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Quantum phases in an optical lattice
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We present the zero-temperature phase diagram of bosonic atoms in an optical lattice, using two different
mean-field approaches. The phase diagram consists of various insulating phases and a superfluid phase. We
explore the nature of the insulating phase by calculating both the quasiparticle and quasihole dispersion
relation. We also determine the parameters of our single band Bose-Hubbard model in terms of the microscopic
parameters of the atoms in the optical lattice.
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I. INTRODUCTION mean-field approach¢s,8,9. In particular, Ref[5] numeri-
cally determines interesting features of cold bosonic atoms in

Using the interference pattern of intersecting laser beaman inhomogeneous optical lattice. In this paper, we give a
one can create a periodic potential for atoms, which is knowiargely analytical means of understanding the results ob-
as an optical latticg1,2]. Because one can confine atoms attained by these authors.
separate lattice sites, one can accurately control the interac- In order to describe the zero-temperature phase transition
tion between the atoms. This makes the optical lattice afrom the superfluid to the Mott-insulating phase analytically,
important tool in spectroscopy, laser coolif®], and quan- we need to make some appropriate mean-field approximation
tum computing[4]. In the following we study some of the to the Hamiltonian in Eq(1). A more or less standard ap-
many-body aspects of such a lattice and in particular Boseproach would be to use the Bogoliubov approximation. In
Einstein condensation of atoms in a optical lattice. In con-Sec. Il we show that this approximation does not predict the
trast with the existing Bose-Einstein condensation experiexpected phase transition and we explain the absence of the
ments in an harmonic trap, the quantum depletion of thephase transition. In Sec. Il we analytically investigate an
condensate in the case of Bose-Einstein condensation in aternative mean-field theory, proposed by Sheshatal.
lattice can be very large. We can therefore expect interestinf®], and compare the analytical results with exact numerical
features. results. In Sec. IV we discuss the properties of the Mott

If we assume that the atoms are cooled to within the low4nsulating phases by calculating the quasiparticle and quasi-
est Bloch band of the periodic potential, Jaksthal. [5] hole dispersions and finally in Sec. V we relate the param-
have shown that we can describe the behavior of the atoms eterst andU to experimental parameters such as laser inten-
an optical lattice with the Bose-Hubbard Hamiltonian sity and wavelength.

H=—t> cle+ EUE cletec—ud cle, (1) Il. BOGOLIUBOV APPROXIMATION
e 1) 2 - (I B | - (I
Y ' ' We first transform the Hamiltonian to momentum space
where the sum in the first term on the right-hand side idY introducing creation and annihilation operatafsanday

restricted to nearest neighbors axjdandc; are the creation respectively, such that
and annihilation operators of an atom at Siteespectively.

The parameter is the hopping parameter amdlis the inter- c = 1 z ave ki
action strength, which we always assume to be positive in : \/WS = oK '
the following. The term involving the chemical potentjaiis ©

added because we perform our calculations in the grand-

canonical ensemble. 1 _
Qualitatively we expect that when there is an integer cl=—=> aleln,

number of particles at each siteandt<U, the interaction \/N—s k

between the particles will make it energetically unfavorable . . . . :

for a particle to move from one site to another. In this situ-WhereNS is the number of lattice site andis the coordinate

ation the gas is in what is known as the Mott insulator phas@' Sit€i- The wave vectok runs only over the first Brillouin
[6]. However, if we add in this phase a particle to the system,zone' For mathematical convenience we takg only a finite
this particle will only receive a small energetic penalty whenV0lume V, so that the momenték are discretized, which

it moves, because its interaction energy is the same on ea@{OWS US to write sums instead of integrals in E2). Later

site. For this reason, a gas with a noninteger number of/€ Will take the continuum limit/—cc. Using the fact that

bosons at each site will be in a superfluid phase at zer&ie ' ) Ti=Ndy \, it is easily shown that the prefactor
temperature. This expectation has been shown to be correttyNg ensures that the total number of particles obdys
using quantum Monte Carlo calculatiofg] and several =Eicfci=2kalak.
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If we limit our description to cubic lattices with lattice . 1 _ ‘
distancea and substitute Eq(2) into the Hamiltonian, we H=| —zt—pu+ 7 Uno Nﬁ% (— €k pm)agax
find
_ + EUnOZ (aa_ +4ala,+ala)). 7)
H=2 (—e—nwajay 2 k B
K
1U We can simplify this expression somewhat by using the com-
+ 5N S>> alakfak”ak”’5k+k’,k”+k”’1 mutation relatlor[ik,ak] 1. If we also substitute Eq6)
s kokowoK” and writee,=zt— ¢, we find

3

— Heﬁ:_lunoNo_EE (6k+Un0)+EE (af.a i)
where we define(z}k=2t21?’:1 cosk;a), with d the number of 2 2% 2 Tk
dimensions. For a Bose condensed gas the average number
of condensate atomy, is a number much larger then one, %
which means thaNy=(ajao)~(aa}) and we are allowed Ung e+Ung
to takeNy=(a})(ay).

