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We study a holographic model realizing an ‘‘antiferromagnetic’’ phase in which a global SUð2Þ
symmetry representing spin is broken down to a Uð1Þ by the presence of a finite electric charge density.

This involves the condensation of a neutral scalar field in a charged anti–de Sitter black hole. We observe

that the phase transition for both neutral and charged (as in the standard holographic superconductor)

order parameters can be driven to zero temperature by a tuning of the UV conformal dimension of the

order parameter, resulting in a quantum phase transition of the Berezinskii-Kosterlitz-Thouless–type. We

also characterize the antiferromagnetic phase and an externally forced ferromagnetic phase by showing

that they contain the expected spin waves with linear and quadratic dispersions, respectively.

DOI: 10.1103/PhysRevD.82.045002 PACS numbers: 11.10.Wx

I. INTRODUCTION

Quantum phase transitions naturally occur in strongly

correlated many-body systems, which often contain com-

peting interactions and the concomitant competing orders.

When the transition is continuous, or first order with weak

discontinuities, it gives rise to fluctuations that are both

quantum and collective [1–3]. Such quantum criticality

serves as a mechanism for some of the most interesting

phenomena in condensed matter physics, especially in

itinerant electronic systems [4,5]. Among these are the

breakdown of Fermi liquid theory and the emergence of

unconventional superconductivity.

Quantum criticality is traditionally formulated within

the Landau paradigm of phase transitions. The critical

theory expresses the fluctuations of the order parameter,

a coarse-grained classical variable manifesting the break-

ing of a global symmetry, in dþ z dimensions [1]; here d is

the spatial dimension and z the dynamic exponent. More

recent developments [6,7], however, have pointed to new

types of quantum critical points. New modes, which are

inherently quantum and are beyond order-parameter fluc-

tuations, emerge as part of the quantum critical excitations.

Quantum criticality is hence considerably richer and more

delicate than its thermal classical counterpart. In turn, new

methods are needed to search for, study, and characterize

strongly coupled quantum critical systems.

A. AdS2 and the emergent IR CFT

A promising new route has come from an unexpected

source, the AdS/CFT duality [8], which equates a gravity

theory in a weakly curved (dþ 1)-dimensional anti–

de Sitter (AdSdþ1) spacetime with a strongly coupled

d-dimensional field theory living on its boundary. The

gravity is classical when the corresponding field theory

takes a large N limit. This maps questions about strongly

coupled many-body phenomena to solvable single- or few-

body classical problems in a curved geometry, often that of

a black hole.

For considering a boundary theory at a finite density, a

particularly simple gravity setup is a charged black hole in

AdS [9] which describes [10] a boundary conformal field

theory at a finite chemical potential for a Uð1Þ charge. A
rich body of phenomena has been found in this relatively

simple context including novel transport (see [11] for a

review), holographic superconductors [12,13]1 (see [14–

16] for reviews), and non-Fermi liquids [17–20] (see also

[21–29]). In particular, at low energies the system has an

infrared fixed point described by a ð0þ 1Þ-dimensional

conformal field theory (CFT) [20]. The CFT has nontrivial

scaling behavior only in the temporal direction and is

represented on the gravity side by a near-horizon geometry

AdS2 � Rd�1. This realization also offers a unified way,

from the gravitational perspective, to understand both the

onset of the superconducting instability and the emergence

of non-Fermi liquids.

One finds that each operator in the UV theory develops

an anomalous IR scaling dimension �. For example, if a

scalar operator of charge q and UV dimension � is dual to

a minimally coupled scalar field in the bulk, its IR dimen-

sion is given by [see, e.g., Eq. (43) of [20]; in this paper we

have set gF to 1]

� ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�� dÞ
dðd� 1Þ � q2

2dðd� 1Þ þ
1

4

s

: (1)

This determines the onset of an instability: if � becomes

complex, the system is unstable.2 Because of the term

1Technically these should be called charged superfluids, as the
symmetry that is broken is global and is not gauged within the
holographic framework.

2In the bulk, a complex � is a violation of the AdS2 BF bound
and corresponds to an infinitely oscillating bulk field near the
horizon and hence an instability, as pointed out in [30].
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proportional to �q2 in (1), even an operator which is

irrelevant in the UV can be unstable in the IR if q is

sufficiently large. This gives rise to interesting examples

of the phenomenon of dangerously irrelevant operators and

possibly suggests a novel type of pairing instability driven

by an IR fixed point.3

A similar formula exists for fermions. Here there are no

instabilities, but the IR dimension � controls the nature of

small excitations around a Fermi surface [20] and, in

particular, whether there exist stable quasiparticles. It

also naturally yields fermion self-energies that are singular

only in the temporal direction, properties that are charac-

teristic of the electron self-energy in models for non-Fermi

liquids [1,31,32] and the spin self-energy of quantum

critical heavy fermions [6].

In this paper we extend this development to model

itinerant quantum magnetic systems, condensed matter

systems in which the quantum critical phenomenon is of

great current interest [4,5,33].

B. Gravity formulation of a magnetic system

In the low energy limit of an electronic system, spin-

orbit couplings become suppressed and spin rotations are

decoupled from spacetime rotations. Thus, spin rotations

remain a symmetry even though the rotational symmetries

may be broken by a lattice or other effects. The low energy

theory is then characterized by an SUð2Þ global symmetry

which describes the spin rotation and a Uð1Þ symmetry

describing the charge. This SUð2Þ symmetry is of course

only approximate and will be broken at high energies.

However, if one is only interested in universality classes

describing only low energy behavior (which does not in-

volve spin-orbit couplings), this high energy breaking will

be irrelevant and one might as well replace it by a UV

completion in which the dynamics have an SUð2Þ symme-

try that is exact at all energies.

Using the standard AdS/CFT dictionary, the conserved

currents ja�, a ¼ 1, 2, 3 for SUð2Þ spin symmetry and J�

forUð1Þ charge should be dual to bulk gauge fields making

up a SUð2Þspin �Uð1Þcharge gauge group in the bulk. For

simplicity, in our bulk description wewill consider a theory

in which this SUð2Þ �Uð1Þ symmetry is exact to all en-

ergies. Modeling spin-orbit couplings and understanding

how to take into account the relation with spacetime sym-

metries are interesting questions which will be left for

future study (see also recent discussion in [29]).

We will be interested in studying the gravity dual of an

‘‘antiferromagnetic’’ (AFM) phase in a continuum limit. In

such a limit the background value of the spin density is

zero, but there exists a staggered spin order parameter �a,

a ¼ 1, 2, 3 which transforms as a triplet under spin rota-

tions. Its background value spontaneously breaks SUð2Þ to
the Uð1Þ subgroup corresponding to rotations about a

single axis. This leads us to introduce a real scalar field

�a transforming as a triplet under SUð2Þspin [and neutral

under Uð1Þcharge] as the corresponding bulk field. A phase

with vanishing SUð2Þ gauge fields but with a normalizable

�a � 0 in one direction can then be interpreted as an

antiferromagnetic phase, or a spin density wave phase in

an itinerant-electron context. A ‘‘ferromagnet’’ would have

nonzero SUð2Þ gauge fields, corresponding to a nonzero

background spin density in the field theory; we also study

this by applying a source analogous to an external mag-

netic field.

Note that the spirit of this discussion is parallel to that of

holographic superconductors in that the gravity description

captures the macroscopic dynamics of the order parameter

and the symmetry breaking pattern, but does not explain its

microscopic origin.

C. Quantum phase transitions in holographic models of

symmetry breaking

To describe the AFM order and its transition, we proceed

in a way analogous to the superconducting case. The

magnetic case considered here involves a neutral order

parameter. Indeed, with the exception of superconductiv-

ity, most ordering phenomena in condensed matter systems

involve a neutral order parameter; other examples include

charge density wave order and Pomeranchuck instability.

We are therefore led to consider holographic phase tran-

sitions involving condensation of a neutral scalar field in a

finite density system. Here we again consider a charged

black hole which is dual to a boundary conformal theory at

a finite chemical potential � for a Uð1Þ charge.
Setting q ¼ 0 in (1) one finds that � becomes complex if

max

�
d� 2

2
; d��c

�

<�<�c �
dþ

ffiffiffi

d
p

2
; (2)

where d�2
2 corresponds to the unitarity bound on a scalar

operator in d spacetime dimensions. On the gravity side

this regime is where a scalar field � satisfies the

Breitenlohner-Freedman (BF) bound [34] of AdSdþ1 but

violates the BF bound of the near-horizon AdS2 region, as
was recognized first in [35].

In this paper we construct the phase diagram for the

condensation of such a neutral scalar field in the T ��
[equivalently, the T �m2, see Eq. (18)] plane. For all � in

the range (2) there exists a critical temperature Tc below

which the neutral scalar field condenses. The phase tran-

sition is second order with mean field exponents. For the

standard quantization4 in AdSdþ1, we find that Tc de-

creases with an increasing � and approaches zero at �c.3Note that here a clear understanding of the underlying physi-
cal mechanism is somewhat hindered by the fact that at this
moment the gravity model provides only a macroscopic descrip-
tion of the condensation.

4The story for alternative quantization is more involved, see
the discussion in Sec. II for details.
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Thus, if we allow ourselves to vary � through �c, we

find a quantum phase transition, as was previously noticed

in [30,35] in the charged case. Within the context of a

specific boundary field theory varying the UV conformal

dimension, � seems somewhat artificial: however, the

physics here is actually controlled by the effective mass

of the scalar in the near-horizon AdS2 region, and we later

discuss several concrete ways to achieve this. Interestingly,

the quantum phase transition at �c is not described by

mean field exponents, but is instead of the Berezinskii-

Kosterlitz-Thouless (BKT) type with an exponentially gen-

erated scale. More explicitly, for �� �c, at T ¼ 0, there
exists an IR scale

�IR �� exp

�

� C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c � �

p

�

; C ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðd� 1Þ
2�c � d

s

; (3)

below which new physics appears (or in other words, the

condensate becomes significant). From the point of view of

the near-horizon geometry AdS2, this behavior can be

understood from the recent discussion in [23,36], which

argues that for a scalar field in AdS with a mass square

below the BF bound, such an exponential scale should

generally be generated.5 An explicit holographic model

realizing this phenomenon was also recently constructed

in [37] and a different quantum phase transition which

occurs outside the BF boundary (i.e., the BF bound of

AdS2 is not violated) has been constructed in [38].

Below the IR scale �IR we show that the system in fact

flows to a new IR fixed point which is controlled by a ð0þ
1Þ-dimensional CFT, dual to an AdS2 with a different

cosmological constant determined by the condensed vac-

uum of the neutral scalar field. In Fig. 1 we give a cartoon

picture of this flow.

The nature of the ordered phase can also be character-

ized in terms of its collective modes. The condensate

breaks the global SUð2Þ ! Uð1Þ: we show that the gapless

spin waves expected from such a breaking arise naturally

in the gravity description, and that they obey the proper

dispersion relations.

The main focus of this current paper is on the conden-

sation of a neutral scalar; however it is clear that one can

immediately apply the above discussion to condensation of

charged scalar operators which give rise to the well-studied

holographic superconductors. Equation (1) implies that

dialing � one finds a quantum critical point at �c given

by the larger root of (for standard quantization)

�cð�c � dÞ
dðd� 1Þ � q2

2dðd� 1Þ þ
1

4
¼ 0: (4)

Again for � close to �c the system will linger around the

IR fixed point of the uncondensed phase for an exponen-

tially large scale (3) before settling into new fixed points.

