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We present a purely wave model (based on classical random field) which reproduces
quantum probabilities (given by the fundamental law of quantum mechanics, Born’s rule)
including probabilities for joint detection of a pair of quantum observables (e.g., spin or
polarization projections). The crucial point of our approach is that the presence of detec-
tor’s threshold and calibration procedure have to be treated not as simply experimental
technicalities, but as the basic counterparts of the theoretical model. The presence of the
background field (vacuum fluctuations) is also the key-element of our prequantum model. It
is of the classical signal type and the methods of classical signal theory (including statistical
radiophysics) are used for its development. We stress that our prequantum model is not
objective, i.e., the values of observables (clicks of detectors) cannot be assigned in advance,
i.e., before measurement. Hence, the dilemma, nonobjectivity or nonlocality, is resolved in
favor of nonobjectivity (our model is local of the classical field type). In particular, we repro-
duce the probabilities for the EPR-experiment for photon polarization and, hence, violate
CHSH inequality for classical random signals (measured by the threshold type and properly
calibrated detectors acting in the presence of the background field).

Subject Index: 060

§1. Introduction

Recently the interest to representation of quantum mechanics (QM) as emer-
gent theory essentially increased [see, e.g., ‘t Hooft,1)–3) Ojima,4)–7) and Else.8)–10)]
These studies support the original Einstein position that QM is incomplete theory.11)

However, as is commonly accepted, violation of Bell’s inequality12) showed that if
QM is incomplete, then subquantum reality is nonlocal. Is it possible, nevertheless,
to combine consideration of QM as emergent theory with locality? The answer is
positive and in this paper we present a very natural model of the classical field type
which reproduces probabilistic predictions of QM; in particular, Bell’s type inequal-
ities are violated. The price of the classical description is contextuality of quantum
observables. They cannot be considered as properties of subquantum systems, but
their values depend on the measurement context (in complete agreement with Bohr’s
views), cf. Ozawa,13) and Ozawa and Kitajima.14)

The cornerstone of our classical prequantum model is the observation of Ohya
and Watanabe15) that the covariance operator of a classical random (Gaussian) signal
normalized by its trace can be interpreted as a density operator, i.e., a quantum
state. These authors used this observation to embed classical signal theory into
quantum information theory and to solve some problems related to definition of

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/128/1/31/1836247 by guest on 21 August 2022



32 A. Khrennikov

entropy for Gaussian channels on the infinite dimensional Hilbert space.16) I use the
same observation the other way around: to embed QM into classical signal theory.

We stress that Bell’s inequality12) plays a crucial role in modern quantum me-
chanics and, especially, quantum information (QI). Its violation has not only theo-
retical consequences (nonlocality, nonobjectivity of quantum observables), but also
applications, e.g., to quantum cryptography.17) Its violation was experimentally
confirmed18),19) (although there are still loopholes [see, e.g., Refs. 17), 20)–22) for
discussions]). There are no doubts in results of experiments. However, a proper inter-
pretation of these results is still the subject of intensive debates [see, e.g., Refs. 22),
23), 21). By the commonly accepted interpretation it was proved that quantum
observables are either nonlocal or/and nonobjective. Although Bell’s test does not
provide a possibility to distinguish nonlocality from nononbjectivity, the majority
of QI-people made (intuitively) their choice in favour of nonlocality. This viewpoint
has been criticized by several authors, e.g., Refs. 24)–26), and see also Ref. 22) for
extended bibliography. The majority of authors criticizing the conventional inter-
pretation of violation of Bell’s inequality tried to save both locality and objectivity
(a possibility to assign to a system the values of physical observables before mea-
surement). This is not my approach. I agree (although this contradict to my own
“old papers”27)) that it is impossible to combine locality and realism and reproduce
quantum probabilities for entangled systems; in particular, to violate Bell’s type
inequalities, e.g., the CHSH inequality. In this paper I present a local, but nonob-
jective classical model violating the Bell’s type inequality for probabilities of joint
detections, namely, CHSH-inequality.

Nonobjectivity of observables is typically considered as an intrinsically quantum
feature. Bohr emphasized the role of measurement context in quantum measure-
ments. At the same time classical physics is often associated with one special model,
classical statistical mechanics, which is definitely objective. It is forgotten that, be-
sides classical statistical mechanics, there exists another important classical model
— classical field theory. In this paper we show that the usage of the threshold type
detectors operating with (classical) random signals makes observables for classical
signals nonobjective. Hence, Bohr was right, the experimental context plays a cru-
cial role in QM. However, it also plays a similar role in some classical models of the
wave-type. We call our model threshold signal detection model, TSD.

TSD definitely has important consequences for quantum foundations: QM can
be treated as a part of classical signal theory. Hence, opposite to Bohr’s claim, QM
may be incomplete; opposite to Bell’s claim, it may be local; opposite to Einstein’s
claim, it need not be objective. Of course, in physics the creation of a theoretical
model, in our case TSD, is not the end of the story. The final word always should
be said by experimenters. To confirm TSD experimentally, experimenters have to be
able to measure components of (classical) fields corresponding to quantum particles
at so to say “prequantum level” (for example, electric and magnetic components of
the photon).

The impact of TSD to QI is a more complicated problem. Since QM can be
embedded in classical signal theory, it seems that QI can be considered as a part
of classical information theory. Surprisingly this is not the case. QI was elaborated
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Quantum Probabilities from Classical Random Signals 33

to operate with incomplete information∗) provided by quantum observables. Its
operations and consequences cannot be directly derived from classical signal theory.
Nevertheless, it is clear that after creation of TSD Bell’s test cannot be considered
guarantying 100% security of the basic quantum cryptographic protocols.

We list the basic assumptions of TSD:

(a) prequantum signals have a special temporal structure of correlations given
by (5.3)–(5.5);

(b) detectors are of the threshold type;

(c) detectors are properly calibrated to eliminate the contribution of the random
background field;

(d) instances of clicks of detectors for measurements on correlated signals match
each other;

(e) stochastic processes inducing quantum probabilities and correlations are
Gaussian.

Thus the temporal structure plays an important role in our treatment of Bell’s
inequality, cf. Refs. 25), 26), 22).

The usage of the threshold type detectors ruins objectivity of quantum observ-
ables. It is possible to determine only instances of detectors’ clicks; in TSD we are
not able to represent quantum observables in Bell’s form:12)

a = a(λ), (1.1)

where λ is a so-called hidden variable.
The calibration of detectors is not a technicality. This is a basic element of

TSD; quantum correlations are obtained through discarding the contribution of the
random background field. This field is fundamental and it is impossible to distil it
from the quantum signal (quantum system). We are only able to eliminate it through
the measurement procedure, via calibration.

It is well known that in real EPR-Bohm experiments clicks of detectors for chan-
nels corresponding to entangled photons have to match each other. In practice, this
is done with the aid of time window.∗∗) Typically this matching is considered as an
experimental technicality. However, as it was shown in a series of papers28)–30) [see
Appendix A], this is a foundational question related to the projection postulate in
QM (the difference between Lüders postulate and the original von Neumann postu-
lates for measurements on composite quantum systems). In TSD the condition (d)
is also fundamental.

TSD can be considered as measurement theory for recently developed prequan-
tum classical statistical field theory, PCSFT.31)–36) The latter reproduced all quan-
tum averages and correlations including correlations for entangled quantum states.
In particular, PCSFT correlations violated Bell’s inequality.

∗) This is the interpretation of QM and QI based on TSD. It differs crucially from the orthodox

Copenhagen interpretation.
∗∗) A possibility to violate Bell’s inequality for a classical corpuscular model by using the time

window was explored in Ref. 26).
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34 A. Khrennikov

The message of PCSFT in a nutshell is that (i) quantum systems may be mapped
on classical stochastic systems even if they are capable of nontrivial quantum mani-
festations, and that (ii) this shows that the aforesaid phenomena should be regarded
more classical than it is commonly believed.

Examples of mappings with the stated properties are well known: the Q-
representation for linear bosonic systems, and the so-called positive-P representa-
tion for nonlinear ones. The Q-function of an electromagnetic field in a quantum
state is positive, which does not preclude such field from showing violations of Bell’s
inequalities in A. Aspect’s experiment. The main problem for matching of PCSFT
and conventional QM was that PCSFT (nor other aforementioned models) was not
able to describe probabilities of discrete clicks of detectors. In particular, PCSFT
is theory of correlations of continuous signals. “Prequantum observables” are given
by quadratic forms of signals. These forms are unbounded and this is not surprising
that correlations of such observables can violate Bell’s type inequalities [see Ref. 22)
for discussion and an elementary example]. (The condition of coincidence of ranges
of values of quantum observables and corresponding “prequantum variables” plays
a crucial role in Bell’s argument.) TSD solved the measurement problem of PCSFT.
In the same way as in Bell’s consideration, TSD operates with discrete observables.
In particular, in the case of photon polarization (its projection to a fixed axis) TSD
operates with dichotomous variables taking values ±1.