Since(a) and(ay) are complex conjugates, we conclude wherg the ex‘ga zeroth-order terms are generated by the com-
that (a}) = (ag) = VNo, where we have chosen these expec-mutation ofa, anda.

tation values to be real. The Bogoliubov approach consists of | "€ effective Hamiltonian is diagonalized by a Bogoliu-
replacing the creation and annihilation operators by their avbov transformation. This implies that we define new creation

€k+Un0 UI’IO ag

, ®

al,

erageyN, plus a fluctuation and gnnihilat.ion .operatods‘i andb, for which the effective
Hamiltonian is diagonal, by means of
+ t
ap— \/N_0+ ag, bk - Ue vy ay . ay (9)
@ b/ [vF uf|\al,) "\al,)

30— VNo+ o, To ensure that the operatds§ andb, still obey the standard
and minimizing the energy of the gas with respect to thecommutation relations for bosonic creation and_ gnnihilation
number of condensate atoNg. At the minimum, the part of operfators, we have to demand that the coefficients of the

matrix B obey

the Hamiltonian that is linear in the fluctuations must there-
fore be zero. Performing the above substitution and selecting

2_ 2_

the linear terms yields |ul “= o *=1. (10)
U If we now substitute Eq9) into Eq.(8) and demand that the
H(l):( —eo—p+ N_SN°> No(al+ap), (5) result reduces to the diagonal Hamiltonian
- - - Heﬁ——EUnN+EE[ﬁ —(€+Ung)]
where the superscript denotes the order in the fluctuations. TP oNoT 5 s L@k ek 0
SinceH® must be zero for ath) anda, we conclude that in
the lowest-order approximation +E ﬁwkblbka 11)
k

M= Uno_zt, (6)
we find thatu, andv, must be solutions of the following two

in terms of the condensate density=N,/Ng and the num-  equations:
ber of nearest neighbors=2d. This expression can be eas-
ily understood since the chemical potential is the energy [(u)?+ (v)*]Ung— 2uw (€+Ung) =0,
needed to add one particle to the system. Adding one particle (12
results in an energy increase due to the interaction with the 5 ) . .
no particles already at each site, and an energy decrease due (|Ukl*+ vk ) (ex+Ung) = (Ugvi+ Ui ) Ung=rr oy .
to the possible hopping to one pihearest-neighbor sites. . L o

Next we determine the effective hamiltoniatf", which Using the normalization in Eq10), we can easily find the

contains only the parts of zeroth and second order in thgolution

fluctuations. The zeroth-order term is found by substituting _ \/27
all creation and annihilation operators RNg. To find the hw= Vet 2Uneey,
quadratic term, we substitute in the interaction term two cre- (13
ation or annihilation operators at a time kN, and write
. . . . . 1 Ek+Un0
down all possible combinations. Performing the summation lod2=|uf?-1=>| ——— -1
over one of the remaining momenta yields finally 2\ fhoyg
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To also obtain the condensate densigy which until now 1.0¢ @ & (0)
has been arbitrary, we now need to calculate the total density 08 ] i
n as given by our effective Hamiltonian. The total density is 0.61 '
thus given by § 0408 1 %
S 02 “wo 1 Yen
1 0.0 B T [l P
= T . 0 5 10 15 20 0 5 10 15 20 25
"= Ek: (afay) e, (14) o o

where the bracket§ e denote the expectation value as cal- FIG. 1. The condensate fraction /n (@) in a two-dimensional
culated with the effective Hamiltoniaki®®. For a Bose- optical lattice andb) a three-dimensional optical lattice, both as a
condensed gas, this density consists of two parts: the densiﬁ#f\"?t'ond Of_t?% grrlfnd3|lgnel)ess parametart for n=0.5 (dashed
associated with the macroscopic occupation of the one- € andn=1.L (dotled fin.

particle ground state, i.e., the condensate, and the density due . . . . - .
to the occupation of the higher lying one-particle states. InﬁgxeTgerg['w this, we investigate the limit af/t—c in
this case, the condensate density equals the paramgded '

the density of the noncondensate part is determined by an

average over the quadratic fluctuations, which will be a func- B. Asymptotic behavior
tion of ny. Calculating the average over the quadratic fluc- When U/t—o we intuitively expect the system to be-
tuations by means of E9) yields first of all come an insulator, because it effectively means that the hop-
1 ping parameter goes to zero. We therefore expect that there
N=Nat — ul2+10.12)(bib T2, are no _superf!wd soluthns a$/t_—>00. We can see that in
0" Ng kzo [(u*+ o) {obipent vl *] this limit the integrand in the right-hand side of E@.7)

(15  behaves as Wngy/2e;)Y2. One can also prove that,

_ <477 q|*. This means that
If we then use Eq(13) and substitute the Bose distribution

evaluated afi w, for (b}b,)yerr we find that 12 eq+Ung 1 [Un, (12 dg
—12 a e2+2Ueyn “27 N 2t fl/zw' (18
n 1 Ek+Uno 1 €k+Uno_ﬁ(1)k aq a0
n=ng+—
O Ng &0 | howx eftox—1 2f oy The integral at the right-hand side of E@.8) can be done

(16 analytically in two dimensions and numerically in three di-
mensions. When we call the result of the integrationdin

