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Abstract. In private information retrieval (PIR), a client queries an n-bit database in
order to retrieve an entry of her choice, while maintaining privacy of her query value.
Chor et al. [J ACM 45(6):965–981, 1998] showed that, in the information-theoretical set-
ting, a linear amount of communication is required for classical PIR protocols (thus the
trivial protocol is optimal). This linear lower bound was shown by Nayak [FOCS 1999,
pp. 369–376, 1999] to hold also in the quantum setting. Here, we extend Nayak’s result
by considering approximate privacy, and requiring security only against specious ad-
versaries, which are, in analogy to classical honest-but-curious adversaries, the weakest
reasonable quantum adversaries. We show that, even in this weakened scenario, quan-
tum private information retrieval (QPIR) requires n qubits of communication. From this
follows that Le Gall’s recent QPIR protocol with sublinear communication complexity
[Theory Comput. 8(1):369–374, 2012] is not information-theoretically private, against
the weakest reasonable cryptographic adversary.

Keywords. Private information retrieval, Quantum cryptography, Specious adver-
saries, Quantum semi-honest.

1. Introduction

The cryptographic scheme of private information retrieval (PIR) describes the problem
of querying a database without suffering a loss in privacy. It was formally defined in
1998 by Chor et al. [4]. Intuitively, not losing privacy through a query means that the
database server does not learn anything about the client’s input. An interesting question
is as follows: how much communication does a PIR protocol require? Sending the whole
database to the client is a trivial PIR protocol, but it seems unsatisfactory with respect to
the amount of communication. Are there better solutions? In the setting of one database
© International Association for Cryptologic Research 2014
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server and information-theoretic privacy, the trivial protocol is optimal (even against
honest-but-curious adversaries). This result was shown by Chor et al. [4].

Quantum computation and quantum communication, compared to the classical model,
allow for improved solutions to cryptographic tasks [2,17]. A natural question thus
arises: does quantum information allow PIR protocols with sublinear communication
complexity? We call a PIR protocol where we make use of quantum resources a quan-
tum private information retrieval (QPIR) protocol. Nayak answered this question in the
negative [16], with a proof sketch establishing a reduction to random access encoding.1

There are also other fields where allowing quantum computation and communication
failed to qualitatively improve the classical result. An example is bit commitment: as
we know, perfect bit commitment is not possible in the classical setting; in the quantum
setting it is also not possible [14,15] (but see Chailloux and Kerenidis [3] for some
quantum improvements that are possible).

Recently, Le Gall [13] presented a QPIR protocol with a sublinear amount of commu-
nication. This result holds for a database that exactly follows the protocol specification.
Motivated by this seemingly contradictory result, we study here the communication
complexity of QPIR protocols that are secure against specious adversaries. As defined
by Dupuis et al. [5], specious adversaries may deviate from the protocol, but only in a
way that is essentially indistinguishable from the honest behavior—they are a quantum
analog of classical honest-but-curious adversaries, thus corresponding to the weakest
reasonable cryptographic adversaries.

a. Main Result We show that, even in the case of approximate privacy and approximate
correctness, QPIR against specious adversaries has linear communication complexity.2

This establishes that the adversarial model in Le Gall’s analysis does not fulfill the
weakest reasonable security definition and closes the topic of single-server, information-
theoretic QPIR.

b. Related Work Nayak’s lower bound was generalized by Jain et al. [8], who showed a
trade-off for the loss in privacy between the client and database. QPIR has also been stud-
ied in the scenario of multiple servers [10,11], in the scenario of symmetric privacy [11],
as well as in the scenario where a cheating server is detected [6]. Recently, a practical
symmetric QPIR protocol which is not unconditionally secure was developed [9].

1.1. Specious Adversaries

We call a party which follows a protocol honest. A correct protocol is a protocol that
achieves its task, given that all the parties are honest. Clearly, every meaningful protocol
has to be correct. If we now try to restrict the actions of an adversary as much as possible,
we cannot violate the correctness requirement. This means, the weakest adversary has
to appear honest.

1It has been claimed [13] that Nayak proved a lower bound for two-message quantum protocols only,
when in fact, his claim encompasses protocols with arbitrary interaction. We attribute this misunderstanding
to the succinctness of Nayak’s original write-up (the result and proof are only a few sentences long).