§2. Resolution of dilemma: nonlocality or nonobjectivity?

This section is devoted to the general discussion on Bell’s inequality, nonlocality,
nonobjectivity, and contextuality. As was emphasized in the introduction, our clas-
sical field type model, PCSFT, endowed with the corresponding measurement model
TSD is a local, but nonobjective. Hence, the dilemma “nonlocality or nonobjectiv-
ity?” is resolved in favor of nonobjectivity. (In our framework one cannot use the
functional representation of quantum observables (1.1) and, hence, it is not surpris-
ing that Bell’s inequality can be violated.) In this section we couple this (yet purely
theoretical) prediction with experimental studies in quantum foundations, namely,
experiments on quantum contextuality.37),38) Although these experiments have no
direct relation to PCSFT/TSD, their results might be interpreted as supporting
nonobjective “prequantum” models.

We state again the basic assumptions of Bell’s argument:

(R) Realism: A possibility to assign to a quantum system the values of observ-
ables before measurement.

From the philosophical viewpoint this is not precisely the definition of realism
(objectivity). To be real (objective), it is enough to exist, without any relation
with experiment. Such “ontic realism” is formalized through the principle of value
definiteness:

(VD) All observables defined for a QM system have definite values at all times.
However, Bell used “measurement realism” which we presented in (R). If the

values of physical observables were existing, but not coinciding with results of mea-
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Quantum Probabilities from Classical Random Signals 35

surement, then Bell’s consideration would not imply Bell’s inequality [see Ref. 22) for
analysis and examples]. In philosophic literature (R) is often referred as a principle
of faithful measurement (FM).39)

(L) Locality: No action at the distance.

Therefore every one (who accepts that experiments are strong signs that local
realism has to be rejected) has to make the choice between:

(NONL) Realism, but nonlocality (the original Bell’s position).

(NR) No realism (nonobjectivity) and locality (the original Bohr’s position).

(NONL+NR) Nonlocality + nonobjectivity.

The last possibility, (NONL+NR), seems to be too complex to happen in nature.
Of course, one cannot completely reject that nature is so exotic. However, to resolve
all problems one need not make this assumption, either nonlocality or nonobjectivity
is enough. The (NONL+NR)-interpretation of experimental results is definitely non-
minimalistic and it can be rejected, e.g., by the [Occam’s razor]-reason.

Hence, one has to make his choice: either nonlocality or nonobjectivity; either
De Broglie-Bohm-Bell or Bohr-Heisenberg-Pauli position. We state again that the
Copenhagen interpretation of quantum mechanics had nothing to do with nonlocal-
ity. Bohr advertised the position that the values of quantum observables are “cre-
ated” in the process of interaction of quantum systems with measurement devices.
Hence, the main point was nonobjectivity.

It is typically assumed that the present experimental situation does not pro-
vide us a possibility to make the choice. And this is correct if one explores only
experiments of the EPR-Bohm type in which realism and locality are mixed.

However, recently exciting experiments testing quantum contextuality were per-
formed:37),38) they supported the thesis that quantum mechanics is contextual.

We point that contextuality implies nonobjectivity! ∗) In the contextual situation
it is impossible to assign values of physical observables before measurement. There-
fore the experiments37),38) can be considered as supporting nonobjectivity. This
experiment is about nonojectivity of results of measurements for a single particle.

Now I present the following considerations which seem to be logically justified.
If already a single particle exhibits lack of objectivity, then it is reasonable to assume
that the situation cannot be improved by consideration of a pair of particles. Hence,
it is reasonable to assume nonobjectivity in the EPR-Bohm experiment. This implies
that among two alternatives, (NONL) or (NR), the latter is essentially more justified
than the former.

We can summarize the arguments presented in this session:

Recent experiments on quantum foundations can be considered as supporting the
original Bohr’s position — quantum observables are nonobjective, their values cannot

∗) We state again that we understood objectivity (realism) as “measurement objectivity” (real-

ism) — the discussion after the definition of (R). Contextuality does not imply the violation of the

principle of value definiteness (VD).
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36 A. Khrennikov

be assigned before measurement. The assumption of nonlocality has to be rejected,
since there is no direct experimental evidence of nonlocality (similar to the tests of
nonobjectivity presented in articles37), 38)) and since in the EPR-Bohm experiment
it is unnecessary — under the assumption of nonobjectivity.

We shall come back to the problem of nonobjectivity of quantum measurements
and threshold detection measurements of classical waves in Appendix A.

§3. From time-correlations in prequantum random signals
to quantum probabilities

3.1. Random signals

Random signals considered in signal’s theory, e.g., in radio-physics, are mathe-
matically defined as stochastic processes. A stochastic process is a function of two
variables φ(s, ω), where s ∈ [0,+∞) is the time parameter and ω is a random para-
meter. In modern theory of stochastic processes40) random parameters are invented
in the abstract framework.

Starting with Kolmogorov (1933),41) the probability space is defined as a triple
(Ω,F , P ), where Ω is a set (of any nature), F is a σ-algebra of its subsets (a set
system which contains Ω and the empty set, it is closed with respect to countable
unions and intersections and the operation of complement), and P is a probability
measure defined on F . In the Kolmogorovian framework a random variable ξ : Ω →
C is defined as a measurable function, i.e., for any Borel subset O of the set of
complex numbers C its preimage ξ−1(O) belongs to F . The mean value of ξ is
denoted by Eξ.

A function of two variables φ(s, ω) is a stochastic process if for any instant of
time s, the map ω → φ(s, ω) is a random variable.

Although in formal calculations the physical nature of the random parameter ω
does not play any role, in a real physical model it is important to know the origins of
randomness. In classical signal theory, randomness is generated by noises in sources
and transmission media.

3.2. The scheme of threshold detection

Let us consider a complex valued stochastic process (random signal) φ(s) =
φ(s, ω) with zero average, Eφ(s) = 0 for any s. The quantity

E(s, ω) = |φ(s, ω)|2 (3.1)

is the signal energy at the instant of time s. If signals corresponding to quantum sys-
tems were smooth enough, then the detection procedure under consideration would
be reduced to the condition of the energy level approaching the detection threshold,
say Ed > 0.

The instant of time τ corresponding to the signal detection (“click”) is deter-
mined as the first instant of time when the signal’s energy exceeds the threshold:

E(τ, ω) ≥ Ed. (3.2)

In the rigorous mathematical framework this is nothing else than the hitting time
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Quantum Probabilities from Classical Random Signals 37

(stopping time)40)

τ ≡ τEd
(ω) = inf{s ≥ 0 : E(s, ω) ≥ Ed}. (3.3)

This is formalization of the basic condition (b), §1.
Mathematically our aim is to find average of the instance of detection, τ̄ = Eτ.

The quantity 1/τ̄ will be used to find the probability of detection, “how often the
detector produces clicks” [see §5].

However, classical random signals corresponding to quantum states are very
singular (because of the contribution of the background field of the white noise type)
and the value of a signal at the fixed instance of time is not defined (at least we cannot
be sure that it is defined for almost all ω). Therefore, instead of the signal’s energy
value at the fixed instance of time (3.1), we shall use the analog of the threshold
approaching condition for a properly smoothed signal. We shall consider smoothing
in the L2-space. This smoothing matches the real detection procedure. In reality,
a detector cannot determine the signal’s energy at the fixed instance of time. Any
detector is based on the integration of signals.

Suppose that the detection procedure is based on the integration window given
by the step-function

g(s) ≡ gκ(s) =
{

1/
√
κ, s ∈ [0, κ],

0 , s �∈ [0, κ], (3.4)

where κ > 0 is a small parameter (of the detector). We remark that ‖g‖ = 1 (the
L2-norm).