In the zero-temperature limi3—c, the first term in the  gimensiond 4, we see that Eq17), for U/t—co, reduces to
summand is zero. Taking the continuum limit by usiBg

—VJ™ dk/(2m7)9 changing from momentak to q 1 [un, 1
=2mk/a, and realizing thaN,=V/a%, we arrive at the ex- n~not -\ 5 la= 3 (19
pression
1 e U where 1,=2.22322 andl;=2.38008. This is a quadratic
n=ng+ _f d (M_ 1) , (17) equgtion inyng, which always yields a positive solution for
2) -1 hog no given by
with P 2ts!_[1-cos(2rg)]  and  hwg=(€; 1 12 U Iy [0 2
+2Unge,) /2. We can now obtain the condensate density by No= > 2 2t +4n+2—8—\g . (20
solving Eq.(17) for ng for a fixed value oh. We expect that 16m m

at integem, for a fixed value olJ/t, there will be no super-
fluid solution and this will mark the phase transition to the
insulating phase as predicted by Rdf,7-9.

We can correct for the error we made in E§i8) by using a
higher value forl 4, but while this may change the value of
no, it will still yield a positive solution. We see from Eqg.
(20) that limy,;_,.nNy=0 as expected, so we can conclude
that the Bogoliubov approximation, as described above, does
In Fig. 1(a) we plotted the result of this calculation for a not predict the phase transition to the Mott insulator phase in
two-dimensional lattice. We see from this figure, that there iswo and three dimensions. The reason for this is that the
only a marginal difference between the case thai0.5 and  Bogoliubov approach only approximately treats the interac-
n=1.0. In Fig. 1b) we plotted the result for a three- tions. As a result, the Bogoliubov approach cannot describe
dimensional lattice. In this case the difference between halflarge depletions of the condensate.
filling and integer filling is somewhat larger, but there is We also see from Eq18) that in one dimension, di-
clearly no critical value ofu/t for which the condensate verges. Substituting this in E¢L9), we see that there are no
density goes to zero. Bose-condensed solutions, i.e., solutions wigls 0, in one
These results lead to the suspicion that the phase transiimension. This is in accordance with the Mermin-Wagner-
tion to the insulating phase is not present in this approximaHohenberg theorerfil0—12.

A. Numerical results
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As the Bogoliubov approximation fails to predict the we see that in an occupation number basis the odd powers of
phase transition to the Mott insulator phase, we now considehe expansion of the energy if will always be zero. If we
a different mean-field theory that treats the interactions exdenote the unperturbed energy of the state with exactly
actly and approximates the kinetic energy of the atoms in th@articles byEgo), we find that the unperturbed ground-state
optical lattice. energy is given by

O —g@|n= )
Ill. DECOUPLING APPROXIMATION Eg ={Ey’In=0,1,2.. }pin-

To arrive at a mean-field approach, that is capable of deComparinge!”) andE{), yields
scribing the Mott insulating phase, we start again from Eq.

(1). Analogous to the Bogoliubov approach, we introduce the 0 if <0,

superfluid order parameter=\n;=(c/y=(c;), wheren; is Ego): _ _ _ _

the expectation value of the number of particles on bite ZY9(g-1—ng ifU(g—1)<u<Ug.

Note that we take the expectation values to be real, as before. (25)

We now, however, construct a consistent mean-field theory

by substituting Next, we calculate the second-order correction to the en-
ergy with the well-known expression

CiTCj:<CiT>Cj+CiT<Cj>_<CiT><Cj>: (e + c)— 7,
(21) [(glVIn)|?

EéZ): ? 0 0)’
n#g Eg )—g®

(26)
into Eqg. (1). Performing the substitution yields

1 where|n) denotes the unperturbed wave function withar-
Heff= — 2ty >, (ciT+ci)+ztt/f2Ns+§U2 clclec ticles, of which the state witln=g particles is the ground
i i state. Since the interactioncouples only to states with one

more or one less atom than in the ground state, we find

—u> cle, (22)

£ g g+1

_ _ 2 27
g
wherez=2d is again the number of nearest-neighbor sites U(g-1)—-u pn—Ug

and N; is the total number of lattice sites, as before. This;¢ \\ .« Low follow the usual Landau procedure for second-

Hamiltonian is dlagonal W'th. respect to f[he site mdex;o order phase transitions by writing the ground-state energy as
we can use an effective onsite Hamiltonian. If we introduce

= il N A an expansion iny
U=U/zt, u=pul/zt, and the number operatof=c;c;, we o L
find Eg(4)=a0(9,U, 1) +a5(9,U,w) ¢+ O(¢*), (28

