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ABSTRACT 
We give a general introduction to quantum phase transitions in strongly 

correlated electron systems. These transitions, which occur at zero temperature 
when a non-thermal parameter g such as the pressure, chemical concentration or 
magnetic field is tuned to a critical value, are characterized by a dynamic 
exponent 2 related to the energy and length scales A and E .  We show how one 
can derive an effective bosonic model associated with fluctuations in the ordering 
fields. Simple arguments based on an expansion to first order in the effective 
interaction u allow us to define an upper critical dimension D, = 4 (where 
D = d f z  and d is the spatial dimension) below which the mean-field 
description is no longer valid. We present an alternative tricritical crossover 
approach valid at D < D, in the large-N limit. We emphasize the role of 
perturbative renormalization group approaches and self-consistent renormalized 
spin fluctuation theories in understanding the quantum4assical crossover in the 
vicinity of the quantum critical point with generalization to the Kondo effect in 
heavy-fermion systems. Finally, we quote some recent inelastic neutron scattering 
experiments performed on heavy fermions which lead to an unusual scaling law in 
w / T  for the dynamical spin susceptibility, revealing critical local modes beyond 
the itinerant magnetism picture. We mention new attempts to describe this local 
quantum critical point. 

4 1 .  INTRODUCTION 
Recent years have seen a renewal of interest in the study of quantum phase 

fransitions motivated by experiments in cuprate superconductors, heavy-fermion 
compounds, organic conductors and related systems (Coleman et 01. 1996, 
Sachdev 1999). By definition a quantum phase transition is a phase transition 
which occurs at  zero temperature when a non-thermal parameter g such as the 
pressure, chemical concentration or magnetic field is tuned to a critical value. The 
transition is characterized by quantum fluctuations even in the ground state owing to 
the Heisenberg uncertainty principle. It is usually accompanied by a drastic change 
in the behaviour of the correlation functions. 

Here, we shall focus on the quantum phase transitions of second order. The 
associated fluctuations are characterized by two different quantities that are respec- 
t.ively the energy scale A and the correlation length t. In the case when the energy 
spectrum has a gap, A measures the difference between the energies of the ground 
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state and the lowest excited level. If the spectrum is gapless, one can still define A as a 
pseudogap, splitting the lower-energy and the higher-energy parts in the density 
fluctuation spectrum. Generally speaking, A vanishes at the transition which occurs 
at a critical value g, of a dimensionless parameter g: 

where ZY is a critical exponent which takes a universal value independent of the 
microscopic details of the Hamiltonian describing the system. We shall denote by 
A +  and A -  the values of the gap above and below g, respectively. Apart from an 
eventual constant of proportionality, both quantities are characterized by the same 
critical exponent zv. 

The other scale is provided by the correlation length <. It is defined as the length 
scale characterizing the exponential decay of the equal-time correlation function 
(M(r, t )M(O,  t ) )  in the disordered phase at  T = 0. The length scale E diverges at 
the quantum critical point defined at T = 0 and g = g, according to 

Putting together the disappearance of A and the divergence of < at the transition, one 
can write 

where z is the dynamic exponent. Those critical exponents are all defined at T = 0 
and g i gc. However, they are also relevant at finite temperatures and g # g,. 

Figure 1 displays the schematic phase diagram ( T ,  g) that can be derived. The 
solid curve is the line of phase transitions separating the long-range-ordered and the 

A c( E-", (3) 