2This result has appeared as part of the M.Sc. thesis of one of the authors [1].
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In classical cryptography, there exists a notion of honest-but-curious adversaries,
which models the above description. Such adversaries follow the protocol (honesty), but
record everything they see and try to extract a secret (curiosity). A classical honest-but-
curious adversary can do nothing more to break the privacy property of a protocol.

Dupuis et al. [5] followed this spirit and introduced the quantum analog to the honest-
but-curious adversaries, and called them specious. The honesty property, as well as the
curiosity property cannot be translated one-to-one from the classical to the quantum
case. To get a meaningful model, the definition needs to capture the essence of being
the weakest adversary, as described above.

Attempting a translation from the classical to the quantum case, we see that a quantum
adversary can also follow the protocol to be honest. Curiosity means to copy everything
the adversary sees and extracting a secret from it. In general, copying is not possible
because of the no-cloning theorem [18]. Therefore, a protocol can force a quantum
honest-but-curious adversary to forget. This motivates the need for a security guarantee
not only at the end of the protocol, but also during the interaction.

Quantum adversaries, on the other hand, can act in a way indistinguishable from
an honest party. As an example, in some protocols, it may be possible to delay mea-
surements. This means, the adversary skips a measurement instruction and continues in
superposition. At a later point in the protocol, if required, the adversary can perform
the measurement, making it look like it was honest all the time. In other words, at any
step during the execution of the protocol, we specify that the adversary should be able
to provide some state that, when joined with the state held by the honest party, is in-
distinguishable from the joint state of an honest interaction. This is the essence of the
definition of specious adversaries, which we define formally in Sect. 2.3.

While the concept of specious adversaries is not yet in widespread use in the quantum
cryptographic community, purification attacks and the related purified adversaries have
long been known to present subtle challenges unique to the quantum world. Bennett and
Brassard [2] were among the first to draw attention to this type of attack, proposing a
quantum bit commitment scheme, together with an explicit purification attack. Purified
adversaries (who can be seen as delaying their input choices by sending entangled states)
are easily seen to be a special case of specious adversaries.

1.2. Le Gall’s QPIR Protocol

Recently, Le Gall [13] presented a QPIR protocol with information-theoretic privacy.
His protocol achieves a communication complexity of O (√

n
)
, where n is the database

size in bits. At first glance, this result seems to beat Nayak’s lower bound of n. However,
the price for this lower communication complexity is that the server must follow the
protocol precisely. Hence, Le Gall considers a different model of adversaries. One nat-
urally wonders if such gains can be achieved by specious adversaries. Our main result
(Theorem 4) rules out this possibility.

2. Formal Model and Security Definitions

In this section, we formally define our model and notions of correctness and privacy.
First, we give some basic notation.
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2.1. Notation

We use calligraphic symbols to describe Hilbert spaces. Subscripts of quantum states
and quantum operations usually denote the associated Hilbert spaces. Let A and B be
two Hilbert spaces. By A⊗B, we denote the joint Hilbert space. The set L(A,B) is the
set of all linear maps from A to B. The set L(A) = L(A,A) is the set of all linear maps
on A. A quantum state is either expressed as a ket |x〉 or as a density operator ρ. Every
state that can be written as |x〉 is pure, with corresponding density operator |x〉〈x |. The
set S(A) is the set of all density operators on A. The identity operator on the space A
is 1A ∈ L(A), for a joint space A ⊗ B we use 1A,B. An operator U ∈ L(A) is called
unitary, if U†U = 1. In the expression A ≈ B, the symbol ≈ denotes that the dimension
of A equals the dimension of B (i.e., dim(A) = dim(B)). The measurement outcome
of a measurement M of a density operator ρ is expressed by M(ρ).

Let ρ, σ ∈ S(A) be two density operators. We denote by ‖ρ‖1 = tr |ρ| the trace
norm of the density operator ρ. The trace distance between the two density operators ρ
and σ is defined as

�(ρ, σ ) := 1

2
‖ρ − σ‖1 . (1)

If ρ = |x〉〈x | and σ = |y〉〈y| are pure, then we use the compact notation �(|x〉, |y〉)
interchangeably with �(|x〉〈x |, |y〉〈y|).