Heff_ 1UA S y—on f it g2 (23 and minimize it as a function of the sup_erfluid order param-
= Umnim D = pni— e ey eter ¢, we find thaty=0 whena,(g,U,x)>0 and thaty
#0 whenay(g,U,u)<0. This means thah,(g,U,u)=0

which is valid on each site. We will therefore drop the gjgnifies the boundary between the superfluid and the insula-
subscripti in the following. Note that we scaled all the en- oy phases. Solving

ergies by a factor zt, making this Hamiltonian a dimen-

sionless operator. _ g g+1
After writing Eq. (23) in matrix form with respect to an ay)(g,U,u)== —+ ——=—+1=0,
occupation number basis, we can solve the problem numeri- U(g-1)—p n—Ug

cally by explicitly diagonalizing the part of the matrix with
occupation number below a certain maximum val[®s.
Later we also follow this procedure, but we first determine

yields

. . : — 1 1 ——
the phase diagram analytically using second-order perturba- M+=—[U(Zg—1)—1]i—\/u2—2U(Zg+ 1)+1,
tion theory. T2 2
(29)
A. Second-order perturbation theory where the subscript denotes the upper and lower halves of
When we writeH® =H©) + Vv, with the Mott insulating regions of phase space. Note that this

result is exact within our mean-field theory. Figure 2 shows a

plot of Eq. (29) for g=1,2,3. By equatingu, and x_ we

can find the point of smalle&t for each lobe. Denoting this
(24)  critical value ofU by U, we have

v=—(ct+0), U.=2g+1++(2g+1)>—1, (30)

053601-4
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FIG. 2. Phase diagram of the Bose-Hubbard Hamiltonian as
obtained from second-order perturbation theéswlid lineg. The
vertical axis shows the dimensionless chemical potenptialu/zt
and the horizontal axis shows the dimensionless interaction strength
U=U/zt. The dotted lines indicate the zeroth-order phase diagram.
Later on, Fig. 5 is taken along the dashed line in this figure.

which yieIdsUC%5.83 for theg=1 insulator, a value also

E /zt
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-8.880[

-8.890

-8900-

-8.910L

T 10.010

-0.50

-7.70

-1.74

0.005

found by Ref.[9].

B. Fourth-order perturbation theory

To find out more about the phase transition, we now carry
out fourth-order perturbation theory to find the rate with

which the particle density increases as a functiorﬂoﬂn

Appendix A, we present a way to calculate the higher-order
terms in the perturbation series. Using this procedure we ¢

write the ground-state energy as

Eq(#)=a0(0,U, 1) +a5(9,U, ) 2+ a4(g,U, u) ¥,

(31)
with
— 9(g—1)
as(g,U,u)=—= = __
A0 e 1) wiU(20-3)—24]
L _(9+15912)
(k—Ug)2p—-U(2g+1)]
_(_ 9, 0%l
U(g—1)—un wu—Ug
g g
X | — —  —— . (32
([U(q—l)—m2 (n—Ug)? (32

& 8,
o= 0.000
778
7.82 s ! : -0.005
-0.50 -0.25 0{/(/)0 025 0.50

FIG. 3. Ground-state enerdin units of the hopping energt)
as a function ofy for (a) U=11 andu=8.9 and for(b) U=11 and

ah-

pn=7.8. The solid line represents fourth-order perturbation theory
whereas the dotted line represents a numerical diagonalization of
the effective hamiltonian. The dashed line is the difference between
the two (scale on the right

perturbation theory, because @t nU the states witm—1

and n particles per site form a doubly degenerate ground
state. The resulting expression for the ground-state energy is
now nonanalytic and given by

-10.9 T T

2-11.2

E /zt

-11.5 I I )
-0.50 -0.25 0.00 0.25

In Figs. 3a) and 3b) we show plots of Eq(31) together
with the result of an exact numerical diagonalization of the
effective Hamiltonian. As can be seen, the overlap is very
good near the boundary given by Eg9). In Fig. 4 it can be FIG. 4. Ground-state enerdin units of the hopping energst)
seen that the numerical result exhibits a cusp wheng, as a function ofy for U= =11, as obtained from first-order per-
which is not predicted by Eq31). This is due to the fact that turbation theory(solid line) and from numerical diagonalization of
in this particular case we need to use first-order degeneratge effective hamiltoniaridotted line.

0.50
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quasihole dispersions using a functional integral formalism.
We start by deriving an expression for the effective action.
Readers unfamiliar with functional integrals may want to
skip to Sec. IV B, where we discuss the results of the calcu-

/ ] lation.

A. The effective action

] We define complex functions (7) and a;(7), respec-
i ] tively, and write the grand-canonical partition function as

0: 1 L 1 ]
-10 0 10 20 30
I

Z=Tre*BF‘=fDa*Daexp{—S[a*,a]/ﬁ}, (35)

) ) _ ) _ where the actior§ a*,a] is given by
FIG. 5. The density as a function of dimensionless chemical
potential u= u/zt for a dimensionless interaction strength Gf E .
a
i

d
=U/zt=11, i.e., along the dashed line in Fig. 2. ﬁﬂ_'“

hp
S[a*,a]zf0 dr| ai_; tija“ a;

1—
Eg(zp)|;:nU=—EUn(n+1)+¢2—|¢| Jn+1, (33 +;U2i ara’aa;|, (36)

which is the solid line in Fig. 4. Note that the occurrence ofith g=1/kgT, kg the Boltzmann constant, ariithe tem-

a cusp is analogous to the well-known Jahn-Teller effect irberature. To decouple the hopping term, we perform a

solid-state physicf13].

