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We study the propagation and storage of a quantum field using ultranarrow coherent population oscillations

(CPOs) in a �-type atomic medium. The predictions for classical fields are checked experimentally in a vapor at

room temperature. We derive the evolution of its squeezing spectrum in the presence of a large classical pump

field which enables CPOs to exist. We show that the spontaneous emission of the residual population pumped

into the excited state progressively destroys the quantum noise properties of the quantum field along propagation.

The output quantum field therefore tends to be a coherent state, discarding the possibility to store quantum states

of light with CPO.

DOI: 10.1103/PhysRevA.100.013820

I. INTRODUCTION

One of the prerequisites for implementing quantum infor-

mation processing is the availability of quantum memories,

i.e., quantum devices able to faithfully store quantum states

and release them on demand with high fidelity [1]. Since

photons appear as natural information carriers, much effort

has been devoted to the development of quantum memories

for light states during the last 20 years. The most com-

mon protocol exploits the strong dispersion which arises

together with the electromagnetically induced transparency

(EIT) phenomenon: A very narrow transmission resonance

can be obtained when two optical transitions couple two

ground states to the same excited state in a � system [2,3].

Using this two-photon resonance, light pulses can be stored

in the Raman coherence between both lower states of such

a � system in cold atoms [4] or atomic vapors [5,6] using

close to or far off optical resonance schemes, as well as in

ion Coulomb crystals [7] or rare-earth ions in matrices [8].

EIT-based storage in warm vapors was also demonstrated to

preserve single-photon [9] or squeezed [10] states of light.

Propagation under such EIT conditions can be described as

the interplay between a light field and the Raman coherence,

embodied by the dark-state polariton [11]. One drawback

of this storage protocol is the very high sensitivity of the

coherence, and thus of the dark-state polariton, to dephasing

effects induced by the environment, which quickly destroy

the memory. This motivated the development of long-lived

memories exploiting, for example, Zeeman spin orientation

coherences (�m = 1) in a gas cell, more robust than the

�m = 2 coherences usually used for EIT-based memories

[12] or optimizing dynamical decoupling schemes in rare-

earth doped crystals [13,14]. Other protocols were proposed

which use populations to extend the lifetime of photon-echo-

based quantum memories [15,16]. The quantum properties of

such storage schemes are nevertheless controversial because

of the semiclassical nature of the atomic populations.

Coherent population oscillations (CPOs) have been shown

to offer another way to efficiently store classical light pulses in

a � system [17–19]. Their phase preservation properties even

allowed one to store and retrieve the orbital angular momen-

tum of light [20]. The physics of the CPO phenomenon is very

different from EIT. It was first identified in a two-level system

excited close to optical resonance by two coherent light fields,

a strong one called the pump and a weaker one called the

probe [21]. When these fields are slightly detuned from each

other, intensity beats are induced. If this intensity modulation

is slow enough, i.e., if the beat frequency is smaller than the

excited-state decay rate, atomic populations then experience

a dynamical saturation and adiabatically follow the intensity

variations. This population difference modulation leads to

an amplification of the light modulation depth. This effect

can be seen as a transmission window being opened for the

probe beam within the absorption linewidth of the transition.

CPO resonances have been observed in various systems such

as bulk defects [22,23], quantum dots [24], fibers [25], and

vapors [20], with linewidths limited by the upper-level decay

rate: They are thus usually larger than EIT resonances be-

tween ground or metastable states, which do not experience

spontaneous emission. However, the CPO resonance can be-

come dramatically narrow in a � system, when two antiphase

CPO phenomena occur along the two legs and combine in an

effective so-called ultranarrow CPO between the two long-

lived ground states of the system [26]. As in the EIT case, it is

possible to model the propagation under such CPO conditions

as the interplay between a light field and the ground-state pop-

ulation imbalance [27] embodied by the so-called populariton.

As populations are not sensitive to dephasing effects contrary

to Raman coherences, the CPO-based storage of classical light

fields was demonstrated to be quite immune to perturbations

such as magnetic field inhomogeneities [18]. Nevertheless,

the question whether quantum properties can or cannot be

preserved in a CPO-based storage protocol has not yet been

addressed. The aim of the present paper is thus to investigate
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the noise properties of a quantum light field propagating under

such ultranarrow CPO conditions.

To answer this question, Sec. II presents the � system and

the excitation scheme, together with the experimental results

obtained in metastable helium for a weak classical probe

field. These observations are in excellent agreement with the

theory published in Ref. [27]. Section III extends the previ-

ous semiclassical theoretical treatment to quantized states of

probe field light, while the driving field remains classical. We

then derive the evolution of the probe field quantum noise

along propagation, with methods similar to the ones used in

Ref. [28]. This approach is then applied in Sec. IV to a first-

order derivation of the modifications of the field fluctuations

due to the interaction with the medium under ultranarrow CPO

conditions. In particular, we investigate the role of the small

population remaining in the excited state, which induces a

detrimental additive noise through spontaneous emission.

