
PHYSICAL REVIEW A, VOLUME 63, 053601
Quantum phases in an optical lattice
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We present the zero-temperature phase diagram of bosonic atoms in an optical lattice, using two different
mean-field approaches. The phase diagram consists of various insulating phases and a superfluid phase. We
explore the nature of the insulating phase by calculating both the quasiparticle and quasihole dispersion
relation. We also determine the parameters of our single band Bose-Hubbard model in terms of the microscopic
parameters of the atoms in the optical lattice.
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I. INTRODUCTION

Using the interference pattern of intersecting laser bea
one can create a periodic potential for atoms, which is kno
as an optical lattice@1,2#. Because one can confine atoms
separate lattice sites, one can accurately control the inte
tion between the atoms. This makes the optical lattice
important tool in spectroscopy, laser cooling@3#, and quan-
tum computing@4#. In the following we study some of the
many-body aspects of such a lattice and in particular Bo
Einstein condensation of atoms in a optical lattice. In co
trast with the existing Bose-Einstein condensation exp
ments in an harmonic trap, the quantum depletion of
condensate in the case of Bose-Einstein condensation
lattice can be very large. We can therefore expect interes
features.

If we assume that the atoms are cooled to within the lo
est Bloch band of the periodic potential, Jakschet al. @5#
have shown that we can describe the behavior of the atom
an optical lattice with the Bose-Hubbard Hamiltonian

H52t(
^ i , j &

ci
†cj1

1

2
U(

i
ci

†ci
†cici2m(

i
ci

†ci , ~1!

where the sum in the first term on the right-hand side
restricted to nearest neighbors andci

† andci are the creation
and annihilation operators of an atom at sitei, respectively.
The parametert is the hopping parameter andU is the inter-
action strength, which we always assume to be positive
the following. The term involving the chemical potentialm is
added because we perform our calculations in the gra
canonical ensemble.

Qualitatively we expect that when there is an integ
number of particles at each sitei and t!U, the interaction
between the particles will make it energetically unfavora
for a particle to move from one site to another. In this si
ation the gas is in what is known as the Mott insulator ph
@6#. However, if we add in this phase a particle to the syste
this particle will only receive a small energetic penalty wh
it moves, because its interaction energy is the same on
site. For this reason, a gas with a noninteger numbe
bosons at each site will be in a superfluid phase at z
temperature. This expectation has been shown to be co
using quantum Monte Carlo calculations@7# and several
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mean-field approaches@5,8,9#. In particular, Ref.@5# numeri-
cally determines interesting features of cold bosonic atom
an inhomogeneous optical lattice. In this paper, we giv
largely analytical means of understanding the results
tained by these authors.

In order to describe the zero-temperature phase trans
from the superfluid to the Mott-insulating phase analytical
we need to make some appropriate mean-field approxima
to the Hamiltonian in Eq.~1!. A more or less standard ap
proach would be to use the Bogoliubov approximation.
Sec. II we show that this approximation does not predict
expected phase transition and we explain the absence o
phase transition. In Sec. III we analytically investigate
alternative mean-field theory, proposed by Sheshadriet al.
@9#, and compare the analytical results with exact numer
results. In Sec. IV we discuss the properties of the M
insulating phases by calculating the quasiparticle and qu
hole dispersions and finally in Sec. V we relate the para
eterst andU to experimental parameters such as laser int
sity and wavelength.

II. BOGOLIUBOV APPROXIMATION

We first transform the Hamiltonian to momentum spa
by introducing creation and annihilation operatorsak

† andak
respectively, such that

ci5
1

ANs
(

k
ake

2 ik•r i,

~2!

ci
†5

1

ANs
(

k
ak

†eik•r i,

whereNs is the number of lattice site andr i is the coordinate
of site i. The wave vectork runs only over the first Brillouin
zone. For mathematical convenience we take only a fin
volume V, so that the momenta\k are discretized, which
allows us to write sums instead of integrals in Eq.~2!. Later
we will take the continuum limitV→`. Using the fact that
( ie

2 i (k2k8)•r i5Nsdk,k8 , it is easily shown that the prefacto
1/ANs ensures that the total number of particles obeysN
5( ici

†ci5(kak
†ak .
©2001 The American Physical Society01-1
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If we limit our description to cubic lattices with lattic
distancea and substitute Eq.~2! into the Hamiltonian, we
find

H5(
k

~2 ēk2m!ak
†ak

1
1

2

U

Ns
(

k
(
k8

(
k9

(
k-

ak
†ak8

† ak9ak-dk1k8,k91k- ,

~3!

where we definedēk52t( j 51
d cos(kja), with d the number of

dimensions. For a Bose condensed gas the average nu
of condensate atomsN0 is a number much larger then on
which means thatN05^a0

†a0&'^a0a0
†& and we are allowed

to takeN05^a0
†&^a0&.

Since^a0
†& and^a0& are complex conjugates, we conclud

that ^a0
†&5^a0&5AN0, where we have chosen these expe

tation values to be real. The Bogoliubov approach consist
replacing the creation and annihilation operators by their
erageAN0 plus a fluctuation

a0
†→AN01a0

† ,

~4!

a0→AN01a0 ,

and minimizing the energy of the gas with respect to
number of condensate atomsN0. At the minimum, the part of
the Hamiltonian that is linear in the fluctuations must the
fore be zero. Performing the above substitution and selec
the linear terms yields

H (1)5S 2 ē02m1
U

Ns
N0DAN0~a0

†1a0!, ~5!

where the superscript denotes the order in the fluctuati
SinceH (1) must be zero for alla0

† anda0 we conclude that in
the lowest-order approximation

m5Un02zt, ~6!

in terms of the condensate densityn05N0 /Ns and the num-
ber of nearest neighborsz52d. This expression can be ea
ily understood since the chemical potential is the ene
needed to add one particle to the system. Adding one par
results in an energy increase due to the interaction with
n0 particles already at each site, and an energy decrease
to the possible hopping to one ofz nearest-neighbor sites.