T 

6 

Figure I .  Schematic phase diagram as a function of temperature T and dimensionless coup- 
ling g. The solid curve T, is the line of phase transitions separating the long-range 
ordered and disordered phases. The upper dotted line is the Ginzburg temperature TG. 
An effective classical theory applies in the region located between the two dotted 
curves surrounding T,. Regime I is the quantum disordered regime characterized by 
quantum fluctuations. Regime 111 is the thermally disordered regime in which all the 
physical quantities are driven by temperature only. Regime I1 is the intermediate 
quantum critical regime in which both quantum and classical fluctuations are relevant. 
The arrows below the graph indicate how g can be tuned by a chemical concentration 
change x or pressure P .  
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disordered phases. The dotted curve corresponds to the Ginzburg temperature TG 
below which classical fluctuations are important. In the classical critical region, an 
effective classical theory applies. Regime I is the quantum disordered regime driven 
by quantum fluctuations as resulting from the Heisenberg uncertainty principle. In 
contrast, only thermal fluctuations are relevant in regime 111 above TG. Finally, 
regime I1 is the quantum critical regime characterized by a rich interplay of effects 
driven by both quantum and thermal fluctuations. 

6 2. EXPERIMENTAL EXAMPLES 

We shall mention some recent experimental studies of second-order quantum 
phase transitions. 

2.1. LiHoF4 
In the insulator LiHoF,, the Ho ions fluctuate between two spin states depending 

on whether the spins are parallel or antiparallel to a particular crystalline axis. At 
zero temperature, applying an external magnetic field perpendicular to the magnetic 
axis makes the system go from a ferromagnetic ground state to a quantum 
paramagnetic state in which long-range ferromagnetic order is destroyed owing to 
quantum tunnelling between the two spin states (Bitko et a/. 1996). The quantum 
critical point is reached at a critical value Hc of the magnetic field. Raising the 
temperature also destroys the long-range magnetic order driving the system to a 
high-temperature magnetically disordered state. Note that, in the latter state, the 
thermal paramagnet is fundamentally different in nature from the quantum 
paramagnet formed at zero temperature. 

2.2. Heavy-fermion compounds 
One of the most striking properties of heavy-fermion compounds discovered in 

the last few years is the existence of a quantum phase transition driven by change in 
chemical composition, pressure or magnetic field. For example, CeCu6-,Au, (von 
Lohneysen et al. 1994, von Lohneysen 1996) and Celp,La,Ru2Si2 (Kambe et al. 
1996, Raymond et al. 1997) present a transition from a magnetically disordered 
phase to a long-range antiferromagnetic order at  .xC = 0.1 and x, = 0.08 respectively. 
Other systems such as CeIn3, CePd2Si2 (Mathur et af .  1998), CeNi2Ge2 (Steglich et 
al. 1996) and Ulp,Y,Pd3 (Seaman et al. 1991) exhibit the same behaviour. Once a 
long-range magnetic order is set up, the effect of a pressure or a magnetic field is to 
drive the system back to a magnetically disordered phase. Remarkably, while far 
from the quantum critical point the magnetically disordered phase is a Fermi liquid 
with large effective masses associated with the formation of heavy quasiparticles, 
there are some indications that the thermal properties of the system in the disordered 
phase close to the quantum critical point differ from that of a Fermi liquid (Coleman 
e/  al. 1996, Coleman 1999). Typically in CeCu5 yAuo (von Lohneysen rt 01. 1994, 
von Lohneysen 1996), the specific heat C depends on T as C I T  c( - In ( T/To), the 
magnetic susceptibility as x 0: 1 - aT’”, and the T-dependent part of the resistivity 
as Ap cc T instead of C I T  c( x cc constant and Ap cx T2 in the Fermi-liquid state. 
The origin of this non-Fernii-liquid behaviour is presently a problem of considerable 
debate. 

An important element in the knowledge of the quantum critical point has been 
recently provided by inelastic neutron scattering (INS) experiments performed on a 
CeCus yAuo , single crystal (Schroder e/ al. 1998, 2000). The dynamical spin suscept- 
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ibility X ” ( q ,  w )  near the magnetic instability wave-vector Q has been found to obey 
an anomalous w / T  scaling law as a function of temperature: 

with Q of the order of 0.75. Moreover, these w and T dependences occur over the 
entire Brillouin zone and are revealed in the bulk susceptibility too. This strongly 
suggests that the spin dynamics are critical not only on large length scales but also on 
atomic length scales, contrary to what happens in the traditional itinerant magnetism 
picture. We shall return to this point at  the end of the paper. 