In this case the gravity description of the IR fixed points

have been worked out before for d ¼ 3 in [39–42] (see also
[43]). The structure of the phase diagram will, in general,

depend on the detailed form of the action, and nonminimal

couplings such as those typically found in stringy embed-

dings (e.g., see [41,42,44,45]) will change the results. It

was found in [39] that for minimally coupled scalar actions

and potentials similar to ours and for minimally coupled

scalar actions and potentials similar to ours and for the

charge of the scalar q small the system flows to a Lifshitz

fixed point with a dynamic exponent z� 1
q2
, while for

larger values of q the system flows to another AdS4 with

a different cosmological constant. Combined with the dis-

cussion above for the condensation of a neutral scalar field

we thus find a unifying picture for the quantum phase

transitions for both charged and neutral order parameters

as presented in Fig. 2. Note that AdS2 can be considered as
describing a d-dimensional theory with a dynamic expo-

nent z ¼ 1, while AdS4 describes a theory with z ¼ 1.
Note that in our above discussion we have imagined the

existence of an ‘‘experimental knob’’ which can be used to

adjust the UV scaling dimension � of an operator. It is

important to note that we do this purely for convenience,

and the nature of our discussion is completely insensitive

to the precise realization of such a knob. The most useful

knob will likely depend on the UV geometry into which

this AdS2 is embedded. For example, if one is studying a

FIG. 1 (color online). A cartoon picture for the flow of the

system induced by the condensation of a neutral scalar field. The

CFTA refers to the ð0þ 1Þ-dimensional IR CFT of the uncon-

densed system, described geometrically by an AdS2 factor with

radius R2. When the dimension � of the operator is close to the

quantum critical value �c, the system stays near this IR CFT for

an exponentially long scale, before flowing to the new fixed

point, (0þ 1) CFTB, described by an AdS2 factor with a differ-

ent radius ~R2.

5At the BF bound an IR and UV fixed point, which corre-
sponds to standard and alternative quantization, respectively,
collide and move to the complex plane, in analogue with the
BKT transition. Note that in our case the standard and alternative
quantization described here refer to those in AdS2.
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holographic superconductor an external magnetic field will

also allow one to tune the IR scaling dimension [46]. A

similar UV realization is provided in a D3=D5 brane

construction in [37], where a precisely analogous transition

is studied. For convenience in the remainder of this paper

we will simply imagine that we are free to tune the bulk

mass and thus, directly, the UV dimension of the scalar. In

Sec. IVAwe give a simple model illustrating how this may

be achieved.

A rough plan of the paper is as follows. In the next

section we describe a holographic phase transition corre-

sponding to the condensation of a neutral scalar order

parameter in a finite density system in a probe approxima-

tion. In Sec. III we discuss some qualitative features of the

effects of backreaction and the zero temperature limit of

our solution. In Sec. IV we discuss the quantum phase

transition that we find by tuning the UV conformal dimen-

sion. In Sec. V we embed the scalar solution discussed in

Sec. II into an SUð2Þ system describing the spin rotational

symmetry. We proceed to study the spin waves from spon-

taneous breaking of the spin symmetry in the antiferro-

magnetic phase. In a probe limit we are able to isolate the

spin wave excitations directly in the bulk and find their

dispersion relations. We do not construct a spontaneous

ferromagnet; however in Sec. VI we do show that if one

considers aligning the ‘‘spins’’ with an external magnetic

field then techniques similar to those in Sec. V can be used

to find a spin wave which has a quadratic dispersion

relation in line with field theoretical expectations.

We conclude in Sec. VII with a discussion of further

directions.

II. CONDENSATION OFA NEUTRAL ORDER

PARAMETER ATA FINITE DENSITY

In this section we provide a gravity dual description of

the condensation of a neutral scalar field in a charged AdS

black hole geometry which describes the onset of a real

order parameter in the boundary theory at a finite density.

We begin our analysis by studying the transition at a finite

temperature. While our discussion applies to any space-

time dimension, for definiteness we will consider a ð2þ
1Þ-dimensional boundary theory.

A. Setup

To put the system at a finite density we turn on a

chemical potential � for the Uð1Þcharge in the boundary.

This is described on the gravity side by a charged black

hole with a nonzero electric field for the corresponding

Uð1Þ gauge field BM. The action for BM coupled to AdS

gravity can be written as

S ¼ 1

2�2

Z

d4x
ffiffiffiffiffiffiffi�g

p �

Rþ 6

R2
� R2GMNG

MN

�

; (5)

with GMN ¼ @MBN � @NBM and R is the curvature radius

of AdS. The equations of motion following from (5) are

solved by the geometry of a charged black hole [9,10],

ds2

R2
� gMNdx

MdxN ¼ r2ð�fdt2 þ d~x2Þ þ 1

r2
dr2

f
; (6)

with

f ¼ 1þ 3�

r4
� 1þ 3�

r3
; Bt ¼ �

�

1� 1

r

�

; (7)

where we have rescaled the coordinates so that the horizon

is at r ¼ 1 and all coordinates are dimensionless (see

Appendix A 1 for more details). The chemical potential

and temperature are given by

� �
ffiffiffi

3
p

�ð1=2Þ; T ¼ 3

4�
ð1� �Þ: (8)

� is a parameter between 0 and 1, where � ¼ 1 corre-

sponds to the extremal black hole with T ¼ 0 and � ¼ 0
corresponds to a finite temperature system with zero

chemical potential (and charge density).6 In the zero tem-

perature limit, the near-horizon geometry reduces to

AdS2 � R2 with the curvature radius of the AdS2 region

related to that of the UV AdS4 by

R2 ¼
R
ffiffiffi

6
p : (9)

As discussed in [20,35], a neutral scalar field � can

develop an instability if the mass square of the scalar

FIG. 2. Tuning the UV dimension of the order parameter we

find quantum phase transitions between a ð0þ 1Þ-dimensional

IR CFT corresponding to AdS2 in the unbroken phase and

various types of symmetry breaking phases. The type of

symmetry-broken phase depends on the charge q of the order

parameter.

6Note that since we are considering a conformal theory, only
the dimensionless ratio

�
T is physically relevant, and it is clear

that as � is varied from 0 to 1,
�
T
takes all values from 0 to 1.
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violates the near-horizon AdS2 BF bound, while still sat-

isfying the AdS4 BF bound, i.e.,7

� 9
4 <m2R2 <�3

2; (11)

where the lower limit is the BF bound in AdS4, the upper
limit is the BF bound for the near-horizonAdS2 region, and
we have used (9) to convert from AdS2 to AdS4 radii.

Once this condition is met, the scalar will want to

condense near the horizon but will be stable at infinity.

The condensed solution will involve a nontrivial radial

profile for the scalar; we will see that at low temperatures

the scalar will probe the extreme values of its potential and

nonlinearities in the potential will be important. We choose

to study a nonlinear Mexican hat potential with the

Lagrangian for � given by

L � ¼ 1

2�2�

�

� 1

2
ð@�Þ2 � Vð�Þ

�

; (12)

with

Vð�Þ ¼ 1

4R2
ð�2 þm2R2Þ2 �m4R2

4
: (13)

Here m2 is the effective mass near the point � ¼ 0, and
should be chosen to satisfy the condition (11) (in particular,

it is negative). � is a coupling constant and we have chosen

the constant in (12) so that at � ¼ 0, there is no net

contribution to the cosmological constant. The precise

form of the potential in (13) is not important for our

discussion below, provided that it does have a minimum

and satisfies the condition (11).8

At zero temperature, we expect the scalar to condense

until the value at the horizon reaches some point near the

bottom of the Mexican hat, at which point the ‘‘effective

AdS2 mass’’ will again satisfy the AdS2 BF bound and

condensation will halt. At finite temperature, we expect a

phase transition at some temperature Tc below which �
condenses. Note that at the classical level the coefficient of

the �4 term is arbitrary, as it can be absorbed into � in (12)

via a rescaling of �.

B. Phase diagram

We now seek the endpoint of the instability, i.e., a non-

trivial scalar profile for �. We first consider the finite

temperature case and take � to be parametrically large so

that we can ignore the backreaction of � to the background

geometry. We will discuss the backreaction in Sec. III and

there we argue that this approximation is good even at zero

temperature.

The equation of motion for �ðrÞ is given by

1

r2
@rðr4f@r�Þ � �ð�2 þm2R2Þ ¼ 0: (14)

We are interested in a solution which is regular at the

horizon and normalizable at the boundary, which can be

found numerically.

We first consider the asymptotic behavior for � near the

horizon and the boundary. We require the solution to be

regular at the horizon, i.e., to have the expansion

�ðrÞ ¼ �h þ �0
hðr� 1Þ þ . . . ; r � 1: (15)

At finite temperature the factor f in (14) has a first order

zero at the horizon, i.e., fðrÞ ¼ 4�Tðr� 1Þ þ . . . .
Demanding that (14) be nonsingular then leads to a con-

dition linking the near-horizon value of � to its derivative:

�0
h ¼

1

4�T
�hð�2

h þm2R2Þ: (16)

A choice of �h fixes also �0
h and thus completely specifies

the solution.

Near the boundary r ! 1, the linearized equation of

(14) gives the standard asymptotic behavior

�ðrÞ � Ar��3 þ Br��; r ! 1; (17)

with � given by

� ¼ 3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2R2 þ 9

4

s

: (18)

In the standard quantization A has the interpretation of the

source9 while B gives the response h�iA of the order

parameter � dual to � in the presence of source A. Note
that the mass range (11) lies within the range � 9

4 <

m2R2 <� 5
4 for which an alternative quantization exists,

in which the roles of A and B are exchanged [47]. The

conformal dimension of � (i.e., the ‘‘dimension’’ of fluc-

tuations about the point � ¼ 0) is given by � (standard

quantization) and 3� � (alternative quantization),

respectively.

The condensed phase for standard quantization is char-

acterized by a normalizable nontrivial solution with A ¼ 0,
and then B gives the expectation value of the order pa-

rameter�. For the alternative quantization we look instead

7For general d boundary theory dimensions, Eq. (10) becomes

� d2

4
<m2R2 <� dðd� 1Þ

4
: (10)

8The condensed phase q ¼ 0 solutions without the stabilizing
�4 term in the potential were studied in [35,40]; at nonzero
temperature these are similar to ours, but in the low temperature
limit the structure described in Sec. III—which depends criti-
cally on the existence of a minimum to the potential—is not
shared by those examples.

9For example, in Sec. V we interpret � as corresponding to the
staggered magnetization, in which case A can be interpreted as
the staggered magnetic field.
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for a solution with B ¼ 0, and A then gives the expectation

value. The task before us now is to pick a value for �h, and

then numerically integrate the radial evolution equation to

the boundary. As expected for a sufficiently low tempera-

ture, we find a nontrivial scalar hair solution, which means

that there will exist a �h for which A or B vanishes, as

shown in Fig. 3.

For the standard quantization we find a continuous phase

transition for all values of m2 falling into the range (11);

there is a nontrivial profile for � for T smaller than some

temperature Tc and none for T greater. In particular, as we

increase m2, the critical temperature Tc decreases to zero

as the upper bound in (11) is approached. Precisely at the

critical value m2
cR

2 ¼ � 3
2 , we find a quantum phase tran-

sition: the physics in the vicinity of this point is discussed

in Sec. IV. The phase diagram for standard quantization is

plotted in Fig. 4.

For the alternative quantization, the phase structure in

the vicinity of the quantum critical point at m2 ¼ m2
c is the

same as in the standard quantization. However the global

structure of the phase diagram is somewhat different; in

particular, the specific value of the mass m2R2 ¼ � 27
16

plays an important role. This value of the mass corresponds

to the UV scaling dimension for which the first nonlinear

(i.e., arising from the�4 term in the potential) correction to

the near-boundary asymptotics becomes degenerate with

the term proportional to B. For m2R2 <� 27
16 the phase

structure is as described above, but for m2R2 >� 27
16 one

finds a new condensed phase in the high-temperature re-

gime. In particular, the critical temperature Tc2 appears to

increase with m2. These solutions appear to be closely

related to the thermodynamically unstable scalar hair so-

lutions constructed in [48,49], which studied uncharged

black holes and thus correspond to the high-temperature

limit of our construction. As these new phases appear to

involve UV physics and are not related to the low tempera-

ture quantum critical behavior that is the focus of this

work, we defer an in-depth study of these phases and the

critical value m2R2 ¼ � 27
16 to later work.