II. CLASSICAL BEHAVIOR

In this section, we first experimentally test the classical

model derived in Ref. [27]. A � system composed of two σ+

and σ− transitions is excited by an electric field propagating

along the z direction given by

E(z, t ) =
h̄

d
[�D(z, t )e|| + gE (z, t )e⊥]e−iω0 (t− z

c
) + H.c.,

(1)

where �D is the Rabi frequency of the monochromatic driving

pump field at frequency ω0 and E the dimensionless envelope

of the weaker field that we want to store. The two fields can

oscillate at two different optical frequencies, since E can be

time dependent in a frame rotating at ω0 (see Appendix A for

the details of the notations). The quantity g = d
√

ω0/2h̄ǫ0V

holds for the atom-light dipolar coupling strength, where d

is the transition dipole moment and V the field quantization

volume.

In such a system, the transmission of a classical input probe

field depends on its relative phase � with respect to the pump

field. If the probe spectrum is symmetric with respect to the

pump frequency ω0 and fits within the CPO linewidth, the

phase-sensitive transmission coefficients T�=0 and T�= π
2

are

given by [27]

Tπ
2

= exp

[

g2N

2Ŵc

∫ L

0

dz

(

2s(z)
γt

Ŵ0
+ 3s(z)

− 1

)

1

1 + 3s(z)

]

, (2a)

T0 = exp

[

−
g2N

2Ŵc

∫ L

0

dz

1 + 3s(z)

]

, (2b)

where N is the number of atoms interacting with the field, γt

the transit-induced decay and feeding rate of the lower-level

population, Ŵ0 the spontaneous emission decay rate of the

upper level, and Ŵ the optical coherence decay rate. The

saturation parameter of the transitions s(z) = �2
D(z)/ŴŴ0 is

z dependent, because of the absorption of the pump along

propagation [see Eq. (19) and Appendix B for more details].

Although T0 is the usual nonlinear absorption of a saturated

transition, Tπ
2

has a more complex shape, because of the

ultranarrow CPO contribution.
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FIG. 1. (a) Experimental setup. The laser is split by a polarizing

beam splitter (PBS) to obtain the orthogonally polarized pump (�D,

red) and probe (E , blue) fields. Their temporal and spectral shapes

are controlled using acousto-optic modulators (AOMs): The probe

spectrum (b) has two components symmetrically detuned by ±δ from

the coupling frequency. The relative phase � between the probe and

pump fields is scanned with a mirror mounted on a piezoelectric

actuator (PZT), and measured at the entrance of the cell. At the cell

output, a third PBS isolates the probe from the driving field before

detection. (c) Level structure. The 2 3S1 ↔ 2 3P1 transition excited by

linearly polarized light ends up in a closed � structure [18]. Ŵ0, Ŵ,

and γt are the decay rates of the excited-state population, the optical

coherences, and the lower-level populations, respectively.

To check this model, we measure the transmission of

a weak classical probe field under such ultranarrow CPO

conditions, using the setup described in Fig. 1(a). Since we

need the pump and probe fields to be coherent for the CPO

process to occur, they are both derived from the same 2-

MHz linewidth Eagleyard distributed feedback (DFB) laser.

They are separated by a polarizing beam splitter (PBS), and

two different acousto-optic modulators (AOMs) allow one to

independently control their amplitudes and frequencies. Here,

we investigate the situation depicted in Fig. 1(b) where the

probe spectrum consists of two tones, called the signal and

idler, respectively detuned by +δ and −δ with respect to the

pump field. The relative phase � between the probe and pump

fields is scanned owing to a mirror mounted on a piezoelectric

actuator (PZT) and placed in the path of the pump field.

A second PBS recombines the fields at the entrance of the

helium cell. A small part of the fields, exiting the other port

of the PBS, is detected to monitor �. After propagation in the

6-cm-long cell filled with 1 Torr of helium, the probe field is

isolated from the pump field by a third PBS before detection.

The cell is protected from stray magnetic fields by a μ-metal

shield, and a longitudinal magnetic field is applied to lift the

degeneracy between the Zeeman sublevels. Inside the cell, the

1/e2 waists of the drive and probe beams are 2 mm.

Figure 1(c) shows the excitation scheme of the 2 3S1 ↔
2 3P1 transition of metastable helium. The quantization axis

of the atomic levels is chosen along the propagation direction

of light. The excited and ground levels are composed of three

Zeeman sublevels. Since the transition m = 0 ↔ m = 0 is

forbidden when the levels have the same total momentum

013820-2
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FIG. 2. Measurement of a 100-μW probe field absorption spec-

trum under CPO conditions, in the presence of a 10-mW driving

field. Within the nearly 1-GHz Doppler-broadened absorption width

of the transition, three transmission resonances are visible. A small

longitudinal magnetic field shifts the EIT resonances ±2�z away

from the central CPO resonance. In our experimental conditions, the

spectrum of the signal is fully included within the shadowed region,

where no Raman coherence is excited.