Let us focus now on the general problem of quantum phase transitions between a 
Fermi liquid and a magnetically ordered phase. This is still a largely controversial 
topic in which many aspects are not fully understood. Details of the topology of the 
Fermi surface often means introducing important nesting effects and Kohn anoma- 
lies in the spin susceptibility when the magnetic wave-vector spans the Fermi surface. 
For simplicity, we shall not consider those nesting effects. 

The rest of the paper is organized as follows. In $ 3 ,  we show how one can 
integrate out the fermion fields to derive an effective bosonic model associated 
with the fluctuations in the ordering fields. The resulting effective action exhibits a 
dynamic exponent z equal to 3 in the vicinity of a ferromagnetic critical point and 2 
for the antiferromagnetic case. In 9 4, we give simple arguments based on an expan- 
sion to first order in the effective interaction u to determine an upper critical dimen- 
sion D, = 4 (where D = d + z and d is the spatial dimension) below which first-order 
fluctuations diverge and the mean-field description is no longer valid. An alternative 
tricritical crossover approach valid at D < D, in the large-N limit is described in $5. 
$ 6 gives a short presentation of perturbative renormalization group (RG) 
approaches and their links to self-consistent renormalized spin fluctuation 
(SCRSF) theories to understand the quantum-classical crossover in the vicinity of 
the quantum critical point. In $ 7  the approach is generalized to the Kondo lattice 
model which is believed to describe the heavy-fermion situation. Finally, we quote 
some recent INS experiments performed on heavy fermions leading to an unusual 
scaling law in w / T  for the dynamical spin susceptibility, which reveals critical local 
modes beyond the itinerant magnetism picture inherent to perturbative RG and 
SCRSF approaches. We mention new attempts to describe this local quantum 
critical point. 

5 3. DERIVATION OF AN EFFECTIVE BOSONIC THEORY 

We start from the Hubbard Hamiltonian which represents the archetypal model 
for correlated electron system. For a single non-degenerate band of electrons of spin 4, the Hamiltonian is 

where the last term is the Coulomb repulsion term expressed in the Wannier repre- 
sentation, E~ = -[Cs t ,  exp (ik.S)]/z, tq are the overlap integrals between neigh- 
bouring sites and z is the coordination number. The Hamiltonian is characterized 
by competition between the kinetic term and the Coulomb interaction U ,  which 
generally induces a quantum phase transition from a Fermi liquid to a magnetically 
ordered state at a critical value of U / t .  
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By integrating out the fermion fields, we shall first show how from the Hubbard 
Hamiltonian we can derive an effective bosonic theory in terms of the fluctuations of 
the ordering fields Q j  associated with the magnetizations. Following Hertz and 
Klenin (1974), we divide the proof into the following steps. The calculations are 
performed in the magnetically disordered phase. 

First let us write the Coulomb term as a function of charge and spin density 
variables: 

where (nIr - n j L ) / 2  = @; is the z magnetization. Note that one can extend equation 
(6) to all three directions x, y and z in order to preserve the spin rotation invariance. 

Let us consider the functional integral of the partition function 

Z=/Dc ,exp  [ - / ~ C ( T ) ~ T ] ,  
(7) 

and perform a Hubbard-Stratonovich transformation on the Coulomb interaction 
term. Using the identity 

[d@j(i)  exp (- / : [q(~)  - U ’ ” c ; u , ~ ~ , n ? e j ~ , ] [ @ ~ ( ~ )  - U’/2c~u3~&,4ciu4] d.r = 1, 

in which the summation on the spin indices oi are implicit and T’ represent the Pauli 
matrices, we find that 

(8) 
) 

2 = Lo/[Dcjud@:(T) exp ( - [ [ @ ; ( T ) @ ~ ( T )  - U ’ / ’ @ ~ ( ~ ) e ~ ~ ~ ~ , ~ ~ ; ~ ] d r ) .  