C. Critical exponents

A continuous phase transition can be characterized by

various critical exponents: in the normal quantization with

A the source and B� h�i the expectation value we have

the following behavior close to Tc:

(1) The expectation value h�i / ðTc � TÞ	 with mean

field value 	 ¼ 1
2 .

(2) The specific heat: C / jTc � Tj�
 with mean field

value 
 ¼ 0.

(3) Zero field susceptibility: @h�i
@A

jA¼0 / jT � Tcj��

with mean field value � ¼ 1.
(4) Precisely at T ¼ Tc, h�i � Að1=�Þ with mean field

value � ¼ 3

There are also other exponents associated with correlation

functions at finite spatial or time separation which we will

leave for future study. For our phase transition we find that
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FIG. 3. The constants A and B determine the behavior of the

scalar profile asymptotically. This is a representative plot where

we scan the case m2R2 ¼ �2:1 and T ¼ 0:000 24 (with T=Tc ¼
0:22) by varying �h. There is symmetry breaking if A ¼ 0 B � 0
in the normal quantization or if A � 0 B ¼ 0 in the alternative

quantization.
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FIG. 4 (color online). Phase diagram for the standard quanti-

zation. Note logarithmic scale for T. C denotes the condensed

phase and U the uncondensed phase. Tc ! 0 as m2 ! m2
c,

leading to a quantum critical point.
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all of the above exponents are precisely those of mean field

theory. See Fig. 5 for numerical fits of exponent 	 and �.
The existence of mean field exponents in this classical

gravity analysis is not surprising10 and can be translated

into the statement that A and B are analytic functions of the

horizon field�h. This follows from the fact that� is regular

at the horizon and the black hole geometry is smooth; we

will find a rather different situation at T ¼ 0 in the next

section.

We now sketch the relevant arguments for finite T. As
argued above, for small �h we can expand A as

A � a1ðTÞ�h þ a2ðTÞ�3
h þ . . . ; (19)

and similarly for B. Note that both A and B must both be

odd functions of �h, due to the � ! �� symmetry. At Tc,

a new zero of A should be generated at �h ¼ 0 and move to

a finite value of �h as T is further lowered.11 Thus near Tc

we should have a1ðTÞ ¼ aðT � TcÞ and a2ðTÞ ¼ bþ . . .
with a and b having the same sign for T > Tc. For T < Tc,

then A has a zero for �h taking a value �A given by

�A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�a1ðTÞ
a2ðTÞ

s

/ ðTc � TÞð1=2Þ ! 0: (20)

Using �A as the initial value at the horizon gives the

solution for the condensed phase. Assuming that B is still

linear in �h near �h ¼ 0, we thus find that

Bð�AÞ / �A / ðTc � TÞð1=2Þ; (21)

which gives us the critical exponent	 ¼ 1
2 . Turning now to

the susceptibility, we find

dB

dA

��������A¼0
¼ dB

d�h

d�h

dA

��������A¼0
�ðT � TcÞ�1; (22)

leading to � ¼ 1. Furthermore, precisely at T ¼ Tc, A�
a�3

h and B stays linear near �h ¼ 0. Thus, we find that at

T ¼ Tc,

Bð�hÞ / �h / Að1=3Þ; (23)

which gives the critical exponent � ¼ 3. One can also

compute the free energy using holographic renormaliza-

tion and indeed find the mean field exponent F / �ðTc �
TÞ2 for T < Tc. In particular, the analytic expansion (19)

for A and B in terms of �h guarantees that F has the

Landau-Ginsburg form.

Note that the gravity analysis can be extended to all

spacetime dimensions with the same mean field scalings.

Presumably this has to do with the fact that we are working

in the large N limit, which suppresses fluctuations. This is

also consistent with picture obtained in [20] in which the

scalar instability essentially follows from a RPA type

analysis. We expect that a 1=N computation involving

quantum corrections in the bulk will reveal corrections to

these mean field exponents.

III. BACKREACTION AND THE ZERO

TEMPERATURE LIMIT

In the usual studies of holographic superconductors, the

scalar is charged under a Uð1Þ and so the usual probe

approximation involves treating the scalar and Uð1Þ gauge
field as negligible perturbations to the background metric.

In these models lowering the temperature essentially

means increasing the ratio �=T; thus at sufficiently low

temperatures the gauge field (and thus also the condensed

scalar) will necessarily backreact strongly on the geometry,

causing a breakdown of the probe approximation. The zero

temperature limit of the backreacted geometries have been

constructed [39–42] and typically depend on the details of

the couplings and charge of the scalar. One recurring theme

is that at zero temperature the charges that were previously

carried by the black hole are now completely sucked out of

the hole and into its scalar hair. Once the black hole
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FIG. 5. Top: Plot for exponent 	, defined as B� ðTc � TÞ	.
	 ¼ 0:49� 0:03 from numerical fit, compared with 	mean field ¼
1
2 . Bottom: Plot for exponent �, defined as B� Að1=�Þ at Tc. � ¼
3:03� 0:05 from numerical fit, compared with �mean field ¼ 3.

10Mean field exponents also appear in the phase transition
associated with a charged scalar field in the holographic super-
conductor story [13,50].
11In fact given � ! �� symmetry, a pair of zeros are generated
and move to opposite directions.
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horizon is relieved of the burden of carrying a large charge,

it is usually replaced by a degenerate horizon with vanish-

ing entropy.

In our model the situation is different. We always in-

clude the backreaction of the gauge field on the metric, as

we start from the beginning with the charged black hole

solution; it is consistent to solve for a scalar profile on this

fixed background only because the scalar is uncharged and

so its contribution to the backreaction can be cleanly sup-

pressed by taking � large.

In this section we will discuss the backreacted solution

in the IR at zero temperature and argue that even if back-

reaction is included its effects are rather benign and do not

change any qualitative conclusions. This is essentially

because all of the charge must stay in the black hole itself,

greatly constraining its near-horizon form.

First, we note that Gauss’s law states that

@rð
ffiffiffiffiffiffiffi�g

p
grrgtt@rAtÞ ¼ 0 ! gxx

ffiffiffiffiffiffiffiffiffiffiffiffi

grrgtt
p

@rAt ¼ const:

(24)

Thus, if the electric field is nonsingular at the horizon, gxx
must be finite there: this is simply saying that the R2 at the

horizon cannot degenerate as it has a nonzero electric field

flux through it. We then expect that the near-horizon ge-

ometry factorizes into the form M2 � R2, where M2 is

some 2d manifold involving ðt; rÞ. Now consider the trace

of the Einstein equation arising from the variation of (5)

plus (12); theUð1Þ field strength does not contribute to this
equation as it is classically scale invariant, and we find

R þ 12

R2
¼ 1

2�
½ðr�Þ2 þ 4Vð�Þ�; (25)

where R is the Ricci scalar of the geometry and comes

purely from the M2 factor. Now let us further assume that

in the near-horizon region � asymptotes to some constant

value �h (we will show this to be consistent shortly). We

then find thatM2 has constant negative curvature, and thus

must be AdS2
12 with radius ~R2 satisfying

1
~R2
2

¼ 1

R2
2

� 1

�
Vð�Þ; (26)

where R2 is the curvature radius of the original AdS2 near-
horizon geometry of the extremal charged black hole. Note

that since Vð�hÞ< 0, ~R2 < R2. Thus, we see that the back-

reacted IR geometry is very similar to the unperturbed

geometry, except that its AdS2 factor has a radius that is

corrected by the presence of the near-horizon scalar

potential.

Let us now study the scalar equation of motion (14) near

the backreacted AdS2 horizon:

1

r2
@rðr4 ~f@r�Þ ¼ R2 dV

d�
; (27)

where ~f is the warp factor for the backreacted geometry

and at zero temperature has a double zero at the horizon r0;
expanding near the horizon we see that regularity at the

horizon requires

dV

d�
ð�ðr ¼ r0ÞÞ ¼ 0: (28)

Thus, we see that at the horizon � will sit at the bottom of

its potential. To understand how this AdS2 region matches

onto the asymptotic geometry, we expand � ¼ �h þ �ðrÞ
where �h is the bottom of the potential Vð�Þ. Now working

in theAdS2 region and linearizing (27) near �h we find that

� obeys the standard AdS2 wave equation:

@rððr� r0Þ2@r�Þ � ~R2
2V

00ð�hÞ� ¼ 0; (29)

whose solutions are

� ¼ 
ðr� r0Þ�ð1=2Þþ� þ 	ðr� r0Þ�ð1=2Þ��; (30)

with

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
þ ~R2

2V
00ð�hÞ

s

: (31)

Now we would like � to approach �h as we approach the

horizon; this means that we should not take the 	 solution

above, as it invariably blows up as r ! r0. Note that for the

 solution to also not blow up, we need � 1

2 þ � > 0 and

thus V 00ð�hÞ> 0. To stabilize the AdS2 region we must

truly be sitting at a minimum of the potential at the horizon.

In this case the solution

�ðrÞ ¼ �h þ 
ðr� r0Þ�ð1=2Þþ� (32)

can be interpreted as an irrelevant deformation of the new

AdS2 IR CFT that we are flowing to.13 The value of the

coefficient
 is not fixed at this linearized level and must be

determined by matching to the UV solution.

We have not solved for the fully backreacted geometry

but have used this method to find a normalizable scalar

solution on the T ¼ 0 charged black hole geometry using

the above exponents. Our results match smoothly onto the

T ! 0 limit of the profiles calculated using the finite

temperature matching procedure discussed in Sec. II.

When � is large we do not expect the inclusion of the

backreaction to qualitatively change any of these results

given the change of the cosmological constant is small.

It is instructive to compare this to the situation for

charged holographic superconductors [39]. In this case

for large charge it is found that the IR geometry flows to

an AdS4, while for sufficiently small charge it flows to a

12More precisely, it could also be an AdS2 black hole; the true
zero temperature solution corresponds however to pure AdS2.

13Similar considerations are used in [39] to determine when an
emergent AdS4 can exist.
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Lifshitz geometry, with exponent z satisfying

q2 � 1

z
; (33)

at very small q [see Eq. (81) in [39] ]. We see that ourAdS2
solution corresponds to z ¼ 1 at q ¼ 0; increasing the

charge we have a Lifshitz solution with finite z, and finally
increasing further we find z ¼ 1 for AdS4.

IV. A QUANTUM PHASE TRANSITION FROM

CLASSICAL GRAVITY

We recall from the discussion in Sec. II B that when

m2
cR

2 � � 3
2 , the critical temperature approaches zero:

thus we should obtain a ‘‘quantum phase transition’’ at

zero temperature as m2 is varied from above m2
c to below.

In this section we consider the behavior near the quantum

critical point from the condensed side.

The accessibility of this quantum critical point depends

on having the ability to tune the IR dimension of the field �
in some way. The simplest possible way is by directly

tuning the mass, and before proceeding we pause briefly

to explain how this may be possible in a simple bulk

realization. A similar mechanism is discussed for un-

charged black holes in AdS in [51].

