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We experimentally demonstrate quantum process tomography of controlled-Z and controlled-NOT gates

using capacitively coupled superconducting phase qubits. These gates are realized by using the �2� state of the

phase qubit. We obtain a process fidelity of 0.70 for the controlled phase and 0.56 for the controlled-NOT gate,

with the loss of fidelity mostly due to single-qubit decoherence. The controlled-Z gate is also used to demon-

strate a two-qubit Deutsch-Jozsa algorithm with a single function query.
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I. INTRODUCTION

Quantum computation and quantum communication rely

on excellent control of the underlying quantum system.1 Rea-

sonable control has been achieved with a variety of quantum

systems with superconducting qubits emerging as one of the

most promising candidates.2 Recent experiments using su-

perconducting architectures include demonstrations of quan-

tum algorithms using two qubits3 and the entanglement of

three qubits.4,5 A key element in these experiments is a two-

qubit entangling gate, such as the �iSWAP �Ref. 4� and the

controlled-Z �CZ� gates.3,5 Because the CZ gate is simple to

implement, has high fidelity and can readily generate

controlled-NOT �CNOT� logic,6 it likely will be an important

component in more complex algorithms such as quantum

error correction. At present, however, the CZ gate function-

ality has only been directly tested for a subset of the possible

input states.

In this paper, we demonstrate the operation of a CZ gate

in superconducting phase qubits and fully characterize this

gate as well as a CNOT gate using quantum process tomog-

raphy �QPT�. We additionally use the CZ gate to perform the

Deutsch-Jozsa algorithm,3 here with a single-shot evaluation

of the function. The use of QPT provides a more complete

gate evaluation than, for example, measuring the truth table

for the corresponding CNOT gate,7,8 as it verifies that the

gate will properly transform any possible input state. QPT

for two- or three-qubit gates has been reported in NMR,9

optics,10–12 and in ion traps.13,14 In solid-state systems, QPT

has been implemented for the �iSWAP gate with the phase

qubit.15

II. EXPERIMENT

The electrical circuit for the device is shown in Fig. 1,

comprising two superconducting phase qubits A and B,

coupled by a fixed capacitance Cc. Each qubit is a supercon-

ducting loop interrupted by a capacitively shunted Josephson

junction. When biased close to the critical current, the junc-

tion, and its parallel loop inductance produce a nonlinear

potential as a function of the phase difference across the

junction. Combined with the kinetic energy originating from

the shunting capacitance, unequally spaced quantized energy
levels appear in the cubic potential. The two lowest levels
are used for the qubit states �0� and �1� with a transition
frequency f10

A �f10
B � that can be controlled by an external mag-

netic flux �ex
A ��ex

B � applied to the loop. The third energy
level �2� is used as an auxiliary state to realize the CZ gate,
as discussed below.

The operation of a similar device has been reported
previously.15,16 The state of each qubit is controlled by ap-
plying a rectangular-shaped current pulse �Z pulse� or a
Gaussian-shaped microwave pulse �X, Y pulse� to its bias
coil. For an X or Y pulse, we simultaneously apply the de-
rivative of the pulse to the quadrature �90° phase shifted�
drive to reduce both unwanted excitation of the �2� state and
phase error due to ac Stark effect;17 the derivative scaling
factor is determined from the nonlinearity of each qubit.18

This procedure enables us to use a Gaussian pulse with a full
width at half maximum of 10 ns while maintaining accurate
qubit control19 in spite of a rather weak qubit nonlinearity
��100 MHz�. Each qubit state is read out individually in a
single-shot manner by injecting a large magnitude Z pulse
and then measuring the qubit flux with a superconducting
quantum interference device �SQUID�.

The device was fabricated using a photolithographic pro-

cess with Al films, AlOx tunnel junctions, and a-Si:H dielec-

tric for the shunt capacitors and wiring crossovers, all on a

sapphire substrate. The device was mounted in a supercon-

ducting aluminum sample holder and cooled in a dilution

refrigerator to �25 mK.
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FIG. 1. Circuit diagram for the experimental device, showing

two flux-biased phase qubits coupled by a fixed capacitance Cc. A

bias coil and readout SQUID are coupled to each qubit. The design

parameters of the circuit are I0
A= I0

B=2 �A, CA=CB=1 pF,

LA=LB=720 pH, and Cc=2 fF.
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In the present experiment, the two qubits were biased so

that f10
A =7.16 GHz and f10

B =7.36 GHz when no Z pulse was

applied. The relaxation times �T1� were measured to be 510

ns and 500 ns for qubit A and B, respectively. The dephasing

times determined from a Ramsey interference experiment

�T2
Ramsey�, which showed Gaussian decay proportional to

exp�−�t /T2
Ramsey�2� due to 1 / f flux noise,20 were 200 ns and

230 ns, respectively.