Integrating out the grassmannian variables ciu, we obtain 

(9) 

Z = Zo d@,(T) exp [-&+f(@;)], (10) S 
S e f f ( a i )  = s” ~ ( @ : ( T ) @ ; ( T ) ~ ( T  - 7’) - Tr {In [l - U ” 2 @ i ( ~ ) G i ( ~  - T ’ ) ] } )  dTdT’, 

0 0  

where Go is the bare Green function of electrons at U = 0. 
Expanding the Tr {In [.I} term up to the second and fourth order in @, we have 

Seff (@,) = PV c [1 - Ux,(q ,  i%)I@(a i%)@(-q? -i%) 
q.lW,, 

+ UPV4 c @(ql, iwl)@(q2, iw*)@(q3, i~3)  
qr >’W, 

x @(-ql  - q2 - ~3~ - i q  - i q  - i q ) ,  ( 1  1) 

where x, (q l  iq,) is the bare dynamical susceptibility and u an effective interaction 
assumed to be local. 
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Close to a ferromagnetic phase transition, we can use the Lindhard expansion of 
x, (q, w) around q = w = 0: 

where kF  is the Fermi wave-vector, LI and b are constants and rq = qvF is the 
relaxation rate which vanishes in the q + 0 limit. Note that this disappearance 
is imposed by some symmetry arguments because the fluctuations of the order 
parameter are conserved in the ferromagnetic case. Hence one can obtain the effec- 
tive bosonic action in the ferromagnetic case: 

where 15 = 1 - Ux,(y, iw,,) called the Stoner factor measures the distance to the 
magnetic instability. 

The result can be generalized to the case of an antiferromagnetic instability. In 
this case, if we note q the deviation from the antiferromagnetic wave-vector 
0 = (x, n, TC), the expansion expressed in equation (12) is still valid around 0. 
However, since the fluctuations are not conserved in the antiferromagnetic case. 
the relaxation rate rq is now q independent. The first term of equation (13) is 
modified in the following way: 

The justification of the expansion of the Tr (ln[.]} term in equation (10) up to the 
second and fourth order in @ lies in the fact that the @, representing the fluctuations 
of the magnetization are expected to be small in the magnetically disordered phase 
close to the quantum critical point. However, the expansion would not stand within 
the long-range ordered state where the determination of the finite magnetization M o  
which @ can be expanded about (@ = Mo + 6G) requires minimization of the full 
expression of the free energy including all orders and not stopping to the fourth 
order. This is precisely what the equivalent of the gap equation for the magnetization 
does. 

To end this section, we mention that recently, this procedure of integrating out 
the fermionic degrees of freedom has been questioned (Kirkpatrick and Belitz 1996, 
Vojta et al. 1997). These authors showed that keeping electronic correlations gives 
rise to an effective long-range interaction among the order parameter fluctuations. 
They emphasized that the presence of the resulting wave-vector-dependent non- 
analyticities may introduce qualitative changes in the description of the phase 
transition. 
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9 4. PERTURBATION THEORY I N  u: EXISTENCE OF AN UPPER CRITICAL DIMENSION 

In the effective bosonic theory presented in the previous section, q and w do not 
appear at the same order. They may do so in some different models. For convenience 
in this section, we shall only consider the case when w appears at the second order 
too and use the relativistic notation Q2 = q2 + w2. We shall show the upper critical 
dimension to be equal to 4 for D = d + 1 as a result of diverging critical fluctuations 
when D < 4. The result will be generalized later when a dynamic exponent z instead 
of 1 makes D change to d + z keeping the same value of 4 for the upper critical 
dimension. In realistic notation, the effective action can be written 

M@J = PVC (a+  Q~)@(Q)@(-Q)  
q,14 

+ uPV4 C @ ( Q ~ ) @ ( Q ~ ) @ ( Q ~ ) @ ( - Q I  - Q2 - Q3) .  (15) 
q , . w  

At zero temperature and to zeroth order in u, the spin susceptibility y(Q) related 
to the correlation function in @J is given by 