Next we determine the effective hamiltonianHeff, which
contains only the parts of zeroth and second order in
fluctuations. The zeroth-order term is found by substitut
all creation and annihilation operators byAN0. To find the
quadratic term, we substitute in the interaction term two c
ation or annihilation operators at a time byAN0 and write
down all possible combinations. Performing the summat
over one of the remaining momenta yields finally
05360
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Heff5S 2zt2m1
1

2
Un0DN01(

k
~2 ēk2m!ak

†ak

1
1

2
Un0(

k
~aka2k14ak

†ak1a2k
† ak

†!. ~7!

We can simplify this expression somewhat by using the co
mutation relation@ak ,ak

†#51. If we also substitute Eq.~6!

and writeek5zt2 ēk , we find

Heff52
1

2
Un0N02

1

2 (
k

~ek1Un0!1
1

2 (
k

~ak
† ,a2k!

3F ek1Un0 Un0

Un0 ek1Un0
G S ak

a2k
† D , ~8!

where the extra zeroth-order terms are generated by the c
mutation ofak

† andak .
The effective Hamiltonian is diagonalized by a Bogoli

bov transformation. This implies that we define new creat
and annihilation operatorsbk

† andbk for which the effective
Hamiltonian is diagonal, by means of

S bk

b2k
† D 5F uk vk

vk* uk*
G S ak

a2k
† D[BS ak

a2k
† D . ~9!

To ensure that the operatorsbk
† andbk still obey the standard

commutation relations for bosonic creation and annihilat
operators, we have to demand that the coefficients of
matrix B obey

uuku22uvku251. ~10!

If we now substitute Eq.~9! into Eq.~8! and demand that the
result reduces to the diagonal Hamiltonian

Heff52
1

2
Un0N01

1

2 (
k

@\vk2~ek1Un0!#

1(
k

\vkbk
†bk , ~11!

we find thatuk andvk must be solutions of the following two
equations:

@~uk!21~vk!2#Un022ukvk~ek1Un0!50,

~12!

~ uuku21uvku2!~ek1Un0!2~uk* vk1ukvk* !Un05\vk .

Using the normalization in Eq.~10!, we can easily find the
solution

\vk5Aek
212Un0ek,

~13!

uvku25uuku2215
1

2 S ek1Un0

\vk
21D .
1-2
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QUANTUM PHASES IN AN OPTICAL LATTICE PHYSICAL REVIEW A63 053601
To also obtain the condensate densityn0, which until now
has been arbitrary, we now need to calculate the total den
n as given by our effective Hamiltonian. The total density
thus given by

n5
1

Ns
(

k
^ak

†ak&Heff, ~14!

where the bracketŝ&Heff denote the expectation value as c
culated with the effective HamiltonianHeff. For a Bose-
condensed gas, this density consists of two parts: the de
associated with the macroscopic occupation of the o
particle ground state, i.e., the condensate, and the density
to the occupation of the higher lying one-particle states.
this case, the condensate density equals the parametern0 and
the density of the noncondensate part is determined by
average over the quadratic fluctuations, which will be a fu
tion of n0. Calculating the average over the quadratic flu
tuations by means of Eq.~9! yields first of all

n5n01
1

Ns
(
kÞ0

@~ uuku21uvku2!^bk
†bk&Heff1uvku2#.

~15!

If we then use Eq.~13! and substitute the Bose distributio
evaluated at\vk for ^bk

†bk&Heff we find that

n5n01
1

Ns
(
kÞ0

S ek1Un0

\vk

1

eb\vk21
1

ek1Un02\vk

2\vk
D .

~16!

In the zero-temperature limit,b→`, the first term in the
summand is zero. Taking the continuum limit by using(k
→V*2p/a

p/a dk/(2p)d, changing from momentak to q
52pk/a, and realizing thatNs5V/ad, we arrive at the ex-
pression

n5n01
1

2E21/2

1/2

dqS eq1Un0

\vq
21D , ~17!

with eq52t( j 51
d @12cos(2pqj)# and \vq5(eq

2

12Un0eq)
1/2. We can now obtain the condensate density

solving Eq.~17! for n0 for a fixed value ofn. We expect that
at integern, for a fixed value ofU/t, there will be no super-
fluid solution and this will mark the phase transition to t
insulating phase as predicted by Refs.@5,7–9#.

A. Numerical results

In Fig. 1~a! we plotted the result of this calculation for
two-dimensional lattice. We see from this figure, that there
only a marginal difference between the case thatn50.5 and
n51.0. In Fig. 1~b! we plotted the result for a three
dimensional lattice. In this case the difference between h
filling and integer filling is somewhat larger, but there
clearly no critical value ofU/t for which the condensate
density goes to zero.

These results lead to the suspicion that the phase tra
tion to the insulating phase is not present in this approxim
05360
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tion. To verify this, we investigate the limit ofU/t→` in
some detail.