J , the system ends up in a closed � scheme composed

of the m = ±1 ground states and the m = 0 excited state

[29]. One has experimentally Ŵ/2π ≃ 0.8 GHz, Ŵ0/2π =
1.6 MHz, and γt/2π ≃ 20 kHz.

The total field E can be decomposed in the circular basis

{e+, e−} using

E · e± =
E · e|| ± iE · e⊥√

2
, (3)

where e|| and e⊥ are the crossed linear polarization directions

of the pump and probe fields, respectively. The system thus

experiences balanced excitations along the two legs of the �

system: The m = −1 ↔ m = 0 (m = 1 ↔ m = 0) transition

is excited by a beat note due to the σ+ (σ−) components of

the probe and pump fields, so that CPOs occur between the

|−1〉 (|1〉) ground state and the |0〉 excited state. Depending

on the relative polarization angle and on the relative phase

� between the two fields, symmetric or antisymmetric com-

binations of CPOs between both legs of the system can be

excited. In particular, when the two fields are orthogonally

polarized, a phase difference � = π/2 modulo π excites the

antisymmetric mode, in which the two CPO phenomena are

in antiphase. The population then oscillates between the two

ground states of the system. This also leads to an ultranarrow

transparency window for the two-frequency probe, centered

on the pump field frequency (see Fig. 2). On the contrary,

when � = 0, only probe absorption remains.

For degenerate Zeeman ground states, the pump (probe)

field exciting the left leg of the � system and the probe (pump)

field along the right leg lead to a two-photon EIT resonance

when both light fields have the same frequency. This also cor-

responds to the situation where the CPO resonance condition

is fulfilled. In order to get rid of EIT two-photon resonance,

we apply a longitudinal magnetic field to the atoms. Then, the

0.1 1 10 100
0

1

2

Q (Θ=π/2)

P (Θ=0)

Theory

P
ro

b
e

tr
an

sm
is

si
o

n

Coupling field power (mW)

FIG. 3. Measured evolution of the probe field transmission vs

pump field power. Solid squares (open triangles): � = π/2 (� =
0 s). The input probe field contains two spectral components at

ν = ±2 kHz, with equal amplitudes. Solid line: Theory based on

Eqs. (2) taking into account the ∼20% residual absorption from the

2 3S1 ↔ 2 3P2 transition.

Zeeman shift 2�z between the m = ±1 ground-state sublevels

restrains Raman coherence from being excited, provided the

probe spectrum fits within a window of width smaller than

4�z − WEIT, where WEIT is the EIT linewidth. Figure 2 shows

an experimental transmission spectrum of a single-frequency

probe field in such conditions: In the center of the nearly

1-GHz Doppler broadened absorption window, one can see

a CPO resonance surrounded by two EIT resonances, shifted

because of the Zeeman shift. When the probe spectrum is fully

confined to the shadowed region of this plot, EIT is avoided

and only ultranarrow CPO occurs.

Figure 3 shows a comparison between the theoretical trans-

mission coefficients for the two field quadratures P and Q

obtained from Eqs. (2) with � = 0 and π/2, respectively, and

the experimental data. An excellent agreement is observed.

Below an input optical pump field power of ∼3 mW, ultranar-

row CPOs cannot be excited because the saturation induced

by the pump field is too weak. Above an input optical pump

power of ∼30 mW, the strong saturation of the atoms by

the pump makes the medium transparent for the probe field

and prevents the CPO resonance from appearing. In between

these two regimes, the CPO is efficiently excited and a strong

phase-sensitive behavior takes place.

Equations (2) and (19) allow us to extract fitting func-

tions (solid lines in Fig. 3), which are explicitly given in

Appendix B and which involve four fitting coefficients. The

first one corresponds to the optical depth of the medium

g2NL/2Ŵc, whose fitted value of 2.8(1) is consistent with

measurements obtained in previous works [18,30]. The sec-

ond parameter is γt/Ŵ0 = 9.6(9) × 10−2. It is one order of

magnitude larger than the value extracted from the width

of the CPO resonance of Fig. 2. We attribute this discrep-

ancy to the existence of residual absorption by the D2 line,

which reduces the CPO efficiency, leading to a somewhat

larger effective γt . This 20(2)% residual absorption by the

D2 transition is taken into account as another fitting param-

eter. It is a few percent larger than the residual absorption

013820-3
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measured independently [30], but consistent with a larger

saturation broadening. The last coefficient is given by

s/Popt = 4.7(5) × 10−1 W−1.

As shown in Ref. [27], we recall that an input probe

field spectrum symmetric with respect to the pump keeps

this symmetry along propagation. However, a monochromatic

input probe field spectrum detuned by +δ from the pump

results in the generation of another probe component de-

tuned by −δ along propagation. This spontaneous idler field

generation suggests that CPO is a multiphoton process, as

was initially derived by Boyd [21], coherently exchanging

pairs of photons from the bichromatic probe towards the

monochromatic pump, and conversely, depending on their

global relative phase. The experimental results of Fig. 3

confirm the phase sensitivity of the process. However, the

quantum nature of CPO is a subject of debate because of

the possible classical description of its main features, as only

populations are explicitly involved for the description of the

phenomenon. The calculation developed in Sec. III puts an

end to this uncertainty by dealing with the quantum features

of CPO, thus exploring a phenomenon at the frontier between

classical and quantum optics.

