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Abstract

Quantum information processing is at the crossroads of physics, mathematics
and computer science. It is concerned with that we can and cannot do with quan-
tum information that goes beyond the abilities of classical information processing
devices. Communication complexity is an area of classical computer science that
aims at quantifying the amount of communication necessary to solve distributed
computational problems. Quantum communication complexity uses quantum me-
chanics to reduce the amount of communication that would be classically required.

Pseudo-telepathy is a surprising application of quantum information
processing to communication complexity. Thanks to entanglement, perhaps the
most nonclassical manifestation of quantum mechanics, two or more quantum
players can accomplish a distributed task with no need for communication what-
soever, which would be an impossible feat for classical players.

After a detailed overview of the principle and purpose of pseudo-telepathy, we
present a survey of recent and no-so-recent work on the subject. In particular,
we describe and analyse all the pseudo-telepathy games currently known to the
authors.
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1 Introduction

1.1 Quantum Nonlocality

Albert Einstein was convinced that the physical world is local and realistic. By local, he
meant that no action performed at some location A could have an effect at some other
remote location B in a time faster than that required by light to travel from A to B.
In particular, instantaneous action at a distance would be impossible. By realistic,
he meant that measurements could only reveal “elements of reality” that were already
present in the system being measured. He attributed Heisenberg’s uncertainty relations
to the fact that any measurement of a particle’s position, no matter how subtle, would
disturb its momentum, and vice versa, and therefore one could never know both position
and momentum simultaneously with arbitrary precision.

But Niels Bohr said no. In his interpretation of quantum mechanics, Heisenberg’s
uncertainty relations are unavoidable because it is impossible for a particle to have both
its position and momentum simultaneously defined with arbitrary precision. It is the
act of measuring one or the other that makes it come to existence. How could you
disturb that which does not even exist in the first place? You can’t deny Einstein’s
realism more strongly than this!

In an attempt to “prove” his point, Einstein wrote a famous paper in 1935 with Boris
Podolsky and Nathan Rosen [1]. In that paper, they introduced the notion of quantum
entanglement, according to which it would be possible in some cases to determine the
position or the momentum of a particle without in any way interacting with it. Based
on the locality assumption, they concluded that both position and momentum had to
be simultaneously well-defined for that particle, contradicting Bohr’s view.

In a curious turn of history, John Bell proved three decades later that the entan-
glement phenomenon predicted by Einstein, Podolsky and Rosen entails statistics that
would be impossible to explain by any local realistic theory whatsoever [2]. In other
words, Einstein’s argument had backfired, with entanglement becoming the most con-
vincing argument in favour of Bohr’s view! Despite appearances, quantum mechanics
does not really contradict the locality assumption of Einstein: It is still the case that no
action performed at A can have an instantaneous observable effect at B. But it certainly
does contradict realism.

It remained to perform actual experiments, which was done in the 1980s by Alain
Aspect et al, and sure enough the predictions of quantum mechanics come true [3, 4, 5].
Subsequent experiments were conclusively conducted by Nicolas Gisin and collabora-
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tors over more than 10 kilometres of distance between points A and B [6], and even in
relativistic settings in which both detectors, each in its own inertial reference frame,
are first to do the measurement [7]! To get a convincing experimental demonstration
that the physical world is not local realistic, we must make a large number of careful
experiments and collect significant statistical evidence that such data would be over-
whelmingly unlikely in a classical local realistic world. Moreover, the apparatus must
be sufficiently accurate to rule out a variety of loopholes that would make a classical
“explanation” possible again—more on this issue in Sections 1.3 and 1.4.

Despite David Mermin’s heroic effort at explaining Bell’s theorem [8], it is not so
easy to convey the significance of these experiments to a non-scientist because nontrivial
probabilistic arguments are involved. It would be much nicer to exhibit an observable
behaviour that is obviously impossible in any classical world so dear to Einstein 1.
A significant step in the right direction was taken by Daniel Greenberger, Michael
Horne and Anton Zeilinger [9], and later by Lucien Hardy [10], when they introduced
quantum phenomena that can be shown to be classically impossible without resorting
to probabilities: A classical contradiction results from what is and what is not possible
in the observed behaviour, not from the specific probabilities of various events. These
phenomena have been called by such names as “Bell’s theorem without inequalities”.
It is our belief that pseudo-telepathy—which is the topic of this survey—takes another
step in this direction, even though the Greenberger-Horne-Zeilinger conundrum (but
not Hardy’s) can be interpreted as an early instance of pseudo-telepathy.

It is important to mention a common misconception in reasoning about experimental
realizations of Bell’s theorem without inequalities. Too often, we read that they allow to
rule out local realism in a single run: “The quantum nonlocality can thus, in principle,
be manifest in a single run of a certain measurement” [11]. The fallacy here is that if
the players (classical or quantum) win for a single run, we cannot conclude anything:
they could have been lucky at guessing. As Asher Peres wrote, about those who made
this mistake: “The list of authors is too long to give explicitly, and it would be unfair
to give only a partial list” [12].

1.2 Pseudo-Telepathy

Consider two parties, whom we shall call Alice and Bob. They pretend to be endowed
with telepathic powers. To convince scientists Xavier and Yolande, they agree to play
the following game. First, Xavier and Yolande secretly decide on two lists of animals,

1 For a quantum physicist, even relativity belongs to classical physics.
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Table 1: Example of a game.

Round Xavier Yolande

1 lion giraffe
2 tiger tiger
3 hyena elephant
4 crocodile alligator
5 platypus platypus
· · · · · · · · ·

such as that shown in Table 1. Then, Xavier takes Alice far away from Bob and Yolande.
At predetermined times, Xavier and Yolande name animals from their lists to Alice
and Bob. For example, Xavier and Yolande simultaneously say “lion” and “giraffe”,
respectively. Without consulting each other, Alice and Bob must immediately decide
whether or not they were presented with the same animal; in this case, they should both
answer “no!”. If Alice and Bob succeed systematically in a sufficiently long sequence of
trials, Xavier and Yolande will conclude that Alice and Bob are able to communicate
somehow. But if communication is classically impossible because Alice and Bob are
sufficiently far apart that a signal from Alice going at the speed of light would not
reach Bob in time to influence his answer (and vice versa from Bob to Alice), then
Xavier and Yolande would be forced into believing that Alice and Bob are able to
communicate in a way unknown to (classical) physics. In this case, telepathy would not
seem to be worse than any other esoteric “explanation”, would it?

