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Quantum principal component analysis
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The usual way to reveal properties of an unknown quantum
state, given many copies of a system in that state, is
to perform measurements of di�erent observables and to
analyse the results statistically1,2. For non-sparse but low-rank
quantum states, revealing eigenvectors and corresponding
eigenvalues in classical form scales super-linearly with the
system dimension3–6. Here we show that multiple copies of
a quantum system with density matrix ρ can be used to
construct the unitary transformation e−iρt. As a result, one
can perform quantum principal component analysis of an
unknown low-rank density matrix, revealing in quantum form
the eigenvectors corresponding to the large eigenvalues in
time exponentially faster than any existing algorithm. We
discuss applications to data analysis, process tomography and
state discrimination.

Quantum tomography is the process of discovering features of
an unknown quantum state ρ (refs 1,2). Quantum tomography
is a widely used tool with important practical applications in
communication systems such as optical channels, precision
measurement devices such as atomic clocks, and quantum
computation. The basic assumption of quantum tomography is that
one is given multiple copies of ρ in a d-dimensional Hilbert space,
for example, states of atoms in an atomic clock or inputs and outputs
of a quantum channel. A variety of measurement techniques allow
one to extract desired features of the state. For example, recent
developments have shown that quantum compressed sensing can
give significant advantages for determining the unknown state or
dynamics of a quantum system, particularly when that state or
dynamics can be represented by low-rank or sparse matrices3–5,7,8.
The spectral decomposition of a matrix represents the matrix
in terms of its eigenvectors and corresponding eigenvalues. The
optimal low-rank approximation of a matrix can be constructed
from the spectral decomposition by discarding the eigenvalues and
corresponding eigenvectors below a given threshold. This procedure
is frequently called principal component analysis (PCA), and can
be used, for example, to construct the low-rank approximation of
the positive semidefinite symmetric covariance matrix of sampled
random vectors9,10. The cost of PCA is prohibitive when one is
presented with a large number of high-dimensional vectors6.

Conventional quantum state tomography operates by making
measurements on multiple copies of the state: the state plays a
passive role. This paper shows that the state can play a dynamic
role in its own analysis. In particular, we show that multiple copies
of the state ρ can be used to implement the unitary operator e−iρt :
that is, the state functions as an energy operator or Hamiltonian,
generating transformations on other states. Thus, multiple copies
of a density matrix can be used to reveal the matrix’s eigenvectors
and eigenvalues in quantum form. With further processing and
measurements, this density matrix exponentiation can provide

significant advantages for quantum tomography.Moreover, it allows
us to perform quantum PCA (qPCA) of an unknown low-rank
density matrix to construct the eigenvectors corresponding to the
large eigenvalues of the state (the principal components) in time
O(logd), an exponential speed-up over existing algorithms.We also
show how qPCA can provide new methods of state discrimination
and cluster assignment.

Suppose that one is presented with n copies of ρ. A simple trick
allows one to apply the unitary transformation e−iρt to any density
matrix σ up to nth order in t . Note that

trP e−iS1tρ⊗σ eiS1t
= (cos21t)σ +(sin21t)ρ− i sin1t cos1t[ρ,σ ]

= σ − i1t[ρ,σ ]+O(1t 2) (1)

Here trP is the partial trace over the first variable and S is the
swap operator. S is a sparse matrix and its elements are efficiently
computable, so e−iS1t can be performed efficiently11–14. Repeated
application of (1) with n copies of ρ allows one to construct
e−iρn1tσ eiρn1t . Comparison with the Suzuki–Trotter theory of
quantum simulation11–14 shows that to simulate e−iρt to accuracy ε
requires n=O(t 2ε−1|ρ−σ |2)≤O(t 2ε−1) steps, where t=n1t and
| | is the sup norm. Thus, simply performing repeated infinitesimal
swap operations onρ⊗σ allows us to construct the unitary operator
e−iρt . The quantummatrix inversion techniques of ref. 15 then allow
us to use multiple copies of a density matrix ρ to implement e−ig (ρ)
efficiently for any simply computable function g (x).

Note that density matrix exponentiation is most effective when
some of the eigenvalues of ρ are large. If all of the eigenvalues
are of size O(1/d) then we require time t =O(d) to resolve the
eigenvalues15. In contrast, if the density matrix is dominated by a
few large eigenvalues—that is, when the matrix is well represented
by its principal components—then the method works well (the
accuracy will be analysed below). In this case, there exists a
subspace of dimension R� d such that the projection of ρ onto
this subspace is close to ρ: ‖ρ − PρP‖1 ≤ ε, where P is the
projector onto the subspace. When the matrix is of low rank, the
projection is exact. Present techniques for matrix exponentiation
are efficient when the matrix to be exponentiated is sparse13,14. The
construction here shows that non-sparse but low-rank matrices can
also be exponentiated efficiently as long as multiple copies of the
corresponding density matrix are available.