2.2. Protocol Definition

As mentioned in Sect. 1.1, when defining security against specious adversaries, we must
examine the system held by the adversary during the protocol. To this end, we first
formally define a two-party quantum protocol. We base our definition on the strategy
formalism of Gutoski and Watrous [7], as well as on a definition from Dupuis et al. [5]
(our scenario is simpler, since our protocols do not make any explicit oracle calls).
Without loss of generality, we assume that party A sends the first and last messages.

Definition 1 (Two-party quantum protocol). An s-round, two-party protocol denoted
� = (A ,B, s) consists of:

1. input spaces A0 and B0 for parties A and B, respectively,
2. memory spaces A1, . . . ,As for A and B1, . . . ,Bs for B and communication

spaces X1, . . . ,Xs , Y1, . . . ,Ys−1,
3. an s-tuple of quantum operations (A1, . . . ,As) for A , where A1 : L(A0) 	→

L(A1 ⊗ X1), and Ai : L(Ai−1 ⊗ Yi−1) 	→ L(Ai ⊗ Xi ), (2 ≤ i ≤ s),
4. an s-tuple of quantum operations (B1, . . . ,Bs) for B, where Bi : L(Bi−1 ⊗

Xi ) 	→ L(Bi ⊗ Yi ), (1 ≤ i ≤ s − 1), and Bs : L(Bs−1 ⊗ Xs) 	→ L(Bs).

If � = (A ,B, s) is an s-round two-party protocol, we define the state after the i-th
step (1 ≤ i ≤ 2s), and upon input state ρin ∈ S(A0 ⊗ B0 ⊗ R), where R is a system of
dimension dim(R) = dim(A0) dim(B0) as
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ρi (ρin) := (A(i+1)/2 ⊗ 1B(i−1)/2,R) . . .
(
B1 ⊗ 1A1,R

) (
A1 ⊗ 1B0,R

)
(ρin) , (2)

for i odd, and

ρi (ρin) := (Bi/2 ⊗ 1Ai/2,R) . . .
(
B1 ⊗ 1A1,R

) (
A1 ⊗ 1B0,R

)
(ρin) , (3)

for i even. Note that the last round (round s) is only partial, since Bs : L(Bs−1 ⊗
Xs) 	→ L(Bs). We define the final state of protocol � = (A ,B, s), upon input state
ρin ∈ S(A0 ⊗ B0 ⊗ R) as:

[A � B] (ρin) := ρ2s (ρin) . (4)

The communication complexity of� = (A ,B, s) is the total amount of quantum com-
munication in the protocol (counted in terms of qubits), as given by

∑s
i=1 log(dim(Xi ))+∑s−1

i=1 log(dim(Yi )).
Given a protocol � = (A ,B, s), an adversary ˜A for A is an s-tuple of quantum

operations ( ˜A1, . . . , ˜As), where ˜A1 : L(A0) 	→ L(Ã1 ⊗ X1) and ˜Ai : L(Ãi−1 ⊗
Yi−1) 	→ L(Ãi ⊗ Xi ), (2 ≤ i ≤ s), with Ã1, . . . , Ãs being ˜A ’s memory spaces. We
denote the final state of a protocol run with an adversary ˜A by [ ˜A �B] (ρin). The state
after the i-th step of a protocol run with an adversary ˜A is ρ̃i ( ˜A , ρin).

A special type of adversary for a protocol � = (A ,B, s) is a purified adversary,
¯A for A that is described by unitaries ( ¯A1, . . . , ¯As), where ¯A1 : L(A0 ⊗ Ā0) 	→

L(A1 ⊗ Ā1 ⊗X1) and ¯Ai : L(Ai−1 ⊗ Āi−1 ⊗Yi−1) 	→ L(Ai ⊗ Āi ⊗Xi ), (2 ≤ i ≤ s),
with auxiliary space Ā0 of sufficiently large dimension being initialized to the zero state.
We refer to Ā1, . . . , Ās as the purifying spaces and specify that tracing out the purifying
space reverts the state to a state from the original protocol; in particular, this holds for the
final state of the protocol: trĀs

[ ¯A � B] (ρin) = [A � B] (ρin) for all ρin. It is not hard
to see that such adversaries always exist (see, for instance Gutoski and Watrous [7]).
The definition of a purified adversary, B̄ for B is obtained similarly as the definition
for ¯A . In particular,� = ( ¯A , B̄, s

)
denotes the protocol where both parties A and B

are purified.