A. Tuning across the quantum critical point

Imagine that the scalar � contains a coupling to another

scalar field c ,

S� �
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p
Fðc Þ�2; (34)

where Fðc Þ is some function whose detailed form will not

be important for us. Now consider turning on a constant

source h for c at the boundary, i.e., we require the bound-

ary value of c to approach h. In the boundary theory

language this corresponds to adding a term

Z

ddxhOðxÞ (35)

to the action with O the boundary operator dual to c . The

source induces a nontrivial bulk solution for c , which in

turn contributes to the action of � as a mass term, shifting

the effective m2. However the new effective mass will

typically be radially dependent; we require it to be nonzero

at the AdS2 horizon. If we write the IR dimension (1) of c

as

�c ¼ 1
2 þ �c (36)

then the asymptotics of c in the near-horizon AdS2 region
are

c � ðr� r0Þ�ð1=2Þ��c : (37)

For c to be regular at the horizon we need to choose theþ
sign in the exponent. So if �c ¼ 1

2 then c approaches a

constant at the horizon, and turning on a source h for c

will change the effective IR mass of the field �. From (1),

�c is 1
2 if c is dual to an operator with UV dimension � ¼

d, i.e., it is massless in the bulk. Thus, whenever the UV

CFT has such an operator with a nontrivial operator prod-

uct expansion with the order-parameter operator �, we

expect to be able to tune the system through the quantum

critical point by varying h in (35), i.e., there exists a critical

value hc of h at which we expect a quantum phase tran-

sition. It would be interesting to understand this mecha-

nism further. Also note that for type II theories in an

asymptotic AdS geometry, a natural candidate for c is

the dilaton.

B. BKT scaling behavior and Efimov states

For m2 <m2
c, the BF bound of the near-horizon region

AdS2 region is violated. It has been argued in [36] that for a
general AdS gravity dual with mass slightly below the BF

bound conformality is lost and an IR scale�IR is generated

exponentially as

�IR �� exp

�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
cR

2
2 �m2R2

2

q

�

; (38)

where � represents some UV scale that in our case is the

chemical potential. This exponential behavior is character-

istic of the BKT phase transition. One expects that this IR

scale controls the physics near the quantum phase transi-

tion. In particular, the critical temperature Tc and the value

of the condensate h�i should be related to this scale. Here

we present a reformulation of the arguments of [36] that

demonstrates the behavior of Tc and h�i explicitly.
We parametrize the AdS2 region of the uncondensed

geometry as

ds22
R2
2

¼ �dt2 þ dz2

z2
: (39)

The linearized equation for the scalar about the point � ¼
0 is then

� d2

dz2
�þ R2

2ðm2 �m2
cÞ � 1=4

z2
� ¼ !2�; (40)

where we have assumed time dependence e�i!t. This is

essentially a Schrödinger equation with energy !2: the

existence of a negative energy bound state indicates a

mode growing exponentially in time and hence an insta-

bility, and it is a well-known fact that if z can take values

from 0 to 1 then such negative energy bound states exist

when m2 <m2
c, leading to the BF bound.

In our problem, however, z does not take values on the

whole half line. At some small UV value zUV we should

match onto the asymptotic UV geometry. We will now

show that if we also choose an appropriate infrared cutoff

zIR then even when m2 is below the BF bound (40) will
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have no bound states. To understand this, let us assume for

simplicity that � satisfies Dirichlet boundary conditions

�ðzIR;UVÞ ¼ 014 and consider the zero energy ! ¼ 0 solu-

tions to (40). We find that the solution is oscillatory (see

also discussion in [23])

�ðzÞ ¼ ffiffiffi
z

p
sin

�

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
c �m2

q

log
z

zUV

�

; (41)

and importantly, the zero energy solution satisfies the

boundary condition only when

log
zIR
zUV

¼ �

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
c �m2

p : (42)

Essentially we must fit a single half-period of the oscilla-

tory wave function inside. This wave function has no

nodes; thus if zIR satisfies this condition, then the lowest

energy state has zero energy and there is no instability.

Decreasing the distance between zIR and zUV will only

increase the energy of the ground state. On the other

hand, if we increase this distance-if zIR is too high-then

the ground state will have negative energy, indicating an

instability.

Now in our problem zIR can be provided by a small finite

temperature, which ends the geometry with a horizon at

some large value zh. We thus find that if zh > zIR as defined

above, there will be an instability that can be resolved only

by condensation of the scalar. The critical temperature Tc

is thus given by

Tc �
1

zh
�� exp

�

� �

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
c �m2

p

�

; (43)

where �� exp½zUV� is some UV scale. We have been able

to confirm this numerically, including the prefactor in the

exponent (see Fig. 6).

What if T < Tc? Now the IR cutoff cannot be provided

by the horizon, and must instead be provided by nonline-

arities associated with the scalar potential, which will

become important near zIR. We then expect that the con-

densate h�i should itself exhibit similar exponential scal-

ing as (43), as was found explicitly in a similar context in

[37]. We present here a simple way to understand this

result. Note that for m2 only slightly below m2
c the IR

theory is basically the original conformal IR CFT for an

exponential hierarchy of scales. In this IR CFT, � is

unstable and has dimension given by

� ¼ 1
2 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
cR

2
2 �m2R2

2

q

� 1
2: (44)

Since � has dimension 1
2 , it should transform under a

scaling transformation as

�ð�zÞ ¼ �ð1=2Þ�ðzÞ: (45)

We expect that h�i should be simply related to the value of

�ðzÞ at the UV matching value zUV, as essentially only

linear UV evolution will be required to relate them, and

thus

h�i � �ðzUVÞ: (46)

Similarly, the value of � in the deep IR will be determined

by nonlinearities, which we expect to result in

�ðzIRÞ �Oð1Þ: (47)

We thus find from (45) that

�ðzIRÞ ¼
ffiffiffiffiffiffiffiffi
zIR
zUV

s

�ðzUVÞ; (48)

which results upon evolution through the UV region to the

AdS4 boundary in

h�i �
ffiffiffiffiffiffiffiffi
zUV
zIR

s

��IR exp

�

� �

2R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
c �m2

p

�

: (49)

Note that the exponent for h�i is half that obtained for Tc.

In the intermediate conformal regime � scales as a dimen-

sion 1=2 operator and the temperature scales as dimension

1: this is the origin of the factor of 2 difference in the

exponents above. Eventually in the far IR nonlinearities

become important and a scale is generated, but the theory is

not gapped; provided that the scalar potential has a mini-

mum, as described in Sec. III, it instead flows to a different

AdS2 fixed point, and the IR scale manifests itself only as

an irrelevant perturbation (32) along which we flow to this

new fixed point.

It is possible to perform a more explicit calculation of

(49), following the techniques used in [37] where similar

scaling is obtained in an AdS2 that arises from a D3=D5
brane construction. From such a treatment it is clear that

there should exist an infinite tower of ‘‘Efimov states’’ that

correspond to allowing oscillatory solutions such as (41) to

−

FIG. 6. The exponential dependence of Tc as a function of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
c �m2

p

R2. Here we have compensated for the expected

theoretical behavior of Tc and plotted the resulting function

versus m2; we see that as m2 ! m2
c the values approach a

constant, verifying our prediction.

14Note that more general boundary conditions simply result in
slight changes in the value of zIR and zUV
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move through more periods before matching to the IR

solution. These have h�i � exp½� n�

2R2

ffiffiffiffiffiffiffiffiffiffiffiffi
m2

c�m2
p � with n a

positive integer. We have been able to find the first two

of these states numerically (see Fig. 7); as explained in [37]

the relevant wave functions have more nodes with increas-

ing n and so the n ¼ 1 state is energetically favored.

To conclude this subsection we note that turning on any

finite temperature the phase transition becomes that of the

mean field, since the physics depended in a smooth way on

the horizon value of the scalar �h. At zero temperature

since the horizon is degenerate we expect the boundary

values of � to depend on the initial value 
 at the horizon

in Eq. (32). It would be interesting to understand this better.

C. Quantum critical points for holographic

superconductors

Finally, note that the scaling behavior (43) and (49) also

applies to the condensate of a charged scalar, which results

in the well-studied holographic superconductor.15 In such a

case the coupling to the background electric field is im-

portant; also one now has the possibility of supplying an

external magnetic field H for Uð1Þcharge16 [46]. The effect

of the electric field on the conformal dimension is shown in

(1), and the generalization of this formula to include the

effect of the magnetic field is (see Appendix A for a

derivation)

� ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2R2

6
þ ð6jbqj � q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12b2
p

� 1

72b2
þ 1

4

s

;

(50)

where b � H
�2

B

is the dimensionless ratio between the

boundary magnetic field H and chemical potential.17

Again the quantum phase transition will happen when �
becomes complex. It is clear from here that there is a

different critical mass m2
c than in the neutral case; alter-

natively, one can now imagine tuning the magnetic field

through a critical valueHc, which is again found by setting

the expression inside the square root of (50) to zero. For

H >Hc there will be no condensate, and forH slightly less

thanHc one will find similar nonanalytic behavior as above

as a function of the deviation of H from Hc. The explicit

expression for Hc is rather complicated and is given in

(A28).

We plot the critical values Hc in the q�m2 plane in

Fig. 8. Note, in particular, that the expression in (50)

FIG. 7 (color online). Efimov states: for comparison we plot

expected results from the analytic arguments described in the

text. Agreement can be seen at this level but numerical difficul-

ties prevent us from probing this region more carefully.
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FIG. 8 (color online). Contour plot for the critical magnetic

field in the m2; q plane. The critical field Hc increases as we

move to the left. In region A the IR dimension, even with H ¼ 0,
is real and there is no condensate. In regions B and C there exists

a finite magnetic field Hc above which the condensate is de-

stroyed. However, Hc diverges as we move to the left and is

infinite on the boundary between regions C and D. In region D
even an infinitely strong magnetic field will not stop the con-

densation. This is understandable: everywhere to the left of the

line m2 ¼ m2
c the scalar has a sufficiently negative mass that it

would have condensed even if it was uncharged and so it is

perhaps not unexpected that a magnetic field cannot halt this

condensation. In region C again the scalar would have con-

densed even if it was uncharged, but here the charge is high

enough that a sufficiently strong magnetic field can stop the

condensation.

15Similar exponential dependence of the critical temperature in
such a case has been observed by Faulkner and Roberts.
16Note that this magnetic field is an external field strength for
Uð1Þcharge and has absolutely nothing to do with the ‘‘magnetic’’
field associated with the antiferromagnetic ordering discussed
later in this paper, which would correspond to a chemical
potential for the SUð2Þ gauge field Aa

t .

17�B is the dimensional version of the dimensionless chemical
potential � we were using earlier; see Appendix A 1 for further
explanation.
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containing b saturates at a finite value jqj
2
ffiffi
3

p as b ! 1. Thus

if

m2R2 þ
ffiffiffi

3
p

jqj<�3
2 (51)

no matter how large the magnetic field is, a condensate

cannot be prevented. This is region D in Fig. 8. This is

understandable: everywhere in this region the scalar mass

is below the neutral AdS2 BF bound m2R2 ¼ � 3
2 and so it

would have condensed even if it was uncharged. As the

electric field is in some sense not responsible for the

instability, it may make sense that a magnetic field cannot

halt it. It will be interesting to find field theoretical models

with this feature.

V. ANTIFERROMAGNETISM AND SPIN WAVES

We have understood in detail the mechanism by which a

neutral scalar field can condense in a finite density geome-

try. We would now like to employ this new understanding

to holographically model symmetry breaking with such a

neutral order parameter. One immediate example is anti-

ferromagnetic order: as explained in the Introduction, in

the low energy limit of interest to us spin rotations may be

thought of as a global SUð2Þ symmetry. Antiferromagnetic

ordering then corresponds to a spontaneous breaking

SUð2Þ ! Uð1Þ, where the unbroken direction corresponds

to rotations about a single axis. In such a system the

background value of the spin density remains zero, but

there is a neutral order parameter �a that corresponds to

the staggered magnetism.

