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Abstract: This note presents a quantum protocol for private information retrieval, in the

case of a single (honest) server and with information-theoretical privacy, that has O(
√

n)-
qubit communication complexity, where n denotes the size of the database. In comparison, it

is known that any classical protocol must use Ω(n) bits of communication in this setting.
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1 Introduction

Private information retrieval deals with the design and the analysis of protocols that allow a user to

retrieve an item from a server without revealing which item it is retrieving. This field, introduced in a

seminal paper by Chor, Kushilevitz, Goldreich, and Sudan [2], has been the subject of intensive research

due to the growing ubiquity of public databases. Examples of applications include ensuring consumer

privacy in e-commerce transactions or reading webpages on the Internet without revealing the user’s

preferences.

In the case of a single server and of information-theoretical privacy, which is the focus of this note,

private information retrieval can be described as follows. The server has a database A = (a1,a2, · · · ,aℓ) ∈
Σℓ, where Σ = {0,1}r is a set of items represented as r-bit strings, and the user has an index i ∈ {1, . . . , ℓ}.
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A private information retrieval protocol is a (classical or quantum) communication protocol between

the server and the user such that, when the user and the server both follow the protocol, the user always

outputs the item ai and the server gets no information about the index i, in the following sense (note

that the privacy condition concerns only the user’s input). Let VS(A, i) denote the server’s view of the

communication generated by the protocol when the server has input A and the user has input i. The

privacy condition is that, for any database A ∈ Σℓ and any two indexes i, j ∈ {1, . . . , ℓ}, the views VS(A, i)
and VS(A, j) are identical. While several subtleties arise when trying to formally define the server’s view

in an arbitrary quantum protocol, the above description will be sufficient for our purpose due to the

limited interaction between the server and the user in the quantum protocols described in this note.

It is easy to show that, classically, downloading the whole database is essentially optimal: any classical

protocol must communicate a number of bits linear in the size of the database [2]. The communication

complexity of quantum protocols for private information retrieval has first been investigated by Nayak [8],

and then by Kerenidis and de Wolf [5]. These works focused on two-message quantum protocols, and

established a connection with locally decodable codes and random access codes. In particular it was

proved that, for a single server, any private two-message quantum protocol must use a linear amount

of communication. This note shows that this lower bound does not hold for quantum protocols using

more than two messages and describes how to construct a three-message quantum protocol for private

information retrieval with sublinear communication complexity, thus breaking for the first time the linear

barrier in the single-server and information-theoretical privacy setting. This is also the first example in

(quantum or classical) single-server information-theoretic private information retrieval where protocols

with more than two messages outperform protocols with one round of communication. Our main result is

the following theorem.

Theorem 1.1. Let ℓ and r be any positive integers. There exists a private information retrieval quantum

protocol that, for any database A ∈ Σℓ with Σ = {0,1}r, uses 2ℓ+2r qubits of communication.

The protocol we design to prove Theorem 1.1, described in Section 2, combines the properties of two-

party entanglement with a technique similar to the one used in the Bernstein-Vazirani algorithm [1], and

ensures the user’s privacy in the following sense: at no time the server holds any (quantum) information

about the user’s input i.

Since the overall size of the database is ℓr bits, Theorem 1.1 gives a quadratic improvement over

classical protocols and two-message quantum protocols whenever ℓ+ r = O(
√
ℓr), for example when

ℓ= Θ(r). The same quadratic improvement can also be obtained for other values of ℓ and r: the idea is to

decompose the database into about
√
ℓr blocks, each of size about

√
ℓr bits. The case r = 1 (i. e., binary

databases) is illustrated in the following corollary.

Corollary 1.2. There exists a private information retrieval quantum protocol that, for any binary database

A ∈ {0,1}ℓ, uses O(
√
ℓ) qubits of communication.

Proof. Let A = (a1, . . . ,aℓ) ∈ {0,1}ℓ be the binary database held by the server. For convenience, let us

assume that ℓ= s2 for some positive integer s (a similar argument works for any value of ℓ). We construct

the database B= (b1, . . . ,bs) such that, for each k ∈ {1, . . . ,s}, the k-th block is bk = (a(k−1)s+1, . . . ,aks)∈
{0,1}s. Note that the bit ai is contained in the block b j with j = ⌈i/s⌉. By running the protocol of

Theorem 1.1 where, as inputs, the server has database B and the user has index j, the user is able to

recover the whole block b j, and thus the bit ai, using O(s) qubits of communication.
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We stress that this note considers only the setting where the parties do not deviate from the protocol,

as often assumed in works focusing on algorithmic or complexity-theoretic aspects of private information

retrieval. While this restriction may reduce the applicability of our result, we believe that it nevertheless

illustrates the subtle interplay of interaction and quantum information in protecting privacy. Indeed, even

in this setting, a linear amount of communication is needed for classical protocols and for two-message

quantum protocols. A natural open problem is to investigate if the upper bounds in Theorem 1.1 and

Corollary 1.2 are tight and, more specifically, to prove lower bounds on the communication complexity

of quantum protocols for private information retrieval that exchange more than two messages.