III. RESULTS AND DISCUSSION

A. Spectroscopy

Figure 2 shows the high-power spectroscopy for qubit B,

which is used to guide formation of the CZ gate. We plot the

escape probability of qubit B in gray scale as a function of

the amplitude �i of a 2 �s long Z pulse �horizontal axis�
and the frequency of a microwave X pulse �vertical axis� of

the same length. Both pulses were applied simultaneously to

qubit B, followed by the Z pulse for the readout. In this

way, we can probe the change in the resonance frequency

f10
B as a function of detuning �i. In addition to the main

resonance line corresponding to f10
B , somewhat broadened

because of the large amplitude of the microwave pulse

���ex
B �10��0�, a sharper line is observed on the low-

frequency side of the main resonance; this corresponds

to the two-photon excitation from the �0� to the �2� state.21

The vertical distance between the main and two-photon

lines is 1/2 the qubit nonlinearity �f = f10− f21, yielding

�f =114 MHz for qubit A �data not shown� and 87 MHz for

qubit B.

We observe an avoided-level crossing in the main reso-

nance at �i	0.13 when the two-qubit frequencies overlap

f10
B = f10

A . Here, the degeneracy of the �AB�= �10� and �01�
states produces a splitting with size 14.2�0.2 MHz, deter-

mined from a fit to the data, consistent with the designed

capacitance Cc. The avoided crossing for the two-photon line

at �i	0.066 gives a splitting of 9.7�0.2 MHz, about �2 /2

times as large as the main resonance, as expected from a �11�
and �02� interaction. The slope of the resonance between the

two crossings is 1/2 that of f10
B , as expected for the �11� state.

Our interpretation of the spectroscopy is validated by a

numerical calculation. Using three states for each qubit and

the qubit design parameters, we calculate from the resulting

9�9 Hamiltonian22,23 the energies for the coupled eigen-

states. The energy bands, normalized to f01
A , are plotted ver-

sus the flux bias for qubit B in the upper inset of Fig. 2. Here,

a band is plotted only when its transition matrix element

from the ground state is above a threshold, to simulate the

appearance of the transition in the spectroscopic measure-

ment. The details of the calculation are described in Appen-

dix A. The �red� thick lines correspond to the �01� and �10�
states, whereas the �blue� thin lines represent half of the ex-

citation energy of the �11� and �02� states. The overall struc-

ture agrees well with the experimental data.

B. Bring up of controlled-Z gate

As proposed theoretically by Strauch et al.,24 the avoided

crossing due to the degeneracy of the �11� and �02� states can

be used to construct a CZ gate, whose action produces no

change in state except for �11�→−�11�. By applying a

nonadiabatic Z pulse, the �11� and �02� states become

degenerate �see lower inset of Fig. 2�. Initially in the �11�
state, the system evolves as an iSWAP interaction, giving

���t��=cos���t /���11�+ i sin���t /���02�, where 2� is the

splitting energy of the avoided crossing and �t the duration

of the Z pulse. After twice the iSWAP time �t=h /2�, the

system returns to the initial state �11� but with a minus sign.

If the system starts in �00�, �01�, or �10�, the state does not

change since it is off-resonance with both avoided-level
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FIG. 2. �Color online� High-power spectroscopy for qubit B.

The escape probability �gray scale� is plotted versus microwave

frequency and the Z-pulse amplitude �i. The single-photon

�0�→ �1� and two-photon �0�→ �2� transitions are visible, along with

two avoided-level crossings. The upper inset shows the calculated

states and eigenenergies with the thick �thin� lines representing

single �two� photon excitations. The lower inset illustrates the

Z-pulse amplitude i0 for the CZ=−�SWAP�2 operation.
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FIG. 3. �Color online� �a� Operation sequence for �b�, the state

evolution between �11� and �02� states. �b� Plot of �2� state prob-

ability of qubit B versus Z-pulse time �t and Z-pulse amplitude �i.