B. Asymptotic behavior

When U/t→` we intuitively expect the system to be
come an insulator, because it effectively means that the h
ping parameter goes to zero. We therefore expect that t
are no superfluid solutions asU/t→`. We can see that in
this limit the integrand in the right-hand side of Eq.~17!
behaves as (Un0/2eq)

1/2. One can also prove thateq
<4p2uqu2t. This means that

E
21/2

1/2

dq
eq1Un0

Aeq
212Ueqn0

>
1

2p
AUn0

2t E
21/2

1/2 dq

uqu
. ~18!

The integral at the right-hand side of Eq.~18! can be done
analytically in two dimensions and numerically in three d
mensions. When we call the result of the integration ind
dimensionsI d , we see that Eq.~17!, for U/t→`, reduces to

n'n01
1

4p
AUn0

2t
I d2

1

2
, ~19!

where I 252.223 22 andI 352.380 08. This is a quadrati
equation inAn0, which always yields a positive solution fo
n0 given by

n05S 1

2
A I d

2

16p2

U

2t
14n122

I d

8p
AU

2t D 2

. ~20!

We can correct for the error we made in Eq.~18! by using a
higher value forI d , but while this may change the value o
n0, it will still yield a positive solution. We see from Eq
~20! that limU/t→`n050 as expected, so we can conclu
that the Bogoliubov approximation, as described above, d
not predict the phase transition to the Mott insulator phas
two and three dimensions. The reason for this is that
Bogoliubov approach only approximately treats the inter
tions. As a result, the Bogoliubov approach cannot desc
large depletions of the condensate.

We also see from Eq.~18! that in one dimensionI 1 di-
verges. Substituting this in Eq.~19!, we see that there are n
Bose-condensed solutions, i.e., solutions withn0Þ0, in one
dimension. This is in accordance with the Mermin-Wagn
Hohenberg theorem@10–12#.

FIG. 1. The condensate fractionn0 /n ~a! in a two-dimensional
optical lattice and~b! a three-dimensional optical lattice, both as
function of the dimensionless parameterU/t for n50.5 ~dashed
line! andn51.0 ~dotted line!.
1-3
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As the Bogoliubov approximation fails to predict th
phase transition to the Mott insulator phase, we now cons
a different mean-field theory that treats the interactions
actly and approximates the kinetic energy of the atoms in
optical lattice.

III. DECOUPLING APPROXIMATION

To arrive at a mean-field approach, that is capable of
scribing the Mott insulating phase, we start again from E
~1!. Analogous to the Bogoliubov approach, we introduce
superfluid order parameterc5Ani5^ci

†&5^ci&, whereni is
the expectation value of the number of particles on siti.
Note that we take the expectation values to be real, as be
We now, however, construct a consistent mean-field the
by substituting

ci
†cj5^ci

†&cj1ci
†^cj&2^ci

†&^cj&5c~ci
†1cj !2c2,

~21!

into Eq. ~1!. Performing the substitution yields

Heff52ztc(
i

~ci
†1ci !1ztc2Ns1

1

2
U(

i
ci

†ci
†cici

2m(
i

ci
†ci , ~22!

wherez52d is again the number of nearest-neighbor si
and Ns is the total number of lattice sites, as before. T
Hamiltonian is diagonal with respect to the site indexi, so
we can use an effective onsite Hamiltonian. If we introdu
U5U/zt, m̄5m/zt, and the number operatorn̂i5ci

†ci , we
find

Hi
eff5

1

2
Un̂i~ n̂i21!2m̄n̂i2c~ci

†1ci !1c2, ~23!

which is valid on each sitei. We will therefore drop the
subscripti in the following. Note that we scaled all the en
ergies by a factor 1/zt, making this Hamiltonian a dimen
sionless operator.

After writing Eq. ~23! in matrix form with respect to an
occupation number basis, we can solve the problem num
cally by explicitly diagonalizing the part of the matrix wit
occupation number below a certain maximum value@9#.
Later we also follow this procedure, but we first determi
the phase diagram analytically using second-order pertu
tion theory.

A. Second-order perturbation theory

When we writeHeff5H (0)1cV, with

H (0)5
1

2
Un̂~ n̂21!2m̄n̂1c2,

~24!

V52~c†1c!,
05360
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we see that in an occupation number basis the odd powe
the expansion of the energy inc will always be zero. If we
denote the unperturbed energy of the state with exactln
particles byEn

(0) , we find that the unperturbed ground-sta
energy is given by

Eg
(0)5$En

(0)un50,1,2, . . .%min .

ComparingEn
(0) andEn11

(0) yields

Eg
(0)5H 0 if m̄,0,

1

2
Ug~g21!2m̄g if U~g21!,m̄,Ug.

~25!

Next, we calculate the second-order correction to the
ergy with the well-known expression

Eg
(2)5c2(

nÞg

u^guVun&u2

Eg
(0)2En

(0)
, ~26!

whereun& denotes the unperturbed wave function withn par-
ticles, of which the state withn5g particles is the ground
state. Since the interactionV couples only to states with on
more or one less atom than in the ground state, we find

Eg
(2)5

g

U~g21!2m̄
1

g11

m̄2Ug
. ~27!