We now continue by calculating the average number okqgyare to the action, which then becomes
particles per site in the grand-canonical ensemble by

hB
HHY  GEg(h=tmin) 9 [ 8(9,U )2 S[a*,a,z//*,w]=8[a*,a]+fo driEj (i —af)t;;
= — alu = — — =0— = W y
Ip dp\ day(g M()34) X (i —a;) (37)

whereyin=[ —a»(g,U, 1)/2a4(g,U, 1) 1*2is the minimum
of Eq. (31). Making use of the previous results, we can now

plot the density as a function q?for a fixed value ofU.

Between the edgeg ., the density will remain constant
because/,;;=0 and the second term in the right-hand side
of Eq. (34) does not contribute. Outside that region, the den-
sity will start to change with a nonzero slope. In Fig. 5 this is
plotted forU=11. The solid line shows the result of the
calculation described above and the dash-dotted line is a nu-
merical result obtained by exact diagonalization. As can be
seen, the analytical results are in good agreement with the
numerical calculation. We can now also qualitatively under-
stand 'Fhe|3|°|qt'o'1. found numelntr:]ally by.JakmhaI. [S]f_for and integrate over the original field$ anda; . If we denote
an optical lattice in an external harmonic trap. In a first f"‘p'by SO[a*,a] the action fort;; =0, we have explicitly that
proximation, we can describe the effect of a slowly varying

trapping potential by substituting in Eq. (34) by u'=u  exp(—S*My*, /%)
+V(r), whereV(r) is the external trapping potential. Com-

bining this with Fig. 5 yields the density profile found in Ref. 1 (%
5], 9 9.0y yp Eexr{—% . dr%‘, tql//f'ﬁj)fDa*Da

(37) as

q;

ha
197"“

%
S[a*’av‘/’*alﬁ]:foﬁdT 2 aF
1
+§UZ afafaiai—Z tij(af" o
i ]

+¢i*aj)+%_: t U 4 | (39

IV. DISPERSION RELATIONS

x exp{—SO[a*,a]/h}
An important property of the Mott insulating phase is that Xexr{ _ Ey”’ng

the fluctuation in the average number of particles per site hlo

goes to zero at zero temperature. Since these fluctuations can

be described as quasiparticle and quasihole excitations, we We can now calculat&®™ perturbatively by Taylor ex-

will study these now. We calculate the quasiparticle andpanding the exponent in the integrand of E2P) and evalu-

(39

—; ti(a g+ i a)

053601-6
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Here 4* and ¢ are the order parameter fields. To obtain an
effective action as a function of these fields, we rewrite Eq.
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ating the various correlation functions of the field theory giverstyy. This yields for the quadratic part of the effective action

1 e 2 nB
5(2)[l//*1'//]:—ﬁ<(fo dT; tij(ai*'/fﬁl//i*aj)) > +f dr>, t 4
! s(0)

0 ij

1 LB (hB hp
:_%< fo 0 deT,WZ’ tijti/j/(ai* 1/1J+l,bfal)(al*,1/11,+1//f,ajl)> +fo d’T; t”l//I* l//] . (40)
iji’j 50)

If we perform the multiplication in the first term on the right-

hand side and use the information we have about the corre- 2 titirj o (T)(ai(m)a (7)) s (')
lations in the unperturbed system, i.e., "
<ai*af>5(0)=<aiaj>5(0)=0, :<ai(7')aik(7")>s(0)2’ t”t”/l/ll*(T)l/llr(’T,)
1)
(afa))so=(a;a} ) s0=(a;a )5 j, (41)

=t(a(naf (r))s0 X {2y (1y(7')
we obtain in the first instance J
i U (Do (T) I (D ez (7)), (46)
s<2)[¢f*,¢f]=f dr|2 t o () ()
0 4 with z again the number of nearest neighbors. The first term
1 (hp in the summand is a jump in each direction, followed by a
_ _f dr' E tijti'j’lv[/}k(T) jump back. The second term indicates two jumps in the same
h ’ direction and the third term is a jump in each direction fol-
lowed by a jump in a perpendicular direction. Note that the
><<ai(T)ai*,(r’)>s(o)z//j,(7-’)], (42 third term is absent in one dimension. It can be shown that
the complete double jump term reduces to

0 jij

where we have now shown thedependence of the fields
explicitly for clarity reasons. Because we will only consider > tijti,j,wj*(r)(ai(f)ai*,(r’))s(mwj,(7-’)
nearest-neighbor hopping, we write ji'y’

t for nearest neighbors :<ai(T)ai*(T')>s(0>2 W (1) lﬂk(T');kzy (47)
ti=t;= - (43 K
0 otherwise.
First we treat the part of Eq42) that is linear int;; . We  where we again used,=2t=?_, cosk;a).
have To also treat the time dependence of the fields, we intro-
duce Matsubara frequenciés»,= 7(2n)/h B by

; G (DY (D=2 W (Dhey(n), (44
| | 1 —iwnT
lﬂk(T)—En: \/Tﬂlﬂkne ,

where=x{1} denotes all possible jumps to nearest neighbors.