It turns out that quantum mechanics cannot help Alice and Bob win this animal-
guessing game. (Otherwise, a solution to this game could be harnessed to provide faster-
than-light signalling.) But there are other similar games that are equally impossible
for classical players, yet they can be won systematically, without any communication,
provided Alice and Bob share prior entanglement. This is the phenomenon we call
“pseudo-telepathy” because it would appear as magical as “true” telepathy to a classical
physicist, yet it has a perfectly scientific explanation: quantum mechanics.

There are several reasons to be interested in pseudo-telepathy games.

♦ Some of these games are conceptually very simple. Their classical impossibility
can be explained in a few minutes to any reasonably intelligent person. This
makes their quantum possibility all the more impressive. The best examples in
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this category are the Mermin-GHZ game and the magic square game, described
in Sections 3 and 5, respectively.

♦ If implemented successfully, any one of these games would provide extremely
convincing evidence that classical physics does not rule the world for anyone who
is already convinced that faster-than-light signalling is impossible (and therefore
that it is not because Alice and Bob are able to communicate, however covertly,
that they win the game systematically).

♦ The theoretical and experimental study of pseudo-telepathy has the potential to
provide the first loophole-free demonstration that the physical world cannot be
local realistic.

♦ In introducing the broader field of quantum communication complexity in 1993,
Andrew Yao asked if quantum mechanics could be used to reduce the amount of
communication required to solve some distributed computational tasks, but he
could not answer the question [13]. Surprisingly, a pseudo-telepathic version of
this question had already been solved ten years previously [14] by Peter Heywood
and Michael Redhead 2—see Section 2. Please consult [15] for a survey of quantum
communication complexity and its interplay with pseudo-telepathy.

We are now ready to give a formal definition of pseudo-telepathy. For the sake of
simplicity, we define it in the context of two players, Alice and Bob. The generalization
to multi-party settings is obvious.

A two-party game is defined as a sextuple G = 〈X, Y, A, B, P, W 〉, where X, Y , A
and B are sets, P ⊆ X × Y and W ⊆ X × Y × A × B. It is convenient to think of
X and Y as the input sets, A and B as the output sets, P as a predicate on X × Y
known as the promise, and W as the winning condition, which is a relation between
inputs and outputs that has to be satisfied by Alice and Bob whenever the promise
is fulfilled. [In the generalization to 3 parties, we use X, Y , Z as input sets and A,
B, C (for Charlie) as output sets; P and W are changed accordingly. In the n-party
generalization, we use X = X1 × X2 × · · ·× Xn and A = A1 × A2 × · · ·× An as input
and output sets, respectively, P becomes a predicate on X and W becomes a relation
on X × A.]

At the outset of the game, Alice and Bob are allowed to discuss strategy and ex-
change any amount of classical information, including the value of random variables.
This is carried out in secret of Xavier and Yolande. If Alice and Bob are quantum

2 One could argue that pseudo-telepathy games do not solve Yao’s problem as stated and therefore
the first solution to Yao’s problem came as late as 1997.
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players, they are also allowed to share unlimited amounts of entanglement. Xavier and
Yolande are also allowed to discuss strategy in secret of Alice and Bob. Then, Alice
and Bob are separated and they will not be allowed to communicate any further until
the game is over. In each round of the game, Alice and Bob are presented by Xavier
and Yolande with inputs x ∈ X and y ∈ Y , respectively. The task of Alice and Bob
is to produce outputs a ∈ A and b ∈ B, respectively. We say that Alice and Bob win
the round if either (x, y) '∈ P (the promise does not hold) or (x, y, a, b) ∈ W . The pairs
(x, y) and (a, b) are called the question and the answer for this round, respectively. Any
question (x, y) is said to be legitimate if it belongs to P , and any answer (a, b) is said to
be appropriate if (x, y, a, b) ∈ W . We say that Alice and Bob win the game if they keep
winning round after round. Finally, we say that Alice and Bob have a winning strategy
if they are mathematically certain to win the game as long as they have not exhausted
all the classical information and quantum entanglement (if any) shared at the outset of
the game. Please note the difference between winning the game and having a winning
strategy: no matter how many rounds Alice and Bob have won, only statistical evidence
can be gathered by Xavier and Yolande towards the hypothesis that they indeed have
a winning strategy, but a single lost round suffices to discredit any claim to a winning
strategy. (See Section 1.3 for practical considerations.)

To continue our earlier example from Table 1, X and Y would be nontrivial sets
of animal names, A = B = {yes, no}, P = X × Y (which is to say that all questions
are legitimate) and (x, y, a, b) ∈ W if and only if either x = y and a = b = yes or x '= y
and a = b = no. In the first round, for instance, Xavier and Yolande ask the question
(lion, giraffe) and Alice and Bob should provide the answer (no, no). As we said before,
this game does not admit a winning strategy, be it classical or quantum, but Alice and
Bob could still win by being exponentially lucky in the number of rounds.

Finally, we say that a game exhibits pseudo-telepathy if it does not admit a winning
strategy whenever Alice and Bob are restricted to being classical players, yet it does
admit a winning strategy provided quantum players Alice and Bob share a sufficient
supply of entanglement.

We can quantify the quantumness of a pseudo-telepathy game by how bad classical
players would be at it. This is interesting because the harder a pseudo-telepathy game
is for classical players, the more convincing it is when quantum players win it round
after round. A more subtle reason to be interested in this issue is that quantum players
will not be perfect in real life: it is unavoidable that they will lose a few rounds now
and then. But if they are still better at the game than any classical player could be, the
main purpose of proving that the world cannot be local realistic will still be fulfilled.
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This is how we hope to use pseudo-telepathy games to circumvent the various loopholes
that have plagued until now every attempt at reaching this holy Grail [16, 17, 18].

A classical strategy is deterministic if there are two functions f : X → A and
g : Y → B such that Alice and Bob systematically output f(x) and g(y) on inputs x
and y, respectively. The success of a deterministic strategy is defined by the proportion
of legitimate questions on which it provides an appropriate answer. Given a game G,
we let ω̃(G) stand for the maximum success proportion, over all possible deterministic
strategies, for classical players that play game G. Formally:

ω̃(G) = max
f,g

#{(x, y) ∈ P | (x, y, f(x), g(y)) ∈ W}
#P

(1.1)

Classical players can implement probabilistic strategies when they are allowed to
toss local coins and share random variables. In that case, we are interested in the
probability that the strategy succeeds on given questions. We shall judge the merit of
a probabilistic strategy by its performance on the worst possible legitimate question.
More precisely, we say that a probabilistic strategy is successful with probability p if it
produces an appropriate answer with probability at least p on all legitimate questions.
Note that any deterministic strategy that does not win the game with certainty is “suc-
cessful” with probability zero since there is at least one legitimate question on which it
fails systematically. Given a game G, we let ω(G) stand for the maximum success prob-
ability, over all possible probabilistic strategies, for classical players that play game G.
Formally, given a strategy s and a legitimate question (x, y), let Prs(win | (x, y)) denote
the probability that strategy s provides an appropriate answer on that question. Then

ω(G) = max
s

min
(x,y)∈P

Prs(win | (x, y)) (1.2)

The next theorem provides a simple yet important relation between the maximum
success proportion for deterministic strategies and the maximum probability of success
for probabilistic strategies. But first we need a technical proposition.