If we now follow the usual Landau procedure for secon
order phase transitions by writing the ground-state energ
an expansion inc

Eg~c!5a0~g,U,m̄ !1a2~g,U,m̄ !c21O~c4!, ~28!

and minimize it as a function of the superfluid order para
eter c, we find thatc50 whena2(g,U,m̄).0 and thatc
Þ0 when a2(g,U,m̄),0. This means thata2(g,U,m̄)50
signifies the boundary between the superfluid and the ins
tor phases. Solving

a2~g,U,m̄ !5
g

U~g21!2m̄
1

g11

m̄2Ug
1150,

yields

m̄65
1

2
@U~2g21!21#6

1

2
AU222U~2g11!11,

~29!

where the subscript6 denotes the upper and lower halves
the Mott insulating regions of phase space. Note that
result is exact within our mean-field theory. Figure 2 show
plot of Eq. ~29! for g51,2,3. By equatingm̄1 and m̄2 we
can find the point of smallestU for each lobe. Denoting this
critical value ofU by Uc we have

Uc52g111A~2g11!221, ~30!
1-4
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which yieldsUc'5.83 for theg51 insulator, a value also
found by Ref.@9#.

B. Fourth-order perturbation theory

To find out more about the phase transition, we now ca
out fourth-order perturbation theory to find the rate w
which the particle density increases as a function ofm̄. In
Appendix A, we present a way to calculate the higher-or
terms in the perturbation series. Using this procedure we
write the ground-state energy as

Eg~c!5a0~g,U,m̄ !1a2~g,U,m̄ !c21a4~g,U,m̄ !c4,
~31!

with

a4~g,U,m̄ !5
g~g21!

@U~g21!2m̄#2@U~2g23!22m̄#

1
~g11!~g12!

~m̄2Ug!2@2m̄2U~2g11!#

2S g

U~g21!2m̄
1

g11

m̄2Ug
D

3S g

@U~g21!2m̄#2
1

g11

~m̄2Ug!2D . ~32!

In Figs. 3~a! and 3~b! we show plots of Eq.~31! together
with the result of an exact numerical diagonalization of t
effective Hamiltonian. As can be seen, the overlap is v
good near the boundary given by Eq.~29!. In Fig. 4 it can be
seen that the numerical result exhibits a cusp whenU5m̄,
which is not predicted by Eq.~31!. This is due to the fact tha
in this particular case we need to use first-order degene

FIG. 2. Phase diagram of the Bose-Hubbard Hamiltonian
obtained from second-order perturbation theory~solid lines!. The

vertical axis shows the dimensionless chemical potentialm̄5m/zt
and the horizontal axis shows the dimensionless interaction stre
U5U/zt. The dotted lines indicate the zeroth-order phase diagr
Later on, Fig. 5 is taken along the dashed line in this figure.
05360
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perturbation theory, because atm̄5nU the states withn21
and n particles per site form a doubly degenerate grou
state. The resulting expression for the ground-state energ
now nonanalytic and given by

s

th
.

FIG. 3. Ground-state energy~in units of the hopping energyzt)

as a function ofc for ~a! U511 andm̄58.9 and for~b! U511 and

m̄57.8. The solid line represents fourth-order perturbation the
whereas the dotted line represents a numerical diagonalizatio
the effective hamiltonian. The dashed line is the difference betw
the two ~scale on the right!.

FIG. 4. Ground-state energy~in units of the hopping energyzt)

as a function ofc for U5m̄511, as obtained from first-order per
turbation theory~solid line! and from numerical diagonalization o
the effective hamiltonian~dotted line!.
1-5



o
t i

o

w

t
de
en
is
e
n
b
t

er

p
ng

-
f.

a
sit

c
,
n

m.
n.
to
cu-

a
ete

an
q.

ica

D. van OOSTEN, P. van der STRATEN, AND H. T. C. STOOF PHYSICAL REVIEW A63 053601
Eg~c!um̄5nU52
1

2
Un~n11!1c22ucuAn11, ~33!

which is the solid line in Fig. 4. Note that the occurrence
a cusp is analogous to the well-known Jahn-Teller effec
solid-state physics@13#.

We now continue by calculating the average number
particles per site in the grand-canonical ensemble by

n52
]^Heff&

]m
52

]Eg~c5cmin!

]m̄
5g2

]

]m̄
S a2~g,U,m̄ !2

4a4~g,U,m̄ !
D ,

~34!

wherecmin5@2a2(g,U,m̄)/2a4(g,U,m̄)#1/2 is the minimum
of Eq. ~31!. Making use of the previous results, we can no
plot the density as a function ofm̄ for a fixed value ofU.
Between the edgesm̄6 , the density will remain constan
becausecmin50 and the second term in the right-hand si
of Eq. ~34! does not contribute. Outside that region, the d
sity will start to change with a nonzero slope. In Fig. 5 this
plotted for U511. The solid line shows the result of th
calculation described above and the dash-dotted line is a
merical result obtained by exact diagonalization. As can
seen, the analytical results are in good agreement with
numerical calculation. We can now also qualitatively und
stand the solution found numerically by Jakschet al. @5# for
an optical lattice in an external harmonic trap. In a first a
proximation, we can describe the effect of a slowly varyi
trapping potential by substitutingm̄ in Eq. ~34! by m̄85m̄
1V(r ), whereV(r ) is the external trapping potential. Com
bining this with Fig. 5 yields the density profile found in Re
@5#.

IV. DISPERSION RELATIONS

An important property of the Mott insulating phase is th
the fluctuation in the average number of particles per
goes to zero at zero temperature. Since these fluctuations
be described as quasiparticle and quasihole excitations
will study these now. We calculate the quasiparticle a

FIG. 5. The density as a function of dimensionless chem

potential m̄5m/zt for a dimensionless interaction strength ofU
5U/zt511, i.e., along the dashed line in Fig. 2.
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quasihole dispersions using a functional integral formalis
We start by deriving an expression for the effective actio
Readers unfamiliar with functional integrals may want
skip to Sec. IV B, where we discuss the results of the cal
lation.