In this section we construct the bulk dual of the operator

�a: we embed the neutral scalar field � discussed in

Sec. II, III, and IV into part of an SUð2Þ triplet scalar field
�a charged under the SUð2Þ bulk gauge field correspond-

ing to the global spin SUð2Þ symmetry of a boundary

theory. The phase transition discussed earlier then becomes

a transition to an AFM phase.

Note that while we use the word antiferromagnetic there

is no sense in which the microscopic degrees of freedom of

our system consist of spins that are antialigned on a bipar-

tite lattice. We use the term to describe only the symmetry

breaking pattern described above, realized in a manner that

manifestly requires a finite density for symmetry breaking.

We do feel that if indeed gravity duals could be constructed

top-down for such systems they would likely contain in-

gredients similar to those in our description.

A. Embedding of �

More explicitly, we can consider the following action:

S ¼ Sgrav þ Smatter; (52)

with

Sgrav ¼
1

2�2

Z

d4x
ffiffiffiffiffiffiffi�g

p �

Rþ 6

R2

�

; (53)

where R is the curvature radius of AdS4. The relevant part
of the bulk Lagrangian for matter fields is then given by

2�2

R2
Lmatter ¼ � 1

4g2A
Fa
MNF

MNa �GMNG
MN

� 1

�

�
1

2
ðD�aÞ2 � Vð�aÞ

�

; (54)

with

Fa
MN ¼ @MA

a
N � @NA

a
M þ abcAb

MA
c
N ;

GMN ¼ @MBN � @NBM;
(55)

and

DM�
a ¼ @M�

a þ abcAb
M�

c: (56)

Wewill take the potential V to have the double well form of

(12)

Vð�aÞ ¼ 1
2m

2 ~� 	 ~�þ 1
4ð ~� 	 ~�Þ2: (57)

We again put the system at a finite density by turning on

a chemical potential for the Uð1Þcharge, with a background

metric given by (6). We note that in this background all

SUð2Þ gauge fields are inactive. This highlights an impor-

tant difference between this setup and the usual Uð1Þ holo-
graphic superconductor; in the Abelian case there is a

background chemical potential � for the Uð1Þ charge;

this does not break the Uð1Þ but does interact via the

bulk equations of motion with the charged scalar order

parameter, causing it to condense for a suitable choice of

mass and charge. This is distinctly different from the SUð2Þ
case studied here; specifying a chemical potential for the

SUð2Þ would involve picking a direction �a in the SUð2Þ
space, corresponding to an explicit breaking of the sym-

metry. This is analogous to applying an external magnetic

field. We study this explicit breaking in Sec. VI and for

now focus on the spontaneous breaking of SUð2Þ.
When m2 falls in the range (11), the background (6)

becomes unstable toward the condensation of the scalar

�a, which will then spontaneously break the SUð2Þ to a

Uð1Þ subgroup. More explicitly, consider the following

ansatz:

�a
0 ¼

�

0; 0;
�ðrÞ
R

�

; Aa
M ¼ 0; (58)

which can be readily checked by examining the equations

of motion as being self-consistent, if we ignore the back-

reaction to the background geometry. We note, in particu-

lar, that one can consistently set the SUð2Þ gauge field to 0.
This is because of the non-Abelian nature of the interac-

tions of the gauge field and scalar, e.g., fabc�bAc etc.,

which clearly vanish if all objects point only in one direc-

tion in the SUð2Þ space.
Plugging (58) into the equations of motion following

from (54) we precisely find (14) and our previous discus-
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sion of the phase transition in Secs. II, III, and IV can be

taken over completely. Note that if we consider a finite �
and turn on backreaction, the profile for the Uð1Þ gauge
field in (6) and the background metric will be modified, but

one can still set the SUð2Þ gauge field to zero.

B. Spin waves

To characterize the ordered phase, we study in this

section perturbations around the symmetry breaking solu-

tion (58) with a nonzero order parameter �a but zero

background gauge field Aa
M. We show that the system has

two linearly dispersing gapless modes, corresponding in

the field theory to the two Goldstone modes arising from

the spontaneous breaking of the global SUð2Þ symmetry,

and that their velocity is given by the expression expected

from the standard field theory for a quantum antiferromag-

net. From the bulk point of view, low-frequency rotations

of the order parameter in the broken symmetry directions

will source bulk gauge field fluctuations, which we will

find to be normalizable at the AdS boundary if they obey a

specific dispersion.18

Our analysis for the remainder of this section will not

depend at all on the details of the metric or scalar profile

(except that it is normalizable). We will work in a general

boundary spacetime with a bulk black brane metric given

by

ds2 � gMNdx
MdxN ¼ gttdt

2 þ grrdr
2 þ gxxd~x

2: (59)

We work at finite temperature with gtt (grr) having a first

order zero (pole) at the horizon r ¼ r0.
Let us begin by understanding why from the gravity

point of view there should exist a gapless mode. Con-

sider a global SUð2Þ gauge rotation of the background

order parameter �a
0ðrÞ, at ! ¼ 0 and k ¼ 0;

��a
i ðrÞ ¼ �iab�

b
0ðrÞ; (60)

where �i, i ¼ 1, 2 is a generator along one of the broken

directions so that ��a is nonzero and  is a constant. This

small perturbation will obviously be a solution to the bulk

gravity equations of motion; it is in fact a normalizable

solution at the AdS boundary, precisely because �a
0 is

normalizable. This appears somewhat trivial—but note

that this is exactly a gapless mode, as it is a normalizable

solution that exists in the limit ! ! 0. Now consider a

local SUð2Þ gauge rotation with the gauge parameter 
having a small frequency and momentum in the x direction,
i.e., ðt; xÞ / e�i!tþikx. The perturbation to the scalar takes

the same form (60), but now we have extra perturbations to

the gauge fields

�Ai
t ¼ �i!; �Ai

x ¼ ik: (61)

These are not normalizable at infinity, and thus this pure

gauge transform is no longer a normalizable solution.

Thus, at any nonzero ! and k to find a normalizable

mode we must move off of the pure gauge solution and

actually solve the dynamical equations of motion. The

existence of the global solution (60) guarantees that we

as we take!, k ! 0we will find a gapless solution, but the
dynamical bulk equations of motion will show that it will

be normalizable only when a certain dispersion relation

!ðkÞ is satisfied.

1. Pions in the bulk

The previous discussion has convinced us that the ex-

istence of the gapless mode is intimately related to our

ability to perform global rotations on the order-parameter,

i.e., to bulk Goldstone modes. Let us thus parametrize

fluctuations of � in terms of bulk Goldstone fields (or

‘‘pions’’) �iðr; t; xÞ as follows:
�ðr; xÞ ¼ expði�iðr; t; xÞ�iÞ�0ðrÞ; (62)

where�0ðrÞ is the background solution and as before �i are
the broken symmetry generators. We now work out the

bulk quadratic action of the �i to be19

Sð�Þ ¼ � R2

2�2

Z

d4x
1

2�

ffiffiffiffiffiffiffi�g
p

gMNð@M�i � Ai
MÞ

� ð@N�j � Aj
MÞhij: (63)

Here hij can be viewed as a metric on the Goldstone boson

space, given by

hijðrÞ ¼
1

2
�y

0 ðrÞf�i; �jg�0ðrÞ ¼
�2

R2
�ij: (64)

Thus, the two Goldstone modes decouple. Below we will

focus on one of them and drop the index i for notational
simplicity.

The equation of motion for � is then

@Mð�2 ffiffiffiffiffiffiffi�g
p

gMNð@N�� ANÞÞ ¼ 0: (65)

It is clear that in the limit !, k ! 0, a constant pion profile
�ðrÞ ¼ �0 and vanishing gauge field A ¼ 0 provide a

solution to the equations of motion. This is the gauge

transform discussed earlier.

Let us now briefly detour to discuss the asymptotic

behavior of the pion field. Carrying out the standard analy-

sis and using the fact that the background solution is

normalizable20: �ðrÞ � r�� for large r, we find that as

r ! 1;

18Methods similar to those used here may be used to obtain
analytic control over the hydrodynamics of the Uð1Þ holographic
superconductor [52].

19In writing this expression we have assumed that the back-
ground gauge field is zero; thus we have neglected intrinsically
non-Abelian terms of the form fabc�bAc which all arise at
higher order.
20We restrict ourselves to the ordinary quantization for this
section.
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�ðrÞ � Bþ Ar�dþ2�; r ! 1: (66)

To understand this it is useful to remember that fluctuations

in the original field ��ðrÞ are related to � as ��ðrÞ ¼
�ðrÞi�i�0ðrÞ � �ðrÞr��. Comparing this to the asymp-

totic behavior of the scalar (17) we see that the constant

piece B of � at infinity is actually normalizable, while the

piece A is not normalizable and should be viewed as the

source for the pion field.21

2. Yang-Mills equations

Fluctuations of�will excite the non-Abelian gauge field

Aa
Mðr; t; xÞ, whose linearized equations are

1

~g2A
rMF

MN þ �2gNPð@P�� APÞ ¼ 0: (67)

Again we have suppressed the index i which labels the

broken generators, since at the linearized level different

directions decouple. We have absorbed various factors into

a rescaled gauge coupling

1

~g2A
¼ R2�

g2A
; (68)

which controls the strength of the effects of the scalar

sector on the gauge field. We could, of course, always

choose a unitary gauge to get rid of the Goldstone boson

�—but to make the connection to boundary Goldstone

modes more obvious we will not do this and instead choose

the gauge Ar ¼ 0. It is convenient, as in [53], to work with
the momenta J� conjugate to the bulk gauge field A�,

defined as22

J� � 1

~g2A

ffiffiffiffiffiffiffi�g
p

F�r ¼ � 1

~g2A

ffiffiffiffiffiffiffi�g
p

grrg��@rA�: (69)

The value of the bulk field J� at the AdS boundary r ! 1
equal to the expectation value of the current in the quantum

field theory hJ �iQFT.
The N ¼ r component of the Maxwell equations (67)

can now be written

@�J
� ¼ � ffiffiffiffiffiffiffi�g

p
grr�2ðrÞ@r�: (70)

If the symmetry is unbroken then � ¼ 0 and this is nothing
but the conservation of current. Let us now consider eval-

uating this expression at the AdS boundary. Comparing

(70) to the asymptotic behavior of � in (66) we see that the

entire right-hand side of this expression is proportional

(with no extra factors of r) to the coefficient A in the

near-boundary expansion of �, i.e., to the source for the

Goldstone boson field. This is simply the usual field theory

Ward identity, which says that in the absence of a

Goldstone source the field theory current is conserved.

The other nontrivial equations from (67) are those in t
and x directions with nonzero Axðr; t; xÞ and Atðr; t; xÞ only,
given by

� @rJ
t þ 1

~g2A
rxF

xt þ ffiffiffiffiffiffiffi�g
p

gtt�2ð@t�� AtÞ ¼ 0; (71)

� @rJ
x þ 1

~g2A
rtF

tx þ ffiffiffiffiffiffiffi�g
p

gxx�2ð@x�� AxÞ ¼ 0: (72)

Equations (65) and (70)–(72) are the full set of equations

for this system.