2.3. Specious Adversaries

Recall the intuition that a specious adversary should be able, at each step of the protocol,
to produce a state that, when joined with the honest party’s state, is close (in trace
distance) to the joint state of an honest execution of the protocol. Dupuis et al. [5] give a
definition for specious adversaries in the most general context. For the purposes of QPIR
in our model, the following is an equivalent definition. Below we also define ultimately
specious adversaries, which are adversaries that satisfy the criteria for speciousness at
the last step of the protocol.

Definition 2 (Specious adversaries). Let � = (A ,B, s) be an s-round two-party
protocol. We say that an adversary ˜A for A is ε-specious, if there exists a sequence
of quantum operations (F1, . . . ,F2s), such that for all 1 ≤ i ≤ 2s and for all ρin ∈
S(A0 ⊗ B0 ⊗ R),
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1.

Fi :
{

L(Ã(i+1)/2) 	→ L(A(i+1)/2), i even

L(Ãi ⊗ Xi/2+1) 	→ L(Ai ⊗ Xi/2+1), i odd
(5)

2. for every input state ρin ∈ S(A0 ⊗ B0 ⊗ R),

�
((

Fi ⊗ 1Bi ,R
) (
ρ̃i

( ˜A , ρin
))
, ρi (ρin)

)
≤ ε . (6)

We call an adversary ˜A for A ultimately ε-specious, if there exists a quantum operation
F : L(Ãs) 	→ L(As), such that for every input state ρin ∈ S(A0 ⊗ B0 ⊗ R),

�
((

F ⊗ 1Bs ,R
) ([ ˜A � B

]
(ρin)

)
, [A � B] (ρin)

)
≤ ε . (7)

2.4. Definitions for QPIR

Using the formalism developed so far, we now define QPIR protocols. In particular,
we define a notion of approximate correctness, together with a notion of approximate
privacy against specious servers; correctness refers to the notion that the client should
obtain the correct outcome at the end of the protocol, while privacy refers to the notion
that the server should learn essentially nothing about the client’s input via its interaction
with the client. For specious adversaries, this corresponds to the intuitive notion that the
server’s local density matrix at each step of the protocol should be independent of the
client’s input i ; in other words, there must exist at each step of the protocol, a quantum
map S that has access only to the server’s input register and that reproduces, or simulates
the server’s local view. This is the standard ideal-real world simulation-based security
notion that is simplified to the QPIR setting and required only for specious adversaries.

We also consider ultimate privacy (i.e., the privacy condition holds at the end of the
protocol) against purified servers, which is sufficient in order to show our result.

Definition 3 (QPIR protocol). An s-round, n-bit QPIR protocol is a two-party protocol
�QPIR = (A ,B, s), where A is the server and B is the client.

We call �QPIR (1 − δ)-correct if for all inputs ρin = |x〉〈x |A0 ⊗ |i〉〈i |B0 , with
x = x1, . . . , xn ∈ {0, 1}n and i ∈ {1, . . . , n}, there exists a measurement M with
outcome 0 or 1, such that:

Pr
[
M (

trAs [A � B] (ρin)
) = xi

]
≥ 1 − δ . (8)

We call �QPIR (1 − ε)-private against γ -specious servers if for every γ -specious
server ˜A , there exists a sequence of quantum operations S1, . . . ,Ss−1 where Si :
L(A0) 	→ L(Ãi ⊗Yi ), such that for all 1 ≤ i ≤ s −1 and for all ρin ∈ S(A0 ⊗B0 ⊗R),

�
(

trB0

(
(Si ⊗ 1B0,R)(ρin)

)
, trBi

(
ρ̃i

( ˜A , ρin

)))
≤ ε , (9)

We call �QPIR ultimately (1 − ε)-private against purified servers if for every purifi-
cation ¯A of the server A , there exists a quantum operation S : L(A0) 	→ L(As ⊗Ās),
such that for all ρin ∈ S(A0 ⊗ B0 ⊗ R),
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�
(

trB0

(
S ⊗ 1B0,R

)
(ρin), trBs

[ ¯A � B
]
(ρin)

)
≤ ε . (10)

3. Tools

In this section, we present definitions and results that are used in the proof of our main
result.