A. The effective action

We define complex functionsai* (t) and ai(t), respec-
tively, and write the grand-canonical partition function as

Z5Tr e2bĤ5E Da* Daexp$2S@a* ,a#/\%, ~35!

where the actionS@a* ,a# is given by

S@a* ,a#5E
0

\b

dtF(
i

ai* S \
]

]t
2m Dai2(

i j
t i j ai* aj

1
1

2
U(

i
ai* ai* aiai G , ~36!

with b51/kBT, kB the Boltzmann constant, andT the tem-
perature. To decouple the hopping term, we perform
Hubbard-Stratonovich transformation by adding a compl
square to the action, which then becomes

S@a* ,a,c* ,c#5S@a* ,a#1E
0

\b

dt(
i j

~c i* 2ai* !t i j

3~c j2aj ! ~37!

Herec* andc are the order parameter fields. To obtain
effective action as a function of these fields, we rewrite E
~37! as

S@a* ,a,c* ,c#5E
0

\b

dtF(
i

ai* S \
]

]t
2m Dai

1
1

2
U(

i
ai* ai* aiai2(

i j
t i j ~ai* c j

1c i* aj !1(
i j

t i j c i* c j G , ~38!

and integrate over the original fieldsai* andai . If we denote
by S(0)@a* ,a# the action fort i j 50, we have explicitly that

exp~2Seff@c* ,c#/\!

[expS 2
1

\E0

\b

dt(
i j

t i j c i* c j D E Da* Da

3exp$2S(0)@a* ,a#/\%

3expF2
1

\E0

\b

dtS 2(
i j

t i j ~ai* c j1c i* aj ! D G . ~39!

We can now calculateSeff perturbatively by Taylor ex-
panding the exponent in the integrand of Eq.~39! and evalu-

l

1-6



n

QUANTUM PHASES IN AN OPTICAL LATTICE PHYSICAL REVIEW A63 053601
ating the various correlation functions of the field theory given byS(0). This yields for the quadratic part of the effective actio

S(2)@c* ,c#52
1

2\ K S E
0

\b

dt(
i j

t i j ~ai* c j1c i* aj ! D 2L
S(0)

1E
0

\b

dt(
i j

t i j c i* c j

52
1

2\ K E0

\bE
0

\b

dtdt8 (
i j i 8 j 8

t i j t i 8 j 8~ai* c j1c i* aj !~ai 8
* c j 81c i 8

* aj 8!L
S(0)

1E
0

\b

dt(
i j

t i j c i* c j . ~40!
t-
rr
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If we perform the multiplication in the first term on the righ
hand side and use the information we have about the co
lations in the unperturbed system, i.e.,

^ai* aj* &S(0)5^aiaj&S(0)50,

^ai* aj&S(0)5^aiaj* &S(0)5^aiai* &S(0)d i , j , ~41!

we obtain in the first instance

S(2)@c* ,c#5E
0

\b

dtH (i j t i j c i* ~t!c j~t!

2
1

\E0

\b

dt8 (
i j i 8 j 8

t i j t i 8 j 8c j* ~t!

3^ai~t!ai 8
* ~t8!&S(0)c j 8~t8!J , ~42!

where we have now shown thet dependence of the field
explicitly for clarity reasons. Because we will only consid
nearest-neighbor hopping, we write

t i j 5t j i 5H t for nearest neighbors

0 otherwise.
~43!

First we treat the part of Eq.~42! that is linear int i j . We
have

(
i j

t i j c i* ~t!c j~t!5(
i

tc i* ~t!c i 6$1%~t!, ~44!

where6$1% denotes all possible jumps to nearest neighbo
In the case of one dimension this would simply be61. If we
call the lattice spacinga and introduce cartesian momentu
componentski with i 51, . . . ,d, whered is again the num-
ber of dimensions, we find

(
i j

t i j c i* ~t!c j~t!5(
k

2tck~t!ck* ~t!(
j 51

d

cos~kja!.

~45!

Next we calculate the part that is quadratic int i j . We can
treat this part by looking at double jumps. The expectat
value of ^aiai 8

* &S(0) is proportionald i i 8 and independent o
the site i, according to Eq.~41!. This means that we find
with similar notation as before,
05360
e-

s.

n

(
j i 8 j 8

t i j t i 8 j 8c j* ~t!^ai~t!ai 8
* ~t8!&S(0)c j 8~t8!

5^ai~t!ai* ~t8!&S(0)(
j j 8

t i j t i j 8c j* ~t!c j 8~t8!

5t2^ai~t!ai* ~t8!&S(0)(
j

$zc j* ~t!c j~t8!

1c j* ~t!c j 6$2%~t8!1c j* ~t!c j 6$A2%~t8!%, ~46!

with z again the number of nearest neighbors. The first te
in the summand is a jump in each direction, followed by
jump back. The second term indicates two jumps in the sa
direction and the third term is a jump in each direction fo
lowed by a jump in a perpendicular direction. Note that t
third term is absent in one dimension. It can be shown t
the complete double jump term reduces to

(
j i 8 j 8

t i j t i 8 j 8c j* ~t!^ai~t!ai 8
* ~t8!&S(0)c j 8~t8!