Mathematically the detection procedure is described in the following way. Con-
sider the κ-smoothed signal

φκ(u, ω) =
∫ +∞

−∞
φ(s, ω)g(u− s)ds =

1√
κ

∫ u

u−κ
φ(s, ω)ds (3.5)

and its energy
E(u, ω;κ) = |φκ(u, ω)|2. (3.6)

Now the instant of time of signal’s detection τ is determined as the first instant
of time when the signal’s energy exceeds the threshold:

E(τ, ω;κ) ≥ Ed. (3.7)

In our model the smoothed (through the integration over the time window) signal
φκ has a.e. continuous trajectories. Therefore40) the click time can be represented
as the first instant of time when signal’s energy approaches the threshold:

τ(ω) ≡ τEd
(ω) = inf{s ≥ κ : E(s, ω;κ) = Ed}. (3.8)

(This τ also depends on the integration window of the detector.) Hence,

E(τ(ω), ω;κ) = Ed. (3.9)
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38 A. Khrennikov

We consider the special class of random signals having zero averages (Eφ(s) = 0
for any s). Suppose that the covariance function of φ(s) has the following form (this
is concretization of the assumption (a) of §1):

Eφ(s1)φ(s2) = σ2δ(s1 − s2)
√

|s1s2|. (3.10)

(The role of the parameter σ2 will become clear in §5, Remark 3.) We find the
average of the energy E(τ, ω;κ) of this signal. We have

EE(τ, ω;κ) =
1
κ
E
∣∣∣ ∫ τ

τ−κ
dsφ(s, ω)

∣∣∣2
=

1
κ

∫ τ

τ−κ

∫ τ

τ−κ
Eφ(s1, ω)φ(s2, ω)ds1ds2

=
σ2

κ

∫ τ

τ−κ

∫ τ

τ−κ
δ(s1 − s2)

√
|s1s2|ds1ds2

=
σ2

κ

∫ τ

τ−κ
sds = σ2(τ − κ/2).

We shall use this quantity a bit later. Now we proceed to calculation of the average
detection time τ̄ . We take the average of the equality (3.9) and obtain

EE(τ(ω), ω;κ) = Ed. (3.11)

(We recall that the instant of detection τ = τ(ω) is a random variable.) To find the
quantity on the left-hand side of this equality, we use the formula of total probability

EE(τ, ω;κ) =
∫ +∞

0
E[E(τ(ω), ω;κ)|τ(ω) = τ ]P (τ(ω) = τ)dτ,

where E[E|τ(ω) = τ ] is the conditional expectation of the quantity E under the
condition τ(ω) = τ. The conditional expectation has already been found

E[E(τ(ω), ω;κ)|τ(ω) = τ ] = σ2(τ − κ/2). (3.12)

Hence,

EE(τ(ω), ω;κ) = σ2

∫ +∞

0
(τ − κ/2)P (τ(ω) = τ)dτ = σ2(τ̄ − κ/2)

= τ̄σ2(1 +O(κ/τ̄)), κ/τ̄ → 0. (3.13)

Finally, the averaged condition of detection (3.11) takes the form:

τ̄σ2(1 +O(κ/τ̄)) = Ed (3.14)

or
1
τ̄
≈ σ2

Ed
, κ/τ̄ → 0. (3.15)
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Quantum Probabilities from Classical Random Signals 39

3.3. Probabilities of clicks in detection channels

Hence, during a long period of time T such a detector clicks Nclick-times, where

Nclick ≈ T

τ̄
≈ σ2T

Ed
, κ/τ̄ → 0. (3.16)

To find the probability of detection and match the real detection scheme which is
used in quantum experiments18) we have to use a proper normalization of Nclick,
This is an important point of our considerations. (The normalization problem is
typically ignored in standard books on quantum foundations, cf., however, Ref. 22).)
In QM-experiments probabilities are obtained through normalization corresponding
to the sum of clicks in all detectors involved in the experiment, e.g., spin up and
spin down detectors.

In QM such a collection of detectors is symbolically represented as quantum
observable, say C. In the mathematical formalism observable C is represented by
the Hermitian operator Ĉ. In the case of purely discrete (nondegenerate) spectrum,
the QM-probabilities of detection are determined by the basis of eigenvectors {ej}
of the operator Ĉ through Born’s rule:

Pj = |〈Ψ, ej〉|2 (3.17)

for quantum systems in the pure state Ψ or more generally, for quantum systems in
the mixed state ρ, we have:

Pj = TrρCj , (3.18)

where Ĉj is the projector onto the vector ej, i.e., Ĉj = |ej〉〈ej|. In QM Born’s rule
(3.18) is postulated.22)

To reproduce the QM-scheme (in the model in which the spatial degrees of
freedom are still absent), we consider a family of stochastic processes φ(i, s), i =
1, 2, ...m. The signal φ is split into a family of disjoint channels coupled to detectors
D(i) : φ(s) = (φ(i, s))m

i=1.
∗) Thus we have the vector valued random signal φ(s).

Suppose that the covariance function of φ(s) has the following form:

Eφ(i, s1)φ(j, s2) = δ(s1 − s2)
√
|s1s2|b(ij). (3.19)

(This is simply generalization of (3.10) to the vector valued process; this is further
concretization of the assumption (a) [see §1].) Hence, its covariance function can be
represented as

B(s1, s2) = δ(s1 − s2)
√
|s1s2|B, (3.20)

B = (b(ij)). The matrix B does not depend on temporal correlations; it represents
only correlations of internal degrees of freedom (such as e.g. spin or polarization).
We set

b(ii) = σ2
i and Σ2 =

∑
i

σ2
i = TrB.

∗) We consider only the detection scheme for discrete observables, e.g., spin, i = +1, spin up,

and i = −1, spin down.
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40 A. Khrennikov

We repeat the previous detection scheme (based on threshold detectors) for each of
these processes, so m detectors are involed; the only assumption is that all these
detectors have the same detection threshold Eb > 0. We obtain [see (3.16)]

Nclick(i) ≈ T

τ̄i
≈ σ2

i T

Ed
, κ/τ̄i → 0. (3.21)

Hence, the total number of clicks:

N =
∑

i

Nclick(i) ≈ TΣ2

Ed
, (3.22)

The probability of detection for the jth detector is given by

P (j) = Nclick(j)/N ≈ σ2
j

Σ2
. (3.23)

In fact, this is Born’s rule. Consider the matrix

ρ = B/TrB = (b(ij)/Σ2). (3.24)

This is the Hermitian positive trace one matrix; so formally it has all properties of
the density matrix used in QM. In Cn take the canonical basis ej = (0...1...0); set
Ĉj = |ej〉〈ej|. Then the equality for the probability of detection (3.23) can be written
as

P (j) = TrρĈj . (3.25)

This is the QM-rule for calculation of probabilities of detection.
In the quantum formalism for a given state ρ, density operator, we are able to

determine probabilities of detection in corresponding channels not only for one fixed
observable, the fixed family of disjoint channels, but for any observable, any family
of disjoint channels. The same feature has our model. We have a stochastic process
φ(s) valued in the m-dimensional complex Hilbert space H; denote its covariance
function by B(s1, s2). Suppose that it has the form (3.20) where B : H → H is Her-
mitian positive operator (in general TrB �= 1). This operator describes correlations
of internal degrees of freedom in the signal φ.

Suppose now that all measurement procedures under consideration have the form
of projections of the signal φ(s) onto some orthogonal directions {ej} and the thresh-
old type measurements for components φj(s) = 〈φ(s), ej〉. Hence, selection of each
measurement of this type is equivalent to decomposition of the random signal φ(s)
into orthogonal components.∗) Set b(ij) = 〈ei|B|ei〉 and repeat the previous con-
siderations; we obtain (3.25) for the “density operator” ρ = B/TrB. Opposite to
the canonical scheme of QM, this operator has a natural interpretation in theory of

∗) In the QM-formalism such a decomposition of a signal corresponds to the measurement scheme

based on the projection postulate. Formally the latter works very well, but its origin cannot be

explained in physical terms. This brings a bit of mystery to QM-measurement theory: collapse of

the wave function and so on. In our model the split of a physical signal into a family of signals is

the standard operation of the classical signal theory, in particular, in classical optics.
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Quantum Probabilities from Classical Random Signals 41

classical stochastic processes (classical signal theory) — the normalized covariance
operator of the internal degrees of freedom of a signal.

Summary. We considered stochastic processes (with temporal correlations
of the special type). They can be used to model (classical) random signals with
finite-dimesional state space representing non-temporal degrees of freedom, “inter-
nal degress of freedom”. The covariance operator for the internal degrees of freedom
normalized by its trace can be formally treated as a density operator, so to say,
quantum state. By spliting the random signal into its components corresponding to
projections onto vectors of an orthogonal basis in the space of internal degrees of
freedom we reproduce the detection scheme of QM.

Remark 1. We stress that the presented derivation was done under the as-
sumption

κ/τ̄i → 0. (3.26)

Hence, the integration window κ has to be essentially smaler than the average time
between clicks. This is a natural physical assumption.

Remark 2. We remark that the detection threshold Ed disappeared from the
final formula for the probability of detection. However, the average time between
clicks depends linearly on the threshold [see (3.14)].

Remark 3. (Dimension analysis) The squared-signal |φ(s)|2 has the dimension
of energy. From the equality (3.10) we obtain that σ2 × time ∼ energy. Hence,
σ2 ∼ energy

time ∼ power . The detection threshold Ed ∼ energy. We now comment the
equality (3.16) from the dimensional viewpoint. The number of clicks of a detector,
N+, is proportional to signal’s power σ2 and the duration of the experiment run and
inverse proportional to the detection threshold. Hence, signal’s power (and not its
total energy) is crucial for detection.