In the case of one dimension this would simplybé. If we (48)
call the lattice spacing and introduce cartesian momentum
componentk; withi=1, ... d, whered is again the num- 5 1 tiog
ber of dimensions, we find (1) = zn: B Pin€ " 1
d
X G (D1 =2 21y (1) Y, cogkja). To translate the expectation value of the fields into the ex-
1 k j=1

pectation value of operators, we introduce @maginary
(49 time-ordering operator T. As a result

Next we calculate the part that is quadratictin. We can . +

treat this part by looking at double jumps. The expectation (ai(naj (7)so=(T[ai(n)a; (7)) )so. (49
value of<aiai*,)s(o> is proportional §;;» and independent of

the sitei, according to Eq(41). This means that we find, The time ordering can easily be expressed in Heavyside
with similar notation as before, functions as
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(Tlay(Da]. (7))o= 0(r— ' )(ai(nal (7))o

+0(7' = 7(a),(7)ai(7))s0.

(50

(hw — p)/zt

If we use the unperturbed energies as given by(E§), we
thus find

(ai(T)ai*,(T’)>5(0)= 0(r—7")(1+Q)

' 5L | .
xexp{ — (EQ —EP) (71— 7)1k} o s 0 15
U/zt

+0(1' — r)gexp(EQY, —ED)
FIG. 6. The quasiparticle and the quasihole endigyunits of

the hopping energyt) for k=0 in theg=1 insulator lobe. The

dotted lines are the asymptotes of the curves. The inset shows the

resulting first-order approximation to the dispersion of the density
fluctuations.

_ +1 g
(52 |- 2

0=|1 6k<—ﬁw—,u+gU+ﬁw+M_(g_1)U '
Eéo)_Eé,O_)lz -u+(g—1)u<o. 59

X(t—7")Ih}. (52
Becauseg minimizesE{” we know that

E,—EP=—pu+gu>0,

) — — Ultimately this yields the result E¢56) given below in Sec.
Note that we use parametessandU instead ofy andU, IVB.

because we have not yet divided out the faabrCombin-

ing the above with Eq(42) we find B. Results

_ Now we will explore the results of the calculation pre-

SOy =2 D [thnl®ex sented in the previous section. The quasiparticle and quasi-
nok hole dispersions are given by

1—§fo dr'(1+9) U €k
h)_w ﬁwqp’th—,u,-i- 5(29_1)—5

Xexp{(—ihw,—pu+gU)7r'Ih}

1 —
— 15@2—(4g+2)uek+ Uz (56
- %kf dr'gexp{—(iftw,+
0 In Fig. 6(a) we show fork=0 a plot of the above equations.

The dotted lines indicate the asymptotes of Exf), which
—(g— 1)U)7"/ﬁ}> . (53) are given by
lim fiwgp=—p+gU—(g+1) e
Performing ther’ integration we then easily obtain U—o
B B g1 =EQ,—EQ—(g+1)zt,
SALy* 1= 2 [Pl P 1—€k<m . _
noK nmHTY lim 7 wgn=—p+(g—1)U+ge
U—o
g
*iﬁwnm—(g—l)tJ) | 59 ~EP—EP, +g2t (57)

Note that this result is exact within our mean-field theory. Itwith ES?; —E{ and EY—E{Y, given by Eq.(52). The
contains all powers of the frequencies and momenta and néifference between 50(57) and Eq.(52) is caused by the
gradient expansion has been applied. This is important bdact that Eq.(52) is calculated fort=0. It can easily be
cause the elementary excitations are gapped as we will shownderstood that fota&O the first-order correction is due to
in the next section. the hopping terms: cit, where sitgj is one of the nearest
We can find an equation for real energifes by substi- neighbors of sitd. When we haveg particles in all lattice
tuting i w,— @ and equating the remaining factor to zero. sites and we add one particle to sitewe have(c ci)=9g
This gives +1, so the effective hopping parameter for a partlclegs (
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[T obtain ad dimensional lattice, but this requires stabilization

; of the relative phases of the laser beams. We défjras the
sum of the intensity of the beams andifs the magnitude of

the k-vector, we definek, =k sind and k,=k cosé. If we

add the electric-field components and express them in spheri-
cal components

E,=——=(E,—iE,),
FIG. 7. Laser beam configuration for a three-dimensional optical " \/E( X y)
lattice.

+1)t. However, when we remove a particle from sifave
have(ciTcJ->= g, which represents a particle hopping to site J2
from one of its nearest neighbors. The effective hopping pa-
rameter for a hole is therefore ongjt. In combination, we
see that in the limit otJ -, Eq. (56) indeed reduces to a Eo=E,, (59
physically intuitive result.

