Quantum Processes, Systems, and Information

A new and exciting approach to the basics of quantum theory, this undergraduate textbook contains extensive discussions of conceptual puzzles and over 800 exercises and problems.

Beginning with three elementary "qubit" systems, the book develops the formalism of quantum theory, addresses questions of measurement and distinguishability, and explores the dynamics of quantum systems. In addition to the standard topics covered in other textbooks, it also covers communication and measurement, quantum entanglement, entropy and thermodynamics, and quantum information processing.

This textbook gives a broad view of quantum theory by emphasizing dynamical evolution, and exploring conceptual and foundational issues. It focuses on contemporary topics, including measurement, time evolution, open systems, quantum entanglement, and the role of information.

Benjamin Schumacher is Professor of Physics at Kenyon College. He coined the term "qubit" and invented quantum data compression, among other contributions to quantum information theory.

Michael D. Westmoreland is Professor of Mathematics at Denison University. Trained as an algebraist, for many years he has researched nonstandard logics, models of computation, and quantum information theory.

The authors are long-time research collaborators and have made numerous joint contributions to quantum channel capacity theorems and other aspects of quantum information science.

Quantum Processes, Systems, and Information

BENJAMIN SCHUMACHER

Kenyon College

MICHAEL D. WESTMORELAND

Denison University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521875349

© B. Schumacher and M. Westmoreland 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Schumacher, Benjamin. Quantum processes, systems, and information / Benjamin Schumacher, Michael Westmoreland. p. cm. ISBN 978-0-521-87534-9 (Hardback) 1. Quantum theory–Textbooks. I. Westmoreland, Michael D. II. Title. QC174.12.S385 2010 530.12–dc22

2009039353

ISBN 978-0-521-87534-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface	page ix
1	Bits and quanta 1.1 Information and bits 1.2 Wave-particle duality Problems	1 1 5 12
2	Qubits2.1The photon in the interferometer2.2Spin 1/22.3Two-level atoms2.4Qubits and isomorphismProblems	15 15 28 36 43 45
3	States and observables3.1Hilbert space3.2Operators3.3Observables3.4Adjoints3.5Eigenvalues and eigenvectorsProblems	47 47 54 60 64 68 77
4	 Distinguishability and information 4.1 Quantum communication 4.2 Distinguishability 4.3 The projection rule and its limitations 4.4 Quantum cryptography 4.5 The uncertainty relation Problems 	79 79 83 85 88 92 96
5	Quantum dynamics5.1Unitary evolution5.2The Schrödinger equation5.3Quantum clock-making5.4Operators and symmetriesProblems	98 98 102 105 107 114

vi	Contents	
	6 Entanglement	117
	6.1 Composite systems	117
	6.2 Interaction and entanglement	121
	6.3 A 4π world	123
	6.4 Conditional states	126
	6.5 EPR	131
	6.6 Bell's theorem	133
	6.7 GHZ	136
	Problems	137
	7 Information and ebits	140
	7.1 Decoding and distinguishability	140
	7.2 The no-cloning theorem	142
	7.3 Ebits	146
	7.4 Using entanglement	148
	7.5 What is quantum information?	151
	Problems	155
	8 Density operators	158
	8.1 Beyond state vectors	158
	8.2 Matrix elements and eigenvalues	163
	8.3 Distinguishing mixed states	166
	8.4 The Bloch sphere	168
	8.5 Time evolution	171
	8.6 Uniform density operators	173
	8.7 The canonical ensemble	175
	Problems	178
	9 Open systems	182
	9.1 Open system dynamics	182
	9.2 Informationally isolated systems	185
	9.3 The Lindblad equation	188
	9.4 Heat and work	191
	9.5 Measurements on open systems	194
	9.6 Information and open systems	196
	Problems	198
1	10 A particle in space	202
	10.1 Continuous degrees of freedom	202
	10.2 Continuous observables	207
	10.3 Wave packets	213
	10.4 Reflection and recoil	216
	10.5 More dimensions of space	218
	10.6 How not to think about ψ	220
	Problems	221

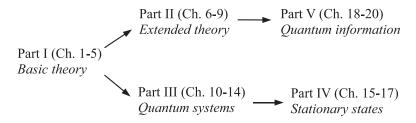
vii	Contents	
1	 Dynamics of a free particle 11.1 Dynamics in 1-D 11.2 Free particles in 1-D 11.3 Particle on a circle 11.4 Particle in a box 11.5 Quantum billiards Problems 	224 224 229 233 235 239 243
1:	 2 Spin and rotation 12.1 Spin-s systems 12.2 Orbital angular momentum 12.3 Rotation 12.4 Adding spins 12.5 Isospin Problems 	247 247 254 257 260 264 266
1:	 B Ladder systems 13.1 Raising and lowering operators 13.2 Oscillators 13.3 Coherent states 13.4 Thermal states of a ladder system Problems 	268 268 270 275 278 280
14	 Many particles 14.1 Two-particle wave functions 14.2 Center of mass and relative coordinates 14.3 Identical particles 14.4 Energy levels 14.5 Exchange effects 14.6 Occupation numbers Problems 	282 282 284 288 293 295 298 304
1!	 5 Stationary states in 1-D 15.1 Wave functions and potentials 15.2 Reflecting, scattering, and bound states 15.3 A potential step 15.4 Scattering from a square barrier 15.5 Bound states in a square well 15.6 The variational method 15.7 Parameters and scaling Problems 	306 306 311 315 318 322 326 329 332
10		335 335 338