§4. Threshold/calibration detection scheme for classical signals
representing entangled quantum systems

The detection scheme presented in this section describes detection of internal
degrees of freedom, e.g., spin components, for pairs of correlated quantum particles.

Consider a Gaussian∗) signal with two correlated components (bi-signal) φ(s) =
(φ1(s), φ2(s)).We proceed under the following assumptions (see the basic assumption
(a), §1) on averages and correlations (k = 1, 2):

Eφk(s) = 0, (4.1)

Eφk(s1)φk(s2) = σ2
kδ(s1 − s2)

√
|s1s2| + E0δ(s1 − s2), E0 > 0, (4.2)

Eφ1(s1)φ2(s2) = 2
√
E0σ12δ(s1 − s2)|s1s2|1/4, σ12 ∈ C, (4.3)

σ2
1 = σ2

2 = |σ12|2 ≡ σ2. (4.4)

∗) We proceed with only Gaussian signals. It may be possible to use non-Gaussian signals.

However, mathematics is essentially more complicated.
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Remark 4. We stress the appearance of the additional term in (4.2) comparing
with (3.10). Physically this is the contribution (to correlations) of the background
field of the white noise type. We shall see that, in fact, E0 is the mean energy of
this field. (It does not depend on s). Its necessity was not evident in the case of
the one-component signal (corresponding to a single quantum particle), so in §3 we
ignored the contribution of the background field. However, in the case of bi-signals
(corresponding to composite two particle systems) one cannot proceed classically
without the background component. Surprisingly the presence of the background
field started to play a role only in joint detection, or other way around: the presence
of the background can be detected only through joint measurement of correlated
signals. We shall see that probabilities of joint detection predicted by QM (and
tested experimentally) correspond to the well-defined classical stochastic process
only if the presence of the background field is taken into account. This is a tricky
situation. The contribution of the background field is not directly present in quantum
probabilities. It is eliminated through calibration of detectors [see (4.10)]. However,
in the absence of this field “prequantum stochastic process” is not well defined. (Of
course, one may simply deny the existence of the prequantum classical process.)

Remark 5. (Dimension analysis) Here, cf. Remark 3, σ2
k ∼ power . The de-

tection threshold Ed ∼ energy. From (4.3) we have that Eφ1(s1)φ2(s2) = kδ(s1 −
s2)|s1s2|1/4, where k2 × time ∼ energy2, i.e., k2 ∼ energy2

time ∼ energy × power . Hence,
it is natural to represent k = k0 × σ12, where |σ12|2 ∼ power and k2

0 ∼ energy. We
can select k2

0 = E0, the energy of vacuum fluctuations. The equality (4.4) encodes
matching of statistics of measurements on each of components φj(s), j = 1, 2, and
joint measurement of these components. Hence, we consider a very special class of
signals.

First, we show that this stochastic process is well defined. Consider the covari-
ance function of this process

D(s1, s2) =
(
D11(s1, s2) D12(s1, s2)
D21(s1, s2) D22(s1, s2)

)
= δ(s1 − s2)

(
σ2
√|s1s2| + E0 2

√E0σ12|s1s2|1/4

2
√E0σ̄12|s1s2|1/4 σ2

√|s1s2| + E0

)
. (4.5)

We now prove that the operator D̂ defined by the kernel (4.5) is positively
defined. Take two L2-functions, y1(s), y2(s). We have

〈D̂y1, y2〉 =
∫

(σ2|s| + E0)(|y1(s)|2 + |y2(s)|2)ds

+2
√

E0

∫ √
|s|(σ12y2(s)ȳ1(s) + σ̄12y1(s)ȳ2(s))ds = I1 + I2.

We have

I2 ≥ −4
√

E0|σ12|
∫

|y1(s)||y2(s)|ds.
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Hence, I1 + I2 ≥∫
(σ
√
|s||y1(s)| −

√
E0|y2(s)|)2 + (σ

√
|s||y2(s)| −

√
E0|y1(s)|)2ds ≥ 0.

For each component of the bi-signal φ = (φ1, φ2), we consider the smoothed
signal corresponding the integration window κ, φκ = (φκ

1 , φ
κ
2) [see (3.5)]. Denote

by Ek(s, ω;κ) the energy of the kth component of the κ-smooothed signal, i.e.,
Ek(s, ω;κ) = |φκ

k(s, ω)|2, k = 1, 2.
In the absence of the background field, we would have the threshold approaching

detection conditions
Ek(τk(ω), ω;κ) = Ed, k = 1, 2, (4.6)

for each component, φk, k = 1, 2, where the random instant of time τk(ω) is defined
as

τk(ω) = inf{s ≥ κ : Ek(s, ω;κ) ≥ Ed} = inf{s ≥ κ : Ek(s, ω;κ) = Ed}.
The latter equality is a consequence of continuity of (almost all) trajectories of signals
smoothed through integration in detectors. (We assume that both detectors have
the same detection threshold.)

However, in the present model our signals are mixed with the background field.
Denote the latter by η(s) ≡ η(s, ω). Moreover, this field cannot be distilled from
signals. There is no filter removing the background field. Its contribution can be
strong enough to play an important role in production of clicks. We only can make
cutoff in detectors by their calibration — subtraction the energy of the background
field. This field is very singular, so its energy for a fixed instance of time is not well
defined. However, this problem is solved through using detectors with the integration
windows given by functions of gκ type. They measure the energy of the smoothed
η:

ηκ(u) =
∫
η(s)g(u− s)ds = 〈gu, η〉,

where gu(s) = g(u − s). For such a detector, the energy contribution of the back-
ground field is given by

E0(u, ω;κ) = |ηκ(u)|2 = |〈gu, η〉|2. (4.7)

Hence, the detection condition for each component of the bi-signal can be modified
from (4.6) to

Ek(τk(ω), ω;κ) − E0(τk(ω), ω;κ) = Ed, (4.8)

where

τk(ω) = inf{s ≥ κ : Ek(s, ω;κ) − E0(s, ω;κ) ≥ Ed}
= inf{s ≥ κ : Ek(s, ω;κ) − E0(s, ω;κ) = Ed}.

The latter equality is a consequence of continuity of (almost all) trajectories of
signals and the background noise smoothed through integration in detectors. Thus,
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the detection conditions (4.6) have to be modified by taking into account the presence
of the background field:

Ek(τk(ω), ω;κ) = E ′
d, (4.9)

where E ′
d = Ed + E0(τk(ω), ω;κ) is the calibrated threshold. However, the threshold

E ′
d is random. And what is even worse, it depends on the detection moment. So, it is

not useful for the practical purpose. The (random) contribution of the background
is unknown. Therefore in practice the detection condition (4.9) is changed to coarser
condition with calibration by the mean value of the detected energy of the background
field [see the basic assumption (c), §1].

First we find this mean value for the fixed (i.e., nonrandom) τ.We use the general
result on quadratic forms of Gaussian random variables valued in Hilbert spaces36)

[see Eq. (B.2) in Appendix B]. (Thus here we use the basic assumption (d), §1.)
Consider in L2 the operator Â ≡ Âτ ;κ = |gτ 〉〈gτ |, where, as always, gτ (s) = g(τ − s)
and the function g was defined in (3.4). Set fA(y) = 〈Ây, y〉, y ∈ L2, the quadratic
form corresponding to the operator Â. By (B.2) we obtain

EE0(τ, ω;κ) = EfA(ηκ) = E0TrÂ = E0‖gτ‖ = E0.

This quantity does not depend on τ and this is not surprising, since the background
field is translation invariant. If τ is random (as it is in (4.7)), then we can use the
formula of total probability:

EE0(τ(ω), ω;κ) =
∫ ∞

0
E[E0(τ(ω), ω;κ)|τ(ω) = τ ]P (τ(ω) = τ)dτ = E0.

Now we modify the detection condition (4.9) and proceed with conditions (k = 1, 2)

Ek(τk(ω), ω;κ) − E0 = Ed, (4.10)

where, for
E ′

d = E0 + Ed, (4.11)

the random instant of time τk(ω) is defined as

τk(ω) = inf{s ≥ κ : Ek(s, ω;κ) ≥ E ′
d} = inf{s ≥ κ : Ek(s, ω;κ) = E ′

d}.
The latter equality is a consequence of continuity of (almost all) trajectories of signals
smoothed through integration. Hence, the detection conditions have the form:

Ek(τk(ω), ω;κ) = E ′
d, k = 1, 2. (4.12)

For each component of the bi-signal, we repeat the scheme of §§3 and 5, but
with the new threshold given by (4.11).