Other related works Several other aspects of quantum protocols for private information retrieval

have been investigated. Jain, Radhakrishnan and Sen [4] have shown a linear lower bound on the

communication complexity of private information retrieval quantum protocols in a setting where the

user is allowed to perform superposition attacks (while our work considers only servers that follow the

protocol). Giovannetti, Lloyd and Maccone [3] studied a slightly different cryptographic primitive called

“quantum private query,” in which the user should always detect if the server has been trying to cheat to

obtain information about its input i (but, contrary to the setting of the present note, has not to prevent

leakage of information about i), and presented a cheat sensitive quantum protocol with logarithmic

communication complexity. The case of multiple servers has been studied in [5, 6], while the case of

symmetric private information retrieval, where the server’s privacy is also taken into consideration, has

also been studied in [3, 4, 6]. Privacy issues in quantum communication complexity have been studied

in [7] as well. Let us mention that quantum protocols for symmetric private information retrieval are also

studied under the name of quantum oblivious transfer protocols, especially when the server and the user

may deviate from the protocol (i. e., when considering malicious parties).

2 Proof of Theorem 1.1

We suppose that the reader is familiar with quantum computation and refer to, e. g., [9] for an introduction

to this field. Let us first describe some of our notations. Given two bits a,b ∈ {0,1}, we write their

parity as a⊕ b. For any two elements u = (u1, . . . ,ur) and v = (v1, . . . ,vr) in Σ = {0,1}r, let us write

u ·v = u1v1 ⊕·· ·⊕urvr and u⊕v = (u1 ⊕ v1, . . . ,ur ⊕ vr). Note that u ·v is a bit and u⊕v is an element

of Σ. Our protocol will use the Pauli gate

Z := ∑
z∈{0,1}

(−1)z|z〉〈z|

acting on one qubit and the Hadamard transform

Hr :=
1

√

|Σ| ∑
y,z∈Σ

(−1)y·z|y〉〈z|
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acting on r qubits. It will also use the gates

CNOT(R1,R2) := ∑
y,z∈Σ

|y〉R1
|z⊕y〉R2

〈y|R1
〈z|R2

and

U
(R1,Q)
b := ∑

y∈Σ,z∈{0,1}
|y〉R1

|z⊕b ·y〉Q〈y|R1
〈z|Q ,

where R1 and R2 denote two r-qubit registers, Q denotes a one-qubit register, and b is any element in Σ.

The gate CNOT performs a bitwise XOR of the first register into the second, while the gate Ub performs

an XOR of the inner product of the first register and b into the second register.

We now present the proof of Theorem 1.1.

Proof of Theorem 1.1. The protocol uses ℓ+2 quantum registers: registers R and R′ each consisting of r

qubits, and registers Q1, . . . ,Qℓ each consisting of one qubit. For any database A = (a1, . . . ,aℓ) ∈ Σℓ, let

us denote by |ΦA〉 the quantum state

|ΦA〉 :=
1√
2r ∑

x∈Σ

|x〉R|x〉R′ |x ·a1〉Q1
· · · |x ·aℓ〉Qℓ

in registers (R,R′,Q1, . . . ,Qℓ). The protocol is described in Figure 1. It consists of three messages and

uses a total amount of 2ℓ+2r qubits of communication.

Server’s input: A = (a1, . . . ,aℓ) ∈ Σℓ

User’s input: i ∈ {1, . . . , ℓ}

1. The server constructs the quantum state |ΦA〉 and sends registers R′, Q1, . . . ,Qℓ to the user.

2. The user applies Z over register Qi and sends back registers Q1, . . . ,Qℓ to the server.

3. The server applies U
(R,Qk)

ak , for each k ∈ {1, . . . , ℓ}, and sends to the user register R.

4. The user applies CNOT(R,R′), applies Hr over register R, and then measures R in the computational

basis.

Figure 1: Quantum private information retrieval protocol.

We first show that in this protocol the user always outputs the correct element of the database. Observe

that, at the end of Step 2, the state is

|Φ〉= 1√
2r ∑

x∈Σ

(−1)x·ai |x〉R|x〉R′ |x ·a1〉Q1
· · · |x ·aℓ〉Qℓ

.

At Step 4, just before the user performs the measurement, the state is |ai〉R|0〉R′ |0〉Q1
· · · |0〉Qℓ

, and

measuring register R gives the element ai with probability 1. Let us now consider the user’s privacy. The
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only information about i that a server following the protocol can obtain is from registers R,Q1, . . . ,Qℓ of

the state |Φ〉. Since tracing out register R′ in |Φ〉〈Φ| gives the density matrix

1

2r ∑
x∈Σ

|x〉R|x ·a1〉Q1
· · · |x ·aℓ〉Qℓ

〈x|R〈x ·a1|Q1
· · · 〈x ·aℓ|Qℓ

,

the server obtains no information about the user’s input.

Remark As already mentioned, in this note we only consider the case where the server follows the

protocol. This assumption is used in the analysis of the protocol of Figure 1 in order to ensure that the

server prepares the state |ΦA〉 at Step 1. Note that if, instead of |ΦA〉, the server prepared for example the

state

|Φ′
A〉 :=

1√
2r ∑

x∈Σ

|x〉R|0〉R′ |x ·a1〉Q1
· · · |x ·aℓ〉Qℓ

,

then it would be able to recover the index i with probability one at Step 3.
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