The dashed lines correspond to the optimal setting for the CZ gate.

�c� Operation sequence for �d�, demonstration of the CZ gate. �d�
Plot of �1� state probability of qubit B as a function of icmp

B �icmp
A is

fixed as 3�10−4�. The �red� solid and �blue� dashed curves are for

qubit A initialized to the �0� and �1� states, respectively. The vertical

dotted-dashed line indicates the value of icmp
B for the CZ gate.
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crossings. A similar scheme using an adiabatic Z pulse has

been used to successfully demonstrate a quantum algorithm3

and the same �nonadiabatic� scheme has recently been used

to create a three-qubit entangled state in transmon qubits.5

To experimentally determine the amplitude and length of

the required nonadiabatic Z pulse, we directly measured the

coherent oscillation between the �11� and �02� states. This

�iSWAP�2 operation sequence is shown in Fig. 3�a�: we first

prepare the �11� state with a 	 pulse to both qubits and then

apply a Z pulse with amplitude �i and length �t to qubit B.

Here only qubit B is probed and we adjust the measurement

pulse amplitude so that the qubit is detected only when in the

�2� �or higher� state.25 In Fig. 3�b�, we plot the tunneling

probability P�2� as a function of �t and �i, which shows the

expected chevron pattern. The minimum oscillation fre-

quency occurs at a value of �i that agrees with i0 determined

in Fig. 2�a�. The oscillation period t0=51.8 ns is also

consistent with the splitting size of the avoided crossing. At

the intersection of these two dashed lines, the time evolution

of the state produces a minus sign, as required for the

CZ gate. We stress that no discernable increase in P�2� is

observed �
1%� at this operation point ��t ,�i�= �t0 , i0�,
confirming that we return to the �11� state after the CZ

operation.

Because the qubits themselves also accumulate phase �
during the CZ pulse, the general unitary evolution from the

gate is given by

U =

1 0 0 0

0 ei�A 0 0

0 0 ei�B 0

0 0 0 − ei��A+�B�
� . �1�

By adding additional Z pulses to both qubits, we can com-

pensate these phases and even place the minus sign at any

diagonal position in the matrix.3 The compensation pulses

are shown in Fig. 3�c�, which consist of a fixed 10 ns pulse

of variable amplitude icmp after the CZ pulse. In Fig. 3�d�, we

plot the tunneling probability of qubit B as a function of icmp
B

for fixed icmp
A . The phase of qubit B is measured through a

Ramsey fringe experiment. The �red� solid and �blue� dashed

curves correspond to qubit A being in the �0� or �1� state.

They both show a sinusoidal dependence on icmp
B , but are

shifted by 	 from each other, confirming the correct opera-

tion of the CZ gate. A similar experiment was done for qubit

A �data not shown�.
The phases for the CZ gate are set by taking the values of

icmp that give maximum probability when the control qubit is

in the �0� state, as indicated by the vertical dashed-dotted line

in Fig. 3�d�. Controlled-NOT �CNOT� gates are constructed

by combining the CZ gate with single-qubit rotations

UCNOT= �I � Ry
	/2�CZ�I � Ry

−	/2�, where Ry
� represents the ro-

tation of a single-qubit state by an angle � about the y axis

and I is the identity operator.
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FIG. 4. �Color online�  matri-

ces of CZ and CNOT gates. �a�
Left panel: the real part of the ex-

perimentally obtained  matrix

�p� for the CZ gate with Fp

=0.70. Right panel: the real part

of the simulated  matrix for the

CZ gate with Fp=0.67. �b� Left

panel: the real part of p for the

CNOT gate with Fp=0.56. Right

panel: the real part of the simu-

lated  matrix for the CNOT gate

with Fp=0.52. The open boxes in

the figure represent the ideal 

matrix.
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C. Quantum process tomography