3.1. Entropy

Definition 4 (Shannon entropy). Let PX be a probability distribution over the
alphabet X . Then, the Shannon entropy H(PX ) of PX is

H(PX ) := −
∑

x∈X

PX (x) log (PX (x)) . (11)

The Shannon entropy of a binary random variable is called binary entropy.

Definition 5 (Binary entropy). Let p be the probability of an event of a binary random
variable. Then, the binary entropy Hbin(p) of p is

Hbin(p) := −p log p − (1 − p) log(1 − p) . (12)

3.2. Trace distance and fidelity

We have already encountered the trace norm and trace distance in Sect. 2.1. Another
measure of distance between two density operators ρ and σ is the fidelity defined as

F(ρ, σ ) :=
∥∥
∥ρ

1
2 σ

1
2

∥∥
∥

1
. (13)

For pure states |x〉 and |y〉, we define F(|x〉, |y〉) as F(|x〉〈x |, |y〉〈y|). The following
Lemma simplifies the calculation of the fidelity.

Lemma 1 (Uhlmann’s Lemma). The fidelity between ρA ∈ S(A) and σA ∈ S(A) is

F(ρA, σA) = max|ϕ〉A,B,|ψ〉A,B
F

(|ϕ〉A,B, |ψ〉A,B
)

(14)

= max|ϕ〉A,B,|ψ〉A,B

∣∣〈ϕ|ψ〉A,B
∣∣ , (15)

where the maximum is taken over all purifications of ρA = trB|ϕ〉〈ϕ|A,B and over all
purifications of σA = trB|ψ〉〈ψ |A,B.

Recall the Fuchs-van de Graaf inequalities, relating the fidelity to the trace distance:
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Lemma 2 (Fuchs-van de Graaf inequalities). Let ρ, σ ∈ S(A) be density operators,
then

1 − F(ρ, σ ) ≤ �(ρ, σ ) ≤
√

1 − F(ρ, σ )2 . (16)

The following lemma states that given two density matrices that are close in trace dis-
tance, it is possible, by acting only on the purifying subspace, to transform a purification
of one of the density matrices into an approximate version of a purification of the other.

Lemma 3. Let ρA, σA ∈ S(A) be two ε-close density operators, such that

�(ρA, σA) ≤ ε (17)

with respective purifications |ϕ〉A,B and |ψ〉A,B. Then, there exists a unitary UB acting
solely on B, such that

�
(|ϕ〉A,B, (1A ⊗ UB) |ψ〉A,B

) ≤ √
ε(2 − ε) . (18)

Proof of Lemma 3. Let ρA, σA ∈ S(A) be two density operators, with�(ρA, σA)≤ε.
By the first inequality of Lemma 2 we get

F(ρA, σA) ≥ 1 − ε . (19)

Let the state |ϕ〉A,B be an arbitrary purification of the density operator ρA. By Lemma 1,
there exists a purification |ψ ′〉A,B of the density operator σA, such that

F(ρA, σA) = F(|ϕ〉A,B, |ψ ′〉A,B) . (20)

Therefore, the fidelity lower bound (19) is also a lower bound for the fidelity between
the pure states |ϕ〉A,B and |ψ ′〉A,B. Using this in the second inequality of Lemma 2
yields

�(|ϕ〉A,B, |ψ ′〉A,B) ≤
√

1 − F(|ϕ〉A,B, |ψ ′〉A,B)2 . (21)

By squaring both sides and plugging in inequality (19), we get

�(|ϕ〉A,B, |ψ ′〉A,B)2 ≤ 1 − F(|ϕ〉A,B, |ψ ′〉A,B)2 (22)

≤ 1 − (1 − ε)2 (23)

= ε(2 − ε) . (24)

Because purifications are equivalent up to unitary transformations on the purifying sys-
tem, we thus get

�
(|ϕ〉A,B, (1A ⊗ UB) |ψ〉A,B

) ≤ √
ε(2 − ε) , (25)
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where

(1A ⊗ UB) |ψ〉A,B = |ψ ′〉A,B . (26)

�

3.3. The Schmidt Decomposition and its Properties

The Schmidt compression allows for a lossless compression of a quantum state. We first
describe the Schmidt decomposition.