III. QUANTUM TREATMENT OF THE PROBE

PROPAGATION

Let us now study the evolution of the quantum properties

of the probe field along propagation in the presence of a

steady-state pump. The goal of this quantum treatment is to

investigate whether CPO-based protocols can be considered

for quantum applications. To this aim, we need to explicitly

consider the quantum fluctuations inherent in the atomic

dynamics, and their effects on light noise correlations. For the

sake of simplicity, we only consider the effect of the intrinsic

noise sources, i.e., spontaneous emission (so that Ŵ = Ŵ0/2

and γt = 0).

We develop the spectral complex Fourier amplitudes of the

probe field operator E (z, t ) and of its Hermitian conjugate

E (z, t )†,

E (z, ν) =
1

√
2π

∫ +∞

−∞
E (z, t )eiνt dt, (4)

E†(z, ν) =
1

√
2π

∫ +∞

−∞
E (z, t )†eiνt dt, (5)

where we voluntarily use the same notation for the time-

dependent probe field and its Fourier components to avoid

cumbersome notations. The two functions are clearly dis-

tinguished by their arguments. It is important to notice that

E (z, ν) and E†(z, ν) are not Hermitian conjugates of each

other.

The equations of evolution are derived in the Heisenberg

picture but, to avoid clumsy notations, the time dependence is

not explicitly written.

A. Evolution of the atoms

We consider an ensemble of atoms described by a �

scheme similar to the one of Fig. 1(c). Two ground states |−1〉
and |+1〉 are optically coupled to the same excited state |e〉,
with both transitions having the same frequency ω0. The atom

j is described by the set of operators σ
j

μν , defined in the frame

rotating at ω0 as

σ j
νν = |ν〉 j j〈ν| and σ

j

±1∓1 = |±1〉 j j〈∓1|, (6)

where ν ∈ {e,−1,+1} and, for the optical coherences,

σ
j

±1e = |±1〉 j j〈e|eiω0 (t−z/c). (7)

When a longitudinal magnetic field is applied along the

z axis and when the pump and probe fields propagate into the

medium, the Hamiltonian in the rotating-wave approximation

is H j = H
j

Z
+ H

j

d
, where

H
j

Z
= h̄�z

(

σ
j

11 − σ
j

−1−1

)

(8)

corresponds to the Zeeman interaction with the magnetic field,

shifting the ground states by ±�z, and

H
j

d
= h̄

(

σ
j

e1e− + σ
j

e−1e+
)

(�De|| + gEe⊥) + H.c. (9)

is the electric-dipole interaction with the optical fields.

Rather than considering individual atomic operators, we

assume that the medium is homogeneous and define contin-

uous z-dependent operators σμν (z) by averaging the density

operator components over a thin slice of medium T (z) con-

taining N atoms,

σμν (z, t ) =
1

N

∑

j∈T (z)

σ j
μν (t ).

This approximation is valid when the width of the slice is large

enough to contain a large number of atoms, but small enough

compared to the light wavelength, so that it is possible to

differentiate on z. The Heisenberg-Langevin equations, which

govern the dynamics of the atomic operators σμν , are then [31]

∂

∂t
σμν =

1

ih̄
[σμν, H] + R(σμν ) + Fμν, (10)

where H is the sum of the H j’s in the slice T (z), R is the

spontaneous emission dissipator, and Fμν are the Langevin

forces, i.e., quantum fluctuations originating from the cou-

pling of the atoms to the vacuum electromagnetic bath. These

time-dependent operators are spatially averaged using

Fμν (z, t ) =
1

N

∑

j∈T (z)

F j
μν (t ). (11)

The average of the Langevin forces is zero, and we assume

that their correlation timescale can be neglected with respect

to the timescales of the dynamics of the system, so that

〈Fμν (z1, t1)Fαβ (z2, t2)〉 =
δz2

z1

N
Dαβ

μνδ(t1 − t2), (12)

where δz2
z1

is a Kronecker symbol equal to zero for two differ-

ent spatial positions, and Dαβ
μν is a diffusion coefficient, given

by the Einstein generalized relations [31]

Dαβ
μν = 〈R(σμνσαβ ) − σμνR(σαβ ) − σαβR(σμν )〉. (13)

B. Evolution of the optical fields

The total optical field E propagates inside the medium

according to Maxwell’s equations in the slowly varying enve-

lope approximation, as derived in Ref. [32]. It then is possible

013820-4



QUANTUM PROPERTIES OF LIGHT PROPAGATING IN A … PHYSICAL REVIEW A 100, 013820 (2019)

to obtain separate equations for the pump and probe field

envelopes by projecting the equation for the total field on their

respective orthogonal polarization directions using Eqs. (1)

and (3), leading to

(c∂z + ∂t )�D(z, t ) = ig2N (σe1 + σe−1),

(c∂z + ∂t )E (z, t ) = gN (σe1 − σe−1). (14)