[x(O'(Q)lP' = Q2 + 6. (16) 
The uniform static susceptibility ~ ( ' ) (0 )  diverges at 6:') = 0. 6 plays the role of 

To first order in zc, the result is changed in the following way: 
a tuning parameter and the quantum phase transition takes place at 6:') = 0. 

dDQ 1 
2 ( 2 ~ ) ~  Q 2 + 6 '  

[x(Q)]-' = Q2 + S + E 1 - - 
where D = d + 1 and d is the spatial dimension. The critical value of 6 is given by 

Denoting s = S - 6, which measures the deviation of the system from the quan- 
tum critical point, 

dDQ 1 1 [x(Q)]-' = Q2 + s + 1 - (- - -) 
2 ( 2 7 ~ ) ~  Q 2 + 6  Q2 ' 

For D > 4, the integrand diverges in the Q -+ cc limit and one needs to introduce 
a cut-off A for Q. One can then perform an expansion in s: 

[x(Q)lP' = Q2 + s (1  - clu/iDP4), (20) 
where c1 is a non-universal constant depending on the nature of the cut-off. ~ ( 0 )  
diverges in the s 4 0 limit. Mean-field critical properties still apply with small first- 
order corrections. 

For D < 4, the integrand now converges in the Q 4 co limit. Therefore, under 
the condition u << ADP4, one can put A -+ cc in the integral. To first order in u, 

Although u is small, the correction to the mean-field result is important. It even 
diverges in the s + 0 limit. One can then deduce an upper critical value for the 
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dimension D, = 4. At D < D, the mean-field results are not correct and a more 
sophisticated resummation of the perturbation expansion is required. For this pur- 
pose, we now present a large-N theory, introducing a tricritical crossover function 
which allows us to do that. 

$5. LARGE-N THEORY AND TRICRITICAL CROSSOVERS 
For D < 4, equation (21) established at first order in u suggests that [x(Q)]-' can 

be expressed as 

[x(Q)lP' = S $ D ( 4 ,  u), (22) 
where q = Q/s ' /~  and u = u/s(4PD'/2 and where we have introduced $ D [ q ,  u] as a 
universal function called the tricritical crossover function (Brezin and Zinn-Justin 
1985, Miranda et a/. 1997, Sachdev 1999). To first order in u, ' $ D ( q , v )  can be 
identified with 

If we assume that we can put A -+ 00 in all the higher-order terms in u, we can 
expect [x(Q)]-' to take the form expressed in equation (25). 

We now explain how, in the large-N limit, $ D ( q , u )  can be determined at any 
order in w. To do that, we first extend the previous descriptions to any value of the 
degeneracy of the Hubbard-Stratonovich parameter Qa, a! = 1,2, .  . . , N and let N 
go to infinity at the end of the calculation. Performing a Hubbard-Stratonovich 
transformation on the the Q4 term, one obtains in the large-N limit 

[x(Q)]-'= Q 2 + S + u 7 ( Q 2 ) ,  N + 2  

where ( Q 2 }  is self-consistently determined as in the self-consistent one-loop approx- 
imation according to 

1 
(27r)O Q 2 + S + ~ [ ( N + 2 ) / 6 ] ( @ 2 ) '  

Hence 6, is defined by 

N + 2  
6,+u-(@2}(6=& 6 = o  

and 

The critical crossover function $ D ( q ,  u) can be identified with 

where the function 7 r D ( w )  is the solution of the following nonlinear equation: 
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In the v + oc) limit, rD(v)  cc u - * / ( O - ~ )  and [ x ( O ) ] - ’  behaves as p/(’-2) at small s. 
The latter result on [ ~ ( o ) ] ~ ’  settles the difficulties arising from the diverging correc- 
tion term obtained to first order in u when D < D,. 