Proposition 1 Let G be a game. Consider any probabilistic strategy s. If the questions
are asked uniformly at random among all legitimate questions, the probability that the
players win using s is ω̃(G) at best.
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Proof. We consider a general probabilistic strategy s, which is a probability distribu-
tion over a finite set of deterministic strategies, say {s1, s2, . . . sm}. Let Pr(si) be the
probability that strategy si be chosen, and let pi ≤ ω̃(G) be the success proportion of
strategy si. The probability that the players win the game according to strategy s is:

m∑

i=1

pi Pr(si) ≤ ω̃(G)
m∑

i=1

Pr(si) = ω̃(G) (1.3)

Theorem 2 For any game G, ω(G) ≤ ω̃(G).

Proof. Consider any probabilistic strategy s that is successful with maximal
probability ω(G). By definition of ω(G), given any legitimate question (x, y),
Prs(win | (x, y)) ≥ ω(G). If the question is chosen uniformly at random, the proba-
bility q of winning the game using strategy s is

q =
∑

(x,y)∈P

Prs(win | (x, y))

#P
≥

∑

(x,y)∈P

ω(G)

#P
= ω(G) (1.4)

By proposition 1, ω̃(G) ≥ q, and since q ≥ ω(G), then ω̃(G) ≥ ω(G).

The next observation is useful to determine values and bounds on ω̃(G) and ω(G).

Lemma 3 Let G be a game whose set of legitimate questions is P . If it does not admit
a classical winning strategy, then

ω(G) ≤ ω̃(G) ≤
#P − 1

#P
(1.5)

Proof. Since ω̃(G) is the maximum success proportion, over all possible deterministic
strategies, for classical players that play game G, it is the ratio of some integer to the
total number P of legitimate questions. Since the game does not admit a classical
winning strategy, this ratio is not 1. The next best alternative, which may or may
not be achievable by some strategy, would be that ω̃(G) = (#P − 1)/#P . The Lemma
follows from Theorem 2.
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1.3 How Convincing Can Actual Experiments Be?

A major motivation for studying pseudo-telepathy games is that their physical imple-
mentation could provide increasingly convincing and loophole-free demonstrations that
the physical world is not local realistic. After establishing that a given game is in-
deed a pseudo-telepathy game, the ideal experiment would consist in implementing the
quantum winning strategy and running it on a significant number of rounds until either:

♦ the players lose even a single round, in which case the predictions of quantum
mechanics have been shown to fail, demonstrating that quantum mechanics must
be wrong, and it’s back to the drawing board; or

♦ the players win systematically enough rounds to rule out (with high confidence)
classical local realistic theories because classical strategies would be overwhelm-
ingly unlikely to perform flawlessly.

Of course, physical realizations of quantum winning strategies for pseudo-telepathy
games will never be perfect. Disavowing one hundred years of quantum mechanics on a
single failure—as we light-heartedly suggested above—would be foolish! We should be
content as long as real-life experiments allow Alice and Bob to win substantially more
often than any classical players could hope to do, except with overwhelmingly small
probability. We expound on this issue in the next section.

But even an unfailing sequence of wins would not be entirely convincing if the exper-
iment is not performed with extreme care. There are many ways in which unscrupulous
Alice and Bob—or an incredibly devious Nature out to fool us into believing in quan-
tum mechanics—could provide classical (local, realistic) players with a winning strategy
despite the mathematical proofs that this is impossible! Before they can be used to
rule out classical theories beyond any reasonable doubt, pseudo-telepathy experiments
must fulfil the following conditions simultaneously.

♦ It must be physically impossible for Alice and Bob to communicate between the
time they receive the question and the time they have to produce the answer.
No amount of shielding can achieve this requirement. For instance, it would be
unscientific to claim it impossible for Alice to have a means to modulate neutrinos
and for Bob to detect them, however unlikely. The only known law of physics
that can be used to enforce this restriction is the fact that information cannot be
signalled faster than the speed of light. Hence, Alice and Bob must be sufficiently
far apart, their questions must be asked with near-perfect simultaneity, and they
must be requested to answer very quickly.
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♦ It must be impossible for Alice and Bob to know ahead of time what the ques-
tions will be. We must first come to grip with the fact that there is no way
to enforce this condition if the universe is purely deterministic. In the view of
Laplace, nothing prevents Alice and Bob from analysing the entire state of the
universe with enough precision to be able to predict with certainty what questions
Xavier and Yolande will ask. This would allow Alice and Bob to conspire together
and decide on their answers before they are separated, and Xavier and Yolande
would be none the wiser. Unfortunately, there is no resolution to this problem: no
pseudo-telepathy experiment will ever convince a determinism-addict that classi-
cal physics is wrong.

♦ Following up on the previous point, the questions must be determined at random
by Xavier and Yolande after they have separated to go with Alice and Bob, respec-
tively. Indeed, we said earlier that “Xavier and Yolande are also allowed to discuss
strategy in secret of Alice and Bob”. But no laws of physics can guarantee them
unconditional secrecy (not even quantum cryptography!) if they choose their ques-
tions ahead of time. Therefore, each round must begin with Xavier and Yolande
choosing their questions purely at random, independently from one another. The
entire round, including registering Alice’s and Bob’s answers, must take place in
less time than it takes light to travel between Alice and Bob. This brings up a
subtle point: given that Xavier and Yolande cannot prepare their questions to-
gether, there can be no guarantee that the promise will be fulfilled. After they
meet again, Xavier and Yolande will have to apply post-selection to their data to
keep only the answers to legitimate questions. It follows that it is desirable for
pseudo-telepathy games to have a high density of legitimate questions.

♦ And finally, the last condition to rule out classical local realistic theories is that
Xavier and Yolande’s post-selected data must show that appropriate answers were
provided on legitimate questions significantly more often by Alice and Bob than
could be expected by any possible classical process.