As shown in Ref. [27], the quadrature operators of the

complex amplitude E , defined by (see Appendix A for more

details)

P (z, t ) =
1

2
[E (z, t ) + E (z, t )†], (15a)

Q(z, t ) =
1

2i
[E (z, t ) − E (z, t )†], (15b)

are the relevant quantities to describe the probe field. If the

probe field is monochromatic at the frequency of the pump

ω0, then these quantities coincide with the usual definition of

the probe quadratures. More generally, these quantities match

the usual definition of the quadratures of the probe field as

soon as its spectrum is symmetric with respect to the pump

frequency. This is, for instance, the case in the situation of

a bichromatic probe field detuned by ±δ from the pump.

Then the transmission coefficients of Eqs. (2) are those of

Q and P , respectively, derived from the classical calculation

of Ref. [27]. However, in the situation of a monochromatic

probe field different from ω0 or any other nonsymmetric

spectrum with respect to the pump, P and Q are nontrivial

time-dependent mixtures of the probe field components.

C. Linearization

The preceding equations can be solved using a perturbative

approach at first order in quantum probe field. Any observable

O can then be expanded as follows,

O = 〈O〉0 + 〈O〉1 + δO, (16)

where 〈O〉0 stands for the mean value of O in the presence

of the classical pump field alone, 〈O〉1 is the first-order

perturbation due to the presence of the probe field, and δO

represents the linearized quantum fluctuation part of O.

Notice that we neglect the influence of the probe field

on the evolution of the pump field, and we assume that

the evolution of the quantum fluctuations of any operator is

governed by the dynamics generated by the pump field only.

IV. RESULTS

A. Zeroth order

The zeroth-order dynamics is obtained from the mean

values of Eqs. (10) and (14) in the steady-state regime in the

presence of the pump alone, reading

0 =
1

ih̄
[〈σμν〉0, 〈H〉0] + R(〈σμν〉0),

c∂z�D = ig2N (〈σe1〉0 + 〈σe−1〉0). (17)

The time dependence is skipped because the pump and the

system are assumed to be steady.

Assuming that the pump Rabi frequency is real, the density

matrix of the system is then given by

〈σ 〉0 =

⎛

⎜

⎜

⎜

⎝

s
1+3s

i�D√
2Ŵ0(1+3s)

i�D√
2Ŵ0 (1+3s)

− i�D√
2Ŵ0 (1+3s)

1+2s
2+6s

0

− i�D√
2Ŵ0 (1+3s)

0 1+2s
2+6s

⎞

⎟

⎟

⎟

⎠

. (18)

Such a density matrix merely describes the usual saturation

of the transition, leading to a nonzero amount of population

in the excited state. The absorption of the pump leads to a

z-dependent s parameter, which obeys the following equation,

∂zs = −
2g2N

cŴ0

s

1 + 3s
, (19)

where 2g2NL/cŴ0 is the optical depth of the medium in the

linear absorption regime.

B. First order: Expectation value

Equations (10) and (14) in the Fourier domain give the

following set of equations for the probe field expectation

value,

−iν〈σμν (z, ν)〉1 =
1

ih̄
([〈σμν〉1, 〈H〉0] + [〈σμν〉0, 〈H〉1])

+ R(〈σμν〉1),

(c∂z − iν)〈E (z, ν)〉 = gN (〈σe1〉1 + 〈σe−1〉1). (20)

When the probe field spectrum fits within the 4�z − WEIT

window centered on ω0, as shown in Fig. 2 (assuming ν ≪
�z ≪ Ŵ), the probe field complex amplitude propagates ac-

cording to

(c∂z − iν)〈E (z, ν)〉 =
g2N

Ŵ0(1 + 3s)

iν〈E〉 − �〈E†〉
� − iν

, (21)

where � = 2�2
D(z)/Ŵ0 = s(z)Ŵ0 is the saturation-broadened

CPO linewidth. Because of the pump absorption, the CPO

linewidth � decreases during propagation along z. Such an

equation can be rewritten using the Fourier components of the

quadratures P (z, ν) and Q(z, ν),

∂z〈Q〉(z, ν) =
(

�1(z, ν) + i
ν

c

)

〈Q(z, ν)〉, (22a)

∂z〈P (z, ν)〉 =
(

�2(z, ν) + i
ν

c

)

〈P (z, ν)〉, (22b)

with �1,2 given by

�1(z, ν) = +
g2N

cŴ0(1 + 3s)

� + iν

� − iν
, (23a)

�2(z, ν) = −
g2N

cŴ0(1 + 3s)
. (23b)

Equations (22) do not mix P (z, ν) and Q(z, ν), which are

thus eigenmodes for the propagation. Compared to Ref. [27],

the equations are now derived without adiabatic expansion,

and with spontaneous emission as the only noise source. The

classical CPO dispersion behavior can thus be obtained by an
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adiabatic expansion of �1,

