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Abstract

Several sources of phase noise, including spontane-
ous emission noise and the loss of coherence due to

which-path information, are examined in the classical

limit of high field intensities. Although the origin of

these effects may appear to be quantum-mechanical in

nature, it is found that classical analogies for these
effects exist in the form of chaos.

1. Introduction

There are several sources of phase noise that may appear to be

inherently quantum-mechanical in nature. One example is spontane-

ous emission noise, which is often attributed to vacuum fluctua-

tions. Another example is the loss of coherence in which-path

experiments, which can be shown to be due to the entanglement of
one particle with another.

This paper addresses the question of whether or not these

effects continue to exist in the macroscopic limit of high-

intensity fields. If so, do they agree with the predictions of
classical physics in that limit?

One motivation for considering these questions is to gain

further insight into the origin of these effects. In addition, any

disagreement with classical physics in the macroscopic limit would

suggest an interesting experimental test of quantum mechanics in a
new and untested situation.

It will be found that a classical analysis of these systems

does give analogous effects due to classical chaos. This suggests

that there is at least a loose connection between quantum noise and
classical chaos.

On the other hand, classical physics cannot provide any

analogy for nonlocal effects such as violations of Bell's inequali-

ty. The generalization of two-photon interferometry to high-

intensity fields will be briefly discussed as an example of a

situation in which no classical description exists even in the
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macroscopic limit.

2. Which-Path Experiments

Wave-particle duality suggests that we cannot determine the

path that a particle has taken through an interferometer without
destroying the interference pattern. In most cases, it can be
shown that the loss of coherence is actually due to the entangle-

ment of the particle's wave function with a second particle or

system located in one path or the other. No actual observation of

the path taken is necessary in order to eliminate the interference

pattern. An interesting feature of these which-path experiments is
that it is often possible to restore the interference pattern using

a "quantum eraser ''l.

An excellent example of a which-path experiment is shown in

Figure 1. As suggested by Scully 2 et al., a single atom is incident

upon a beam splitter that divides its wave function along two

separated paths. A microwave cavity is located in each path and is

coupled to the atom in such a way that a low-energy microwave

photon will be emitted into whichever cavity the atom passes

through.
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Fig. 1. A which-path experiment suggested by Scully
et al. (Ref. 2) in which a microwave cavity is located in
each arm of an atomic interferometer.

The interference pattern must be destroyed, since the path of

the atom can be determined by detecting the location of the photon.
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It can be shown that the change in the center-of-mass wave function

of the atom has no significant effect and that the coherence is

destroyed by the entanglement of the atom with the photon.

It is obvious that there can be no classical analogy for this

kind of which-path experiment because an atom cannot be described

by a wave in classical physics. But this begs the question of what

is really responsible for the loss of coherence.

In order to allow a comparison with classical physics,

consider instead the situation shown in Figure 2 in which the roles

of the atom and photon have been interchanged 3. Now a single photon

is incident upon a beam splitter and its wave function propagates

along two separated paths. A thin chamber containing gas atoms is

located in each path and it is assumed that the photon is inelast-

ically scattered, producing a secondary photon of low energy. The

initial photon propagates with somewhat reduced energy toward a

beam splitter and a single-photon detector. Once again, it can be

shown that the change in the photon's wave function is irrelevant

as long as _k_x << _, where 6k is the change in wave number and 6x

is the thickness of the two chambers. The advantage of this

which-path experiment is that it does allow a classical analysis if

a large number of photons are incident, which corresponds to a

classical light wave.
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Fig. 2. A modified w_'ich-path experiment in which

the roles of the atoms and photons have been interchanged

to allow a comparison with classical physics.

The quantum-mechanical calculation is straightforward and has

been described in more detail elsewhere 3. Consider an operator pt
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that creates a single photon in a short gaussian wave packet:

pt = _ _la_ (I)

Here _i are complex coefficients and a_ creates a photon of

frequency _i. In order to achieve the macroscopic limit of high

intensities, the quantum state will be taken to be a coherent state

of the form

lW0>: ( W)n I0>= c2,
n 4! i

where _ is a complex number sufficiently large that the pulse

contains a large number of photons. The interaction Hamiltonian is

given by

(3)

Here the operators b and c annihilate photons in the two paths

through the interferometer and _ is a coefficient of no interest.