1.4 Imperfect Detectors

Several reasons could explain an incorrect answer provided by the physical implemen-
tation of a mathematically-proven quantum winning strategy: (1) quantum mechanics
is incorrect, (2) Alice and Bob are unable to keep high-grade entanglement for a macro-
scopic amount of time, (3) the unitary quantum process to which they subject their
entanglement after receiving their questions (see all the following sections) is imperfect,
and/or (4) the final measurement that should reveal the classical answer goes wrong.
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Here we concentrate on the last possibility. We ask how bad can the detectors be
to allow nevertheless for an outcome that would be classically impossible (in proba-
bility), provided everything else is perfect in the experiment. For this purpose, we
must distinguish between two different types of imperfections in detectors: noise and
inefficiency.

♦ A noisy detector may register the wrong result. This causes Alice or Bob to
output a bit that is the complement of what she or he should have produced
according to the protocol 3. In most pseudo-telepathy games, a single error of this
sort will result in an inappropriate answer to a legitimate question. But it is often
the case that two wrongs make a right.

♦ An inefficient detector may fail to register an outcome at all. When this happens,
the qubit that was supposed to be measured is usually lost forever, and there is
nothing the unlucky party can do to recover the information (without communi-
cating with the other party). But at least, contrary to the case of noisy detectors,
that party knows that there is a problem.

♦ Of course, real detectors can be both noisy and inefficient.

In each case, the relevant issue is to determine the level of imperfection detectors can
have, and still allow Alice and Bob to accomplish a task that would exceed the capa-
bilities of classical players.

1.4.1 Noisy Detectors

For simplicity, let us assume that all the detectors are independent and that they all
have the same error probability. Let p stand for the probability for each detector
to perform correctly, and therefore each bit of the answer is flipped with probability
1 − p, independently from one another. For any given pseudo-telepathy game, this
entails a probability for quantum players to provide inappropriate answers to legitimate
questions. If that probability exceeds the error probability that can be reached by some
classical strategy, the quantum implementation becomes worthless. This gives rise to a
threshold that depends on the pseudo-telepathy game being played.

3 In some pseudo-telepathy games, such as the impossible colouring game of Section 2, the expected
output is not a bit string. The notion of noisy detector must be modified accordingly.
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Definition 1 Consider a pseudo-telepathy game G. We define p∗(G) as the maximum
value of p for which a classical strategy can succeed as well as an implementation of
the best possible quantum strategy that has to deal with detectors that give the correct
answer with probability p.

Unfortunately, the exact value of p∗(G) is unknown for most games.

1.4.2 Inefficient Detectors

If a detector fails to respond to Alice or Bob, one approach would be to ignore the
problem and output a random bit. This would be a way to turn inefficient detectors
into noisy ones. But a much better solution is to allow the parties to admit ignorance.
When a party’s detector fails to register the result of a measurement, this party simply
outputs ⊥. In this context, we must redefine slightly the notion of a game. The output
sets A and B are augmented with this new symbol ⊥. We say that the players win if
the question is not legitimate or if their answer is appropriate, it’s a draw if at least
one player outputs ⊥, and they lose otherwise. The key observation is that if detector
inefficiency is the only imperfection in the quantum players’ implementation, they will
either win or draw, but they will never lose a round.

Of course, to be fair, we must allow classical players to output ⊥ as well. This makes
it possible for classical players to have an error-free strategy, in which they never lose, at
the expense of occasional draws. Implementations of quantum strategies are interesting
only if the occurrence of ⊥ is smaller than with the best error-free classical strategy.
Whether or not this is possible depends on the efficiency η of the detectors, which is
assumed to be the same, independently, for each detector.

Definition 2 Consider a pseudo-telepathy game G. We define η∗(G) as the maximum
value of η for which an error-free classical strategy can win at least as often as an
implementation of the best quantum strategy that uses detectors of efficiency η.

Parameter η∗(G) has been analysed for more games than p∗(G) because it bears
direct relevance to the widely studied “detection loophole” [17, 19], but nevertheless its
exact value is also mostly unknown.
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1.5 Outline of the Paper

After this Introduction, the rest of the paper provides a systematic survey of all the
pseudo-telepathy games known to the authors. We assume that the reader is already
familiar with the basic principles of quantum information processing [20]. The games
are presented in chronological order of discovery. Each game is defined by the task
that the players must accomplish in order to win, then a quantum winning strategy is
described, and the impossibility of a classical winning strategy is discussed. Additional
information is provided for some games. Before we conclude with open problems in
Section 9, we have a quick look in Section 8 at the smallest possible games that exhibit
pseudo-telepathy.

2 Impossible Colouring Games

In the 1960s, Bell was not alone in proving that Einstein’s realism is incompatible with
other well-accepted principles [2]. Recall that Bell’s argument was to reach a contra-
diction by accepting also Einstein’s nonlocality, as well as the predictions of quantum
mechanics. At about the same time, Simon Kochen and Ernst Specker proved that re-
alism is also incompatible with another principle: non-contextuality [21]. Briefly stated,
non-contextuality is the principle according to which the probability of a given outcome
in a projective measurement does not depend on the choice of the other orthogonal out-
comes used to define that measurement. (To be historically precise, it should be noted
that Bell himself published a similar idea [22] before Kochen and Specker [21], but
Specker by himself presented an earlier proof as early as 1960 [23], and a similar idea
goes back to Gleason in 1957 [24].)

It has been argued that the Kochen-Specker approach is less useful than Bell’s be-
cause it in inherently counterfactual, and therefore it seems impossible to subject it
to actual experiments. However, when Kochen-Specker is used together with entangle-
ment, Peter Heywood and Michael Redhead [14] realized that it can be turned into a
testable scenario. A little imagination suffices to turn their argument into a pseudo-
telepathy game, which is probably the first such game ever. However, that paper was
overlooked until recently, which explains why the first pseudo-telepathy game is often
credited to Greenberger, Horne and Zeilinger [9] or to Mermin [25]—see Section 3.

Theorem 4 (Kochen-Specker Theorem) There exists an explicit, finite set of vec-
tors in R3 that cannot be {0, 1}-coloured so that both of the following conditions hold
simultaneously:
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1. For every orthogonal pair of vectors, at most one of them is coloured 1.

2. For every mutually orthogonal triple of vectors, at least one of them—and there-
fore exactly one—is coloured 1.

We say of any such set of vectors that is has the Kochen-Specker property.