�1 + i
ν

c
≃

g2N

cŴ0(1 + 3s)
+ iν

1 + g2N

�2
D (1+3s)

c

−
g2N

cŴ0(1 + 3s)

ν2

�2
. (24)

From Eqs. (22) and (23), we can see that CPOs generate

a phase-sensitive behavior as soon as the spectrum of the

probe fits within the CPO linewidth ν ≪ �: The first term

of Eq. (24) corresponds to the amplification, the second one

corresponds to the associated decrease in group velocity, and

the third term limits the bandwidth for which these effects

are efficient. In the limit of an ideal system (γt → 0 and

Ŵ = Ŵ0/2), the adiabatic part of the �i’s functions match with

the quantities derived classically in the integrals of Eqs. (2).

We now suppose that the probe spectrum is well within the

CPO linewidth �, with ν ≪ �. Then, integrating Eq. (22) and

using Eqs. (19) and (23), one can find the expectation values

of the quadratures after propagation,

〈Q(z, ν)〉 =
√

G(z)e
iνz
c 〈Q(0, ν)〉, (25a)

〈P (z, ν)〉 =
1

√
G(z)

e
i νz

c 〈P (0, ν)〉, (25b)

where 1/G(z) = s(z)/s(0) < 1 corresponds to the decrease

of pump intensity due to absorption. The phase-sensitive

transmission of the probe field is here visible, leading to an

increasing (decreasing) amplitude for the quadrature Q (P).

C. First order: Fluctuations

The linearized equations of evolution for the fluctuation of

the operators can be deduced from Eqs. (10) and (14) in the

Fourier domain,

−iν∂tδσμν (z, ν) =
1

ih̄
([δσμν, 〈H〉0] + [〈σμν〉0, δH])

+ R(δσμν ) + Fμν,

(c∂z − iν)δE (z, ν) = gN (δσe1 + δσe−1). (26)

These equations are valid at first order and describe the effect

of the pump saturation on the probe fluctuations. They neglect

any effect of the probe evolution itself on its own fluctuations.

The quadrature fluctuations are then given by

∂zδQ(z, ν) =
(

�1 + i
ν

c

)

δQ(z, ν) +
∑

μν

αμνFμν, (27a)

∂zδP (z, ν) =
(

�2 + i
ν

c

)

δP (z, ν) +
∑

μν

βμνFμν, (27b)

with

∑

μν

αμνFμν =
−gN

√
2cŴ0�

[ν(Fe−1 − Fe1 − F−1e + F1e)

+
√

2�D(F11 − F−1−1)], (28a)

∑

μν

βμνFμν =
+gN

√
2cŴ0

(Fe−1 − Fe1 + F−1e − F1e). (28b)

Three independent combinations of Langevin operators are

thus relevant: F� = F11 − F−1−1 and F± = Fe1 ± Fe−1. Using

Eqs. (22) and (27), it is possible to derive the quadratures after

propagation,

Q(z, ν) =
√

G(z)e
iνz
c Q(0, ν)

+
∑

μν

∫ z

0

dxe
∫ z

x (�1+i ν
c )dξαμνFμν, (29a)

P (z, ν) =
1

√
G(z)

e
i νz

c
P (0, ν)

+
∑

μν

∫ z

0

dxe
∫ z

x (�2+i ν
c )dξβμνFμν . (29b)

For each quadrature, the first right-hand side term is just the

propagation of the quantum operator with the corresponding

gain and accumulated phase, while the second term is the

noise accumulated all along the propagation. The quadra-

ture fluctuations after propagation can then be evaluated by

computing their squeezing spectra, defined as the Fourier

transform of the autocorrelation function. For a quadrature X ,

this spectrum is given by

SX (z, ν) ≡
4c

L

∫

dteiνt 〈X (z, t )X (z, 0)〉

=
4c

L

∫

dν ′〈X (z, ν)X (z, ν ′)〉, (30)

where the factor 4c/L is the vacuum shot-noise renormaliza-

tion factor (see Appendix A).

Applying Eq. (30) to P and Q in Eqs. (29) leads to

SP (z, ν) =
4c

L

∫

dν ′
(

e
∫ z

0
[�2(ν)+�2(ν ′ )]dξ 〈P (0, ν)P (0, ν ′)〉

+
∑

abcd

∫ z

0

∫ z

0

dxdx′e
∫ z

x
�2(ν)dξ+

∫ z

x′ �2(ν ′ )dξ

×βabβcd〈Fab(x, ν)Fcd (x′, ν ′)〉

)

, (31a)

SQ(z, ν) =
4c

L

∫

dν ′
(

e
∫ z

0
[�1(ν)+�1(ν ′ )]dξ 〈Q(0, ν)Q(0, ν ′)〉

+
∑

abcd

∫ z

0

∫ z

0

dxdx′e
∫ z

x
�1(ν)dξ+

∫ z

x′ �1(ν ′)dξ

×αabαcd〈Fab(x, ν)Fcd (x′, ν ′)〉

)

. (31b)

In both equations, the first term simply represents the

propagation of the input squeezing spectrum SX (0, ν). The

second one is related to the influence of the medium noise cor-

relations 〈Fμν (z1, t1)Fαβ (z2, t2)〉. The diffusion coefficients,

which can be obtained with the generalized Einstein rela-

tion [see Eq. (12)], are given in Table I. The z dependence

of the variances can then be deduced from the terms of

each quadrature squeezing spectrum, using Eqs. (12), (19),
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TABLE I. Diffusion coefficients associated with the correlations

of two Langevin operators [see Eq. (12)].