Density matrix exponentiation now allows us to apply the
quantum phase algorithm to find the eigenvectors and eigenvalues
of an unknown density matrix. If we have n copies of ρ, we use
the ability to apply e−iρt to perform the quantum phase algorithm1.
In particular, the quantum phase algorithm uses conditional
applications of e−iρt for varying times t to take any initial state |ψ〉|0〉
to

∑
iψi|χi〉|r̃i〉, where |χi〉 are the eigenvectors of ρ, r̃i are estimates
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of the corresponding eigenvalues, and ψi = 〈χi|ψ〉. In refs 16,17
it was shown that the ability to apply an unknown unitary does
not automatically translate into the ability to apply the unitary in
a conditional fashion. Here, in contrast, the conditional operation
can be performed simply by replacing the SWAP operator with
a conditional SWAP in the derivation above. More precisely, take
t = n1t , and apply the unitary

∑
n |n1t〉〈n1t | ⊗5n

j=1e−iSj1t to
the state

|n1t〉〈n1t |⊗σ ⊗ρ⊗ . . .⊗ρ

where σ = |χ〉〈χ | and Sj swaps σ with the jth copy of ρ. Taking
the partial trace over the copies of ρ yields the desired conditional
operation |t〉|χ〉→|t〉e−iρt |χ〉. Inserting this conditional operation
in the quantum phase algorithm and using the improved phase-
estimation techniques of ref. 15 yields the eigenvectors and
eigenvalues to accuracy ε by applying the quantum phase algorithm
for time t=O(ε−1), and so requires n=O(1/ε3) copies of the state
ρ. Using ρ itself as the initial state, the quantum phase algorithm
yields the state

∑
i

ri|χi〉〈χi|⊗|r̃i〉〈r̃i| (2)

Sampling from this state allows us to reveal features of the
eigenvectors and eigenvalues of ρ. The use of multiple copies of a
state to construct its eigenvectors and eigenvalues will be referred to
here as qPCA.

As above, qPCA is useful if ρ has small rank R or admits a rank
R approximation. In this case, only the largest R eigenvalues will
register as non-zero in the eigenvector/eigenvalue decomposition
(2). Using mn copies of ρ we obtain m copies of the decomposition
(2), where the ith eigenvalue ri appears ≈ rim times. The features
of the ith eigenstate can then be determined by performing a quan-
tum measurement to obtain the expectation value 〈χi|M |χi〉 of the
eigenvector with eigenvalue ri for desired Hermitian M . As long
as M is sparse11–14 or efficiently simulable by the methods given
in this paper, this measurement can itself be performed in time
O(logd). qPCA efficiently reveals the eigenvectors and eigenvalues
of the unknown density matrix ρ and allows one to probe their
properties. For example, in many-body quantum systems in con-
densed phase, such as correlated electronic systems and chemical
systems, it is of significant importance to simulate certain physical
and chemical properties of interest (such as correlation functions,
dipole moments, state-to-state transitions, tunnelling rates, chemi-
cal reactions) whenwe know the system is in the ground state or first
few excited states. Our quantum algorithm could be used to estimate
such observables on the corresponding eigenvectors.

As an application to data analysis, suppose that the density
matrix corresponds to the covariance matrix of a set of data vectors
ai ∈Cd that can be generated in quantum parallel using an oracle.
As will now be shown, qPCA then allows us to find and to work
with the directions in the data space that have the largest variance
in time O(log d). Define the covariance matrix Σ =AA†, where
A has columns aj, not necessarily normalized to 1. In quantum-
mechanical form, A=

∑
i |ai||ai〉〈ei|, where |ei〉 is an orthonormal

basis, and the |ai〉 are normalized to 1. Assume that we have
quantum access to the columns |ai〉 of A and to their norms |ai|.
That is, we have a quantum computer or quantum random access
memory18–20 that takes |i〉|0〉|0〉→ |i〉|ai〉||ai|〉. Quantum random
access memory requires O(d) hardware resources to store all of
the coefficients of the vectors and O(d) switches to make them
accessible but allows access to the data inO(logd) operations. As in
ref. 21, quantum access to vectors and norms allows us to construct
the (unnormalized) state

∑
i |ai||ei〉|ai〉: the density matrix for the

second register is proportional to Σ . Using n=O(t 2ε−1) copies
of Σ/trΣ allows us to implement e−itΣ/trΣ to accuracy ε in time
O(n log d). Our method allows us to exponentiate any low-rank
matrix Σ in time O(logd) as long as it is presented to us in Gram
form Σ =AA†, and we are given quantum access to the columns
of A. In contrast, existing methods using the higher order Suzuki–
Trotter expansion11–14 requireO(d logd) operations to exponentiate
non-sparse Hamiltonians. Density matrix exponentiation extends
the efficient implementation of e−iΣt to a large class of non-sparse
but low-rank matricesΣ .

qPCA for quantum states can be extended to quantum processes
by using the Choi–Jamiolkowski state (1/d)