We evaluate the performance of these gates with QPT in

which we determine the  matrix with the elements defined

as6

E��� = �
m,n

16

Em�En
†mn. �2�

Here, E��� is the density matrix obtained by applying the

gate to � and Em’s are the operator bases formed by the

Kronecker product of Pauli operators I ,�x ,−i�y ,�z� for

each qubit. For QPT, we prepare 16 input states in total,

chosen from the set �0� , �1� , �0�+ �1� , �0�+ i�1�� for each qu-

bit. After preparing these input states, we determine the den-

sity matrix of the output state with quantum state

tomography16 �QST� in which we measure each qubit along

the six directions �x, �y, and �z of the Bloch sphere.26 For
each combination of QPT and QST pulses, we repeat the
sequence 1800 times to obtain the joint qubit probabilities
PAB= P00, P10, P01, and P11. After correcting for small mea-
surement errors,15 we reconstruct the 16�16 experimental
e matrix from the resulting 16 density matrices.6 We as-
sumed that input states are ideally prepared.27 With experi-
mental noise, the e matrix found in this way is not neces-
sarily physical, i.e., completely positive and trace preserving.
We thus use convex optimization to obtain the physical ma-
trix p that best approximates e, as used in Ref. 15. The
difference between e and p is small as shown in Appendix
B.

We plot the real part of p for the CZ and CNOT gates in
the left panel of Figs. 4�a� and 4�b�. The open boxes repre-
sent the ideal  matrix. The imaginary parts of p have very
small magnitude �
0.04 for CZ and 
0.03 for CNOT� and
are shown in Appendix C. For both gates, we observe ele-
ments with large amplitudes at the proper positions. More
quantitative evaluation is obtained by calculating the process

fidelity Fp, defined by Fp=Tr�ip�, where i represents an

ideal  matrix. We obtain Fp=0.70 for the experimentally

measured CZ gate and 0.56 for the CNOT gate. For CZ gates

with a minus sign at other positions on the diagonal, the

measured Fp’s are 0.68, 0.69, and 0.70 for CZ00, CZ01, and

CZ10 �see Appendix C�.
To understand the loss of process fidelity, we performed

numerical simulations. We solved the standard master

equation, �̇=−�i /���H ,��+L���, where H is a 9�9

Hamiltonian for capacitively coupled phase qubits

under rotating wave approximation and L���
=�i=A,B� j=1,2L j

i�L j
i†−

1

2
L j

i†
L j

i�−
1

2
�L j

i†
L j

i. Here, for example,

L1
A=aA /�T1

A and L2
A=aA

† aA
�2 /T2

A describe the relaxation

and dephasing for qubit A, respectively.28 The entire se-

quence, including the QPT and QST pulses, was simulated to

construct sim. Experimental Ramsey interference shows

Gaussian decay, which is not reproduced by the above master

equation. Thus, in order to approximate this situation, we

used an effective T2 that depends on the length of the control

sequence for a particular experiment tseq. In particular, we

used T2=T2
Ramsey

2

/ tseq in the simulation in order for both the

Gaussian decay and exponential decay to give the same de-

cay factor at tseq. The real part of sim is shown in Fig. 4. The

actual tseq is 101.8 ns in QPT for CZ gates and 141.8 ns for

CNOT gate. The simulation reproduces reasonably well the

reduction in the expected elements and the appearance of

TABLE I. Summary of performance for Deutsch-Jozsa algorithm. Deutsch-Jozsa functions are defined as

f0�x�=0, f1�x�=1, f2�x�=x, and f3�x�=1−x.

Element

Deutsch-Jozsa function

Constant Balanced

f0 f1 f2 f3

�00���00�+ �01���01� Ideal 0 0 1 1

Measured 0.29 0.28 0.76 0.74

�10���10�+ �11���11� Ideal 1 1 0 0

Measured 0.71 0.72 0.24 0.26

FIG. 5. �Color online� �a� Pulse sequence for the Deutsch-Jozsa

algorithm. ��b�–�d�� Real part of the density matrix of the final state

for four Deutsch-Jozsa functions. Open boxes represent the ideal

density matrix.
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small unwanted elements. These imperfections are removed

as we increase the single-qubit coherence time in the simu-

lation, which suggests that loss of Fp in our system is mostly

dominated by single-qubit decoherence.29 We note that it is

possible to obtain more information on the decoherence

mechanisms by analyzing the magnitude of particular ele-

ments in the  matrix.30 The simulated  matrix of all CZ

and CNOT gates including the imaginary parts are shown in

Appendix D.