Theorem 1 (Schmidt decomposition). Let |ψ〉A,B be a pure state shared between
party A and party B. Then, there exists a set of orthonormal pure states {|ai 〉A} for
partyA , a set of orthonormal pure states {|bi 〉B} for partyB, a set of real coefficients {λi }
called Schmidt coefficients, and a positive integer r called Schmidt rank, such that

|ψ〉A,B =
r∑

i=1

λi |ai 〉A|bi 〉B . (27)

Because the spaces A and B use only r different orthonormal pure states, both spaces
can be compressed independently to spaces of dimension r with �log r� qubits. This is
known as Schmidt compression.

The following theorem states that we can bound the Schmidt rank of a bipartite state
resulting from a purified two-party protocol. This theorem is attributed to Kremer [12]
(see Lemma 5).

Theorem 2 (Bound on Schmidt rank). Let � = ( ¯A , B̄, s
)

be a two-party quantum
protocol with purified parties ¯A and B̄, and let ρin = |φ0〉A,B be a pure product state.
Suppose� has communication complexity c. Then, [ ¯A � B̄] (ρin) has Schmidt rank at
most 2c.

Proof of Theorem 2. In the following, we ignore unitary operations on either side dur-
ing the protocol, because such operations do not increase the Schmidt rank.

Let |φd〉A,B be the shared state after d qubits have been communicated and let

|φd〉A,B =
r∑

i=1

λi |ai 〉A|bi 〉B (28)

be the corresponding Schmidt decomposition. The terms belonging to party A from the
Schmidt decomposition (28) can be expanded as

|ai 〉A = αi |a0
i 〉A�

|0〉Ar + βi |a1
i 〉A�

|1〉Ar . (29)

Without loss of generality, assume that in the next step in the protocol, the qubit from the
space Ar is sent from party A to party B. By plugging in the expanded expression (29)
into the Schmidt decomposition (28), we get
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|φd〉A,B =
r∑

i=1

λi

(
αi |a0

i 〉A�
|0〉Ar + βi |a1

i 〉A�
|1〉Ar

)
|bi 〉B (30)

=
r∑

i=1

λiαi |a0
i 〉A�

|0〉Ar |bi 〉B + λiβi |a1
i 〉A�

|1〉Ar |bi 〉B . (31)

Hence the transmission of one qubit at most doubles the number of summands, which
is an upper bound of the Schmidt rank of the new Schmidt decomposition into the
spaces A� and Ar ⊗ B. By assumption, the initial state |φ0〉A,B has Schmidt rank 1.
Therefore, after communicating c qubits, the Schmidt rank is at most 2c. �

3.4. Random Access Encoding

A random access encoding is an encoding of classical database as a density operator, such
that any database item can be extracted with a certain probability using a measurement
which is independent of the database. It is easy to see that the message of a single-
message QPIR protocol is a random access encoding of the server’s database. We state
the definition of random access encoding and a theorem on their size; here, we consider
the average case scenario, which follows from Nayak’s work [16] (see also Kerenidis
and de Wolf [10], Appendix B).

Definition 6 (Random access encoding). An (n,m, p)-random access encoding is a
function f that maps n-bit strings to density operators over m qubits, such that, for every
i ∈ {1, . . . , n}, there exists a measurement Mi with outcome 0 or 1 that has the property
that on average over all x ∈ {0, 1}n ,

Pr [Mi ( f (x)) = xi ] ≥ p . (32)

Theorem 3 (Size of random access encoding). Any (n,m, p)-random access encoding
satisfies m ≥ (1 − Hbin (p)) n.

4. Main Theorem

In this section, we present our main result and related corollaries. The proof is given in
Sect. 4.2.

4.1. Results

Our main result is the following.

Theorem 4. Let �QPIR = (A ,B, s) be an s-round, n-bit QPIR protocol, that is
(1−δ)-correct and ultimately (1−ε)-private against purified servers. Then,�QPIR has
communication complexity of at least
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(
1 − Hbin

(
1 − δ − 2

√
ε(1 − ε)

))
n . (33)

The above theorem is an extension of Nayak’s result on QPIR [16] to approximate
privacy, and requiring security only against a purified server at the end of the protocol.
It is easy to see that a purified server is specious (see Sect. 2.2). Therefore, any QPIR
protocol that is (1 − ε)-private against γ -specious servers is also (1 − ε)-private against
purified serves. Trivially such a protocol is ultimately (1 − ε)-private against purified
servers. Hence, by Theorem 4 we get the following.