D . . . F�(z, ν )〉 . . . F+(z, ν )〉 . . . F−(z, ν )〉

〈F�(z, ν ) . . . Ŵ0
s

1+3s
0 0

〈F+(z, ν ) . . . 0 0 0

〈F−(z, ν ) . . . 0 0 Ŵ0

and (23),

SP(z, ν) =
1

G(z)
SP(0, ν) + 1 −

1

G(z)
+ 3s(z) ln G(z),

(32a)

SQ(z, ν) = G(z)SQ(0, ν) − 1 + G(z)

+
ν2

Ŵ2
0

3 ln G(z) − 1
s(0)

+ 1
s(z)

s(z)
. (32b)

These equations demonstrate that some noise is added,

whatever the input saturation and the spectrum of the probe

field. Indeed, the probe field quadratures couple with nonzero

noise correlations because the pump field makes the pop-

ulation of the system incoherently cycle from the ground

states to the upper state. The small residual population of the

excited state can then decay through spontaneous emission,

adding some noise to the probe field quadratures. Figure 4

FIG. 4. Evolution of the variances of the quadratures Q (solid

orange line) and P (dashed blue line) vs medium thickness, for an

input saturation level s(0) = 1 in the case of (a) a shot-noise-limited

coherent input state, (b) a 10-dB P-squeezed vacuum input state, and

(c) a 10-dB Q-squeezed vacuum input state. The gray dotted-dashed

horizontal line corresponds to the standard quantum limit.

shows how the noises of both quadratures evolve in the case

of a coherent input state or in the case of P-squeezed or

Q-squeezed vacuum input states. In all three cases, the Q-

component amplification leads to a noise increase. Moreover,

the absorption of the P component makes its noise tend to 1

in the thick medium limit s(z) → 0. A quantum state prop-

agating in a medium under CPO conditions thus cannot be

preserved and undergoes a nonunitary transformation, which

cannot be compensated.

The above calculations are derived through an adiabatic

expansion of Eqs. (32), and under the assumptions that spon-

taneous emission is the only source of noise and that the probe

field spectrum fits within the CPO linewidth. The introduction

of extra noise sources or the use of broader probe spectra

would further increase the noise. But, with the present model,

we demonstrate that spontaneous emission alone already for-

bids CPO from being used for quantum storage. Indeed, the

classical description of Ref. [27] evidences the fact that only

one quadrature can be stored. Such a classical result might

suggest for us to split the two quadratures and store them

independently, but this is not allowed by quantum mechanics:

The noise added by spontaneous emission is necessary to

avoid any violation of Heisenberg inequalities.

V. CONCLUSION

In this article, we have investigated the quantum properties

of a probe field propagating in an ultranarrow CPO configura-

tion in a � system. To this aim, we have treated the probe

field quantum mechanically, while keeping a semiclassical

approach for the stronger-coupling drive field. Moreover,

both the quantum average values and the fluctuations of all

quantum observables have been derived analytically at first

order in probe field Rabi frequency. We have demonstrated

that the small number of atoms that are promoted to the upper

level of the � system leads to spontaneous emission, which is

sufficient to destroy the quantum noise properties of the input

probe field. We have illustrated this feature by considering

several squeezed states of light incident on the medium. In

all cases, the variances of the quadratures at the output of

the medium exceed the standard quantum limit, showing that

squeezing is destroyed.

This conclusion contradicts the statement that phase-

sensitive amplification automatically generates nonclassical

states of light. The CPO phase sensitivity refers here to the

dependence on the relative phase between the probe and cou-

pling beams, which is different from the phase-dependent re-

trieval described in stimulated photon-echo protocols [33,34].

In our system, although the net gain depends on which quadra-

ture is detected, a feature that is reminiscent of phase-sensitive

amplifiers, the quadrature whose power decreases with prop-

agation is not “deamplified,” but genuinely absorbed.