The only difference is that the process φk(s) has the covariance operator D̂kk =
D̂

(0)
kk +E0I, where D̂(0)

kk is the covariance operator of the process which was considered
in §3. We have [see Appendix B]

EEk(τ, ω;κ) = TrD̂kkÂ = TrD̂(0)
kk Â+ E0TrÂ = TrD̂(0)

kk Â+ E0. (4.13)
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Therefore the detection condition (4.12) with (4.11) implies (after averaging and the
use of the formula of total probability) the same considtion as in §3

TrD̂(0)
kk Â = τ̄σ2(1 +O(κ/τ̄)) = Ed. (4.14)

Thus the contribution of the background field was completely excluded — through
the proper calibration of detectors. (We stress again that this can be done only
“afterward”, i.e., on the level of detectors and not fields; this is a crucial point of
our approach to QM, as theory of measurements with threshold’s type and properly
calibrated detectors.)

Now we consider the joint clicks in detectors corresponding to the components of
the bi-signal. Thus (4.12) holds for both ks and moreover the instances of detection
for corresponding detectors, τk = τk(ω), are constrained by the equality [see the
basic assumption (d), §1]:

τ(ω) = τ1(ω) = τ2(ω). (4.15)

Remark 6. Of course, in the real experiment we cannot proceed with the
precise coincidence of instances of detection. One has to use the joint detection time
window, say v, and proceed under the condition

|τ1 − τ2| ≤ v. (4.16)

In our ideal model we ignore this experimental technicality. Opposite to the model
from works,26) the presence of the joint detection time window v �= 0 in real ex-
periments does not play a crucial role in our model; i.e., we can obtain quantum
correlations even for v = 0.

We now find average of the joint detection time τ. The system of equalities
(4.10), k = 1, 2, and (4.15) imply

(E1(τ(ω), ω;κ) − E0)(E2(τ(ω), ω;κ) − E0) = E2
d . (4.17)

We take the average of both the sides

E(E1(τ(ω), ω;κ) − E0)(E2(τ(ω), ω;κ) − E0) = E2
d (4.18)

or

EE1(τ(ω), ω;κ)E2(τ(ω), ω;κ) − E0(EE1(τ(ω), ω;κ) + EE2(τ(ω), ω;κ)) + E2
0 = E2

d .
(4.19)

We start with the first term on the left-hand side of this equality. We shall again
use the formula of total probability

EE1(τ(ω), ω;κ)E2(τ(ω), ω;κ)

=
∫ ∞

0
E[E1(τ(ω), ω;κ)E2(τ(ω), ω;κ)|τ(ω) = τ ]P (τ(ω) = τ)dτ. (4.20)

For the fixed τ, we have to find the correlation of two quadratic forms of the compo-
nent of the Gaussian bi-signal satisfying the aforementioned assumptions. We again
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46 A. Khrennikov

use the general result on quadratic forms of Gaussian random variables valued in
Hilbert spaces31)–36) [see Eq. (B.3) in Appendix B]. Consider again the operator
Â = |gτ 〉〈gτ | and its quadratic form fA(y). Then by (B.3) we have

EE1(τ, ω;κ)E2(τ, ω;κ) = EfA(φ1)fA(φ2)

= TrD̂11Â TrD̂22Â+ 〈Â⊗ ÂD12, D12〉 = J1 + J2, (4.21)

where

D̂ =

(
D̂11 D̂12

D̂21 D̂22

)
(4.22)

is the covariance operator corresponding to the kernel D(s1, s2). We start with the
last term. It is determined by the off-diagonal term D12(s1, s2) of the covariance
function D(s1, s2):

J2 =
∣∣∣ ∫ ∫ gτ (s1)gτ (s2)D12(s1, s2)ds1ds2

∣∣∣2 =
∣∣∣2√E0σ12

κ

∫ τ

τ−κ

√
|s|ds

∣∣∣2
=
∣∣∣4√E0σ12

3κ
[τ3/2 − (τ − κ)3/2]

∣∣∣2 = 4E0σ
2τ(1 +O(κ/τ))2

= 4E0σ
2τ(1 +O(κ/τ)), κ/τ → 0.

Now we consider

J1 = (TrD̂11Â)(TrD̂22Â) = (TrD̂11Â)2 = 〈D̂11gτ , gτ 〉2.
We have

〈D̂11gτ , gτ 〉 =
∫

(σ2|s1|+ E0)g2
τ (s)ds =

1
κ

∫ τ

τ−κ
(σ2s+ E0)ds = σ2τ(1 +O(κ/τ)) + E0.

Hence,
J1 = (σ4τ2 + 2σ2τE0 + E2

0 )(1 +O(κ/τ))

and

EE1(τ, ω;κ)E2(τ, ω;κ) = [4E0σ
2τ + (σ4τ2 + 2σ2τE0 + E2

0 )](1 +O(κ/τ))
≈ 4E0σ

2τ + (σ4τ2 + 2σ2τE0 + E2
0 ). κ/τ → 0.

We now turn to the formula of total probability (4.20) and we obtain

EE1(τ(ω), ω;κ)E2(τ(ω), ω;κ) ≈
∫ ∞

0
[σ2τ + (σ4τ2 + 2σ2τE0 + E2

0 )]P (τ(ω) = τ)dτ

= 4E0σ
2τ̄ + (σ4τ̄2 + 2σ2τ̄E0 + E2

0 ), κ/τ → 0. (4.23)

Finally, turn to the basic detection condition (4.19):

4E0σ
2τ̄ + (σ4τ̄2 + 2σ2τ̄E0 + E2

0 ) − 2E0(σ2τ̄ + E0) + E2
0 ≈ E2

d

or
4E0σ

2τ̄ + σ4τ̄2 ≈ E2
d . (4.24)
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Suppose now that
σ4τ̄2 � E0σ

2τ̄ . (4.25)

Thus the second term on the left-hand side of the equality (4.24) is essentially less
than the second term. Hence, we have

4E0σ
2τ̄ ≈ E2

d . (4.26)

Now we analyze the condition (4.25). It can be written as

σ2 � E0τ̄

τ̄2
(4.27)

or

σ2 � E0

τ̄

τ̄2

τ̄2
. (4.28)

By the Cauchy-Bunyakovsky inequality τ̄2 ≤ τ̄2. Hence, we have

σ2 � E0

τ̄
. (4.29)

We state again that the quantity σ2 has the dimension of signal’s power. Hence,
the condition (4.27) is a constraint to signal’s power. The quantity E0

τ̄ is average
power of the background field (vacuum flcutuations) during the period of detection
(“click’s production”). Hence, our approach is about detection of weak signals on
the strong random background.

§5. Probability of coincidence of clicks

Hence, during a long period of time T a pair of detectors clicks jointly Nclick-
times, where

Nclick ≈ T

τ̄
≈ 4E0σ

2T

E2
d

, (5.1)

where κ/τ̄ → 0 and the condition (4.29) holds. To find the probability of detection
and match the real detection scheme which is used quantum experiments,18) we have
to use a proper normalization. This is again an important point of our considera-
tions, cf. §5. In QM-experiments with composite systems probabilities are obtained
through normalization corresponding to the sum of joint clicks in all pairs of detec-
tors involved in the experiment. For example, for measurement of spin projections
for a pair of electrons (e.g., entangled) to some axes a and b, we use two pairs of
detectors: D1+, D1−, spin up and spin down for the first electron, and D2+, D2−,
spin up and spin down for the second electron. We collect the numbers of clicks for
the pairs of detectors: Nclick(++) for D1+, D2+, ..., Nclick(−−) for D1−, D2−. Then
we compute the total sum of clicks N = Nclick(++) + Nclick(+−) + Nclick(−+) +
Nclick(−−) and it is used as the normalization factor for computing of probabilities,
e.g., P (++) = Nclick(++)

N .We repeat this scheme in the general case of detection of ob-
servable with discrete spectrum. Suppose that each component of a random bi-signal
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φ(s) = (φ1(s), φ2(s)) is complex vector φ1(s) = (φ1(i, s)))m
i=1, φ2(s) = (φ2(i, s)))m

i=1.
Consider a Gaussian bi-signal. Assumptions (4.1)–(4.4) are modified (i, j = 1, ...,m):

Eφk(i, s) = 0, (5.2)

Eφk(i, s1)φk(j, s2) = σ2
k(ij)δ(s1 − s2)

√
|s1s2| + E0δ(s1 − s2), E0 > 0, (5.3)

Eφ1(i, s1)φ2(j, s2) = 2
√
E0σ12(ij)δ(s1 − s2)|s1s2|1/4, σ12(ij) ∈ C. (5.4)