As shown above, the slopes of the asymptotes differ ex- ] ] )
actly by U, so in the limit ofU/zt—x the gap for the cre- We f|r)d that th.e spatla}l dependence of the intensity of the
ation of a quasiparticle-quasihole pair is equaltowe can  resulting light field is given by
find a first approximation for the dispersion of the density
fluctuations by subtracting the two solutions, which yields 1
Ii/lb=§[cos°-(klx)+cosz(kly)

e =hwg—fiogh=1\(e)?—(4g+2)Uet+ U2 (58
In Fig. 6b) we show again fok=0 a plot of the above *2 cogk, x) cogk, y) cos2k2)],
equation as a function & = U/zt for g=1. We can see that
there is a band gap, which proves that the Mott insulator lo/1,=0. (60)
phase is indeed an insulator and we also see that the band

gap disappears as we approach the critical vallie

=U,/zt~5.83 that was found earlier. For smaller values ofNote that at the minima df. the polarization is purely~.

U we are in the superfluid phase, which according to thef\Iso note that since the linear component is always zero, the

Hugenholtz-Pines theorem is expected to always have gap/C ground-state levels are not coupled.
less density fluctuations. Following Nienhuiset al. [15] we can now calculate the

optical potential. Because of the fact that the ground states
are not coupled, we can treat them separately. Wittihe
detuning,I" the rate of spontaneous decay dnd the Rabi

To estimate the experimental feasibility of observing thefrequencies for the-™ components of the light field, we can
described phase transition, we now relate the parameterswrite the potential for then;= +1/2 level in the limit of low
and U to the microscopic parameters. Because we have agaturation as
experimental interest in sodium, we will calculate these pa-
rameters for sodium atoms trapped in a lattice constructed
with four laser beams. To calculate the hopping paranteter
we calculate the overlap between single particle ground-state =
wave functions in neighboring sites. To calculate the inter-
action strengthJ, we use the pseudopotential method.

First we calculate the optical potential experienced by thevhere the factor; arises because of the Clebsch-Gordan
atoms, following the approach of Petsatsal. [14]. We de-  coefficients forJ=1/2— J=3/2 transitions.
scribe aJ=1/2—J=3/2 transition and choose a laser beam Now we define a convenient prefactor
configuration with two pairs of laser beams. Each pair lies in
a plane and the planes are perpendicular to each other. All
beams have the same anglevith respect to the intersection
of the two planes. We choose the quantization axis along the b
intersection and label it as the axis. Furthermore, we
choose the polarization of the laser beams linear and perpen-
dicular to the plane spanned by the pairs of beams. The comwhere s=s,/[1+4(8/T)?] is the off-resonance saturation
figuration is illustrated in Fig. 7. It should be noted that it is parameter and,=2|Q|?/T'2 is the on-resonance saturation
also possible to simply superimposestanding waves to parameter, which is usually written ag=1/1. The satura-

V. MICROSCOPIC PARAMETERS

hé
1+4(8IT)2

210.1% 12|04
+ —

e

1
2

1 Adsy hés
=y 5= 5 (62
21+4(8IT)? 2
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tion intensity |5 is a constant for a given transition. If we 10— T 0.100
substitute Eq(62) in Eq. (61), we find ; (@) (b)
. 11 o
=V,| —+=— g 10.010 8
Vi Vb Ib + 3 Ib) =] =
=EV [cog(k, x)+cog(k,y) L1 S .. . . . o001
3P * * 357 91113357 91113

Vieap/Er Visap/Ex
+cogk, x)cogk, y)cog 2k, z)]. (63
FIG. 8. Plot of(a) U and(b) t as a function of the trap depth. All
We now write the Hamiltonian of a particle in the poten- quantities are in units of the recoil energy .
tial as

p? Vin(r—=r") Amash” S(r—r'") (68)
Hopi= o + Ve (64) " m ’
and solve the time-independent Sdfirger equation varia- we can write Eq(67) as
tionally by assuming an isotropic Gaussian wave function 4madi?
and minimizing the energy as a function of width of the U= f dr* (r)w* (r)w(r)Ww(r)
Gaussian. If we calpB the width of the wave function, we m
can write the normalized wave function as Amagh?
A
1\ . m
— — —|r
W (r)=(r|¥) (wﬁz) e . (65) ) ama?
_ _ - mg3 w32
We assume we have a spin-polarized sample of atoms, so we
can use either th¥_, or theV_ potential. 2ho | as
For simplicity we now calculate the parameters for a one- =—\ =], (69
dimensional lattice. For the lattice configuration in Fig. 7 this V2w B

gives approximate results, but for a phase stabilized super- , . , )
position of three standing waves, the results are immediatel{yneréas is the triplets-wave scattering length. According to
applicable. In this case, the potential reduces \fo ef. [17] the value of the scattering length for a spin-
=2V, [ 2= cos(XD]3+ i, (x2+Yy?)/2, where the transverse polarized sodium-sodium collision _|as_=(i_3f5t 3)ay. Note
potential is caused by the fact that the laser beam has a finif8at the use of 32°”e'ba”d model is justified whes7 o,
width. If we assume the wave function is tightly localized in OF 8>28s/(2m)~*~3.5 nm. _

the center of the local potential well, we can approximate the Next we calculate the value of the hopping parametgr
potential as an harmonic potentidl, = 2V, + xr2/2 with «  the tight-binding limitt is given by