3. Boundary Goldstone modes and their spin wave

velocity

We will now solve the above equations in the hydro-

dynamic limit to show explicitly the existence of a

Goldstone mode, i.e., a normalizable solution to (65) and

(70)–(72) that is infalling (or regular) at the horizon and

exists in the limit of small! or k. Wework in Fourier space

� ¼ �ðrÞe�i!tþikx; At;x ¼ At;xðrÞe�i!tþikx: (73)

Recall that at precisely 0 frequency and momentum we

already know a solution to these equations: a constant pion

profile �ðrÞ ¼ �0 and A ¼ 0. We now expand around this

solution in powers of ! and k. To lowest order we simply

solve the forced equations for A given by (71) and (72) with

the forcing term provided by the zeroth-order solution for

�, meaning that

AtðrÞ �Oð!�0Þ; AxðrÞ �Oð�0kÞ: (74)

The first correction to �ðrÞ enters through (65) and in-

volves one extra field theory derivative, and thus we see

that

�ðrÞ ¼ �0 þ �1ðrÞ; �1ðrÞ �Oð�0!
2; �0k

2Þ: (75)

The solution we want for A is both infalling at the black

hole horizon and normalizable at the boundary; such a

solution is nontrivial because of the forcing term23 and is

given by

At ¼ �i!�0ð1� atðrÞÞ; Ax ¼ ik�0ð1� axðrÞÞ;
(76)

where at and ax are defined to be infalling at the horizon

and satisfy the homogenous part (and zero frequency) part

of (71) and (72):

1

~g2A
@rð

ffiffiffiffiffiffiffi�g
p

grrgtt@ratÞ �
ffiffiffiffiffiffiffi�g

p
gtt�2at ¼ 0; (77)

21It is amusing to note that computing the momentum conjugate
to � precisely extracts out the source in this case, in exactly the
same way that it extracts out the vacuum expectation value in the
more familiar case of a standard massless scalar.
22For convenience of discussion here we have chosen a differ-
ent normalization for the currents below.

23Of course as the force �0 vanishes the only solution that is
infalling and normalizable becomes the trivial one A ¼ 0.
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1

~g2A
@rð

ffiffiffiffiffiffiffi�g
p

grrgxx@raxÞ �
ffiffiffiffiffiffiffi�g

p
gxx�2ax ¼ 0: (78)

To ensure that At and Ax in (76) are normalizable we also

require that

atð1Þ ¼ 1; axð1Þ ¼ 1: (79)

The corresponding equations for the pion profile are

�1 ¼ !2�0C
tðrÞ þ k2�0C

xðrÞ; (80)

where the dynamical equations for Ct and Cx can be

written from (65) as expressions for the radial indepen-

dence of two objects 
t and 
x:

@r

x ¼ 0;


x � � ffiffiffiffiffiffiffi�g
p

�2grr@rC
x þ 1

~g2A

ffiffiffiffiffiffiffi�g
p

grrgxx@rax;

(81)

@r

t ¼ 0;


t � ffiffiffiffiffiffiffi�g
p

�2grr@rC
t � 1

~g2A

ffiffiffiffiffiffiffi�g
p

grrgtt@rat:
(82)

The precise form of these equations turns out to not be

important: the crucial fact is that Ct;x are essentially driven

by at;x, and so we can find solutions to them that are also

infalling and normalizable—where normalizable in this

case means that the term �2@rC
x;t vanishes at infinity [as

explained in the discussion around (66)].

So far it appears that we have found a solution that is

both infalling and normalizable, for all small frequency

and momenta. This should not be possible, and indeed we

have yet to impose the constraint (70). We find then the

relation

!2 ¼ v2
sk

2; v2
s ¼


x


t

: (83)

This is consistent only because of the radial independence

of 
x and 
t, which away from the boundary involves

fluctuations of the pion field. Thus, we have shown that

there exists a normalizable infalling mode provided that!,

k obey a linear relation. This is our main result.

It is convenient to evaluate (81) and (82) at r ¼ 1,

where the terms depending onCt;x do not contribute, which

leads to


x ¼
1

~g2A
lim
r!1

ffiffiffiffiffiffiffi�g
p

grrgxx@rax; ; (84)


t ¼ � 1

~g2A
lim
r!1

ffiffiffiffiffiffiffi�g
p

grrgtt@rat: (85)

Note that this is equivalent to the statement that at the

boundary the right-hand side of (70) vanishes—in the

absence of a Goldstone boson source the current is con-

served. Recall that at, ax obey the zero frequency and

unitary gauge infalling wave equations. It was shown in

[53] that on such a field configuration at infinity the ratio of

the current Jx;t � @rax;t to the field ax;t [which are unity in

this case from (79)] itself is simply the field theory Green’s

function for the current. We thus conclude that


x ¼ �R2Gxxð! ¼ 0; k ¼ 0Þ; (86)


t ¼ ��R2Gttð! ¼ 0; k ¼ 0Þ; (87)

where

G��ð!; kÞ ¼ hj�ð!; kÞj�ð�!; kÞiretarded; (88)

are momentum space retarded Green function of the spin

current j� along a symmetry-broken direction. We thus

find that the spin velocity vs can be written as

vs ¼
�
Gxxð! ¼ 0; k ¼ 0Þ
�Gttð! ¼ 0; k ¼ 0Þ

�
1=2

: (89)

This is the expected expression for an antiferromagnet. In

particular, recognizing that [54–57]

�s ¼ Gxxð! ¼ 0; k ¼ 0Þ;
�? ¼ �Gttð! ¼ 0; k ¼ 0Þ;

(90)

where �s is the spin stiffness and �? is the transverse

magnetic susceptibility, we recover the standard expres-

sion

vs ¼
ffiffiffiffiffiffiffi
�s

�?

s

: (91)

Note that Eq. (76) has a simple boundary theory inter-

pretation: j� / @��0, as expected for the superfluid part of

the current density. In our probe analysis, there is no

normal component. Also note that our analysis above gives

a nice correspondence between the Higgs mechanism in

the bulk and the dynamics of Goldstone modes in the

boundary theory.

C. Evaluation of spin wave velocity

We now evaluate Gxx and Gtt to find the spin velocity. It

is convenient to derive a flow equation for them as in [53].

We start with ax; examining the near-horizon behavior of

Eq. (77) we see that for the solution to be nonsingular we

need

@rax
ax

¼ ~g2A�
2

4�T
; (92)

where T is the temperature. Introducing

G xðrÞ ¼
1

~g2A

ffiffiffiffiffiffiffi�g
p

grrgxx@rax
ax

(93)

from (78) we find Gx satisfies the flow equation

@rGxðrÞ ¼
ffiffiffiffiffiffiffi�g

p
gxx�2 � ~g2AG

2
xðrÞ

ffiffiffiffiffiffiffi�g
p

grrgxx
: (94)
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This equation should be integrated from the horizon [where

from (92) we have GxðrhÞ ¼ 0] to the AdS boundary,

where it is equal to the Green’s function Gxxð! ¼ 0; k ¼
0Þ.

Similarly to above, for at we introduce

H tðrÞ ¼
~g2Aat

ffiffiffiffiffiffiffi�g
p

grrgtt@rat
: (95)

This is convenient, as at the horizon at ¼ 0. The corre-

sponding flow equation for H t is

@rH tðrÞ ¼
~g2A

ffiffiffiffiffiffiffi�g
p

grrgtt
�H 2

t ðrÞ
ffiffiffiffiffiffiffi�g

p
gtt�2; (96)

and it should be integrated from the horizon, where the

relevant boundary condition is H tðrhÞ ¼ 0, to infinity. In

terms of (93) and (95) the spin wave velocity (89) can be

written as

vs ¼ ð�Gxð1ÞH tð1ÞÞð1=2Þ: (97)

Evaluation of this requires knowledge of the scalar profile

and can only be done numerically; some representative

plots are shown in Fig. 9.

It is interesting to see what happens near the phase

transition, where we have some analytic control; here we

have �2 � ðT � TcÞ from earlier results. Now, examining

the flow equations we see thatH tð1Þ remains finite in this

limit, and is in fact given [up to corrections analytic in

ðT � TcÞ] by

�H t ¼ �
Z 1

r0

~g2A
ffiffiffiffiffiffiffi�g

p
grrgtt

¼ 1

�
; (98)

where � is the spin susceptibility in the unbroken phase.

The second equality in (98) follows from the Uð1Þ analysis

in Appendix D of [53]. On the other hand for Gx we find

from (94) that near the transition Gx � ðT � TcÞ. Thus the
nonlinear term in the evolution can be neglected, leading to

G xð1Þ ¼
Z 1

r0

dr
ffiffiffiffiffiffiffi�g

p
gxx�2: (99)

We find then near Tc

v2
s ¼

1

�

Z 1

r0

dr
ffiffiffiffiffiffiffi�g

p
gxx�2 / ðT � TcÞ: (100)

Note that above Tc, �s ¼ Gxxð! ¼ 0; k ¼ 0Þ becomes

identically zero. It would be interesting to extend this

analysis to understand what happens to the spin wave

velocity at zero temperature near the quantum critical

transition.

VI. EXTERNAL ‘‘MAGNETIC FIELDS’’ AND

FORCED FERROMAGNETIC MAGNONS

We have constructed a gravity description of the sponta-

neous breaking of an SUð2Þ symmetry—analogous to the

Neel phase in a spin system—and displayed the associated

spin waves. In this section we turn briefly to a ferromagnet.

A ferromagnet can be understood as a system undergoing

spontaneous symmetry breaking in which the broken vac-

uum is charged under the unbroken generator. The spin

waves in this case possess a quadratic dispersion !� k2.
This setup is not straightforward to realize in hologra-

phy—the spontaneous generation of a nonzero spin density

means that essentially one now wants the unbroken non-

Abelian gauge field itself to condense, without supplying

any external chemical potentials. We leave this for future

work.

In this section we consider something simpler—imagine

applying an external magnetic field H to a sample contain-

ing spins, forcing them to align along the direction of the

field. In our setup this corresponds to picking a direction in

the SUð2Þ space—we will pick the 3 direction—and sup-

plying a chemical potential ��H for the gauge field in

that direction [in this section only � refers to the chemical

potential for the non-Abelian gauge field; we will set the

Uð1Þ chemical potential to 0 here, as it does not play an

essential role]. It is interesting to note that this model has

been studied before: it is precisely the ‘‘normal phase’’ of

the holographic p-wave superconductor studied by [58],

but our interpretation is different: in particular, in those

models aUð1Þ subgroup of the SUð2Þ is usually taken to be
an electric charge, which is quite different from our ap-

proach. We will show that small fluctuations around such a

configuration exhibit spin waves whose dispersion is not

gapless, but whose dependence on momentum is indeed

quadratic.

A. Gravity setup

We consider a generic spacetime metric (59) and a

nontrivial non-Abelian gauge field profile

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T/T
c

v
s

FIG. 9. Spin wave velocity as a function of T=Tc for various

values of the rescaled gauge coupling ~gA: ~gA is varied from 1

(lowest curve) in unit increments to 4 (highest curve).
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A3
t ðrÞ ¼ �
ðrÞ; 
ðr ! 1Þ ¼ 1; 
ðr0Þ ¼ 0;

(101)

with all other matter fields turned off. In particular the

scalar �a is uncondensed and will play no role. We will

also set the gauge coupling gA to 1 as when the scalar is

inactive gA plays no role in the classical dynamics that

follows. The profile 
ðrÞ solves the equation
1
ffiffiffiffiffiffiffi�g

p @rð
ffiffiffiffiffiffiffi�g

p
grrgtt@r
ðrÞÞ ¼ 0; (102)

) J3t � � ffiffiffiffiffiffiffi�g
p

grrgtt@rA
3
t ¼ const; (103)

where as above J3t is the canonical momentum conjugate

to A3
t and gives the expectation value of the spin density j

3t

in the boundary theory as hj3ti ¼ J3tðr ¼ 1Þ. For simplic-

ity, we will ignore the backreaction to the background

metric, requiring that both � and J3t are small when ex-

pressed in units of the temperature. Note that� andJ 3t are

related by the spin susceptibility �

hj3ti ¼ ��; (104)

with � given by (98).

