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Quantum phase transitions in d-wave superconductors
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Motivated by the strong, low temperature damping of nodal quasiparticles observed in some cuprate
superconductors, we study quantum phase transitions in dx2−y2 superconductors with a spin-singlet,
zero momentum, fermion bilinear order parameter. We present a complete, group-theoretic classi-
fication of such transitions into 7 distinct cases (including cases with nematic order) and analyze
fluctuations by the renormalization group. We find that only 2, the transitions to dx2−y2 + is and
dx2−y2 + idxy pairing, possess stable fixed points with universal damping of nodal quasiparticles;
the latter leaves the gapped quasiparticles along (1, 0), (0, 1) essentially undamped.

Recent photoemission [1] and Thz conductivity [2]
measurements on Bi2Sr2CaCu2O8+δ, the cuprate super-
conductor, have indicated an anomalously short lifetime
for the fermionic quasiparticles near the gap nodes in the
d-wave superconductor. While many scattering mech-
anisms and scenarios have been proposed [3–6] for the
damping of quasiparticles along the (1, 0), (0, 1) direc-
tions above the superconducting critical temperature Tc

(near the “pseudo-gap”), the possibilities below Tc at
the nodal points are much more restricted, and allow us
to make sharp distinctions between competing theories.
Standard BCS theory predicts a scattering rate ∼ T 3

from short-range interactions, and this is far too small
to account for the observations. In this paper we shall
study a possible explanation [7] due to proximity to a
quantum phase transition to some other superconducting
state X (see Fig 1). We shall show how global symmetry
and field-theoretic considerations permit a classification
of all possibilities for the state X, and list those that may
account for the experimental observations.

The quasiparticles at the gap nodes are observed to
have a lifetime of order h̄/kBT , and there is relatively
little change [8] in this behavior as one goes below Tc.
The quasiparticles in the (1, 0), (0, 1) directions are broad
and ill-defined above Tc, but narrow dramatically below
Tc, forming long-lived states with an energy gap of 30-40
meV. A natural possibility, based on other experimental
probes [9], is that these effects are based on proximity to
a quantum critical point to magnetic ordering. However,
wavevector matching conditions appear to rule this out:
the magnetic fluctuations are strongest near Q = (π, π),
and while they can strongly scatter quasiparticles near
the (1, 0), (0, 1) directions above Tc, they do not connect
low energy quasiparticles near the nodes [8].

Rather than exploring the intricate details of the many
experiments, this paper will answer the following well-
posed theoretical question: classify and describe theories
in which a d-wave superconductor at [10] T ≪ Tc has,
with minimal fine-tuning, (a) a nodal quasiparticle life-
time ∼ h̄/kBT , and possibly (b) negligible scattering of
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FIG. 1. Phase diagram adapted from Ref [7]. Super-
conductivity is present for T < Tc. The long-range order
associated with the state X vanishes for T > TX , but fluctu-
ations of this order provide anomalous damping of the nodal
quasiparticles in the quantum-critical region.

the quasiparticles along (1, 0), (0, 1). We will find that
theories which satisfy (a) also have a large ω tail [5] in
the nodal quasiparticle spectral function.

Strong scattering of the gapless nodal quasiparticles
surely requires their coupling to some low-energy bosonic
mode. It is convenient to imagine that we have at our
disposal some parameter r (which is possibly the hole
concentration δ, but not necessarily so) which we can
tune to condense the bosonic mode, leading to a new su-
perconducting state X for r < rc (Fig 1). The quantum-
critical region of the phase transition at r = rc and T = 0
will satisfy (a) provided the phase transition is below its
upper critical dimension, and the nodal fermions are in-
trinsic (in a sense to be made precise below) degrees of
freedom of the critical field theory [11]. Conversely, (b)
requires that the fermions along (1, 0), (0, 1) are merely
spectators of the phase transitions, and are essentially
decoupled from the critical degrees of freedom.