Corollary 1. Let �QPIR = (A ,B, s) be an s-round, n-bit QPIR protocol that is
(1 − δ)-correct and (1 − ε)-private against γ -specious servers. Then, for any γ ,�QPIR
has communication complexity of at least

(
1 − Hbin

(
1 − δ − 2

√
ε(1 − ε)

))
n . (34)

Let δ and ε be non-negative and negligible functions3 with respect to n. Then, for
any γ , the communication complexity as given in Corollary 1 is at least n − o (1). In
sharp contrast to this, in Le Gall’s model (that considers an adversary that follows the
protocol exactly), the communication complexity is O (√

n
)
; we, therefore, obtain the

following corollary.

Corollary 2. Le Gall’s QPIR protocol is not private against γ -specious adversaries,
for any γ .

An alternate proof of Corollary 2, via an explicit specious attack, can be found in the
thesis of Baumeler [1].

4.2. Proof of Theorem 4

The main technique used in the proof of Theorem 4 is to reduce a given QPIR protocol
to a random access encoding, and then apply Nayak’s lower bound as established by
Theorem 3. This is the same technique as used by Nayak in his lower bound proof
for QPIR, which we extend here to the case of approximate privacy against ultimately
specious servers.

As a starting point to understanding the reduction, note that any single-message QPIR
protocol (where one message is sent from the server to the client) implements a random
access encoding. Hence, the lower bound on the size of the random access encoding
is also a lower bound on the communication complexity for the single-message QPIR
protocol. We generalize this idea to ultimately (1 − ε)-private against purified servers,
multi-round QPIR protocols by reducing the multi-round protocol to a single-message
protocol, and hence to a random access encoding. Taking care that this procedure does
not increase the amount of communication allows us to apply the lower bound on the

3A non-negative function μ is called negligible with respect to n if for all c > 0 and all sufficiently large
n, μ(n) < n−c .
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size of the random access encoding to the communication complexity of the multi-step
QPIR protocol, thus establishing the result.

Proof of Theorem 4. Let �QPIR be an s-round, n-bit, (1 − δ)-correct QPIR protocol
that is ultimately (1 − ε)-private against purified servers and that has communication
complexity c.

Consider �QPIR( ¯A , B̄), the modification of �QPIR, where both parties, A and B,
are purified, as described in Sect. 2.2. We denote by S ≈ As ⊗ Ās the server’s subspace,
and by C ≈ Bs ⊗ B̄s the client’s subspace at the end of the protocol. Furthermore, let

|ψ̄x,i 〉〈ψ̄x,i |S,C := [ ¯A � B̄
] (|x〉〈x | ⊗ |i〉〈i |) ; (35)

that is, |ψ̄x,i 〉S,C is the global state at the end of the protocol�QPIR( ¯A , B̄), with inputs
x ∈ {0, 1}n for the database and i ∈ {1, . . . , n} for the index.

Encoding. Given�QPIR( ¯A , B̄), we derive a random access encoding in the following
way: the server simulates the purified version�QPIR( ¯A , B̄) of the protocol�QPIR with
inputs |x〉 as database input and index |i〉 = |1〉. The joint output is |ψ̄x,1〉S,C .

Consider |ξ 〉D, the uniform superposition of all possible databases

|ξ 〉D := 1√
2n

∑

x∈{0,1}n

|x〉D , (36)

and let

|νi 〉〈νi |S,C : = [ ¯A � B̄
] (|ξ 〉〈ξ |D ⊗ |i〉〈i |) . (37)

Since we consider the case where both parties are purified, the final global state is

|νi 〉S,C = 1√
2n

∑

x∈{0,1}n

|ψ̄x,i 〉S,C . (38)

By Theorem 2, the Schmidt decomposition of |νi 〉S,C into the subspace S and C has
Schmidt rank at most 2c. Hence there exists a Schmidt compression of the subspace C
into at most c qubits. By linearity, this map can be used to compress (and decompress)
|ψ̄x,1〉S,C for any x ∈ {0, 1}n . The server applies this compression on system C of
|ψ̄x,1〉S,C . Let the result of the compression be |ψ̄c

x,1〉S,C′ . The server outputs as encoding
of database x the state of the subsystem C′:

trS |ψ̄c
x,1〉〈ψ̄c

x,1|S,C′ . (39)