We will now slightly perturb this solution. We do not

expect to find a gapless mode, as we have an ‘‘external

magnetic field;’’ however at k ¼ 0 we do expect to find a

normalizable mode with ! ¼ �. To see the existence of

this mode consider performing a gauge transform on the

background (101) with infinitesimal gauge parameter �a:

�Aa
M ¼ abc�cAb

M þ @M�
a: (105)

It is convenient to work with the linear combinations

A� ¼ A1 � iA2; (106)

as these are charge eigenstates under the rotations in the 3

direction for which we have supplied a chemical potential.

If we assume a time dependence of the form e�i!t for �þ

we find the resulting Aþ
t can be written as

Aþ
t ¼ �ðA3

t �!Þe�i!t; (107)

where � is an overall (complex) constant. This perturba-

tion is generically not normalizable at the AdS boundary;

however if we demand that Aþ
t vanish at r ! 1 then this

fixes the frequency and we find

! ¼ �;

Aþ
t ðt; rÞ ¼ ��ð
ðrÞ � 1Þe�i�t � �At0ðrÞe�i�t:

(108)

Thus, there is a normalizable mode at ! ¼ � with the

specified radial profile At0ðrÞ ¼ �ð
ðrÞ � 1Þ.24 We will

now turn on a small k to see how this mode evolves; as

expected for a system with a background spin density, we

will find that the frequency has a quadratic dependence

on k.

B. Dispersion relation for the ferromagnetic magnon

To do this, we will need the full bulk Yang-Mills equa-

tions:

1
ffiffiffiffiffiffiffi�g

p @Mð
ffiffiffiffiffiffiffi�g

p
FaMNÞ þ abcAb

MF
cMN ¼ 0: (109)

The presence of the background gauge potential A3
t can be

conveniently taken into account by defining a gauge-

covariant partial time derivative dt that acts in the � basis

as

dtA
þ
t;x ¼ ð@t þ iA3

t ÞAþ
t;x: (110)

We give all fields a spacetime dependence e�i�te�i�tþikx.

Here� � !��will parametrize deviation from the! ¼
� solution found above. The relevant equations of motion

are those in (109) forN ¼ ðr; t; xÞ. Wewill work again with

the bulk canonical momenta, defined as before:

Jþt � � ffiffiffiffiffiffiffi�g
p

Fþrt ¼ � ffiffiffiffiffiffiffi�g
p

gttgrr@rA
þ
t ; (111)

Jþx � � ffiffiffiffiffiffiffi�g
p

Fþrx ¼ � ffiffiffiffiffiffiffi�g
p

gxxgrr@rA
þ
x : (112)

We first examine theN ¼ r component of (109), which can

be written as

dtJ
þt þ @xJ

þx ¼ iJ3tAþ
t : (113)

This equation is a bulk constraint that reduces on the

boundary to the non-Abelian conservation of current. The

remaining dynamical equations are

1
ffiffiffiffiffiffiffi�g

p @rJ
þt þ @xF

þxt ¼ 0; (114)

1
ffiffiffiffiffiffiffi�g

p @rJ
þx þ dtF

þtx ¼ 0: (115)

Only one of the components of the field strength tensor is

affected by the gauge field background:

Fþ
xt ¼ @xA

þ
t � dtA

þ
x ¼ ikAþ

t � ði�ð
� 1Þ � i�ÞAþ
x :

(116)

We now want to perturb around the ! ¼ � solution found

above. We thus turn on a small k dependence in (108) and

consider a perturbation of the form

Aþ
t ¼ e�i�te�i�tþikxðAt0ðrÞ þ At1ðr;w; kÞ þ . . .Þ; (117)

where At0ðrÞ � ð
ðrÞ � 1Þ is the previously found profile

in (108). Recall that � � !�� parametrizes departure

from � and will be the small parameter in the expansions

that follow. A nonzero Aþ
t will also excite an Aþ

x which we

take to have the form

Aþ
x ¼ Aþ

x ðr;�; kÞe�i�te�i�tþikx: (118)
24The existence of such a mode was observed before in [58] in
the context of conductivity of a p-wave superconductor.
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The other components of the gauge fields can be consis-

tently set to zero except for A�
t;x, which are related to A

þ
t;x by

complex conjugation.

To obtain the magnon dispersion relation wewill expand

the above equations to lowest order in the � and k expan-

sion and look for solutions that are both infalling (or

regular) at the horizon and normalizable at the AdS bound-

ary. These equations will have the same structure as in the

antiferromagnetic case above; we will find second-order

radial equations for Aþ
x and the correction At1 that are

forced by the known solution At0.

More explicitly, plugging (117) and (118) into (114) and

(115), and expanding them in powers of � and k, we find
that

Aþ
x ðrÞ �OðkÞ; At0 �Oðk2Þ: (119)

We thus introduce the following:

Aþ
x ðrÞ ¼ k

�

1� axðrÞ
axð1Þ

�

; At1ðrÞ ¼ k2at1ðrÞ: (120)

Here by construction Aþ
x is normalizable, and from (115)

we find that axðrÞ satisfies the homogenous equation

1
ffiffiffiffiffiffiffi�g

p @rð
ffiffiffiffiffiffiffi�g

p
grrgxx@raxÞ ��2ð
� 1Þ2gttgxxax ¼ 0:

(121)

There is a forced radial equation for the correction to the

At1 profile at1ðrÞ, but we will not need to solve it explicitly
to find the dispersion, analogous to the antiferromagnetic

case where the correction to the pion profile was not

explicitly needed;

1
ffiffiffiffiffiffiffi�g

p @rð
ffiffiffiffiffiffiffi�g

p
grrgtt@rat1Þ ¼ �ð
� 1Þgttgxxax: (122)

It is of course critical to note that an infalling and normal-

izable solution to this equation can always be found.

We now impose the constraint arising from the conser-

vation of current (113). Again it is simplest to evaluate it at

the AdS boundary first; here the right-hand side of (113)

vanishes [as by construction we are looking at a normal-

izable solution with Aþ
t ð1Þ ¼ 0]. We find the dispersion

relation

� ¼ !�� ¼
�
1

J3t
lim
r!1

ffiffiffiffiffiffiffi�g
p

grrgxx@rax
axð1Þ

�

k2: (123)

This is the desired dispersion relation.

Let us briefly understand the physical origin of the

differences from the linear and gapless dispersion found

in the antiferromagnetic case. The dispersion is not linear

because the background value of J3t is finite in the ! ! 0
limit, unlike in the antiferromagnetic case where it is

proportional to !: this means that we are now balancing

a term of order! against one of order k2, rather than a term
of order!2. The mode is not gapless because at infinity the

gauge-covariant derivative dt ¼ @t þ iA3
t ! �i!þ i�,

resulting in a shift in !. These considerations lead us to

expect that if one were able to create a situation with a

nonzero J3t in the absence of a background chemical

potential—i.e., a true spontaneous ferromagnet—one

would find precisely the gapless quadratic dispersion of

the standard ferromagnetic magnon.

Note that we can interpret the expression (123) in terms

of field theory quantities. Again using expressions from

[53], we can rewrite the ratio of @rax to ax in terms of a

field theory correlator to find

� ¼
�
GRð! ¼ �; k ¼ 0Þ

Jt3

�

k2; (124)

with

GRð!; kÞ ¼ hjþx ð!; kÞj�x ð�!; kÞiretarded; (125)

i.e., GR
xx is the field theory retarded correlator for jþx

evaluated at the nonzero frequency ! ¼ �. The prefactor

of the quadratic dispersion is consistent with the expected

result for a ferromagnet [59].

We now evaluate the constraint (113) at arbitrary r. Now
the right-hand side no longer vanishes, and we find

� ¼ !�� ¼ �k2; (126)

where

� ¼ � 1

J3t

�

�ð
� 1Þ ffiffiffiffiffiffiffi�g
p

grrgtt@rat1ðrÞ

�
ffiffiffiffiffiffiffi�g

p
grrgxx@raxðrÞ
axð1Þ

�

þ at1ðrÞ: (127)

It can readily checked from (121) and (122) that � is

independent of r, and evaluated at r ! 1 we find that �
reduces to the expression in (123). Again, even though we

did not need to explicitly solve for at1ðrÞ to find the

dispersion, its fluctuations are essential to make sure that

the constraint from non-Abelian current conversation is

upheld at all points in the bulk.

C. Evaluation of dispersion

We now turn to the evaluation of the dispersion �. This
bears a large formal similarity to the evaluation of con-

ductivities studied in [53]. We consider the following

‘‘transport coefficient’’ defined at all values of r:

�ðr;�Þ ¼ �
ffiffiffiffiffiffiffi�g

p
grrgxx@raxðrÞ
i�axðrÞ

: (128)

The motivation behind this name will soon be made clear.

Q is simply related to the boundary value of this object:

� ¼ � i�ðr ! 1;�Þ
�

; (129)

where we have used (104). From (121), we find that �
obeys a simple radial evolution equation,
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@r� ¼ i�

ffiffiffiffiffiffiffiffiffiffi
grr
�gtt

s �
�2

�
��ð
� 1Þ2

�

; (130)

with

�ðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g

�grrgtt

s

gxxðrÞ; (131)

and at the horizon the value of � is fixed by the infalling

boundary condition to be �ðrh;�Þ ¼ �ðrhÞ (this is ex-

plained in detail in [53]).

Before considering general �, let us consider the limit

� ! 0, in which case @r� ¼ 0, � becomes constant in r,
and is in fact equal to the normal (Abelian) DC conduc-

tivity �DC of a Uð1Þ current on this background. Thus we

find for the ‘‘magnon’’ dispersion (123)

! ¼ �ik2
�DC

�
: (132)

This relation is not surprising; when taking � to 0 we are

removing all non-Abelian effects and returning to the zero

density system, and (132) simply describes the diffusion in

the longitudinal channel of a Uð1Þ current. The diffusion

constant is seen to be
�DC

� , as is required by the Einstein

relation.

For generic � we must evaluate this expression numeri-

cally. In this section alone for simplicity we work with the

normal AdS-Schwarzschild metric in coordinates with �
set to 0. We do not require the Reissner-Nordstrom metric

here; even in the absence of a net Uð1Þ charge, one can

imagine polarizing thermally excited spins with an external

magnetic field. We do not expect inclusion of a Uð1Þ
charge to qualitatively change the results. We work in units

where both�DC and� have been set to 1. The results of the

numerical evaluation are shown in Figs. 10 and 11 as a

function of �=T.
Perhaps the most obvious feature of these diagrams is

that � has a large imaginary part, corresponding to a strong

dissipation. This is due to the fact that we are evaluating

our bulk equations as a perturbation about a nonzero

frequency ! ¼ �; these waves are infalling at the black

horizon and result in a large dissipation. We expect that if

we were able to construct a true spontaneous ferromagnet

with � ¼ 0 then our bulk equations would be evaluated at

! ¼ 0 and � would then be both real and gapless.

As mentioned earlier, this model is the normal phase of

the holographic p-wave superconductor of [58]. According
to their discussion, at sufficiently large

�
T
(roughly

�
T
� 15:9

in our units) this system becomes unstable towards a

condensate of the vector fields A1;2
x;y. It would be interesting

to understand further such a condensate—in our language,

a persistent spin current—from the magnetic point of view

taken in this paper.

VII. DISCUSSION AND CONCLUSIONS

In this paper we studied holographic phase transitions

associated with condensation of a neutral order parameter,

both at finite temperature and associated quantum critical

point. We also considered the embedding of the neutral

order parameter into the staggered magnetization for an
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FIG. 10 (color online). The real and imaginary parts of � are

shown as a function of�=T. Note as� ! 0, � ! �i as required
by the Einstein relation.
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FIG. 11 (color online). Movement of � in the complex plane as

�=T is varied from 0 to 40.
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antiferromagnetic phase. We show that at the macroscopic

level one recovers the expected features of the antiferro-

magnetic phases including existence of two gapless spin

waves and their dispersion relations.25A similar discussion

in a forced ferromagnetic phase reveals spin waves with

quadratic dispersion relations which again agrees with field

theoretical expectations.