The most efficient scattering of nodal quasiparticles is
provided by a linear, non-derivative coupling between the
fermion bilinears and the order parameter; higher order
and derivative couplings have been considered recently
[7,12], and invariably lead [7] to quasiparticle scatter-
ing rates that vanish with super-linear powers of T . Or-
der parameters which carry a net momentum Q, will, by
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E C2
4 2C4 2I 2I′ basis functions

s 1 1 1 1 1 1
p 2 -2 0 0 0 (sin qx, sin qy)

dx2−y2 1 1 -1 1 -1 cos qx − cos qy

dxy 1 1 -1 -1 1 sin qx sin qy

g 1 1 1 -1 -1 sin qx sin qy(cos qx − cos qy)

FIG. 2. Character table of the irreducible representations
of the group C4v . The C4 rotations are about the z axis, and
the I (I ′) are reflections about the (1, 0), (0, 1) ((1, 1), (1,−1))
directions; the basis functions are chosen to be invariant under
translations by reciprocal lattice vectors.

momentum conservation, couple linearly with the nodal
fermions only if the spacing between two of the nodal
points is exactly Q. Transitions involving the onset of
spin [13] or site/bond charge density waves [7] (stripes)
do satisfy [7] (a,b) for such values of Q; however the
restriction on Q could be a fine-tuning condition, and is
not satisfied by the Q values observed so far. “Staggered-
flux” order [6,12] has a derivative coupling to the nodal
fermions, and Q = (π, π) which does not connect nodal
points: so (a) is not satisfied. Indeed, only the value
Q = 0 naturally satisfies the constraints of momentum
conservation, and so we limit our attention to order pa-
rameters at zero momentum. Furthermore, spin-triplet
ordering at Q = 0 implies ferromagnetic correlations
which are unlikely to be present, and therefore we fur-
ther restrict to spin-singlet fermion bilinears. This means
that our order parameter is a component of the com-
plex superconducting pairing function ∆q = ⟨cq↑c−q↓⟩,
or the real excitonic (or ‘particle-hole’) pairing function
Aq = ⟨c†qacqa⟩ (cqa annihilates an electron with momen-
tum q and spin a =↑, ↓). It is useful to decompose the
functions ∆q and Aq into components which transform
under one of the irreducible representations of the sym-
metry group of the Hamiltonian [14]: this is C4v × Z2,
where C4v is the tetragonal point group (see Fig 2), and
the Z2 component represents time-reversal symmetry T
(point group symmetry breaking has been considered re-
cently [15,16], as have exciton condensations [12] at non-
zero Q). Generically, a second-order transition can only
occur by condensation of an irreducible component (mul-
tiple components can appear in successive transitions),
and this permits a complete classification of inequivalent
order parameters. Note that dx2−y2 pairing is already
present for r > rc (see Fig 1), and we will assume that
this ordering remains well-formed across the transition;
all our subsequent characterizations of possible orderings
in state X refer to additional ordering beyond an implic-
itly assumed background of dx2−y2 pairing. Aq is neces-
sarily even under T , and so can generate s, p, . . . exciton
ordering; similarly ∆q can generate s, p, . . . pairing or
is, ip . . . pairing (the latter also break T ), leading to a
total of 15 possible order parameters for X. Of these, s
exciton ordering is equivalent to an innocuous shift in the

chemical potential, while p and ip pairing are forbidden
by Fermi statistics. Because of the background dx2−y2

pairing, further dx2−y2 or idx2−y2 pairing is not a new
ordering, while simple symmetry considerations (e.g. ex-
amination of the fermion dispersion relation in state X)
show that g excitons, g pairing, and dx2−y2 excitons are
equivalent to dxy pairing, dxy excitons, and s pairing re-
spectively. Only 7 inequivalent order parameters now
remain and we will discuss their properties shortly.