Originally, Theorem 4 was proved using 117 vectors [21], but this has been reduced
to 31 (with 17 orthogonal triples) by Conway and Kochen [26]. A Kochen-Specker
construction, similar to that of Theorem 4, can be obtained in any dimension d ≥ 3,
either by a geometric argument, or by extending a construction in dimension d to
dimension d + 1 [26]. Following the approach of Richard Cleve, Peter Høyer, Benjamin
Toner and John Watrous [27], we show below that any Kochen-Specker construction
in any dimension gives rise to a two-party pseudo-telepathy game. Renato Renner and
Stefan Wolf have proved a weak converse of this result: Any two-party pseudo-telepathy
game can be turned into a Kochen-Specker construction [28], but under two conditions:
Alice and Bob must share a maximally entangled state (of any dimension) and they
are restricted to making projective measurements only (not POVMs) on their shared
entanglement, without the addition of an ancillary system.

2.1 The Game

Consider any dimension d ≥ 3 and let V be a set of vectors in Rd with the Kochen-
Specker property. In the corresponding impossible colouring pseudo-telepathy game,
Alice receives either an orthogonal pair of vectors v1, v2, or an orthogonal d-tuple of
vectors v1, . . . , vd. Bob receives a single vector v!. All these vectors are taken from V.
The promise states that v! is one of Alice’s vectors.

The challenge that Alice and Bob face is that they must {0, 1}-colour the vectors
they have received so that (1) two orthogonal vectors are not both coloured 1, (2) exactly
one of Alice’s vectors is coloured 1 if she was given d vectors, and (3) Alice and Bob
assign the same colour to vector v!. Note that it is not necessary for Alice to output the
colour of all her vectors because she must satisfy conditions (1) and (2). In case she is
given two vectors as input, she outputs a trit that indicates whether v1 is coloured 1, v2

is coloured 1, or neither; in case she is given d vectors, she outputs the a ∈ {1, 2, . . . , d}
so that she assigned colour 1 to va. As for Bob, his one-bit output b is simply the colour
he assigns to vector v!. In any case, the winning condition is that Alice and Bob must
assign the same colour to v!.
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2.2 Quantum Winning Strategy

The players’ strategy is to share entangled state 1√
d

∑d−1
j=0 |j〉|j〉. After receiving their

input, Alice and Bob do the following:

1. If Alice was given only two vectors v1 and v2, she chooses d − 2 additional vectors
v3, . . . , vd, not necessarily taken from V, so that v1, . . . , vd forms an orthogonal
d-tuple.

2. Alice performs a measurement on her share of the entangled state in basis
Ba = {|v1〉, . . . , |vd〉} of Rd (after normalization if necessary). Let k be the result
of her measurement. As explained above, she produces the appropriate output a,
corresponding to assigning colour 1 to vector vk.

3. Bob chooses d − 1 additional vectors w1, . . . , wd−1, not necessarily taken from V,
so that v!, w1, . . . , wd−1 forms an orthogonal d-tuple. He performs a measurement
on his share of the entangled state in basis Bb = {|v!〉, |w1〉, . . . , |wd−1〉} of Rd (after
normalization if necessary). He outputs b = 1 if the outcome is v!; he outputs b =
0 otherwise.

To show that this quantum strategy works, consider the probability that Alice mea-
sures vk (k ∈ {1, 2, . . . , d}) and Bob measures v!. Since the bases Ba and Bb have real
coefficients,

d−1∑

j=0

〈j|vk〉〈j|v!〉 = 〈vk|v!〉 (2.1)

and so this probability is
∣∣∣∣∣

1√
d

d−1∑

j=0

〈j|〈j|vk〉|v!〉

∣∣∣∣∣

2

=

∣∣∣∣∣
1√
d

d−1∑

j=0

〈j|vk〉〈j|v!〉

∣∣∣∣∣

2

(2.2)

=

∣∣∣∣
1√
d
〈vk|v!〉

∣∣∣∣
2

(2.3)

=

{
1
d , k = #

0, k '= #
(2.4)

It follows that Bob measures v! if and only if Alice measures v! as well. This proves
that Alice and Bob will assign the same colour to the vector they have received in
common, and therefore their answer will be appropriate.
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2.3 Classical Players

Any classical deterministic winning strategy would correspond precisely to a {0, 1}-
colouring of the vectors in V that can satisfy simultaneously properties (1) and (2) in
the statement of the Kochen-Specker theorem. But V was chosen to have the Kochen-
Specker property, which means that such a colouring cannot exist. It follows that
ω̃(G) < 1, and by Theorem 2, ω(G) < 1 as well. Therefore, no classical winning strategy
can exist for this game. The exact success proportion and probability are not known
precisely, but of course they depend on the the specific Kochen-Specker construction
that is used. We conjecture that ω̃(G) and ω(G) cannot be made much smaller than 1
with this type of construction.

2.4 Special Case of the Impossible Colouring Game

We have presented a family of pseudo-telepathy games based on the Kochen-Specker
theorem. It is interesting to mention the particular case where d = 3. For the quantum
strategy, Alice and Bob share an entangled qutrit pair |ψ〉 = 1√

3
|00〉 + 1√

3
|11〉 + 1√

3
|22〉.

This entangled state of dimension 9 is the smallest possible state that can be used for
any two-player pseudo-telepathy game [29]—more on this in Section 8.

Independently of the general approach that we described above, similar pseudo-
telepathy games have been obtained for a specific 4-dimensional construction in [30],
and generalized to any dimension in [31]. See also [32].

3 Parity Games

This is a family of games for n players, n ≥ 3, with the property that the player’s
outputs are single bits, and the winning condition depends on their parity.

3.1 The Game

The task that the n players face is the following: Each player i receives as input a bit-
string xi ∈ {0, 1}!, which is also interpreted as an integer in binary, with the promise
that

∑n
i=1 xi is divisible by 2!. The players must each output a single bit ai and the
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winning condition is:
n∑

i=1

ai ≡
∑n

i=1 xi

2!
(mod 2) (3.1)

When restricted to parameters n = 3 and # = 1, this is what is known as the
Mermin-GHZ game. It was originally presented as a four-player game [9] and later
recast with three players [33]. The game was greatly popularized by Mermin [25, 34].

When restricted to # = 1, but with any number n ≥ 3 of players, this is Mermin’s
parity game, introduced in [35] and recast from a computer science point of view in [36,
37].

Finally, by setting # = / lg n0 − 1, still with any number n ≥ 3 of players, we get
the extended parity game, proposed by Harry Buhrman, Peter Høyer, Serge Massar and
Hein Röhrig [38]. (We use the symbol “lg” to denote the base-two logarithm.)