The intensity at the detector can then be shown to be

<I(x, t) > : <E-E+> : 7_Z_ _ e
ij ilj '

(a'a<bklbk,> + a/'a/<CklCk,> - a'°a<cklbk,> - a*a'<bklCkJ> )

(4)

The last two terms are the only ones that depend on the relative

phase, as reflected by the coefficients a and _i, and are propor-

tional to the inner product of two states containing a photon in

two different paths, which is zero. Thus the entanglement of the

original photon with a secondary photon in one path or the other is

responsible for destroying the interference pattern, as expected.

It is interesting to note, however, that it is not possible,

even in principle, to determine which path a photon has taken,

since the quantum uncertainty in the energy and number of photons

in the coherent state of eq. (2) makes it impossible to associate

the detected photons with individual secondary photons.

Any classical description of this experiment must be based on

a nonlinear model, since a linear system cannot produce any change

in the frequency of the light. With this in mind, consider a

simple model consisting of three nonlinearly-coupled harmonic

oscillators:

2

]<i = -°)ixi + 4e(xi-x k) 3 _ _xi + d(t)
2

2_'j = -(DjXj - 4¢ (Xk-X j) 3 _ n,,_ j

xk = -_2kXk - 4_ <Xi-Xk)3 + 4e (X,-X5)3 _ _X k

(s)
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The three frequencies _i, _t and _ correspond to the frequencies
of the three light beams zn Figure 2, E and _ are adjustable

constants, and d(t) represents an external driving field. This

model is not intended to provide a realistic description of the

response of an atom to an incident beam of light but does illus-

trate the kind of behavior that can occur in classical systems. It

may be worth noting, for example, that the Coulomb force is a

nonlinear function of the separation of two particles and naturally

gives rise to nonlinear effects of this kind.

It was assumed that a nonlinear system of this kind is located

in each path of Figure 2 and the above set of equations was solved

numerically 3 for the case in which the incident field has frequency

_. The resulting power spectral density for a sufficiently intense

incident field is shown in Figure 3 and has a sharp peak at the

incident frequency as well as a somewhat broader peak corresponding

to fluorescence, as in the quantum description. The phase-space

trajectory of the out-going field _ is plotted in Figure 4, where

it can be seen that the motion is chaotic and unpredictable. This

randomizes the phase of the field in a manner that is also similar

to the quantum treatment.
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Fig. 3. Power spectral density G(_) obtained from the

classical model, showing the classical analog of fluores-
cence.
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Fig. 4. Chaotic phase-space trajectory from the classi-

cal model, which randomizes the phase and destroys the

interference pattern.

In the limit of low drive intensities the classical model

produces a coherent response with no fluorescence. At sufficiently

high intensities, chaos produces fluorescence at two frequencies

that are analogous to the secondary photon and forward-propagating

photons in Figure 2, both of which have random phase. Intermediate

intensities produce more complicated behavior, including partial

coherence at rational fractions of the drive frequency.

Thus the classical model gives loss of the interference

pattern due to chaos in the macroscopic limit of high intensities.

This suggests that there is at least a loose connection between

quantum noise and classical chaos. It is important to note,

however, that the classical model produces a random phase only for

sufficiently high intensities, whereas a proper quantum-mechanical

treatment eliminates the coherence for arbitrarily low intensities.

In many systems of this kind it is possible to implement a

"quantum eraser" to restore the interference pattern I. This can be

accomplished by letting the entangled secondary systems propagate
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in time, measuring their state at some subsequent time, and

selecting only those events for which the secondary systems were

found to be in the same final state. For example, a quantum eraser

can be implemented for the micro-maser cavity experiment shown in

Figure 1 by connecting the two cavities with a small hole contain-

ing an atom and then selecting only those events for which the

photon in one cavity or the other was absorbed by this atom.

Surprisingly enough, it may be possible to perform a similar

procedure in the classical model discussed above. Suppose we

consider a subset of the phase-space trajectories for which the

other (non-detected) variables are the same in the two paths, i.e.