To match completely the QM-theory, the condition (4.4), coupling between powers
of signal’s components σ2

k and “power of correlations between component” σ12, has
to be generalized to the case of vector processes in a rather tricky way [see (6.1)]. To
clarify the main points of derivation of probabilities for coincidences, we start with
a simpler stochastic model which will reproduce probabilities for coincidences, but
not yet probabilities for measurements on each fixed component.∗) In this section
we proceed with stochastic processes satisfying Eqs. (5.2)–(5.4) and

σ2
1(ij) = σ2

2(ij) = |σ12(ij)|2 ≡ σ2(ij). (5.5)

We have

Nclick(ij) ≈ T

τ̄ij
≈ 4E0σ

2(ij)T
E2

d

. (5.6)

The total number of clicks

Nclick =
∑
ij

Nclick(ij) ≈ 4E0Σ
2T

E2
d

, (5.7)

where Σ2 =
∑

ij σ
2(ij) is the total averaged power of the bi-signal. The probability

of detection for the pair of detectors D1i and D2j is given by

Pclick(ij) =
Nclick(ij)
Nclick

≈ σ2(ij)
Σ2

. (5.8)

In fact, this is Born’s rule. Consider the complex vector

ψ = (σ12(ij)). (5.9)

(Its dimension is m2, i.e., the squared dimension of the state space of components
φk.) We remark that it is not normalized by one. Its squared norm is ‖ψ‖2 = Σ2.
We normalize this vector:

Ψ =
ψ

‖ψ‖ . (5.10)

By our interpretation of QM this is a state vector. (So, the quantum state vector
of a composite system is constructed from correlations between components of the

∗) Of course, by knowing probabilities for coincidences we can derive probabilities for measure-

ments on signals φk, k = 1, 2, by using the laws of (classical) probability theory. However, we want

to introduce such a random bi-signal φ = (φ1, φ2) that by performing measurement (with detec-

tors of the thershold type and the background field calibration) only on φk we shall obtain the

corresponding quantum probability.
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“prequantum stochastic process”; the quantum system is its symbolic representation
in the operational formalism called QM.) In such notation we have

Pclick(ij) = |Ψ(ij)|2. (5.11)

In our approach the QM-formalism is the operational formalism in which con-
nection of the quantum state vector with correlations inside “prequantum random
signals” is ignored. In QM the Ψ -state is invented formally; then it is used to find
correlations. In our approach the Ψ -state is nothing else than the symbolic repre-
sentation of correlations in the classical signals.

§6. The final stochastic model

We now consider a more tricky (classical) stochastic process. It satisfies the
conditions (5.2)–(5.4) and, instead of condition (5.5), the condition:

σ2
1(ij) =

∑
n

σ12(in)σ̄12(jn), σ2
2(ij) =

∑
n

σ12(ni)σ̄12(nj). (6.1)

Later we shall write this condition in the matrix form, by using the matrix of cross-
correlations σ̂12 = (σ12(ij)).

First we show that this process also reproduces the quantum probability for
coincidence measurements on components φ1 and φ2, cf. §5. We slightly modify the
results of calculation in §4. We set Ek(i, s, ω;κ) = |φκ

k(i, s, ω)|2, k = 1, 2; i = 1, ...,m.
Generalizing (4.13) and (4.14), we obtain

EEk(i, τ, ω;κ) = τσ2
k(ii)(1 +O(κ/τ)) + E0, k = 1, 2. (6.2)

We now find EE1(i, τ, ω;κ)E2(j, τ, ω;κ) = J1(ij) + J2(ij), cf. (4.21):

J2(ij) = 4E0|σ12(ij)|2τ(1 +O(κ/τ)), κ/τ → 0,
J1(ij) = (σ2

1(ii)τ + E0)(σ2
2(jj)τ + E0)(1 +O(κ/τ))

= [σ2
1(ii)σ

2
2(jj)τ

2 + E0τ(σ2
1(ii) + σ2

2(ii)) + E2
0 ](1 +O(κ/τ)), κ/τ → 0.

As always by using the formula of total probability, we obtain

EE1(i, τ(ω), ω;κ)E2(j, τ(ω), ω;κ)
≈ 4E0|σ12(ij)|2τ̄ + σ2

1(ii)σ
2
2(jj)τ̄2 + E0τ̄(σ2

1(ii) + σ2
2(ii)) + E2

0 , κ/τ → 0. (6.3)

Bu using the condition (4.19) for ith and jth coordinates of the signals φ1 and φ2

we obtain
4E0|σ12(ij)|2τ̄ + σ2

1(ii)σ
2
2(jj)τ̄2 ≈ E2

d . (6.4)

Under the assumption

σ2
1(ii)σ

2
2(jj)τ̄2 � E0|σ12(ij)|2τ̄ , (6.5)

we obtain the detection condition

4E0|σ12(ij)|2τ̄ ≈ E2
d , (6.6)
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which is the basic to derive detection probabilities for coincidence of clicks.
The condition (6.5) implies that

∑
ij

σ2
1(ii)σ

2
2(jj) �

E0

τ

∑
ij

|σ12(ij)|2, (6.7)

i.e., for

σ2
k =

∑
i

σ2
k(ii), k = 1, 2, |σ12|2 =

∑
ij

|σ12(ij)|2, (6.8)

we have
σ2

1σ
2
2

|σ12|2 � E0

τ
. (6.9)

Quantities σ2
k, k = 1, 2, have the meaning of average powers of signal’s components

φk; the physical meaning of the quantity |σ12|2 is not straightforward. Formally, it
can be considered as “power of correlations between components”. By using this ter-
minology we can say that our (coming) derivation of Bornn’s rule is valid for signals
of sufficiently low relative power (comparing with power of the background field) of
the signal’s components comparing with power of correlations between components.
Consider again the complex vector ψ = (σ12(ij)) [see (5.9)], and its normalization Ψ
[see (5.10)]. Starting with detection condition (6.4) and repeating the steps of the
derivation of §5, we obtain again Born’s rule for detection of coincidences. Now we
show that even for each sigle detector we obtain the quantum formula for probability.

By using the formula of total probability we obtain from (6.2) EEk(i, τ, ω;κ) ≈
τ̄σ2

k(ii) + E0, k = 1, 2. For the ith coordinate of the component φk we have the
detection condition Ek(i, τk(i), ω;κ) = E ′

d where E ′
d = E0 + Ed. Hence, τ̄σ2

k(ii) = Ed.

The number of clicks is given by Nclick,k(i) = Tσ2
k(ii)
Ed

; the total number of clicks
at all detectors for coordinates φk(i) of the component φk is given by Nclick,k =∑

iNclick,k(i) = Tσ2
k

Ed
[see (6.8)]. Hence, Pclick,k(i) = σ2

k(ii)

σ2
k
.

Now, for the vector Ψ consider the corresponding projection operator ρΨ =
|Ψ〉〈Ψ | and its partial traces ρ(k)

Ψ , k = 1, 2. We also introduce operators σ̂2
k = (σ2

k(ij)).
We have Trσ̂2

k = σ2
k and the equality (6.1) implies that ρ(k)

Ψ = σ̂2
k/Trσ̂2

k. The final
formula derived for the detection probability has the form

Pclick,k(i) = Trρ(k)
Ψ Ĉj ,

where Ĉj = |ej〉〈ej| is the projector onto the vector ej corresponding to the detection
in the ith channel for the φk.

We state again that each measurement under consideration corresponds to ex-
pansion of the signal’s components with respect to some bases, say {eki}, k = 1, 2,
in the state spaces of the signal’s components φk. Detectors measure signals φk(i) =
〈φk, eki〉, i = 1, ...,m.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/128/1/31/1836247 by guest on 21 August 2022



Quantum Probabilities from Classical Random Signals 51

§7. Violation of CHSH inequality

We borrow from QM the singlet state Ψ = 1√
2
(|+〉|−〉−|−〉|+〉), where e± = |±〉

is z-polarization basis. The simplest way to select the proper classical correlations is
to identify ψ [see (5.9)] with Ψ : σ(12) = −σ(21) = 1√

2
. These correlations determine

the classical random bi-signal φ(s) = (φ1(s), φ2(s)). Each component is valued in
the two dimensional complex space: φj(s) = φj(+, s)e+ + φj(−, s)e−, j = 1, 2. We
fix two angles θ1, θ2 and the corresponding bases: eθj

± . Consider expansions of the
bi-signal’s components: φj(s) = φθj

(+, s)eθj

+ +φθj
(−, s)eθj

− . Consider probabilities for
joint measurements of the signals φθ1(±, s) and φθ2(±, s). Since they coincide with
the corresponding quantum probabilities, these probabilities for the joint detection
of classical random signals by the threshold type and properly calibrated detectors
violate CHSH inequality.