3.2 Quantum Winning Strategy

The players’ strategy for any game in this family is to share entangled state
1√
2
|0n〉 + 1√

2
|1n〉. After receiving his input xi, each player i does the following:

1. apply to his share of the entangled state the unitary transformation S defined by

|0〉 1→ |0〉 (3.2)

|1〉 1→ eπıxi/2!|1〉 (3.3)

where we use a dotless ı to denote
√
−1 in order to distinguish it from index i,

which is used to identify a player

2. apply the Walsh–Hadamard transform, H , defined as usual by

|0〉 1→ 1√
2
|0〉 + 1√

2
|1〉 (3.4)

|1〉 1→ 1√
2
|0〉 − 1√

2
|1〉 (3.5)

3. measure the qubit in the computational basis to obtain ai

4. output ai
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The resulting state after step 1 is

1√
2

(
|0n〉 + eπı

∑
xi

2! |1n〉
)

=






1√
2
|0n〉 + 1√

2
|1n〉 if

∑
xi

2! is even

1√
2
|0n〉 − 1√

2
|1n〉 if

∑
xi

2! is odd
(3.6)

We know by the promise that
∑

xi

2! is an integer. Let ∆(z) denote the number of 1s
in binary string z (the Hamming weight of z). It is an easy exercise to show that the
resulting state after step 2 is:






1√
2n−1

∑

∆(a) even

|a〉 if

∑
xi

2!
is even

1√
2n−1

∑

∆(a) odd

|a〉 if

∑
xi

2!
is odd

(3.7)

Therefore, after the measurement of step 3, the output of step 4 will satisfy:
n∑

i=1

ai ≡
∑n

i xi

2!
(mod 2) (3.8)

so the players always win.

3.3 Classical Players

Any winning strategy for the extended parity game yields a winning strategy for the
parity game. Similarly, a winning strategy for the parity game yields a winning strategy
for the Mermin-GHZ game. So, by showing that there is no classical winning strategy
for the Mermin-GHZ game, we will have established the same result for all three games.

In the Mermin-GHZ game, consider a deterministic strategy in which ax is Alice’s
output on input x, and by, cz are defined similarly for Bob and Charlie. If Alice, Bob and
Charlie receive x = 0, y = 0, z = 0 as inputs, for instance, it follows from the winning
condition that the sum of their outputs a0, b0 and c0 must be even. This gives the first
of the four constraints that correspond to the four legitimate inputs 000, 011, 101 and
110. These constraints are summarized below, where the sums are taken modulo 2.

a0 + b0 + c0 ≡ 0
a0 + b1 + c1 ≡ 1
a1 + b0 + c1 ≡ 1
a1 + b1 + c0 ≡ 1

(3.9)
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If we add the four equations, we obtain a contradiction, since the sum on the left-
hand side is even, and the sum on the right-hand side is odd. This proves that there
is no classical deterministic winning strategy. It follows by Theorem 2 that there is
no classical winning strategy. However, it is easy to invent a strategy that wins with
probability 3/4. It follows from Lemma 3 that ω̃(G) = ω(G) = 3/4, where G stands for
the Mermin-GHZ game.

Let Gn be Mermin’s parity game with n players. It is shown in [36] that
ω̃(Gn) = 1

2 + 2−%n/2&. By applying Theorem 2, it follows that ω(Gn) ≤ 1
2 + 2−%n/2&. But

in fact, this upper-bound is tight [37, 39]: ω(Gn) = 1
2 + 2−%n/2&.

For the parity game, we also know exact values of p∗ and η∗ [37, 39]:

p∗(Gn) =






1
2 + 2

2−3n
2n if n is even

1
2 + 2

1−3n
2n if n is odd

(3.10)

η∗(Gn) = 1
2

n
√

4 (3.11)

Since limn→∞ p∗(Gn) = 1
2 +

√
2

4 = cos2 π/8 ≈ 85%, we conclude that if we use detec-
tors that provide the correct answer with a probability greater than that, everything
else being perfect, and if n is sufficiently large, we can use game Gn to observe a phe-
nomenon that would be statistically impossible to explain in a classical world. Similarly,
since limn→∞ η∗(Gn) = 1/2, the same conclusion applies provided we have detectors that
are better than 50% efficient.

Let G′
n be the extended parity game with n players. It is shown in [38] that

η∗(G′
n) ≤ 8/n for all n ≥ 3. Since limn→∞ η∗(G′

n) = 0, loophole-free experiments of
nonlocality are possible with arbitrarily inefficient detectors! (Of course, as n be-
comes larger, it becomes increasingly difficult to have “everything else being perfect”.)
The value of p∗(G′

n) is not known.

4 Deutsch-Jozsa Games

This family of two-player pseudo-telepathy games, based on the Deutsch-Jozsa prob-
lem [40], was first presented in [41]. These were the first games explicitly described in
terms of pseudo-telepathy.
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4.1 The Game

Alice and Bob face the following task: given bit strings x and y as input, they are
requested to output bit strings a and b, respectively, so that a = b if and only if x = y.
To prevent the trivial solution a ← x and b ← y, the outputs must be exponentially
shorter than the inputs. More precisely, x and y are strings of length n = 2m, for some
parameter m, but a and b must be strings of length m. As such, this problem cannot
be solved even with the help of entanglement, but it becomes a pseudo-telepathy game
if we add the promise that either x and y are identical or that they differ in exactly
half of the bit positions.

4.2 Quantum Winning Strategy

The players’ strategy for any game in this family is to share entangled state
1√
n

∑n−1
j=0 |j〉|j〉. Note that this means that Alice and Bob each have an m-qubit reg-

ister. After receiving their inputs x = x0x1 · · ·xn−1 and y = y0y1 · · · yn−1 (it is more
convenient to start the indices at 0), Alice and Bob do the following:

1. Alice applies to her quantum register the unitary transformation that maps

|j〉 1→ (−1)xj |j〉 (4.1)

for all j between 0 and n − 1; Bob does the same, but with yj instead of xj

2. Alice and Bob apply the Walsh–Hadamard transform H⊗m to their registers

3. Alice and Bob measure their registers in the computational basis. The resulting
classical strings, a and b, are their final output

It is straightforward to verify that this quantum strategy wins the game with certainty.
Please consult [41] for details.

4.3 Classical Players

It follows immediately from [42] that classical players need to communicate at least
c 2m bits, for some appropriate positive constant c and all sufficiently large m, in order
to win the Deutsch-Jozsa game with parameter m. Therefore, classical players cannot
have a winning strategy if they are unable to communicate, again provided m is large
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enough. However, this asymptotic result does not help if we want to know which values
of m yield a pseudo-telepathy game.