∑
ij |i〉〈j|⊗S(|i〉〈j|) for

a completely positive map S (ref. 22). For a comprehensive review
of the Choi–Jamiolkowski isomorphism in the context of quantum
state and process tomography see ref. 2, including a detailed
resources analysis of various entanglement-assisted protocols. For
quantum channel tomography, for example, the Choi–Jamiolkowski
state is obtained by sending half of a fully entangled quantum
state down the channel. qPCA can then be used to construct the
eigenvectors corresponding to the dominant eigenvalues of this
state: the resulting spectral decomposition in turn encapsulates
many of the most important properties of the channel22.

qPCA is a new state- and process-tomography primitive that
reveals eigenvectors and eigenvalues of density matrices. To get
a clearer picture of the advantages and disadvantages of qPCA,
it is useful to compare it with quantum compressed sensing3–5,7,8,
a powerful method for performing tomography on sparse and
low-rank density matrices. The primary difference is that qPCA
constructs eigenvectors and associates themwith the corresponding
eigenvalues in time O(R logd): the eigenvectors are then available
in quantum form so that their properties can be tested by
measurement, and correlated with the eigenvalues. Compressed
sensing, in contrast3–5,7,8, is a state- and process-tomographymethod
that reconstructs a classical description of the full density matrix in
timeO(Rd logd). Only single-qubit preparations andmeasurements
are employed. qPCAcould also be used to perform state tomography
on the eigenvectors, revealing their components in timeO(Rd logd).
This classical description of the eigenvalues and eigenvectors
can then be used to reproduce the full density matrix in time
O(Rd log d), the same as in quantum compressed sensing but
relying on the multi-qubit infinitesimal swap operation. In contrast,
to construct the eigenvectors and eigenvalues using compressed
sensing one must first reconstruct the density matrix and then
diagonalize it, which takes time >O(d2 logR+dR2) by randomized
algorithms for low-rank matrices6. It can be shown by information-
theoretic arguments that finding a low-rank approximation by
sampling without prior knowledge is lower bounded by Ω(d)
(ref. 23). qPCA can be compared to group-representation-based
methods for estimating the spectrum and eigenvectors of a
density matrix24–26. These methods reveal the spectrum24–26 in time
O(poly(logd)) but take timeO(d2) to reconstruct the eigenvectors26.

qPCA can also be useful in state discrimination and
assignment27. For example, suppose that we can sample from two
sets ofm states, the first set {|φi〉} characterized by a density matrix
ρ= (1/m)

∑
i |φi〉〈φi|, and the second set {|ψi〉} characterized by a

density matrix σ =(1/m)
∑

i |ψi〉〈ψi|. Now we are given a new state
|χ〉. Our job is to assign the state to one set or the other. Density
matrix exponentiation and quantum phase estimation then allow
us to decompose |χ〉 in terms of the eigenvectors and eigenvalues of
the ρ–σ :

|χ〉|0〉→
∑

j

χj|ξj〉|xj〉

where |ξj〉 are the eigenvectors of ρ–σ and xj are the corresponding
eigenvalues. Measure the eigenvalue register, and assign |χ〉 to the
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first set if the eigenvalue is positive and to the second set if it is
negative. If |χ〉 is selected from one of the two sets, this procedure
is simply minimum error state discrimination1, but exponentially
faster. As a bonus, the magnitude of the measured eigenvalue is
a measure of the confidence of the set assignment measurement:
larger magnitude eigenvalues correspond to higher confidence in
the assignment, and magnitude 1 corresponds to certainty—in this
case |ξ〉 is orthogonal to all of the members of one of the sets. If
|χ〉 is some other vector, then the method provides a method for
supervised learning and cluster assignment9,10,21,28: the two sets are
training sets and the vector is assigned to the set of vectors to which
it is more similar.

Discussion
Density matrix exponentiation represents a powerful tool for
analysing the properties of unknown density matrices. The ability
to use n copies of ρ to apply the unitary operator e−iρt allows
us to exponentiate non-sparse d-dimensional matrices to accuracy
ε=O(t 2/n), and to performqPCA to construct the eigenvectors and
eigenvalues of a low-rankmatrix ρ in timeO(R logd). Like quantum
matrix inversion14, qPCAmaps a classical procedure that takes time
polynomial in the dimension of a system to a quantum procedure
that takes time polynomial in the logarithm of the dimension.
This exponential compression means that qPCA can reveal only a
fraction of the full information required to describe the system. That
particular fraction of information can be very useful, however, as the
ability of density matrix exponentiation to reconstruct its principal
components shows.

We anticipate that qPCA can play a key role in a variety
of quantum algorithms and measurement applications. As the
example of quantum cluster assignment shows, qPCA could
be useful for speeding up machine learning problems such as
clustering and pattern recognition8,9,20,26. The ability to identify the
largest eigenvalues of a matrix together with the corresponding
eigenvectors is potentially useful for the representation and analysis
of large amounts of high-dimensional data.
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