5^ai~t!ai* ~t8!&S(0)(
k

ck* ~t!ck~t8!ēk
2, ~47!

where we again usedēk52t( j 51
d cos(kja).

To also treat the time dependence of the fields, we in
duce Matsubara frequencies\vn5p(2n)/\b by

ck~t!5(
n

1

A\b
ckne2 ivnt,

~48!

ck* ~t!5(
n

1

A\b
ckn* e1 ivnt.

To translate the expectation value of the fields into the
pectation value of operators, we introduce an~imaginary!
time-ordering operator T. As a result

^ai~t!ai 8
* ~t8!&S(0)5^T@ai~t!ai 8

†
~t8!#&S(0). ~49!

The time ordering can easily be expressed in Heavys
functions as
1-7



. I

b
ho

o

e-
asi-

.

o
t

(

s the
sity
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^T@ai~t!ai 8
†

~t8!#&S(0)5u~t2t8!^ai~t!ai 8
†

~t8!&S(0)

1u~t82t!^ai 8
†

~t8!ai~t!&S(0).

~50!

If we use the unperturbed energies as given by Eq.~25!, we
thus find

^ai~t!ai 8
* ~t8!&S(0)5u~t2t8!~11g!

3exp$2~Eg11
(0) 2Eg

(0)!~t2t8!/\%

1u~t82t!gexp$~Eg21
(0) 2Eg

(0)!

3~t2t8!/\%. ~51!

Becauseg minimizesEg
(0) we know that

Eg11
(0) 2Eg

(0)52m1gU.0,

~52!

Eg
(0)2Eg21

(0) 52m1~g21!U,0.

Note that we use parametersm and U instead ofm̄ andU,
because we have not yet divided out the factorzt. Combin-
ing the above with Eq.~42! we find

S(2)@c* ,c#5(
n

(
k

ucknu2ēk

3S 12
ēk

\ E2`

0

dt8~11g!

3exp$~2 i\vn2m1gU!t8/\%

2
ēk

\ E0

`

dt8gexp$2~ i\vn1m

2~g21!U !t8/\% D . ~53!

Performing thet8 integration we then easily obtain

S(2)@c* ,c#5(
n

(
k

ucknu2ēk3F12 ēkS g11

2 i\vn2m1gU

1
g

i\vn1m2~g21!U D G . ~54!

Note that this result is exact within our mean-field theory
contains all powers of the frequencies and momenta and
gradient expansion has been applied. This is important
cause the elementary excitations are gapped as we will s
in the next section.

We can find an equation for real energies\v by substi-
tuting ivn→v and equating the remaining factor to zer
This gives
05360
t
no
e-
w

.

05F12 ēkS g11

2\v2m1gU
1

g

\v1m2~g21!U D G .
~55!

Ultimately this yields the result Eq.~56! given below in Sec.
IV B.

B. Results

Now we will explore the results of the calculation pr
sented in the previous section. The quasiparticle and qu
hole dispersions are given by

\vqp,qh52m1
U

2
~2g21!2

ēk

2

6
1

2
Aēk

22~4g12!U ēk1U2. ~56!

In Fig. 6~a! we show fork50 a plot of the above equations
The dotted lines indicate the asymptotes of Eq.~56!, which
are given by

lim
U→`

\vqp52m1gU2~g11!ē0

5Eg11
(0) 2Eg

(0)2~g11!zt,

lim
U→`

\vqh52m1~g21!U1gē0

5Eg
(0)2Eg21

(0) 1gzt, ~57!

with Eg11
(0) 2Eg

(0) and Eg
(0)2Eg21

(0) given by Eq. ~52!. The
difference between Eq.~57! and Eq.~52! is caused by the
fact that Eq.~52! is calculated fort50. It can easily be
understood that fortÞ0, the first-order correction is due t
the hopping termscj

†ci t, where sitej is one of the neares
neighbors of sitei. When we haveg particles in all lattice
sites and we add one particle to sitei, we have^cj

†ci&5g
11, so the effective hopping parameter for a particle isg

FIG. 6. The quasiparticle and the quasihole energy~in units of
the hopping energyzt) for k50 in the g51 insulator lobe. The
dotted lines are the asymptotes of the curves. The inset show
resulting first-order approximation to the dispersion of the den
fluctuations.
1-8



e
pa

e

ity
s

t
to

ba

o
th
ga

he
er

pa
te

er
ta
er

th

m
i

.
n
th

pe
co
is

n

eri-

the

the

tes

n

an

n
n

ica

QUANTUM PHASES IN AN OPTICAL LATTICE PHYSICAL REVIEW A63 053601
11)t. However, when we remove a particle from sitei, we
have^ci

†cj&5g, which represents a particle hopping to siti
from one of its nearest neighbors. The effective hopping
rameter for a hole is therefore onlygt. In combination, we
see that in the limit ofU→`, Eq. ~56! indeed reduces to a
physically intuitive result.

As shown above, the slopes of the asymptotes differ
actly by U, so in the limit ofU/zt→` the gap for the cre-
ation of a quasiparticle-quasihole pair is equal toU. We can
find a first approximation for the dispersion of the dens
fluctuations by subtracting the two solutions, which yield

ek5\vqp2\vqh5A~ ēk!22~4g12!U ēk1U2. ~58!

In Fig. 6~b! we show again fork50 a plot of the above
equation as a function ofU5U/zt for g51. We can see tha
there is a band gap, which proves that the Mott insula
phase is indeed an insulator and we also see that the
gap disappears as we approach the critical valueUc
5Uc /zt'5.83 that was found earlier. For smaller values
U we are in the superfluid phase, which according to
Hugenholtz-Pines theorem is expected to always have
less density fluctuations.