:

where the primed and unprimed variables refer to the two different

paths. In that case, it seems likely that

If so, the out-going fields would be the same in the two paths and
the coherence would be restored.

3. Spontaneous Emission Noise

The random phase associated with spontaneous emission of a

photon by an atom is often attributed to vacuum fluctuations. Once

again, this may seem to be inherently quantum-mechanical in nature.

But returning to the example shown in Figure 2, it can be seen that

both photons emitted by an atom in one path or the other of that

interferometer are emitted by spontaneous emission. The classical

model discussed above gave a random phase for both of these fields

due to classical chaos in the limit of high field intensities,

which is in qualitative agreement with the quantum-mechanical
result.

This further suggests that there may be some connection

between quantum noise and classical chaos. It must be kept in

mind, however, that the classical model cannot produce these kinds

of results in the limit of low intensities.

4. Nonlocal Effects

The preceding discussion suggests that certain kinds of

quantum phase noise may have a classical analogy in the form of

chaos. This analogy can only b_ taken so far, however, since the

models used do not provide a realistic description of an atom and

are qualitatively similar to the quantum-mechanical treatment only

in the limit of high intensities.

In addition, quantum systems can exhibit nonlocal effects that

violate Bell's inequality and obviously have no classical analog.

Such effects are not limited to low-intensity fields, as can be
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illustrated b_ considering the generalization of two-photon
interferometr/to high-intensity fields as illustrated in Figure

5. A somewhat similar situation involving photon polarizations has

also been discussed by Reid and Munro 5.

/
,/\\ _ __/, / \

\\ \

[

Fig. 5. Nonlocal interferometer consisting of two

identical interferometers with a short path and a long

path, capable of operation with high-intensity fields.

Nonlocal interferometry with high-intensity fields has been

discussed in detail elsewhere 6 and only the main results will be

reviewed here. Consider a quantum state of the electromagnetic

field given by

IT> = _ (_ ct) _ Io> = _ e'_tlo> (8)
n!

n

where

ct=_ t t
(9)

Here c t creates a pair of entangled photons in two paths via photon

creation operators a t and b t, 7 is a normalization constant, _ is a
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large complex number, and the coefficients fk describe the effects
of filters inserted into the two beams.

Although eq. (8) resembles a coherent state, its properties

are quite different. The probability PI of detecting a pair of

coincident photons in the corresponding output ports of the two

interferometers of Figure 5 can be shown to be given by

_ = _ cos2 [_A+_0At] (10)

This is the same result obtained previously for the weak-field case

but here the field can be extremely intense and contain a large
number of photons.

The probability PN of detecting N pairs of coincident photons
in the corresponding output ports of the two interferometers is

PN = N' _Cos2N[ *A+*B+_°_t]2 = N' P_ (11)

Eq. (ii) also violates Bell's inequality. The factor of N! is due

to the different ways in which photons can pair with each other and

greatly enhances the probability of detecting a large number of

pairs. No single photon detectors are required to observe such

events, which correspond to large bursts of energy in the corre-

sponding interferometer ports and which could be observed, at least

in principle, with a bolometer. These effects are truly macroscop-
ic in nature in that sense.

It is also possible to consider an EPR paradox involving

quantum phase measurements performed on high-intensity fields with
initially uncertain phases. Both classical and non-classical

effects are obtained, as described elsewhere 7.

5. Summary

Several sources of quantum phase uncertainty have been

considered in the limit of high field intensities where a compari-
son with a classical treatment is possible. It was found that

classical analogies exist for the loss of coherence due to which-

path information as well as the quantum noise associated with

spontaneous emission. In both of these cases classical chaos

randomizes the phase in a manner that is at least qualitatively the
same as in the quantum description.

This suggests that there may be a loose connection between

quantum noise and classical chaos. The classical treatment is only
valid in the limit of high intensities, however, which is not too

surprising in that classical physics would not be expected to

provide an adequate description at the quantum level. In addition,

violations of Bell's inequalities can also occur for high-intensity

fields. Nevertheless, there does appear to be an analogy between
quantum noise and classical chaos.
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