Decoding. Given the output of the Encoding algorithm, the client applies the inverse
operation of the Schmidt compression obtained above in order to recover the joint state
corresponding to the input i = 1:
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|ψ̄x,1〉S,C . (40)

However, the client would like to recover the joint state for an arbitrary i . To this end,
consider again |ξ 〉D, the uniform superposition of databases as database input, and fix
i ∈ {1, . . . , n} as index input. Let the corresponding input state be ρξ,iin . By the privacy
condition (Eq. 10), there exists a quantum map S : L(A0) 	→ L(As ⊗ Ās), such that

�
(

trB0

(
S ⊗ 1B0,R

) (
ρ
ξ,i
in

)
, trBs

[ ¯A � B
] (
ρ
ξ,i
in

))
≤ ε . (41)

Since for all i ∈ {1, . . . , n}

trB0

(
S ⊗ 1B0,R

) (
ρ
ξ,1
in

)
= trB0

(
S ⊗ 1B0,R

) (
ρ
ξ,i
in

)
(42)

and

trBs

[ ¯A � B
] (
ρ
ξ,i
in

)
= trC

[ ¯A � B̄
] (
ρ
ξ,i
in

)
(43)

= trC |νi 〉〈νi |S,C , (44)

by the triangle inequality, we get that for all i ∈ {1, . . . , n},

�
(
trC |ν1〉〈ν1|S,C, trC |νi 〉〈νi |S,C

) ≤ 2ε . (45)

Thus, by Lemma 3, for every i ∈ {1, . . . , n}, there exists a unitary U1→i
C acting only

on the client’s subspace, such that

�
((

1S ⊗ U1→i
C

)
|ν1〉S,C, |νi 〉S,C

)
≤ 2

√
ε(1 − ε) . (46)

Because the trace distance does not increase under measurements, we simply measure
the space D of the states from the inequality (46) and obtain that for a uniform random
x ∈ {0, 1}n

�
((

1S ⊗ U1→i
C

)
|ψ̄x,1〉S,C, |ψ̄x,i 〉S,C

)
≤ 2

√
ε(1 − ε) . (47)

Hence, on average over all databases x ∈ {0, 1}n , this family
{
U1→i

C
}

i of unitary oper-
ators can be used to construct a 2

√
ε(1 − ε)-close approximation.

It remains to calculate the recovery probability of the constructed random access code.
The QPIR protocol�QPIR is (1 − δ)-correct, and hence there exists a measurement that
recovers the desired bit with a probability of at least 1 − δ. The family of unitary
approximation transformations

{
U1→i

C
}

i , used to approximate the global state, induces
a loss in the recovery probability. The approximation is 2

√
ε(1 − ε)-close.

Hence the QPIR protocol yields a random access encoding with recovery probability
of at least 1 − δ − 2

√
ε(1 − ε). By applying Nayak’s Theorem 3, we get that any n-bit,
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(1 − δ)-correct, ultimately (1 − ε)-private against purified servers QPIR protocol has
communication complexity of at least

(
1 − Hbin

(
1 − δ − 2

√
ε(1 − ε)

))
n . (48)

�

It is interesting to note that the reason why this lower bound proof is not applicable
to the model in the work of Le Gall [13], is that there the privacy condition (10) does
not hold. In other words, the possibility of Le Gall’s result is a direct consequence of the
fact that security is guaranteed only for classical inputs, that is, the adversary is forced
to select a classical database at the beginning of the protocol, or equivalently, is forced
to measure any superposition of databases that it might receive as input.

5. Conclusion and Open Questions

Using quantum computation and quantum communication, non-trivial information-
theoretic single-server QPIR protocols secure against any reasonable adversary do not
exist. This work closes the topic of single-server and information-theoretic QPIR.

An open question that remains is whether there exist other applications of the reduction
from multi-step protocols to single-step protocols used in the proof of the lower bound
(see Sect. 4). In the reduction, we show that any protocol with asymmetric privacy at
the end of the protocol against one particular type of adversaries, can be transformed to
a single-step protocol. The resulting single-step protocol preserves the communication
complexity and the privacy property. This reduction could potentially be used to build
offline protocols from multi-step protocols. An offline protocol is a protocol, where the
parties are not required to be involved in the protocol at the same time. This could be
advantageous under some circumstances.
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