Moreover, some years ago the investigation of quantum

noise properties under slow and fast light propagation [35]

showed that for an ideal gain medium the noise figure is

always less than two and can be set to 1, while a loss

medium arbitrarily increases the noise because of the random

loss of photons. We demonstrate here that in the case of

CPO, a quantum noise degradation always arises because of

spontaneous emission, even when the transmission is more
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than 1. Indeed, since the CPO phenomenon originates from

the saturation of absorption along the two legs of the �

system, it is unavoidably accompanied by a small population

in the upper level. Although our initial guess was that this

population is so small that it can be neglected for quantum

storage using ultranarrow CPOs, it appears that it is sufficient

to completely spoil the quantum properties of light. This

phenomenon should be kept in mind when using resonant

atomic systems to create squeezed light, for example, via

quasiresonant four-wave mixing. Although the detuning from

resonance might be thought to be large enough to make the

excited-level population negligible, one should pay particular

attention to the spontaneous emission induced by such small

excitation of the system.
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APPENDIX A: LINK BETWEEN ENVELOPE OPERATOR E

AND ANNIHILATION OPERATOR a

This Appendix gives some details about the operator E

used in Eq. (1). E is the dimensionless complex amplitude

of the propagating probe field Ep, written in a frame rotating

at ω0,

Ep(z, t ) =

√

h̄ω0

2ǫ0V
[E (z, t )e−iω0 (t− z

c
)e|| + H.c.]. (A1)

In the continuous limit (V → ∞), the relation between this

envelope operator and the operators acting on the electromag-

netic field is [36]

E (z, t ) = + i

√

L

2cπ

∫ +∞

−∞
a(ω)e−i(ω−ω0 )(t−z/c)dω,

(A2)

E (z, t )† = − i

√

L

2cπ

∫ +∞

−∞
a†(ω)e+i(ω−ω0 )(t−z/c)dω,

where V = L3 is the quantization volume, and the com-

mutation relation for the electromagnetic field operators is

[a(ω1), a†(ω2)] = δ(ω1 − ω2). E and E† are defined in a

frame rotating at ω0, as superpositions of the annihilation

and creation operators a and a†, respectively. Their spectral

components are given by

E (z, ν) = +i

√

L

c
eiνz/ca(ω0 + ν),

E†(z, ν) = −i

√

L

c
eiνz/ca†(ω0 − ν). (A3)

It should be emphasized that E and E† are not Hermitian

conjugates of one another. Their commutation rules can be

deduced from the field operators a and a†,

[E (z, ν), E†(z, ν ′)] =
L

c
δ(ν + ν ′). (A4)

The quadratures P and Q of E can then be defined in the

Fourier domain by

P (z, ν) =
1

2
[E (z, ν) + E†(z, ν)]

= i

√

L

4c
eiνz/c[a(ω0 + ν) − a†(ω0 − ν)],

Q(z, ν) =
1

2i
[E (z, ν) − E†(z, ν)]

= i

√

L

4c
eiνz/c[a(ω0 + ν) + a†(ω0 − ν)]. (A5)

P and Q can thus have a complex amplitude.

Using the commutation relation (A4), it is possible to

compute the squeezing spectrum for vacuum,

∫

dν ′〈P (z, ν)P (z, ν ′)〉

=
1

4

∫

dν ′〈E†(z, ν)E (z, ν ′) + E (z, ν)E†(z, ν ′)〉

=
(

L

4c
+

1

2

∫

dν ′〈E†(z, ν)E (z, ν ′)〉
)

=
L

4c
,

so that the Eq. (30) leads to SX (ω) = 1.

APPENDIX B: TRANSMISSION COEFFICIENT

DEFINITIONS

1. Transmission in Eqs. (2)

The transmission coefficients T�=0, π
2

are considered after

propagation in the whole medium. They are thus related to the

4 × 4 transfer matrix per unit length T (z) given in Eq. (10) of

Ref. [27] by

T�=0 = exp

[∫ L

0

dz T44(z)

]

, (B1)

T�= π
2

= exp

[∫ L

0

dz T33(z)

]

. (B2)

Following Refs. [29,37], the Doppler broadening is taken into

account by replacing the optical coherence decay rate Ŵ by

the Doppler broadening width.

2. Fitting functions of Fig. 3

Equations (2) and (19) allow one to extract analytical

expressions for the fitting functions of Fig. 3. From Eq. (19)

one can obtain

ln

(

s(L)

s(0)

)

+ 3α

(

s(L)

s(0)
− 1

)

Popt = −βL, (B3)
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where α = s/Popt and β = 2g2N/Ŵ0. This equation can be

rewritten

u
s(L)

s(0)
e

u
s(L)
s(0) = eu−βLu, (B4)

with u = 3αPopt. Using the branch 0 of the semianalytical

Lambert function W , it is then possible to obtain s(L),

s(L) = s(0)
W (eu−βLu)

u
. (B5)

The integration of Eqs. (2) in terms of s(L)/s(0) then gives

the following fitting functions,

T�=0 =
W (eu−βLu)

u
δ, (B6)

T�= π
2

=

(

u
3

+ γ

W (eu−βLu)

3
+ γ

)2
W (eu−βLu)

u
δ, (B7)

where u (and thus α), β, γt/Ŵ0 are fitting parameters. Another

parameter δ was added to take into account the residual

absorption by the far-detuned D2 transition.
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