9 6. PERTURBATIVE RENORMALIZATION GROUP 
We refer the reader to a number of very good reviews existing in the literature on 

this sophisticated and powerful approach. We shall simply try to clarify the essential 
points involved in the method. Let us start again from the effective action derived 
in 94: 

where N is the number of sites and ,B is the inverse temperature. The general idea of 
the RG approach is to eliminate the short-range and short-time details of the fluc- 
tuations of the order parameter to derive a renormalized effective action in which the 
different parameters are rescaled. As shown in figure 2, the aim is then to eliminate 
the contribution to @(q, w )  from the outer shell with large values of q and w. We also 
define the complementary inner shell characterized by small values of q and w. 
Following Hertz’ (1976) paper, we show how to derive the scaling equations in 
two steps: first keep the inner-shell contribution only, and then add the remaining 
contribution from the outer shell. This provides us with two scaling equations for 6 
and u: the Stoner factor and the effective interaction respectively. Later we shall 
mention how Millis showed that it is crucial to consider an additional scaling equa- 
tion for temperature. 

OUTER-SHELL 
C” 

/ 
i 

INNER-SHELL 
C’ 

Figure 2. Illustration of the scaling procedure in q and w. The shaded region represents the 
outer-shell contribution associated with the sum C” over the y and w variables. The 
complementary inner-shell contribution corresponds to the sum C’ over q and w. 
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6.1. Eliminntiori of the outer-shell contribution within the inner shell contribution 
to Seff 

First, let us remove the outer-shell contribution to @(q, w). Since q and w appear 
in the quadratic term of Seff(@) at different orders, an anisotropic scaling procedure 
is required. The outer-shell contribution is defined by 

exp(-1) < q < 1, 
exp(-zl) < ui < 1, 

where f is infinitesimal and z will be proved later to coincide with the dynamic 
exponent. Retaining the contribution to Seff(@) from the inner shell only with 
small q and w values, one obtains the second order 

The change from S to 6’ is of the order of 1. 
The next step consists in rescaling the variables q and w in the following way: 

With this change in variables, we have 

(34) 
x I@(q’exp(-I),w’exp(-zl))j 2 . 

The fields @(q, w) are then rescaled so that the terms in q’2 and Iw‘[/q’ in S$/ (@)  
are unchanged. Because of the anisotropic scaling procedure introduced earlier, we 
are allowed to do that as soon as we choose z equal to the dynamic exponent 3 in the 
ferromagnetic case. Introducing the scaling 

@’(q’, w’) = @(q, w) exp ( 3 5 )  

one obtains 

We can see from this expression that the initial form of S$/(@) is recovered 
provided that exp (21) 6’ = 6. This gives us the first part of the scaling equation for 5: 

dS - dl = 2s. (37) 

In the same way, the effective action to the fourth order in u can be expressed as 



Quantum phase trunsitions 1479 

where the summation ni=1,2,3 on the subscript i is implicit. In order to keep the 
quartic term unchanged, one needs to transform u according to 

u’exp ( ~ l )  = u,  (39) 

with E = 4 - (d + z) enabling us to write the second scaling equation for 21: 

As for 6, we shall show in 56.2 that the latter scaling equation should include a 
second term on the right-hand side to be complete. Before concluding this section, let 
us point out that the scaling equation (40) provides an alternative way to define the 
upper critical dimension for D = d + z generalizing to any z the result previously 
obtained in 54. The spatial dimension is increased by the dynamic exponent z equal 
to 3 in the ferromagnetic case and to 2 in the antiferromagnetic case. Above the 
upper critical dimension found to be D, = 4, E has a negative sign and u is rescaled to 
zero. We are then left with the quadratic term of Seff only and the system reaches a 
Gaussian fixed point. In contrast, below D, = 4, E has a positive sign. The interac- 
tion is relevant and a non-Gaussian fixed point is reached. 

