure courtesy I. Bloch from
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature
415, 39 (2002).
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Figure 7: As in Fig. 6 but with a stronger periodic potential. Now there are
no sharp peaks, indicating the absence of a Bose-Einstein condensate, and
the formation of an insulator in the state in |I〉 in (14). Figure courtesy I.
Bloch from M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,
Nature 415, 39 (2002).
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Figure 8: Phase diagram of a gas of trapped bosonic atoms in the presence of
a periodic potential—this diagram is analogous to that for the qubit chain in
Fig 3. The Bose-Einstein condensate is present below the critical temperature
Tc, which is the only true phase transition at T > 0.
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Figure 9: History of materials with high critical temperatures (Tc) below
which they are superconducting, as of early 2003. The cuprate supercon-
ductors were discovered on Jan 27, 1986, and led to a dramatic increase in
Tc. Since then, apparently unrelated compounds (MgB2) with a moderately
high Tc have also been discovered. Also indicated are temperatures at which
N2 and H2 liquefy—these gases are most commonly used to cool materials.
The search for new materials with higher critical temperatures continues,
and significant future increases may well appear. Figure courtesy H. R. Ott.
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Figure 10: Crystal structure of the insulator La2CuO4. Red sphere are Cu,
orange are O, and blue are La. The Cu ions are on the vertices of square
lattices that extend in the horizontal plane. (downloaded from the web–
should be redrawn)
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Figure 11: La2CuO4, an insulating antiferromagnet. The spin qubits reside
on the Cu sites (red circles), and their average magnetic moments arrange
themselves in the checkerboard arrangement shown above. Unlike the qubits
in LiHoF4 in Fig 1, the spins above are free to rotate in any direction, pro-
vided the spins on neighboring Cu sites retain an antiparallel orientation.
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Figure 12: A minimal schematic theoretical phase diagram for the cuprate
superconductors. The axes represent two suitable parameters which can be
varied so that the lowest energy state traverses across the quantum phase
transitions shown. The insulating magnet, La2CuO4, is well understood. A
theory of the high temperature superconductor can be developed by under-
standing the quantum phase transitions, and then moving along the orange
arrows.
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Figure 13: A paramagnetic insulator obtained by perturbing the antiferro-
magnet in Fig 11. The couplings between the qubits are modified so that
quantum fluctuations of the average magnetic moment on each site are en-
hanced, and the insulator undergoes a quantum phase transition to a state
with zero magnetic moment on every site. Each ellipse represents a singlet
valence bond as in (15) or (16). The state above has bond order because
the valence bonds are more likely to appear on the links with ellipses shown
above, than on the other links.
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Figure 14: A snapshot of the superconducting state in La2−δSrδCuO4 for large
δ. The open circles represent the holes, or Cu sites with no electrons. The
spins on the remaining sites are paired with each other in the valence bonds
of Fig 13. We argue in the text that the valence bonds in the superconductor
posses vestiges of the bond order of Fig 13, and this bond order is enhanced
and experimentally detectable near vortices in the superflow of Cooper pairs.
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Figure 15: As in Fig 14, but the two holes on the lower left of Fig 14 have
moved to the upper right. Alternatively, we can view the motion of the
holes as the counterflow of the charge of the singlet valence bonds: this
interpretation allows us to view a valence bond as a bosonic Cooper pair,
which can undergo Bose-Einstein condensation.

41



Figure 16: Measurement of Hoffman, Davis and collaborators of the local
density of states on the surface of the high temperature superconductor
Bi2Sr2CaCu2O8+δ by a scanning tunneling microscope. A magnetic field has
been applied perpendicular to the plane of the paper, and the dark regions
are centered on the vortices in the superflow of the Cooper pairs; the diam-
eter of each dark region is about 100 angstroms. There is a checkerboard
modulation in each dark region with a period of approximately 4 Cu lattice
spacings, and this is possibly a vestige of bond order, as discussed in the text.
(Figure from J.E. Hoffman et al. Science 295, 466 (2002) - need permission).
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Figure 17: The two structures of benzene proposed by Kekulé. The second
of the double lines represent valence bonds between π orbitals which are
similar to the valence bonds in (13). The stability of benzene is enhanced by
a quantum mechanical resonance between these two states.
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Figure 18: Resonance of valence bonds around the plaquettes of a square
lattice. Shown are resonances for two different valence bond arrangements
are the plaquettes marked with a star. Note that there are many more
possibilities of resonance in (a) than in (b), and this effect selects ground
states with bond order.
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