=—8V,k?/3, where we assume we can adjust the width of

the laser such thak, =~ . These approximations yield the t:_f drir* (r)
well-known equations for the width and the level splitting in

the potential

2

ﬁwLVi V(r+ae), (70

— Whereéj is an axis vector along a lattice direction, so that
B:(ﬁ_) o= r/m. (66) whenW¥(r) is the ground-state wave functiO\ﬂ,(r+aéj) is
mx the ground-state wave function of an atom at a neighboring
] ) site. One can show that product of two wave functions at
~ Using the above width we calculate the value of the pejghboring sites is a Gaussian function centered around
'Cnc:fdrﬁ]cn?gsg&q%;%i\g'itg\}gﬁ dﬂso?l;%?jri)l?rfzggnrm;heo\?\;i (ﬁﬁ +aéj/2. We can therefore approximate the potential around
of thegtrapping volume is of the order of the scatteringthe maximum of the barrier by . =2V,/3% kr*/2. Substi-
length. In general the interaction strength between two atom%mng this into Eq.(70) ultimately yields
in the same one-particle wave function is given by

h 2\?]/a\? 1
t=?w 1—(— 2] e a@p? (71)
r
U=J drf dr’U*(r)W*(r" )Vu(r—=r")H¥(r)w(r’),
(67) Figures &a) and &b) show plots ofU/E, andt/E, respec-

tively, with E, =#2k?/2m the recoil energy. Both are plotted
whereV;,(r—r") is the interaction potential. If we approxi- as a function of the trap dept,,= —4V,/3. The values
mate the potential as were calculated for a laser wavelength of 600 nm. The satu-
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100 w ‘ ' ' give the result of that derivation. If we denote hy) the
“ unperturbed wave functions alﬁf) the unperturbed ener-
gies, we can define an operator

—la)(a| if k=0

Si= [n)(n|
= (EgO)_ Ego))kﬂ

10
: (A1)

U/zt

if k>0,

and one can prove that ti¢h order correction on the energy
EQ is given by

Viap/Er

Egn):Tr[ > SoU...Ush, (A2)
{

n—1} a

FIG. 9. The dimensionless parameltgfzt plotted as a function
of the trap depth(in units of the recoil energ¥,) for one (solid
line), two (dotted ling, and three dimension&lashed ling The

dash-dotted line is the critical valug=5.83. where{n}={ko,-- - Kky[ko+ ... +ky=n}. In the case oh

=2, this quickly gives the well-known result

ration parameter needed to reach these trap depths is in the

order of 10, which is not unrealistic experimentally. E(Z)ZTr[z Sfoyygkiy ke
Figure 9 shows alst)/zt as a function of the trap depth, é m ¢ 2 =@

for a wavelength of 600 nm, in one, two and three dimen-

sions. Again, the saturation parameter is in the order f 10 =<a|VS§V|a),
As has been seen, the desired critical value is reached in all
three dimensions. The value of the width lies between |(n|V]a)|?

12% and 8% of the wavelength in the range considered in (A3)
the above plots. This implies that both the harmonic approxi-

mation and the use of the one-band model are justified.

R (ED-ED)

The same can be done f&t", E{®), andE("?). The first two
VI. CONCLUSION can be shown to involve only terms proportional to odd or-

o ders ofV, and withVe= (c'+c) these are of course zero. The
Due to the absence of the superfluid-insulator phase trafpyrth-order term is in general given by

sition in the Bogoliubov approach, we conclude that the in-
teraction is the dominant component in this phase transition. o
When the interaction energy is treated exactly, the theory Eg“):Tr > SZOVS';VS?VS?VSE“
indeed predicts a phase transition. The mean-field theory pre- {3}

dicts a phase transition even in one dimension, which we

— /el el /ey _ /1y /2
expect to survive as a Kosterlitz-Thouless transition when =(alVSVS,VS;Vla) —(alVS,Via)(alVs;via)

fluctuations are incorporated. However a definite proof of —2<a|\7|a}(a|\A/Sl\A/SZ\A/|a)+<a|\A/|a>2
this requires further study. a’"a
We analytically calculated the phase diagram and the par- ><<a|\7§a\7|a). (A4)

ticle and hole dispersion relations in the insulator phase. A

flrst-ord_er approximation to the dlspe_rsmn of the denSItyIf we drop the terms containing expectation values of odd

fluctuations shows that the system indeed goes from a . :

. A . powers ofV and substitute EqA1), we find

gapped to a gapless phase. A calculation of this dlspersm[%

below the critical value folU/zt will have to be done in @ A A R

order to check the presence of linear dispersion that would Ea’=(alVS,VS,VS;V|a)—(a|VS,V]a)(alVS.V|a)

verify the assumption that the phase with#0 is indeed -

superfluid. The one-band model we used to calculate the pa- = S (a¥ny| —e® (n|V[a)

rameters for sodium gives optimistic results for future ex- np.g<a a (Ego)—Eff’))Z

periments, within the range of parameters it allows. A A A
(nvVlp)  (plVla)  (alV]a)

: + . (A5)
APPENDIX A: THE PERTURBATION SERIES (Ego)— EEO)) (Ego)_ EEJO)) (Ego)_ Eéo))

A powerful approach to calculating higher-order terms in
the perturbation series is derived in REf8]. Here we only  which we have used to derive E@2).
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