6.2. Incorporation of the remaining contribution ,from the outer shell to Seff 
The last step consists in considering the missing contribution with large values of 

q and w. If one denotes by x;,w and Elw the summation over the inner and the 
outer shells respectively, the corresponding correction to S$j (@) is 

The two terms on the right-hand side of the last equation correspond to the 
interaction of one particle in the outer shell with one particle in the outer shell 
and one particle in the inner shell respectively. Part of the action which is quadratic 
as xi,+ 1@(q, w)I2 can be resummed. The final expression for Seff including all con- 
tributions from the inner and the outer shell up to the fourth order is 

Expanding the In (.) term up to the fourth order in @(q, w )  enables us to obtain 
the additional part of the scaling equations. Putting this together with the truncated 
part of the scaling equations obtained in $6.1, one can write the complete scaling 
equations for S and u: 
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A w 

kBT> 0' 
classical regime 

kBT< 0' 
quantum regime 

Figure 3. Continuum of electron-hole pair excitations. The broken curve represents the 
damped collective mode exhibiting a change in the dispersion at a characteristic energy 
w* and wave-vector c< S1/*. The energy scale w* defines the crossover temperature 
TI separating the quantum from the classical regime. 

These two equations constitute the whole set of RG equations derived by Hertz. 
The crossover temperature T, separating the quantum and the classical regimes is 
then defined in the following way. At the end of the scaling procedure, the quantum 
regime is reached if only the v = 0 term contributes to  the Matsubara frequency sum 
in equations (43) and (44). Later, Millis (1993) corrected Hertz' paper and showed 
that the temperature should be rescaled as well as 5 and u, adding a third RG 
equation for temperature: 

-- - rT 
d T  
dl (45) 

Then the criterion used to differentiate the quantum from the classical regime is 
slightly different. It depends on how the temperature T* at the end of the scaling 
procedure compares with an energy cut-off w*. 

We shall now give a physical interpretation to TI in terms of the spectrum of spin 
excitations as schematized in figure 3. The shaded region corresponds to the 
Lindhard continuum of electron-hole pair excitations. It is defined by a finite 
value of the imaginary part of the bare dynamical susceptibility. The collective 
mode obtained from the poles of the inverse renormalized susceptibility is a damped 
magnon, as reported in figure 3. In the ferromagnetic case, the dispersion of the 
collective mode changes from a q to a q3 dependence at  a characteristic value of the 
wave-vector q* = 0: 6IJ2.  The energy scale w* corresponds to the energy of the 
collective mode on the scale of the magnetic length <, The regime is either quantum 
or classical depending on whether T* is found to be smaller or larger than LJ*. The 
two regimes are characterized by different temperature behaviours of the physical 
quantities such as the magnetic correlation length < and the coefficient y of 
the linear temperature dependence of the specific heat. Above a second cross- 
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I Ic= 1 

Figure 4. Phase diagram in the plane ( T ,  I) for dimension d equal to 3 and z = 2 for the 
Kondo lattice model (Lavagna and Pitpin 2000). The shaded region represents the 
long-range antiferromagnetic phase bordered by the "eel temperature TN.  The 
unshaded region marks the magnetically disordered regimes I, I1 and I11 associated 
with different behaviors of the system. Regime I is the quantum regime in which the 
energy of the relevant mode on the scale of E is much greater than kB T .  Regimes I1 and 
111 are both classical regimes in which the thermal effects are important since the 
fluctuations on the scale of [ have energy much smaller than k B T .  In regime 11, < is 
still controlled by 1 - I but the staggered spin susceptibility is sensitive to the thermal 
fluctuations. In regime 111, both < and x;! are controlled by the temperature. 

over temperature T I [ ,  all the relevant modes contributing to equations (43) and (44) 
have energies much less that kBT and the physical quantities are driven 
by the temperature only. The results obtained by Millis are similar to those 
reported in figure 4 and depend on only the spatial dimension d and the dynamic 
exponent z .  