V. MICROSCOPIC PARAMETERS

To estimate the experimental feasibility of observing t
described phase transition, we now relate the paramett
and U to the microscopic parameters. Because we have
experimental interest in sodium, we will calculate these
rameters for sodium atoms trapped in a lattice construc
with four laser beams. To calculate the hopping paramett,
we calculate the overlap between single particle ground-s
wave functions in neighboring sites. To calculate the int
action strengthU, we use the pseudopotential method.

First we calculate the optical potential experienced by
atoms, following the approach of Petsaset al. @14#. We de-
scribe aJ51/2→J53/2 transition and choose a laser bea
configuration with two pairs of laser beams. Each pair lies
a plane and the planes are perpendicular to each other
beams have the same angleu with respect to the intersectio
of the two planes. We choose the quantization axis along
intersection and label it as thez axis. Furthermore, we
choose the polarization of the laser beams linear and per
dicular to the plane spanned by the pairs of beams. The
figuration is illustrated in Fig. 7. It should be noted that it
also possible to simply superimposed standing waves to

FIG. 7. Laser beam configuration for a three-dimensional opt
lattice.
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obtain ad dimensional lattice, but this requires stabilizatio
of the relative phases of the laser beams. We defineI b as the
sum of the intensity of the beams and ifk is the magnitude of
the k-vector, we definek'5k sinu and ki5k cosu. If we
add the electric-field components and express them in sph
cal components

E15
21

A2
~Ex2 iEy!,

E25
1

A2
~Ex1 iEy!,

E05Ez , ~59!

we find that the spatial dependence of the intensity of
resulting light field is given by

I 6 /I b5
1

2
@cos2~k'x!1cos2~k'y!

62 cos~k'x! cos~k'y! cos~2kiz!#,

I 0 /I b50. ~60!

Note that at the minima ofI 6 the polarization is purelys6.
Also note that since the linear component is always zero,
two ground-state levels are not coupled.

Following Nienhuiset al. @15# we can now calculate the
optical potential. Because of the fact that the ground sta
are not coupled, we can treat them separately. Withd the
detuning,G the rate of spontaneous decay andV6 the Rabi
frequencies for thes6 components of the light field, we ca
write the potential for themj561/2 level in the limit of low
saturation as

V65
1

2

\d

114~d/G!2 F2uV6u2

G2
1

1

3

2uV7u2

G2 G , ~61!

where the factor1
3 arises because of the Clebsch-Gord

coefficients forJ51/2→J53/2 transitions.
Now we define a convenient prefactor

Vb5
1

2

\ds0

114~d/G!2
5

\ds

2
, ~62!

where s5s0 /@114(d/G)2# is the off-resonance saturatio
parameter ands052uVu2/G2 is the on-resonance saturatio
parameter, which is usually written ass05I /I s . The satura-

l
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tion intensity I s is a constant for a given transition. If w
substitute Eq.~62! in Eq. ~61!, we find

V65VbS I 6

I b
1

1

3

I 7

I b
D .

5
2

3
Vb@cos2~k'x!1cos2~k'y!

6cos~k'x!cos~k'y!cos~2ki z!#. ~63!

We now write the Hamiltonian of a particle in the pote
tial as

Hopt5
p2

2m
1V6 , ~64!

and solve the time-independent Schro¨dinger equation varia-
tionally by assuming an isotropic Gaussian wave funct
and minimizing the energy as a function of width of th
Gaussian. If we callb the width of the wave function, we
can write the normalized wave function as

C~r !5^r uC&5S 1

pb2D 3/4

e2ur u2/2b2
. ~65!

We assume we have a spin-polarized sample of atoms, s
can use either theV1 or theV2 potential.

For simplicity we now calculate the parameters for a o
dimensional lattice. For the lattice configuration in Fig. 7 th
gives approximate results, but for a phase stabilized su
position of three standing waves, the results are immedia
applicable. In this case, the potential reduces toV6

52Vb@26cos(2kz)#/31k'(x21y2)/2, where the transvers
potential is caused by the fact that the laser beam has a fi
width. If we assume the wave function is tightly localized
the center of the local potential well, we can approximate
potential as an harmonic potentialV152Vb1kr2/2 with k
528Vbk2/3, where we assume we can adjust the width
the laser such thatk''k. These approximations yield th
well-known equations for the width and the level splitting
the potential

b5S \2

mk D 1/4

, \v5Ak/m. ~66!

Using the above widthb we calculate the value of th
interaction strengthU with the pseudopotential method. Ac
cording to Ref.@16# this is valid for sodium even if the width
of the trapping volume is of the order of the scatteri
length. In general the interaction strength between two ato
in the same one-particle wave function is given by

U5E drE dr 8C* ~r !C* ~r 8!Vint~r2r 8!C~r !C~r 8!,

~67!

whereVint(r2r 8) is the interaction potential. If we approx
mate the potential as
05360
n

we
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e

f

s

Vint~r2r 8!5
4pas\

2

m
d~r2r 8!, ~68!

we can write Eq.~67! as

U5
4pas\

2

m E drC* ~r !C* ~r !C~r !C~r !

5
4pas\

2

m E dr uC~r !u4

5
4pas\

2

mb3p3/2

5
2\v

A2p
S as

b D , ~69!

whereas is the triplets-wave scattering length. According t
Ref. @17# the value of the scattering length for a spi
polarized sodium-sodium collision isas5(8563)a0. Note
that the use of a one-band model is justified whenU!\v,
or b@2as /(2p)1/2'3.5 nm.