Our discussions left some loose ends which should be

studied further. The first is the phase diagram for the

system in the alternative quantization, for which we only

gave a qualitative picture. The phase boundary for the low

temperature stable condensed phase should be mapped out

more precisely. In particular it should be better understood

what happens to the system at m2R2 ¼ � 27
16 . It seems

possible that the various scaling exponents may not obey

mean field behavior there. As mentioned earlier while the

appearance of a special value m2R2 ¼ � 27
16 has to do with

the nonlinear structure of the potential, we expect this

value and the qualitative behavior we find may not depend

on the details of the potential as far as the next order

nonlinear term is given by �4 (i.e., dictated by a Z2

symmetry). In particular, we expect similar phenomena

should also appear in the context of holographic super-

conductors. Another important question is to work out the

solution for backreacted spacetime geometry. While we

have shown that deep in the IR one should find an AdS2 �
R2 with a different cosmological constant, working out the

backreacted metric for all spacetime may reveal new quali-

tative features. Also, it would be interesting to extend our

analysis for both antiferromagnetic and ferromagnetic spin

waves to include their nonlinear interactions or their back-

reaction on the geometry [60].

The investigation of this paper suggests various other

interesting directions to explore. We name a few here:

A. The nature of the quantum critical point

It would be very interesting to better understand the

nature of the quantum critical point and quantum phase

transitions discussed in this paper. On the gravity side,

along with the example pointed out in [37], they all have

to do with violation of the BF bound in the AdS2 region,

whose critical behavior thus falls into the universality class

discussed in [36], where a critical line [in the sense of a

ð0þ 1Þ-dimensional CFT] ends at critical point. To the left

of the critical point an IR scale is generated, exhibiting the

BKT scaling behavior. Below this IR scale, the system

flows to different IR fixed points depending on the charge

q of the condensate. For a neutral order parameter the

system flows to a fixed point with z ¼ 1, while to a ð2þ
1Þ-dimensional CFTwhen q is sufficiently large. That such

distinct physical phenomena share similar IR behavior is

striking, yet viewed from a (ð2þ 1Þ)-dimensional perspec-

tive, they involve completely different phenomena involv-

ing complete distinct fixed points. We have not yet studied

in detail the critical behavior from uncondensed side and

spatial as well as temporal correlations near these critical

points, which should be accessible from our gravity

treatment.

Despite our gravity description, a field theoretical under-

standing of these critical points remains completely ob-

scure. Can these transitions be understood as lying in the

Landau paradigm? What do they suggest regarding the

underlying mechanism for the condensation of charged

and neutral order parameters in theories with gravity du-

als? Can one find explicit field theoretical models with

similar features? We hope to return to these questions in

the future.

B. Competition between different orders

From a more phenomenological point of view, more

fields can be added to model more physics: e.g., one natural

addition is the inclusion of a superconducting order pa-

rameter corresponding to a bulk field c charged under

Uð1Þcharge. One could also turn on a potential Vð�a; c Þ to
model the interaction between an AFM and superconduct-

ing order parameter. For example, the simplest possibility

one could consider is

Vð�a; c Þ ¼ b ~�
2jc j2: (133)

Note that a negative value of bwill lead to mutual enhance-

ment of both types of instabilities, while a positive value of

b will make them compete. We expect a rich phase struc-

ture to arise from such a construction, which may provide a

strongly coupled example for many condensed matter

problems in which such a competition exists [61].

A different observation is that in the new IR fixed point

for the condensed phase for the neutral scalar field, since
~R2 < R2, the IR dimension (1) for a (different) charged

scalar field appears to be smaller than that in the uncon-

densed phase. This appears to imply that the condensed

phase or associated quantum critical point may enhance the

superconducting instability, say making a previously stable

mode unstable or enhancing the transition temperature to

the superconducting order. A precise understanding of this

will require the explicit construction of the backreacted

geometry.

C. Coupling to fermions

Finally, our work raises a number of concrete questions

regarding the properties of fermions on such backgrounds.

It will be important to consider coupling a Fermi surface to

our system [62]. In an antiferromagnetically ordered state,

the nature of the Fermi surface provides yet another means

to characterize the phase. In particular, the Fermi surface

will reconstruct as a result of the antiferromagnetic order,

in a way that is dependent on the size of the Fermi surface

25As discussed earlier these features only depend on a symme-
try breaking pattern and not details of the microscopic theory.
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in the paramagnetic phase. For the system we have ana-

lyzed here, in which a continuum limit has already been

taken, it will be instructive to see how to take into account

such effects. Relatedly, the evolution of the Fermi surface

across an antiferromagnetic quantum critical point has

emerged as an important characterization of the nature of

the quantum critical point, and it will be interesting to

address this issue in our system as well.

Another issue related to fermions involves their low-

energy spectral properties. Similarly to the scalar case

described above, one expects that the IR scaling dimension

� of the fermion operator will be different before and after

the condensation of the scalar �. In the holographic for-

mulation, � controls the spectral behavior of the fermions;

� > 1 is somewhat similar to a standard Fermi liquid,

whereas � < 1 corresponds to non-Fermi liquid behavior

[20]. Thus we find the tantalizing possibility that the con-

densation of the scalar and thus the existence of antiferro-

magnetic order could change the value of �, perhaps

driving the system between Fermi liquid and non-Fermi

liquid regimes.
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APPENDIX A: EFFECT OF MAGNETIC FIELD ON

IR CONFORMAL DIMENSION

In this Appendix we outline the derivation of (50) dem-

onstrating the effect of a background magnetic field on the

IR conformal dimension of a charged scalar field.

1. Dyonic black hole

We will need to consider the effect of the magnetic field

on the geometry. Turning on such an external boundary

magnetic field for the Uð1Þ current dual to the bulk gauge

BM in (5), the corresponding bulk geometry becomes that

of a dyonic black hole with both electric and magnetic

charges,

ds2 � gMNdx
MdxN ¼ r2

R2
ð�fdt2 þ d~x2Þ þ R2

r2
dr2

f
;

(A1)

with

f ¼ 1þQ2 þ P2

r4
�M

r3
; (A2)

Bt ¼ �B

�

1� r0
r

�

; Bx ¼ � P

R4
y; �B � Q

R2r0
:

(A3)

r0 is the horizon radius determined by the largest positive

root of the redshift factor

fðr0Þ ¼ 0; ! M ¼ r30 þ
Q2 þ P2

r0
: (A4)

The geometry (A1) describes the boundary theory at a

finite density with the charge density �, energy density ,
entropy density s, respectively, given by

� ¼ 2
Q

�2R2gF
;  ¼ M

�2R4
; s ¼ 2�

�2

�
r0
R

�
2
:

(A5)

The external magnetic field H and temperature T are

H ¼ P

R4
; T ¼ 3r0

4�R2

�

1�Q2 þ P2

3r40

�

: (A6)

�B in (A3) corresponds to the chemical potential of the

boundary system.

It is convenient to work with dimensionless quantities by

introducing

Q ¼ �r20; P ¼ hr20; (A7)

and rescaling coordinates as

r ! rr0; ðt; ~xÞ ! R2

r0
ðt; ~xÞ; (A8)

after which Eq. (A1) becomes

ds2

R2
¼ r2ð�fdt2 þ d~x2Þ þ 1

r2
dr2

f
; (A9)

with

f ¼ 1þ 3�

r4
� 1þ 3�

r3
; Bt ¼ �

�

1� 1

r

�

;

Bx ¼ �hy;

(A10)

and

3� � �2 þ h2: (A11)

Setting h ¼ 0 above one recovers the metric (6) used in the

main text.

We will be interested in the system at zero temperature,

for which

Q2 þ P2 ¼ 3r40 or �2 þ h2 ¼ 3; (A12)

and the near-horizon region becomes AdS2 � R2 with

curvature radius

R2 ¼
R
ffiffiffi

6
p : (A13)
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Note that in the zero temperature limit, due to conformal

invariance of the underlying vacuum theory the physically

relevant quantity is the dimensionless ratio

b � H

�2
B

¼ h

�2
: (A14)

Using the second relation in (A12) we can then express

bulk quantities like h (and thus �) in terms of b,

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12b2
p

� 1

2b
: (A15)

2. Scalar operator dimension in the IR

Now consider a scalar field in AdS4 of charge q and

mass m, with an action

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p ½ðDM�Þ
DM�þm2�
��; (A16)

where the gauge-covariant derivative satisfies

DM� ¼ ð@M � iqBMÞ�: (A17)

Note that the action (A16) depends on q only through

�q � �q; hq � hq; (A18)

which are the effective chemical potential and effective

magnetic field for a field of charge q.
This problem is now similar to a Landau-level analysis

from elementary quantum mechanics. After separation of

variables using

� ¼ e�i!tþikxYðyÞXðrÞ; (A19)

we find that the equations of motion can be written as

� 1
ffiffiffiffiffiffiffi�g

p @rð
ffiffiffiffiffiffiffi�g

p
grr@rXÞ þ ð�giiu2 þm2 þ gii�2ÞX ¼ 0;

�@2yY þ ðv2 � �2ÞY ¼ 0;

(A20)

with

vðyÞ � kþ hqy; uðrÞ �
ffiffiffiffiffiffiffiffiffiffi
gii
�gtt

s �

!þ�q

�

1� 1

r

��

:

(A21)

One then finds that

YnðyÞ ¼ eðð��2Þ=2ÞHnð�Þ; � �
ffiffiffiffiffiffiffiffi

jhqj
q �

yþ k

hq

�

;

(A22)

with Hn the usual Hermite polynomials. XðrÞ is a radial

profile that satisfies the scalar wave equation with zero

magnetic field h ¼ 0, except that the momentum k on each
constant-r slice has been discretized into Landau levels:

k2 ! 2jhqj
�

nþ 1

2

�

; n ¼ 0; 1; . . . : (A23)

A similar discussion can be applied to the AdS2 region,

where one finds that each Landau level has an effective

mass given by

m2
n ¼ m2 þ 2jhqj

�

nþ 1

2

�
1

R2
: (A24)

The rest then follows exactly from the analysis in [20], and

the IR dimension for � is given by

�ðBÞ
n ¼ 1

2 þ �ðBÞ
n ; (A25)

with

�ðBÞ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
nR

2
2 �

�2q2

36
þ 1

4

s

: (A26)

Let us examine a bit more closely the n ¼ 0 mode,

which is the most likely to condense,

�ðBÞ
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2R2

6
þ ð6jbqj � q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12b2
p

� 1

72b2
þ 1

4

s

;

(A27)

where we used (A15) to express h and � in terms of the

dimensionless boundary quantity b (A14). Also note that

m2R2 ¼ �ð�� 3Þ. This is the result (50) in the main text.

The critical magnetic field bc can be found by setting the

quantity inside the square root to 0, and is

bc ¼ jqj
D½1þ 1ffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � 2m2R2
p

� � 2q2

D2 � 12q2
; (A28)

where

D � ð3þ 2m2R2Þ (A29)

is a quantity that goes to 0 when the scalar mass is precisely

at the neutral AdS2 BF bound.

It is interesting that the expression in (A27) containing b

saturates at a value jqj
2
ffiffi
3

p as b ! 1. Thus, if

m2R2 þ
ffiffiffi

3
p

jqj<� 3

2
(A30)

no matter how large the magnetic field is, a condensate

cannot be prevented. This is surprising and is discussed

further in the main text.
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