Note that an alternative approach to the magnetic phase transitions in the 
Hubbard model has been developed by Moriya and Kawabata (1973) and Moriya 
and Takimoto (1995) based on SCRSF theory. It leads to results very similar to 
those obtained by the perturbative RG method. Comparisons between the two 
approaches can be found in the paper by Millis (1  993). 

9 7. HEAVY FERMIONS AND THE KONDO LATTICE MODEL 
The model that is believed to describe the physics of heavy fermions is the Kondo 

lattice model where impurity spins distributed on the sites of a periodic lattice 
interact with the spin of local conduction electrons via a Kondo coupling JK. The 
main features of the model result from the competition between two energy scales 
(Doniach 1977): the Kondo temperature T K  corresponding to the binding energy at 
zero temperature of the singlet formed by the impurity spin screened by the spin of 
the conduction electrons; the Ruderman-Kittel-Kasuya-Yosida (RKKY) inter- 
actions between neighbouring spins mediated by the conduction electrons. The latter 
favours the formation of a long-range magnetic order while the former blocks it by 
Kondo screening. The consequence is the existence of a quantum critical point at a 
critical value of J K  below which a long-range magnetic order occurs. In the case 
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when the total number of conduction electrons is less than one per site, all phases are 
in a metallic state. 

The large-iV expansions (Auerbach and Levin 1986, Millis and Lee 1987) which 
have been carried out for these models (where N represents the degeneracy simulta- 
neously of the conduction electrons and of the spin channels) are known to give a 
good description of the Kondo effect but fail to account for the spin fluctuations 
since the RKKY interactions only appear at the order 1/N2. With the aim of 
describing the critical phenomena around the quantum critical point of the heavy- 
fermion systems, it has been recently proposed (Pepin and Lavagna 1999b, Lavagna 
and Pepin 2000) a self-consistent one-loop approximation for the S = f Kondo 
lattice model ( N  = 2) that enlarges the standard 1/N expansion theories on the 
spin fluctuation effects in complete analogy with the SCRSF theory developed for 
the Hubbard model. It results in a quantum-classical crossover at a finite tempera- 
ture depending on whether the temperature is lower or higher than the characteristic 
energy scale of the damped collective mode existing in the vicinity of the magnetic 
instability. We refer to paper by Lavagna and Pepin (2000) for a discussion of the 
related phase diagram at d = 2 and d = 3 with the predictions of a series of cross- 
overs in the vicinity of the quantum critical point as reported in figure 4. 

5 8. CONCLUSION 
To conclude, we state that the perturbative RG approach and the related SCRSF 

theory, by eliminating the short-range details of the fluctuations of the order para- 
meter, assume that the low-energy excitations are spatially extended and in essence 
do not take into account the critical local nature of the modes on the atomic length 
scale. As we mentioned at the end of 92, there exist strong indications now, based on 
INS experiments on heavy fermions, that the magnetic excitations are critically local 
around the quantum critical point. This feature seems to be a characteristic of most 
of the strongly correlated electron systems including high- T, superconductors. The 
existence of critical local modes is related to the formation of local moments in the 
ordered phase in contrast with the itinerant magnetism picture that is described by 
perturbative RG and SCRSF theories. Note that a scaling law in w / T  of the dyna- 
mica1 spin susceptibility has been obtained theoretically in the case of spin systems as 
for the random two-dimensional Heisenberg antiferromagnetic model (Sachdev and 
Ye 1992). There is an urgent need to develop theories to describe this type of local 
quantum critical point in itinerant systems. From this perspective, we shall mention 
two recent attempts to do this: on the one hand, calculations based on the dynamical 
mean-field theory (Si et al. 1999,2000), which have recently lead to the scaling law in 
w / T  for the dynamical spin susceptibility in agreement with experimental observa- 
tions; on the other hand supersymmetric approaches (Pepin and Lavagna 1997, 
1999a, Coleman et al. 2000a,b) based on a mixed fermionic-bosonic representation 
of the spin, which has the advantage of capturing both the quasiparticle and the local 
moment features via the fermionic and bosonic degrees of freedom respectively. 
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