Next we calculate the value of the hopping parametert. In
the tight-binding limitt is given by

t52E drC* ~r !S p2

2m
1V6DC~r1aêj !, ~70!

where êj is an axis vector along a lattice direction, so th
whenC(r ) is the ground-state wave function,C(r1aêj ) is
the ground-state wave function of an atom at a neighbor
site. One can show that product of two wave functions
neighboring sites is a Gaussian function centered arounr
1aêj /2. We can therefore approximate the potential arou
the maximum of the barrier byV652Vb/37kr2/2. Substi-
tuting this into Eq.~70! ultimately yields

t5
\v

8 F12S 2

p D 2G S a

b D 2

e2
1
4(a/b)2

~71!

Figures 8~a! and 8~b! show plots ofU/Er andt/Er respec-
tively, with Er5\2k2/2m the recoil energy. Both are plotte
as a function of the trap depthVtrap524Vb/3. The values
were calculated for a laser wavelength of 600 nm. The sa

FIG. 8. Plot of~a! U and~b! t as a function of the trap depth. Al
quantities are in units of the recoil energyEr .
1-10
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QUANTUM PHASES IN AN OPTICAL LATTICE PHYSICAL REVIEW A63 053601
ration parameter needed to reach these trap depths is in
order of 105, which is not unrealistic experimentally.

Figure 9 shows alsoU/zt as a function of the trap depth
for a wavelength of 600 nm, in one, two and three dime
sions. Again, the saturation parameter is in the order of 15.
As has been seen, the desired critical value is reached i
three dimensions. The value of the widthb lies between
12% and 8% of the wavelength in the range considered
the above plots. This implies that both the harmonic appro
mation and the use of the one-band model are justified.

VI. CONCLUSION

Due to the absence of the superfluid-insulator phase t
sition in the Bogoliubov approach, we conclude that the
teraction is the dominant component in this phase transit
When the interaction energy is treated exactly, the the
indeed predicts a phase transition. The mean-field theory
dicts a phase transition even in one dimension, which
expect to survive as a Kosterlitz-Thouless transition wh
fluctuations are incorporated. However a definite proof
this requires further study.

We analytically calculated the phase diagram and the
ticle and hole dispersion relations in the insulator phase
first-order approximation to the dispersion of the dens
fluctuations shows that the system indeed goes from
gapped to a gapless phase. A calculation of this disper
below the critical value forU/zt will have to be done in
order to check the presence of linear dispersion that wo
verify the assumption that the phase withcÞ0 is indeed
superfluid. The one-band model we used to calculate the
rameters for sodium gives optimistic results for future e
periments, within the range of parameters it allows.

APPENDIX A: THE PERTURBATION SERIES

A powerful approach to calculating higher-order terms
the perturbation series is derived in Ref.@18#. Here we only

FIG. 9. The dimensionless parameterU/zt plotted as a function
of the trap depth~in units of the recoil energyEr) for one ~solid
line!, two ~dotted line!, and three dimensions~dashed line!. The
dash-dotted line is the critical valueU55.83.
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give the result of that derivation. If we denote byun& the
unperturbed wave functions andEn

(0) the unperturbed ener
gies, we can define an operator

Sa
k5H 2ua&^au if k50

(
nÞa

un&^nu

~Ea
(0)2En

(0)!k11
if k.0,

~A1!

and one can prove that thenth order correction on the energ
Ea

(0) is given by

Ea
(n)5TrF (

$n21%
Sa

k0V̂ . . . V̂Sa
knG , ~A2!

where $n%5$k0 ,•••,knuk01 . . . 1kn5n%. In the case ofn
52, this quickly gives the well-known result

Ea
(2)5TrF(

$1%
Sa

k0V̂Sa
k1V̂Sa

k2G
5^auV̂Sa

1V̂ua&,

5 (
nÞa

u^nuV̂ua&u2

~Ea
(0)2En

(0)!
. ~A3!

The same can be done forEa
(1) , Ea

(3), andEa
(4) . The first two

can be shown to involve only terms proportional to odd
ders ofV, and withV}(c†1c) these are of course zero. Th
fourth-order term is in general given by

Ea
(4)5TrF(

$3%
Sa

k0V̂Sa
k1V̂Sa

k2V̂Sa
k3V̂Sa

k4G
5^auV̂Sa

1V̂Sa
1V̂Sa

1V̂ua&2^auV̂Sa
1V̂ua&^auV̂Sa

2V̂ua&

22^auV̂ua&^auV̂Sa
1V̂Sa

2V̂ua&1^auV̂ua&2

3^auV̂Sa
3V̂ua&. ~A4!

If we drop the terms containing expectation values of o
powers ofV and substitute Eq.~A1!, we find

Ea
(4)5^auV̂Sa

1V̂Sa
1V̂Sa

1V̂ua&2^auV̂Sa
1V̂ua&^auV̂Sa

2V̂ua&

5 (
n,p,qÞa

^auV̂un&S 2Ea
(2) ^nuV̂ua&

~Ea
(0)2En

(0)!2

1
^nuV̂up&

~Ea
(0)2En

(0)!

^puV̂uq&

~Ea
(0)2Ep

(0)!

^quV̂ua&

~Ea
(0)2Eq

(0)!
D , ~A5!

which we have used to derive Eq.~32!.
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