The QM state Ψ determines correlations σ12(ij) up to a normalization factor.
This state corresponds to a family of classical random fields. So, the correspondence
between classical and quantum models is not one-to-one.
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Appendix A
Derivation of Realism

A.1. On Einstein-Podolsky-Rosen “derivation of realism”

In the EPR paper11) objectivity was derived from the presence of the precise
correlations (or anti-correlations). Einstein, Podolsky and Rosen claimed that they
demonstrated reality of two incompatible variables, position and momentum. Ac-
cording to the paper11) these variables can be jointly assigned (but not measured) to
each of entangled systems. A detailed analysis of the EPR-derivation can be found
in the author’s works.28)–30) It was shown that the projection postulate plays the
fundamental role in this derivation. Then it was pointed out that Einstein, Podolsky
and Rosen used, in fact, the Lüders form of this postulate. (Of course, at that time
Lüders had not yet formulated his postulate in the precise form, but Einstein, Podol-
sky and Rosen used precisely this postulate, although in a very special situation.)

Lüders postulate. Let Ψ be a pure state and let Â =
∑

k akP̂k be a quantum
observable with the purely discrete spectrum; here (ak) are its eigenvalues and (P̂k)
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are the projections on corresponding eigenspaces; ak �= al, k �= l, and in general
spectrum is degenerate, i.e., the image of P̂k can have the dimension larger than 1.
Suppose that a measurement of this quantum observable was done and the result ak

was obtained. Then the initial state Ψ is projected onto the state Ψk = P̂kΨ

‖P̂kΨ‖ .

In particular, by the Lüders postulate, for any pure initial state, the output
state is also pure. However, von Neumann motivated that such a type of the projec-
tion postulate is applicable only to observables with nondegenerate spectra. In the
case of measurements of observables with degenerate spectra the situation is more
complicated. In particular, by the von Neumann projection postulate in this case
even for a pure initial state the output state is a mixture state. As was already
stressed, the EPR-derivation of the presence of elements of reality corresponding to
incompatible observables was fundamentally based on usage of the Lüders postulate.
This is simply impossible to do on the basis of the von Neumann postulate. (We
remark that in the EPR-measurement scheme for compound systems the operators
have degenerate spectra: measurement on one of subsystems of a compound system
is always degenerate, as the result of the multidimensionality of the state space of
another subsystem.)

We note that in his book42) von Neumann, in fact, analyzed the scheme of
measurements on entangled systems. His analysis is very similar to consideration in
the EPR paper. However, since von Neumann used another form of the projection
postulate, he did not come to such fundamental conclusions as Einstein, Podolsky
and Rosen did in Ref. 11). Moreover, von Neumann supported Born’s cliam about
nonobjectivity of quantum observables.

Remark 7. We also remark that the position and momentum operators have
continuous spectra, but in their analysis Einstein, Podolsky and Rosen proceeded by
manipulating with operators having the purely discrete spectra. This is an additional
problem of the EPR paper. However, this problem is not so basic as the aforemen-
tioned problem of usage of the restrictive version of the projection postulate. Von
Neumann stressed42) that only observables represented by operators with discrete
spectra can be really measured. He considered observables represented by operators
with continuous spectra as mathematical idealizations; their physical meaning can
be approached only via approximation by operators with discrete spectra.

Hence, if one takes seriously von Neumann’s motivation of impossibility of usage
of the projection postulate in “Lüders’ form” for compound systems, he should accept
that the analysis of Einstein, Podolsky and Rosen of the measurement scheme for
entangled quantum systems is too restrictive and their “derivation” of realism was
not justified.

A.2. Von Neumann’s viewpoint to measurement of compatible observables: classical
and quantum nonlocality of the Bell-measurements

We remind that Bohm elaborated a version of the EPR-argument for discrete
observables such as e.g. spin or polarization. This Bohm approach (and not the
original EPR-approach) was used by Bell12) to support experimentally his argument
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based on violation of Bell’s inequality. Sometimes Bell’s argument is identified with
the ERP-argument. However, they are fundamentally different. Einstein, Podolsky
and Rosen discussed determination of elements of reality for one subsystem of a
compound system from measurement performed on another subsystem. To find sta-
tistical correlations, Bell was interested in joint measurements on both subsystems.

The Bell-scheme is based on measurement of pairs of quantum observables A1

and A2 represented by commutative operators, say Â1 and Â2. These observables are
measured on subsystems S1 and S2 of the compound system S = (S1, S2). Since the
first detailed analysis of joint measurement of compatible observables was performed
by von Neumann42) (in fact, Dirac43) proceeded along the same lines and earlier,
but he used generalized eigenvectors), this is useful to remind the von Neumann
formalization of the procedure of joint measurement. By him, to measure jointly the
pair (A1, A2), we have to find an observable, say B (represented by B̂), such that
the results of measurements of A1 and A2 are represented as functions of the results
of measurements of B: a1i = f1(bi), a‘2i = f2(bi). The corresponding operators are
coupled by the same functional relation, Â1 = f1(B̂), Â2 = f2(B̂). This is evident [see
also works28)–30)] that in the case of measurement on a compound system composed
of measurements on its subsystems, the observable B has to be “nonlocal”, in the
sense that the results of measurements on S1 and S2 have to be coupled in some way.
This is not “quantum nonlocality” in Bell’s sense of action at the distance, this is
classical nonlocality of the measurement setup. As was pointed out in papers,28)–30)

in the case of the Bell-type measurements nonlocality of the measurement setup
is a consequence of usage of the constraint of matching of clicks at the detectors
D1i, i = 1, 2 and D2i, i = 1, 2 measuring observables on the subsystems S1 and S2 —
to identify two clicks as corresponding to a pair of entangled photons. We emphasize
that this condition (based on a time window) is not just an experimental technicality
(as it is rather commonly believed); in our approach this is an important part of
the Bell-experiment. In TSD it plays the crucial role [see (4.15)]. Otherwise TSD
provides a local measurement scheme, each detector works totally locally without any
action at the distance. (These detectors measure classical fields; in principle, the TSD
can be experimentally realized even for macroscopic classical electromagnetic fields.
And the quantum correlations will be reproduced as well. It seems that nobody
would suspect that measurements of macroscopic fields with the aid of threshold-
type detectors are nonlocal in the sense of action at the distance.) The correlations
are created by the signal’s source and the background field. These are correlations
of subquantum degrees of freedom. They can be lifted to the level of quantum
observables, i.e., the correlations of quantum observables are “derivatives” of the
correlations of the subquantum degrees of freedom.

Remark 8. (On a role of the background field.) The background field [see
(4.5)] is a random field and its contribution to correlations has no deterministic
counterpart wanted by Einstein, Podolsky and Rosen. The presence of the common
background field may be interpreted as a sort of nonlocality. However, this is again
usual classical nonlocality. In particular, it can be imitated by using macroscopic
electromagnetic fields: one source of correlated signals combined with a source of the
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random background field. It is impossible to reproduce the quantum correlations for
entangled states without this field. We cannot put E0 = 0 in (4.5).

A.3. Bell’s “derivation” of realism from precise (anti)correlations

Bell’s position can be characterized as nonlocal realism. And for him it was evi-
dent that Einstein, Podolsky, and Rosen11) proved the presence of elements of reality
for the EPR-states. In his works12) he did not go deeply in the EPR-derivation and,
in particular, he was not aware about the role played by the projection postulate.
Bell simply claimed that the presence of precise (anti)correlations evidently implied
the objectivity of corresponding observables. (This is a rather common misunder-
standing of the EPR paper. If it were true, the authors of Ref. 11) would simply
present this viewpoint in one sentence; there would be no need for long and technical
derivation of the presence of elements of reality for incompatible observables and,
in particular, application of the projection postulate, its “Lüders version”.) Since
Bell proceeded without appealing to the quantum formalism by just playing with
the EPR-argument, it is useful to reply to him in similar heuristically clear terms.
Before to do this, we would like to stress again that in TSD the main experimental
“technicalities” are lifted to the level of the key elements of theory. The detection
threshold is such a fundamental technicality.

The detection threshold scheme for classical waves implies that, in fact, we not
only could not assign the values of physical observables to a quantum system before
measurement, but we cannot assign one concrete value even after measurement. The
key point is that there are no “quantum systems”, there are only waves. As was well
known, since Bohr’s analysis of the two slit experiment,21),47) a classical wave should
produce double clicks with nonzero probability. A single “photon-wave” which passes
a beam splitter would produce (with some probability) clicks in detectors placed in
both channels of the beam splitter. Although the quantum theory predicts that the
number of such double clicks is zero, in reality it is far from to be zero. Instead
of the idealized claim on the absence of double clicks, experimenters checked the
value of the relative number of double clicks in the form of the coefficient of the
second order coherence g(2)(0) [see works44)–46)]. In experiments with photons this
coefficient is less than one; at the same time all known classical and semicalssical
theories of quantum light predicted the values exceeding one.46) (This was the main
reason for rejection of these theories which were very popular in the laser physics
community.) In TSD the second order interference is less than one [see Ref. 48) for
details], but it is fundamentally nonzero. So, even in pure theory we cannot claim
that the double clicks can be totally excluded from consideration.