viii	Contents	
	16.3 Hydrogen16.4 Some expectationsProblems	341 345 347
17	 7 Perturbation theory 17.1 Shifting the energy levels 17.2 Dealing with degeneracy 17.3 Perturbing the dynamics 17.4 Cross-sections Problems 	349 349 352 353 359 364
18	 3 Quantum information processing 18.1 Quantum circuits 18.2 Computers and algorithms 18.3 Nuclear spins 18.4 NMR in the real world 18.5 Pulse sequences Problems 	366 366 371 375 381 384 384
19	 Classical and quantum entropy 19.1 Classical entropy 19.2 Classical data compression 19.3 Quantum entropy 19.4 Quantum data compression 19.5 Entropy and thermodynamics 19.6 Bits and work Problems 	390 390 395 398 403 407 411 416
2(D Error correction 20.1 Undoing errors 20.2 Classical communication and error correction 20.3 Quantum communication and error correction 20.4 Error-correcting codes 20.5 Information and isolation Problems 	419 419 420 423 427 432 435
	Appendix AProbabilityAppendix BFourier factsAppendix CGaussian functionsAppendix DGeneralized evolutionIndex	437 444 451 453 463

Preface

The last two decades have seen the development of the new field of quantum information science, which analyzes how quantum systems may be used to store, transmit, and process information. This field encompasses a growing body of new insights into the basic properties of quantum systems and processes and sheds new light on the conceptual foundations of quantum theory. It has also inspired a great deal of contemporary research in optical, atomic, molecular, and solid state physics. Yet quantum information has so far had little impact on the way that quantum mechanics is taught.

Quantum Processes, Systems, and Information is designed to be both an undergraduate textbook on quantum mechanics and an exploration of the physical meaning and significance of information. We do not regard these two aims as incompatible. In fact, we believe that attention to both subjects can lead to a deeper understanding of each. Therefore, the essential "story" of this book is very different from that found in most existing undergraduate textbooks.


Roughly speaking, the book is organized into five parts:

- Part I (Chapters 1–5) presents the basic outline of quantum theory, including a development of the essential ideas for simple "qubit" systems, a more general mathematical treatment, basic theorems about information and uncertainty, and an introduction to quantum dynamics.
- Part II (Chapters 6–9) extends the theory in several ways, discussing quantum entanglement, ideas of quantum information, density operators for mixed states, and dynamics and measurement on open systems.
- Part III (Chapters 10–14) uses the basic theory to discuss several specific quantum systems, including particles moving in one or more dimensions, systems with orbital or intrinsic angular momentum, harmonic oscillators and related systems, and systems containing many particles.
- Part IV (Chapters 15–17) deals with the stationary states of particles moving in 1-D and 3-D potentials, including variational and perturbation methods.
- Part V (Chapters 18–20) further develops the ideas of quantum information, examining quantum information processing, NMR systems, the meaning of classical and quantum entropy, and the idea of error correction.

These chapters are followed by Appendices on probability (Appendix A), Fourier series and Fourier transforms (Appendix B), Gaussian functions (Appendix C) and generalized quantum evolution (Appendix D).

Part I is the basis for all further work in the text. The remaining parts follow two quasi-independent tracks:

Thus, this book could be used as a text for either an upper-track or a lower-track style of course.¹

We, however, strongly recommend including material from both tracks. This book is written from the conviction that a modern student of physics needs a broader set of concepts than conventional quantum mechanics textbooks now provide. Unitary time evolution, quantum entanglement, density operator methods, open systems, thermodynamics, concepts of communication, and information processing – all of these are at least as essential to the meaning of quantum theory as is solving the time-independent Schrödinger equation.

As we wrote this book, we had the benefit of useful and inspiring conversations with a great many colleagues and friends. Among these we wish particularly to express our gratitude to Charles Bennett, Herb Bernstein, Carl Caves, Chris Fuchs, Lucien Hardy, David Mermin, Michael Nielsen, and Bill Wootters. In a similar vein, we would also like to thank the other members of the (fondly remembered) Central Ohio Quantum Conspiracy: Michael Nathanson, Kat Christandl Gillen, and Lee Kennard. We have also received valuable input on the book from Matthew Neal and Ron Winters of Denison University and Ian Durham of St. Anselm College.

An early version of this book was used as an experimental textbook for a quantum mechanics course at Kenyon College, and the students in that course deserve their own thanks: Andrew Berger, Stephanie Hemmingson, John Hungerford, Lee Kennard, Joey Konieczny, Jeff Lanz, Max Lavrentovich, David Lenkner, Nikhil Nagendra, Alex Rantz, David Slochower, Jeremy Spater, Will Stanton, Adam Tassile, Chris Yorlano, and Matt Zaremsky.

Our faculty colleagues at both Kenyon College and Denison University have been wonderfully supportive throughout this project. One of us (MDW) is grateful to acknowledge a Robert C. Good Faculty Fellowship from Denison University. We also thank our editor at Cambridge University Press, Simon Capelin, for providing the initial impetus and for considerable patience and encouragement throughout.

¹ There are a few minor dependencies not indicated in this chart, but these can be easily accommodated in practice. The general discussion of composite systems in Section 6.1 is a useful preparation for work on many-particle systems in Chapter 14. The analysis of thermal states of a ladder system (Section 13.4) depends on the density operator formalism, but may be omitted if Chapter 8 has not been covered.

xi Preface

We are more grateful than we can readily express for the continuing love and support of our wives, Carol Schumacher and Bonnie Westmoreland. And finally, a word to our children, Barry, Patrick and Carolyn Westmoreland, and Sarah and Glynis Schumacher: This is what we have been so busy doing for the last few years. We hope you like it, because we are dedicating it to you.

> Benjamin Schumacher Department of Physics Kenyon College

Michael D. Westmoreland Department of Mathematics and Computer Science Denison University