It is easy to design a classical winning strategy for m = 1 and m = 2. It is more
challenging to design one when m = 3, but this is done in [43]. For the case m = 4, it
was shown in [44], by using an argument based on graph theory as well as a computer-
assisted case analysis, that there is no classical winning strategy. However, the proof
of this result does not carry over to the case of larger values of m, so it still remains to
determine explicitly for what other values of m pseudo-telepathy occurs.

5 The Magic Square Game

The magic square game is a two-player pseudo-telepathy game that was presented by
Padmanabhan Aravind [45, 46], who built on work by Mermin [47]. The most interesting
feature of this game is that it is extremely easy to show that there cannot be a classical
winning strategy (see Section 5.3). It follows that a successful implementation of the
quantum winning strategy (see Section 5.2) would convince any observer that something
classically impossible is happening, with no need for the observer to understand why the
quantum strategy works.

5.1 The Game

A magic square is a 3 × 3 matrix whose entries are in {0, 1}, with the property that
the sum of each row is even and the sum of each column is odd. Such a square is magic
because it cannot exist! Indeed, suppose we calculate the parity of the nine entries.
According to the rows, the parity is even, yet according to the columns, the parity is
odd. This is obviously impossible.

The task that the players face while playing the game is the following: Alice is asked
to give the entries of a row x ∈ {1, 2, 3} and Bob is asked to give the entries of a column
y ∈ {1, 2, 3}. The winning condition is that the parity of the row must be even, the
parity of the column must be odd, and the intersection of the given row and column
must agree. It is an interesting feature of this game that it does not require a promise:
all nine possible questions are legitimate.
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5.2 Quantum Winning Strategy

The quantum winning strategy for the magic square game is not as simple as the
classical impossibility proof. First, Alice and Bob share the entangled state

|ψ〉 = 1
2 |0011〉 − 1

2 |0110〉 − 1
2 |1001〉 + 1

2 |1100〉 (5.1)

The first two qubits belong to Alice and the last two to Bob. Upon receiving their
inputs x and y, Alice and Bob apply unitary transformations Ax and By, respectively,
according to the following matrices.

A1 =
1√
2

[
ı 0 0 1
0 −ı 1 0
0 ı 1 0
1 0 0 ı

]
, A2 =

1

2

[
ı 1 1 ı

−ı 1 −1 ı
ı 1 −1 −ı

−ı 1 1 −ı

]
, A3 =

1

2

[−1 −1 −1 1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1

]
(5.2)

B1 =
1

2

[
ı −ı 1 1

−ı −ı 1 −1
1 1 −ı ı

−ı ı 1 1

]
, B2 =

1

2

[−1 ı 1 ı
1 ı 1 −ı
1 −ı 1 ı

−1 −ı 1 −ı

]
, B3 =

1√
2

[
1 0 0 1

−1 0 0 1
0 1 1 0
0 1 −1 0

]
(5.3)

Then, Alice and Bob measure their qubits in the computational basis. This provides
2 bits to each player, which are the first 2 bits of their respective output a and b. Finally,
Alice and Bob determine their third output bit from the first two so that their parity
condition is satisfied.

Consider for example inputs x = 2 and y = 3. After Alice and Bob apply A2 and B3,
respectively, the state evolves to

(A2 ⊗ B3)|ψ〉 = 1
2
√

2

[
|0000〉 − |0010〉 − |0101〉 + |0111〉 (5.4)

+|1001〉+ |1011〉 − |1100〉 − |1110〉
]

(5.5)

After measurement, Alice and Bob could obtain 10 and 01, for instance. In that case,
Alice would complete with bit 1 so that her output a = 101 has even parity and Bob
would complete with bit 0 so that his output b = 010 has odd parity. Xavier and Yolande
will be satisfied with the answer since both Alice and Bob agree that the third entry of
the second row is indeed the same as the second entry of the third column: a3 = b2 = 1.
It is easy to check that the seven other possible answers that Alice and Bob could have
given on this example are all appropriate. The verification that this quantum strategy
wins also on the other eight possible questions is tedious but straightforward.
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5.3 Classical Players

The simple proof that a winning classical strategy cannot exist goes as follows. A de-
terministic classical strategy would have to assign definite binary values to each of the
nine entries of the magic square, which is impossible. Therefore, there can be no deter-
ministic classical winning strategy. It follows from Theorem 2 that there is no classical
winning strategy, even probabilistic. Using Lemma 3, it is also straightforward to show
that ω̃(G) = ω(G) = 8/9, where G stands for the magic square game.

5.4 Related Work

There are other pseudo-telepathy games that are related to the magic square game.
Adán Cabello’s game [48, 49] does not resembles the magic square game on first ap-
proach. However, closer analysis reveals that the two games are totally equivalent!

Also, Aravind has generalized his own magic square idea [45] to a two-player pseudo-
telepathy game in which the players share n Bell states, n being an arbitrary odd number
larger than 1.

6 Matching Games

This family of two-player games is a relatively recent development. It is based on an
observation made by Harry Buhrman in response to a talk given by Iordanis Kerenidis
at the 2004 Workshop on Quantum Information Processing [50], and on [51].

Definition 3 A perfect matching M on {0, 1, . . . , m − 1}, where m is even, is a par-
tition of {0, 1, . . .m − 1} into m

2 sets, each of size 2. We define Mm as the set of all
perfect matchings on {0, 1, . . . , m − 1}.

6.1 The Game

In the matching game, Alice receives an m-bit string x = x0x1 · · ·xm−1 as input (again,
it is more convenient to start the indices at 0), and Bob receives a perfect matching
M ∈ Mm. The task that the players face is for Alice to output a string a ∈ {0, 1}% lg m&,
and Bob to output a pair {α, β} ∈ M as well as a string b ∈ {0, 1}% lg m& such that

xα ⊕ xβ = (α⊕ β) · (a ⊕ b) (6.1)
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where a ⊕ b denotes the bitwise exclusive-or of a and b, and u · v =
⊕

i(ui ∧ vi) denotes
the parity of the bitwise “and” of u and v.

This may seem at first to be a very bizarre game, but it is currently the only
scalable game known—it depends on a parameter m—among those that do not require
a promise.