We begin by reviewing the action for low energy
fermionic excitations in a d-wave superconductor. We
denote the components of cqa in the vicinity of the four
nodal points (±K,±K) (K ≈ 0.39π at optimal dop-
ing) by (anti-clockwise) f1a, f2a, f3a, f4a, and intro-
duce the 4-component Nambu spinors Ψ1 = (f1a, εabf

†
3b)

and Ψ2 = (f2a, εabf
†
4b) where εab = −εba and ε↑↓ = 1.

Expanding to linear order in gradients from the nodal
points, we obtain

SΨ =
∫

d2k

(2π)2
T

∑

ωn

Ψ†
1 (−iωn + vF kxτ z + v∆kyτ

x)Ψ1

+
∫

d2k

(2π)2
T

∑

ωn

Ψ†
2 (−iωn + vF kyτ

z + v∆kxτx)Ψ2. (1)

Here ωn is a Matsubara frequency, τα are Pauli matrices
which act in the fermionic particle-hole space, kx,y mea-
sure the wavevector from the nodal points and have been
rotated by 45 degrees from qx,y co-ordinates in Fig 2, and
vF , v∆ are velocities.

We now describe the 7 possible order parameters for
state X, along with the respective actions for the quan-
tum phase transition.
(A) is pairing: This has been considered in Ref [7].
The state X (with dx2−y2 + is pairing) has no gapless
fermionic excitations, breaks T , but all charge neutral
observables (like the charge density or lattice displace-
ments) retain the full C4v symmetry. The order parame-
ter transforms as a real, one-dimensional representation
of C4v × Z2, and so can be represented by a single, real
field φ; this will also be true for (B)-(F) below, with only
(G) requiring a doublet of real fields. On general sym-
metry grounds, following action for φ is obtained after
integrating out high energy fermion modes:

Sφ =
∫

d2xdτ
[1
2
(∂τφ)2 +

c2

2
(∇φ)2 +

r

2
φ2 +

u

24
φ4

]
; (2)

here τ is imaginary time, c is a velocity, r tunes the sys-
tem across the quantum critical point, and u is a quartic
self-interaction. By itself, Sφ would describe a critical
point at r = rc in the universality class of the classical,
three-dimensional Ising model. However, a coupling to
the low energy fermionic modes in (1) can preempt this
conclusion [13]: its form can be deduced from the val-
ues of the basis function in Fig 2 at the nodal points,
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and the information that the order parameter is in the
particle-particle channel–

SΨφ =
∫

d2xdτ
[
λφ

(
Ψ†

1M1Ψ1 + Ψ†
2M2Ψ2

) ]
, (3)

where λ is the required linear coupling constant be-
tween the order parameter and a fermion bilinear, and
M1 = M2 = τy.
(B) idxy pairing: This is very similar to A, with the main
change arising from the new basis function in Fig 2, which
now implies M1 = −M2 = τy.
(C) ig pairing: Also related to (A), but now the basis
function in Fig 2 vanishes at the nodal points. Conse-
quently, the coupling between Ψ and φ requires at least
one spatial derivative, and is irrelevant [7]. The action
Sφ in (2) is the entire critical theory of the transition,
and the scattering of the nodal fermions is weak, arising
only from irrelevant couplings, and violates (a).
(D) s pairing: T remains unbroken, but the symmetry
of charge neutral observables is broken to C2v, so that X
(with dx2−y2 + s pairing) is a superconducting nematic
[15,16]. The nematic order is polarized along the (1, 0)
or (0, 1) directions. For weak ordering, the state X re-
tains gapless nodal fermionic excitations, but the nodal
points are at (±K′,±K) with K′ ̸= K; for a sufficiently
large s component, the nodal points disappear upon col-
liding in pairs as min(K′, K) → 0, in a separate quantum
critical point which is not of interest here. As in (A,B),
coupling of the order parameter is described by (3), but
with M1 = M2 = τx.
(E) dxy excitons: This is as in (D), but symmetry of
charge neutral observables in X is broken to a different
C2v subgroup of C4v, with the nematic now polarized
along the diagonal (1,±1) directions. The nodal points
in X are at ±(K, K) and ±(K′,−K′) with K ̸= K′. In
the action (3), we now have M1 = −M2 = τ z.
(F) dxy pairing: Such an ordering in X moves the nodal
points clockwise (or anti-clockwise) from (±K,±K),
reducing the C4v symmetry to C4, while preserving
T . Again the action (3) describes the order parame-
ter/fermion coupling, but with M1 = −M2 = τx.
(G) p excitons: The order parameter transforms under a
two-dimensional representation of C4v, requiring a dou-
blet of real fields, (φx, φy), to describe the low energy
bosonic modes. The state X retains T and the gapless
nodal points, but has C4v broken to Z2. The action (2)
is replaced by