D. Deutsch-Jozsa algorithm

By using these conditional gates, we can perform the

Deutsch-Jozsa algorithm6 using the pulse sequence described

in Ref. 3. Figure 5�a� shows the pulse sequence for the

Deutsch-Jozsa algorithm. The four different two-qubit gates

Ui correspond to the four Deutsch-Jozsa functions, which we

want to determine by a single-quantum evaluation of the

function. They are given by

U0 = I � I ,

U1 = I � Rx
	,

U2 = �I � Ry
	/2

Rx
	�CZ00�I � Ry

	/2� ,

U3 = �I � Ry
−	/2

Rx
	�CZ11�I � Ry

−	/2� . �3�

The sequence is same as that used in Ref. 3 except that Ry
	/2

pulse was not applied to qubit B before the tomography. This

makes the final state a superposition state. Also, in order to

shorten the total sequence time, the last Ry
	/2 on qubit A was

applied before the Ui part finishes. The real part of the final

density matrices are plotted in Figs. 5�b�–5�e�. The experi-

mental probability to obtain the correct answer is summa-

rized in Table I. Because our phase qubit has single-shot

readout, we can obtain the correct answer to a single function

query more than 70% of the time, greater than the 50% prob-

ability for a classical query and guess. We stress that no

calibration for the measurement error is applied here.

IV. CONCLUSIONS

In conclusion, we have demonstrated CZ and CNOT gates

in capacitively coupled phase qubits using the higher energy

�2� state. Quantum process tomography measures a  matrix

that is in good accord with predictions, which is a definitive

test of proper gate operation for any input state.
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APPENDIX A: CALCULATION OF THE ENERGY BANDS

AND TRANSITION MATRIX ELEMENTS

We calculated the energy band of the capacitively coupled

flux-biased phase qubits by diagonalizing the following 9

�9 Hamiltonian:22,23

H 	 

0

hf10
�A�

hf10
�A� + hf21

�A�� � I2 + I1

� 

0

hf10
�B�

hf10
�B� + hf21

�B�� − g

0 − 1 0

1 0 − �2

0 �2 0
�

� 

0 − 1 0

1 0 − �2

0 �2 0
� , �A1�

where f i,j
�A��f i,j

�B�� is the flux-dependent transition frequency

between ith and jth state of the qubit A �B� and g is the

coupling energy between the qubits. The last term in the

Hamiltonian is based on �y�y-type coupling of the two qu-

bits. To calculate the transition matrix from the ground state

�g� to the excited state �e� in the spectroscopy experiment, we

calculated the transition matrix element of ��e�a†+a�g��2 for

one-photon excitation and ��i
�e�a†+a�i��i�a†+a�g�

Ee−Ei−hfd
�2 for two-photon

excitation,31 where a�a†� is an annihilation �creation� opera-

tor for the harmonic oscillator, Ei is the energy gap of the

state �i� from the ground state, and fd is the frequency of the

�-wave drive, which is set to be Ee /2h in the calculation.

APPENDIX B: DIFFERENCE BETWEEN �p AND �e

We checked the difference between e �the experimental

 matrix� and p �the physical  matrix� by histogramming

the differences in the peak height �=e−p of each of the

256 matrix elements in the real part.10 We fit it by Gaussian

a exp�−�2
/�2� as shown in Fig. 6. The obtained � are

0.0020 for CP11 and 0.0017 for CNOT gate, which implies

e and p are close.
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FIG. 6. �Color online� Histogram of the differences in the peak

height of each of the 256 matrix elements in the real part of 

matrix. Data is for �a� CZ and �b� CNOT. The solid curves are a

Gaussian fit to the data.

QUANTUM PROCESS TOMOGRAPHY OF TWO-QUBIT… PHYSICAL REVIEW B 82, 184515 �2010�

184515-5



FIG. 7. �Color online� p of �a�
CZ00, �b� CZ01, �c� CZ10, �d� CZ

=CZ11, and �e� CNOT. Process fi-

delity Fp are 0.68, 0.69, 0.70,

0.70, and 0.56, respectively.
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FIG. 8. �Color online� Simu-

lated  matrix of �a� CZ00, �b�
CZ01, �c� CZ10, �d� CZ, and �e�
CNOT. Process fidelity Fp are

0.67, 0.67, 0.66, 0.67, and 0.52,

respectively.
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APPENDIX C: � MATRIX FOR ALL GATES

In Fig. 7, the physical  matrix p is plotted for all the CZ

and CNOT gates.

APPENDIX D: SIMULATED � MATRIX FOR ALL GATES

In Fig. 8, the simulated  matrix is plotted for all CZ and

CNOT gates.
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