6.2 Quantum Winning Strategy

The quantum players’ strategy is to share entangled state 1√
m

∑m−1
j=0 |j〉|j〉. After Alice

receives her input x = x0x1 · · ·xm−1 and Bob his input M ∈ Mm, the players do the
following:

1. Alice applies to her quantum register the unitary transformation that maps

|j〉 1→ (−1)xj |j〉 (6.2)

for all j between 0 and m − 1

2. Bob performs a projective partial measurement onto subspaces of dimen-
sion 2. Each subspace of the measurement is spanned by vectors |k〉 and |#〉,
where {k, #} ∈ M . Bob outputs the classical outcome of this measurement,
which is a pair {α, β} ∈ M . In addition to producing a classical outcome,
the measurement causes the quantum state shared with Alice to collapse to
1√
2
(−1)xα|αα〉 + 1√

2
(−1)xβ |ββ〉

3. Both Alice and Bob perform the Walsh–Hadamard transform H⊗% lg m&

4. Alice measures in the computational basis and outputs a, the result of her mea-
surement

5. Bob measures in the computational basis and outputs b, the result of his mea-
surement

Details of why this works are left as an exercise.

6.3 Classical Players

By reducing the Hidden Matching Problem [38] to the matching game, it follows that
there is no classical winning strategy for the latter, provided m is chosen large enough.
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Once again, this does not tell us exactly which values of m yield a pseudo-telepathy
game. For now, we are only able to say that there is a trivial classical winning strategy
for m = 2.

7 Other Games

We report briefly on two additional families of pseudo-telepathy games.

The first one is due to David DiVincenzo and Asher Peres [52]. By exploiting
properties of quantum code words for 3, 5, 7 and 9 qubits codes, they have given an
elegant algebraic way of generating 3, 5, 7 and 9 player pseudo-telepathy games, where
the shared entangled state is a quantum code word. To the best of our knowledge, these
games are no harder to win for classical players than the parity games of Section 3 for
the same number of players.

The second game is due to Michel Boyer [53]. It is a multi-party pseudo-telepathy
game for n ≥ 3 players. Let M be any even number. The task that the players face is
the following: Each player i receives as input an arbitrary integer xi and must output
an integer ai between 0 and M − 1. The promise is that

∑
xi is even and the winning

condition is that
n∑

i=1

ai ≡
∑n

i=1 xi

2
(mod M) (7.1)

This game is equivalent to a variant in which each input is a single bit. One interest
of this game is that the quantum winning strategy uses a quantum Fourier transform
modulo M . It may be more convenient to take M a power of 2.

8 The Inner Frontier

Throughout this survey, we have presented several pseudo-telepathy games, large and
small according to a variety of metrics such as the cardinality of the input sets, of the
output sets, and the dimensionality of the entangled state that must be shared at the
outset of the game. It it interesting to investigate what are the smallest possible games
that exhibit pseudo-telepathy.

Consider two-party pseudo-telepathy games. It is known that no such game can
exist if Alice and Bob are requested to output a single bit each [27]. It follows that the
impossible colouring game (Section 2) with m = 3 is minimal in terms of the output
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size since Alice outputs a trit and Bob outputs a bit. Another way of seeing this inner
frontier is that the Mermin-GHZ game (Section 3) is also minimal since it exhibits
pseudo-telepathy with a single bit of output per player. . . but it involves three players.

Similarly, two-party pseudo-telepathy games cannot exist if the entangled state that
the quantum players share is of dimension 2 × 3 or smaller [29]. It follows that the
impossible colouring game with m = 3 is again minimal since it makes do with an en-
tangled state of dimension 3 × 3. Or one could say that it’s the Mermin-GHZ game
that is again minimal since it exhibits pseudo-telepathy with a single qubit of entan-
glement in the hands of each of the three players. In terms of the total dimensionality,
it is the Mermin-GHZ game that wins the minimalist Grand Prize since 8 < 9, where
8 = 2 × 2 × 2 and 9 = 3 × 3.

9 Conclusions and Open Problems

Einstein, Bohr, Bell, Kochen and Specker were all concerned with hidden variables
(“elements of reality”). Pseudo-telepathy also deals with this issue: it provides alternate
versions of Bell’s argument against local realistic theories. But it’s more than just that.
Pseudo-telepathy games often provide a more concise and convincing argument than
those along the lines of Bell. They may also prove useful in devising loophole-free
experimental tests to rule out local realistic descriptions of the physical world.

The seeds of pseudo-telepathy were sowed more than twenty years ago by Heywood
and Redhead (Section 2). Others followed. By setting these experiments in the frame-
work of pseudo-telepathy, we are better able to grasp the essence of the arguments,
compare them, and improve on previous results. For example, it is only recently, and
in the context of pseudo-telepathy, that it was realized that the two earliest pseudo-
telepathy games were minimal in term of the number of possible outputs as well as the
dimensionality of the required entanglement (Section 8).

Several interesting questions are still open. We have seen in Section 1.4 that noisy
and inefficient detectors will unavoidably render the quantum players imperfect. For
the parity games of Section 3, we have given exact values or bounds on the efficiencies
that we can tolerate. In order to devise experiments that are less prone to these types
of errors, it would be important to have an analysis for each game G that provides
exact values of p∗(G) and η∗(G). Also, imperfections can arise from the entangled state
and the unitary evolution of the system. An analysis of these types of noise, as well
as how the different types interact, would give us the tools necessary to devise better
experiments.
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Of course, it would be interesting to find new pseudo-telepathy games or families
of games. It would be equally interesting to show how they relate to one another. For
example, the three games of Section 3 can be parametrized so that they all fall into the
same general description. The magic square game (Section 5) is equivalent to Cabello’s
game. Which other games, old or new, are similar? How do they differ?

The matching games of Section 6 come from a one-way communication complexity
problem. Is it possible to find other links between one-way communication and pseudo-
telepathy? Still concerning the matching game Gm with parameter m, it would be
interesting to find values for ω̃(Gm) and ω(Gm) for even m ≥ 4. There are other
games, such as the impossible colouring games of Section 2, the extended parity games
of Section 3 and the Deutsch-Jozsa games of Section 4, for which, in general, precise
values of ω̃(G) and ω(G), as a function of the size of the game, are still unknown.

In Section 8, we gave bounds on the dimension of the shared entangled state and
on the cardinality of the output sets in order for a two-player pseudo-telepathy game
to exist. Can we find similar bounds on the cardinality of the input sets? Is the magic
square game (Section 5) optimal in this respect?

Finally, it is not enough to find games G that have a small classical success propor-
tion ω̃(G) or probability ω(G), or a good tolerance to detector noise p∗(G) or inefficien-
cies η∗(G). We must strive to find such games that are feasible experimentally. The
most simplistic interpretation of this condition is that the classical success proportion or
probability should be small, or the tolerance to detector noise or inefficiencies should be
high, even for small sized entangled quantum systems. We would like to know bounds
on what is achievable for pseudo-telepathy games, as well as games that reach these
bounds. Failing that, it might be possible to find new pseudo-telepathy games that
improve on any of the best known values for the above parameters, as a function of the
size of the entangled quantum state.
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