S̃φ =
∫

d2xdτ

[
1
2

{
(∂τφx)2 + (∂τφy)2 + c2

1(∂xφx)2

+ c2
2 (∂yφx)2 + c2

2(∂xφy)2 + c2
1(∂yφy)2 + e(∂xφx)(∂yφy)

+ r(φ2
x + φ2

y)
}

+
1
24

{
u(φ4

x + φ4
y) + 2vφ2

xφ2
y

}]
, (4)

while the coupling between φx,y and Ψ1,2 is

S̃Ψφ =
∫

d2xdτ
[
λ

(
φxΨ†

1Ψ1 + φyΨ†
2Ψ2

) ]
. (5)

We now make a few general remarks on the field the-
ories above. Upon integrating out the fermion fields, we
find a finite one-loop renormalization of the tuning pa-
rameter, r. This should be contrasted with the behavior
in a system with a Fermi surface, where we would find
the BCS infrared logarithmic divergence in the analogous
term: this is, of course, the reason that a T = 0 Fermi liq-
uid is unstable to superconductivity for an infinitesimal
attractive attraction. In the present situation, the back-
ground dx2−y2 superconductivity has reduced the Fermi
surface to 4 Fermi points, and so further pairing or ex-
citonic instabilities occur at finite values of r and λ. In-
deed, this feature allows a non-trivial quantum critical
point, with a universal quantum-critical region (Fig 1);
the fluctuations in this region will satisfy (a) provided the
quantum-critical point at r = rc, T = 0 is described by
a fixed point of the renormalization group (RG) trans-
formation at which λ approaches a non-zero and finite
fixed point value—then the scattering rate of the nodal
fermions will be determined by T alone [17].

The results of our RG analysis of (A-G) are simple
and remarkable. Only for (A,B,C) do we find a fixed
point, accessed by tuning the parameter r; such a fixed
point describes a second-order quantum phase transition
at the critical point r = rc. For all other cases, we find
runaway flows of the couplings, with no non-trivial fixed
points, which suggests first-order transitions. As we have
already noted, the fixed point for (C) is the Ising model—
the nodal fermions are decoupled from the critical degrees
of freedom in the scaling limit, so that (a) is not satis-
fied. Only (A) and (B) satisfy (a), with the couplings
λ and u approaching non-zero fixed point values: the
nodal fermions and φ are strongly coupled in the criti-
cal theory, and the anomalous dimension of the fermion
field leads to a large ω tail in its spectral function [7,17].
The (A, B) fixed points are also Lorentz invariant—the
dynamic exponent z = 1, and the velocities renormal-
ize to vF = v∆ = c in the scaling limit. Indeed, these
fixed points were discussed earlier [7], but only for almost
equal velocities; here we have established that the equal-
velocity fixed point is the only one for arbitrary initial
velocities. However, the crossover exponent which deter-
mines how rapidly the velocities approach each other is
extremely small [7] (≈ 0.05), so that a transient regime
with unequal velocities will be realized over essentially
all of the experimentally accessible regime.