Denote the detection threshold by Ed and the average energy of photons emit-
ted by a source by Eδ. For example, if we were having a source emitting photons of
the fixed frequency ν, then in this experiment Eδ = hν. In reality (at least in the
Bohm-Bell experiment) experimenters are not able to prepare photons of the fixed
frequency; instead wave packets are emitted. Here Eδ is the average energy of these
wave packets. In Ref. 48) it was shown that, for any two channels, the coefficient

g(2)(0) = f(Ed, Eδ) ∼
(
Ed
Eδ

)2
. By increasing Ed experimenters can decrease the num-
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ber of double clicks, but it still be nonzero. Moreover, one cannot increase Ed too
much. By TSD the number of clicks in a channel during a period of time T is in-
verse proportional to Ed [see (3.16)]. So, if an experimenter decreases essentially the
number of double clicks by increasing Ed, he automatically decreases the size of the
statistical sample. In this situation, to collect significant statistics, he should wait
for a very long time. However, he could not do this, since it would be impossible
to preserve stability of experimental conditions for so long a time. We summarize:
in TSD double clicks are inescapable; they are not technicalities, but exhibitions of
fundamental properties of classical signals of the wave-type.

The presence of double clicks destroys Bell’s “derivation of realism” from precise
(anti)correlations. Consider a pair entangled photons, S = (S1, S2), in the Bell state,
Ψ = (| + +〉 + | − −〉)/√2, which were emitted by a source, e.g., via parametric
down conversion. One may hope to assign to e.g. S1 the polarization vector. To
determine its projection on the θ-axis (we consider the two dimensional illustration),
he selects the θ-orientation of the polarization beam splitter for S2. Then in the
absence of double clicks on the S2-side, he could assign the result of measurement
on S2 as the element of reality for S1. However, if, instead of a single click in only
one of two polarization channels for S2, he gets clicks in both channels, and then
the aforementioned argument collapses. One may argue that the relative number of
double clicks can be done sufficiently small even in TSD and he may hope for realism
at least for the restricted sample without double clicks in polarization channels at
either side.

However (this is an important point!), in TSD the presence/absence of double
clicks depends not only on the photon pair, but also on the orientation of polarization
beam splitter. Hence, for a fixed photon pair S = (S1, S2), by making the θ-seting
measurement on S2 and even being lucky not to see the clicks in both channels, we
can only assign to S1 the observed value of the θ-projection, since we are not sure
that if the θ′-setting, θ′ �= θ, were selected, we would not get double clicks on the
S2-side.

This tricky situation at the level of “reproduction of elements of reality” via
measurements reflects the random wave structure of signals described by PCSFT.
For example, a photon is a pulse of random electromagnetic field, its polarization
fluctuates with time. We are not yet able (and it may happen that we would be
never able) to approach such a fine time scale that it would be possible to monitor
the intrinsic polarization of the “photonic random wave”. Quantum measurement
devices realize indirect measurements of e.g. polarization. In reality we have nonzero
signals in both channels of a polarization beam splitter and both branches have
polarizations. (Of course, if PCSFT is correct.) By getting a click in one branch,
say polarization up, (if there are no double clicks) we are only sure that the signal
in this branch has sufficiently high energy to approach the detection threshold. The
situation is even more complicated. By TSD a detector integrates a signal over some
time window κ [see (3.4)]. And it reacts to the energy of the integrated signal. Hence,
a click in one fixed channel of the polarization beam splitter only means that the
energy of integrated signal was sufficiently high to approach the detection threshold.

Now let us continue to play around the TDS-detection scheme. Let the detec-
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tion threshold be Ed. Suppose that at the instant of time τ the click was produced
by the detector D2+, polarization up. And no double clicks were seen (i.e., nothing
happened in D2−). By Einstein-Podolsky-Rosen-Bell “an element of reality” can be
assigned to S1. (We proceed under the assumption of locality, no action at the dis-
tance.) However, this “element of reality” depends on the selection of the detection
threshold. To illustrate this statement, we have to use counterfactual arguments
(essential in the Einstein-Podolsky-Rosen-Bell derivation of realism). Suppose that,
instead of the above measurement with the threshold Ed, we would perform mea-
surement with another threshold E ′

d. Let us assume that: Ed < E ′
d. Then it might

happen that we get the click not D2+, but in D2−. Of course, the instant of detection
(“creation of the element of reality”) τ ′ would be larger. At the instant of time τ the
signal in the D2+-channel was not strong enough to go over E ′

d, and a bit later the
signal in D2−-channel induced the click. In the absence of double clicks an element
of reality, polarization down, would be assigned to S1. Instead of Einstein-Podolsky-
Rosen-Bell “absolute elements of reality” we have context dependent elements of
reality, cf. Ref. 22). This is very much in the spirit of Bohr’s reply47) to the EPR
paper.11)

Hence, my position is a rather strange mixture of the EPR and Bohr positions.
On one hand, I disagree with Bohr’s claim that quantum mechanics is complete, so
I support the EPR-claim on incompleteness of quantum mechanics. On the other
hand, I reject the EPR-claim on a possibility to assign (noncontextual) elements of
reality to at least some quantum states and I completely agree with Bohr’s statement
that the whole experimental context has to be taken into account.

Appendix B
Gaussian Integrals

Let W be a real Hilbert space. Consider a σ-additive Gaussian measure p on the
σ-field of Borel subsets of W. This measure is determined by its covariance operator
B : W → W and mean value m ∈ W. For example, B and m determine the Fourier
transform of p :

p̃(y) =
∫

W
ei(y,φ)dp(φ) = e

1
2
(By,y)+i(m,y), y ∈W.

(In probability theory it is called the characteristic functional of the probability
distribution p.) In what follows we restrict our considerations to Gaussian measures
with zero mean value: (m, y) =

∫
W (y, ψ)dp(ψ) = 0 for any y ∈ W. Sometimes there

will be used the symbol pB to denote the Gaussian measure with the covariance
operator B and m = 0. We recall that the covariance operator B is defined by its
bilinear form (By1, y2) =

∫
(y1, φ)(y2, φ)dp(φ), y1, y2 ∈W .

Let Q and P be two copies of a real Hilbert space. Let us consider their Carte-
sian product H = Q × P, “phase space”, endowed with the symplectic operator

J =
(

0 1

−1 0

)
. Consider the class of Gaussian measures (with zero mean value)

which are invariant with respect to the action of the operator J ; denote this class
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S(H). It is easy to show that p ∈ S(H) if and only if its covariance operator com-
mutes with the symplectic operator.31)–36)

As always, we consider complexification of H (which will be denoted by the same
symbol), H = Q ⊕ iP. The complex scalar product is denoted by the symbol 〈·, ·〉.
The space of bounded Hermitian operators acting in H is denoted by the symbol
Ls(H).

We introduce the complex covariance operator of a measure p on the complex
Hilbert space H : 〈Dy1, y2〉 =

∫
H〈y1, φ〉〈φ, y2〉dp(φ). Let p be a measure on the

Cartesian product H1 × H2 of two complex Hilbert spaces. Then its covariance
operator has the block structure

D =
(
D11 D12

D21 D22

)
, (B.1)

where Dii : Hi → Hi and Dij : Hj → Hi. The operator is Hermitian. Hence
D∗

ii = Dii, and D∗
12 = D21.

Let H be a complex Hilbert space and let Â ∈ Ls(H). We consider its quadratic
form (which will play an important role in our further considerations) φ→ fA(φ) =
〈Âφ, φ〉. We make a trivial, but ideologically important remark: fA : H → R, is a
“usual function” which is defined point wise. We use the equality [see, e.g., Ref. 36)]:∫

H
fA(φ)dpD(φ) = Tr DÂ. (B.2)

Let p be a Gaussian measure of the class S(H1×H2) with the (complex) covari-
ance operator D and let operators Âi belong to the class Ls(Hi), i = 1, 2. Then∫

H1×H2

fA1(φ1)fA2(φ2)dp(φ) = TrD11Â1 TrD22Â2 + TrD12Â2D21Â1. (B.3)

This equality is a consequence of the following general result:36)

Let p ∈ S(H) with the (complex) covariance operator D and let Âi ∈ Ls(H).
Then ∫

H
fA1(φ)fA2(φ)dp(φ),= TrDÂ1TrDÂ2 + TrDÂ2DÂ1. (B.4)
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