The methodology of our RG is standard [18] and details
will be provided elsewhere. The familiarmomentum-shell
method, in which degrees of freedom with momenta be-
tween Λ and Λ− dΛ are successively integrated out, fails
here: the combination of momentum dependent renor-
malizations at one loop, the direction-dependent veloc-
ities (vF , v∆, c . . . ), and the hard momentum cutoff
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generate unphysical non-analytic terms in the effective
action. So we obtained the RG equations by [18] using
a soft cutoff at scale Λ, and by taking a Λ derivative of
the renormalized vertices and self energies. We obtained
equations for all the velocities, the dynamic exponent z,
and the field anomalous dimensions to one-loop order in
the non-linearities λ, u, v. For (D,E,F) a simple and ro-
bust effect preempts a fixed point: the structure of M1,2

produces opposite sign renormalizations for vF,∆, in a
manner that both flow equations cannot simultaneously
be at a fixed point; (G) required a more detailed analysis.

Our main result is that, among the 7 transitions con-
sidered here, only for those involving onset of dx2−y2 + is
or dx2−y2 + idxy pairing in a dx2−y2 superconductor did
we find a universal critical theory of coupled fermionic
and bosonic order parameter modes below its upper crit-
ical dimension. Such transitions naturally satisfy (a).
Upon further imposing condition (b), case (B), with
dx2−y2 +idxy pairing, is uniquely selected: from the basis
functions in Fig 1 we see that φ couples to fermions in all
directions for (A), while the fermionic coupling vanishes
along the (1, 0), (0, 1) directions for (B)—so the gapped
fermions along (1, 0), (0, 1) will [will not] develop a tail in
their spectral density above the gap, arising from emis-
sion of numerous φ quanta, for (A) [(B)].

Pairing in the dx2−y2 + idxy channel has been consid-
ered in numerous works recently [19], with the order in
the ground state either global (induced spontaneously or
by an external magnetic field) or local (in the vicinity of
defects [20], surfaces [21], or vortices [22]). Here we only
require strong fluctuations of such order, induced by a
proximity to a hypothetical point in the phase diagram
where global order arises. While experimental discov-
ery of such a point is of course preferable, tests of our
proposal would also be provided by signals of φ fluctu-
ations. This is a spin-singlet mode with dxy symmetry,
odd under time-reversal, and at T = 0 it has spectral
weight with mean frequency and width both of order an
energy scale ∼ (r−rc)zν (where ν is the usual length-scale
exponent)—we estimate this scale is ∼ 5 − 10 K; in the
quantum-critical region the characteristic energy scale is
kBT/h̄. Fluctuations of φ should lead to anomalies in
Raman scattering [23] and Hall transport [24]: these is-
sues will be discussed in future work.
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We correct an error in our paper Phys. Rev. Lett. 85, 4940 (2000) [arXiv:cond-mat/0007170].
Our characterization of the physical properties of the superconducting state G was incorrect: it
breaks time-reversal symmetry, carries spontaneous currents, and possesses Fermi surface pockets.

In the discussion of case G in Ref. 1, above Eq. (4), the
single sentence “The state X retains T and the gapless
nodal points, but has C4v broken to Z2” is incorrect. The
state X = G breaks T (time-reversal), and has sponta-
neous electrical currents. For φx ̸= 0 and φy = 0 (or vice
versa) the currents have the same symmetry as those in
the state ΘII discussed by Simon and Varma [2]. Also,
as pointed out by Berg et al. [3], the nodal quasiparti-
cles do not survive in the superconducting state G, but
turn into Fermi pockets. The latter conclusion can be
verified from the fermion spectrum obtained by diago-
nalizing Eqs. (1)+(5) for constant φx,y.

All other sentences and the conclusions in the paper
[1] remain unchanged.

Also, in the companion paper, Ref. 4, the only error is
in the sketch of the fermion excitations in Fig. 2 for case

G.
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