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We study the dynamic response of an s-wave BCS-BEC (atomic-molecular) condensate to detuning quenches

within the two-channel model beyond the weak-coupling BCS limit. At long times after the quench, the condensate

ends up in one of three main asymptotic states (nonequilibrium phases), which are qualitatively similar to those

in other fermionic condensates defined by a global complex order parameter. In phase I the amplitude of the

order parameter vanishes as a power law, in phase II it goes to a nonzero constant, and in phase III it oscillates

persistently. We construct exact quench phase diagrams that predict the asymptotic state (including the many-body

wave function) depending on the initial and final detunings and on the Feshbach resonance width. Outside of

the weak-coupling regime, both the mechanism and the time dependence of the relaxation of the amplitude of

the order parameter in phases I and II are modified. Also, quenches from arbitrarily weak initial to sufficiently

strong final coupling do not produce persistent oscillations in contrast to the behavior in the BCS regime. The

most remarkable feature of coherent condensate dynamics in various fermion superfluids is an effective reduction

in the number of dynamic degrees of freedom as the evolution time goes to infinity. As a result, the long-time

dynamics can be fully described in terms of just a few new collective dynamical variables governed by the

same Hamiltonian only with “renormalized” parameters. Combining this feature with the integrability of the

underlying (e.g., the two-channel) model, we develop and consistently present a general method that explicitly

obtains the exact asymptotic state of the system.

DOI: 10.1103/PhysRevA.91.033628 PACS number(s): 67.85.De, 34.90.+q, 74.40.Gh

I. INTRODUCTION

The problem of a superconductor driven out of equilibrium

by a sudden perturbation goes back many decades. Early

studies [1–6] addressed small deviations from equilibrium

using linearized equations of motion. An important result was

obtained by Volkov and Kogan [3], who discovered a power

law oscillatory attenuation of the Bardeen-Cooper-Schriffer

(BCS) order parameter for nonequilibrium initial conditions

close to the superconducting ground state.

In the past decade it was realized that even large deviations

from equilibrium are within the reach of appropriate theo-

retical methods. Recent studies, motivated by experiments

in cold atomic fermions, focused on quantum quenches,

nonequilibrium conditions created by a sudden change in

the superconducting coupling strength. Barankov et al. [7],

in a paper that set off a surge of modern research in this

long-standing problem [8–24] in the context of quantum gases,

found that for initial conditions close to the unstable normal

state, the order parameter exhibits large anharmonic periodic

oscillations.

Subsequently, Yuzbashyan et al. [16] developed an ana-

lytical method to predict the state of the system at large

times based on the integrability of the underlying BCS model.

This work extended Volkov and Kogan’s result to large

deviations from equilibrium and showed that the oscillation

frequency is twice the nonequilibrium asymptotic value of the

order parameter, a conclusion confirmed by recent terahertz

pump pulse experiments in Nb1-xTixN films [25,26]. Later

studies [17,18] mapped out the full quantum quench “phase

diagram” for weakly coupled s-wave BCS superconductors

finding that three distinct regimes occur depending on the

strength of the quench: Volkov-and-Kogan-like behavior,

persistent oscillations, and exponential vanishing of the order

parameter. Most recent research [27–30] fueled by exper-

imental breakthroughs [25,31,32] investigates nonadiabatic

dynamics of s-wave BCS superconductors in response to fast

electromagnetic perturbations. Closely related subjects devel-

oping in parallel are exciton dynamics [33], collective neutrino

oscillations [34,35], quenched p-wave superfluids [36,37], etc.
Most existing work addressed the dynamics in the BCS

regime and, in particular, quenches such that the interaction
strength is weak both before and after the quench. This was
so that the system always remains in the BCS regime, since
the physics of the condensate beyond this regime was not
sufficiently well understood. However, a superfluid made up
of cold atoms can be as well quenched from the BCS to
the Bose-Einstein condensation (BEC) regime or within the
BEC regime. With few exceptions [23,36,37], these types of
quenches are not adequately studied in the existing literature.

Our paper aims to close this gap and analyze all possible

interaction quenches throughout the BCS-BEC crossover in a

paired superfluid, including BCS-to-BEC, BEC-to-BCS, and

BEC-to-BEC quenches. We fully determine the steady state of

the system at large times after the quench: the asymptote of the

order parameter, as well as the approach to the asymptote; the

many-body wave function; and certain observables, such as

the radio-frequency absorption spectrum and the momentum

distribution. In the BCS limit, we recover previous results.

Beyond this limit the dynamics is quantitatively and some-

times qualitatively different. For example, the power law in

the Volkov-and-Kogan-like attenuation changes in the BEC

regime, exponential vanishing is replaced with a power law,

and persistent oscillations first change their form and then
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disappear altogether after a certain threshold for quenches

from any initial (e.g., arbitrarily weak) to sufficiently strong

final coupling. We believe an experimental verification of

the predictions of this work is within a reach of current

experiments in cold atomic systems.

The long-time dynamics can be determined explicitly due

to a remarkable reduction mechanism at work, so that at large

times the system is governed by an effective interacting Hamil-

tonian with just a few classical collective spin or oscillator

degrees of freedom. In a sense, the system “flows in time” to a

much simpler Hamiltonian. This observation, combined with

the integrability of the original Hamiltonian (see below), lead

to a method originally proposed in Ref. [16] for obtaining the

long-time asymptote (steady state) of integrable Hamiltonian

dynamics in the continuum (thermodynamic) limit. Here we

improve this method as well as provide its comprehensive and

self-contained review including many previously unpublished

results and steps. We do so in the context of the s-wave

BCS (one channel) and inhomogeneous Dicke (two-channel)

models, but with some modifications the same method also

applies to all known integrable pairing models [38–44], such

as p + ip superfluids [36,37], integrable fermion or boson

pairing models with nonuniform interactions [45,46], Gaudin

magnets (central spin models), and potentially can be extended

to a much broader class of integrable nonlinear equations.

The purpose of this paper is therefore twofold. First, it

serves as an encyclopedia of quantitatively exact predictions,

new and old, for the quench dynamics of real s-wave BCS-BEC

condensates in two and three spatial dimensions. Readers

primarily interested in this aspect of our work will find most

of the relevant information in the Introduction, Sec. VII,

and Conclusion. In particular, Sec. I D concisely summarizes

our main results and provides a guide to other sections that

contain further results and details. Our second goal is to

develop and thoroughly review a method for determining the

far-from-equilibrium dynamics in a certain class of integrable

models. We refer readers interested in learning about the

method to Sec. II. Also, from this viewpoint, Secs. III and IV

should be considered as applications of our approach and

Sec. V as a related development.

A major experimental breakthrough with ultracold atoms

was achieved in 2004, when they were used to emulate s-wave

superconductors with an interaction strength that can be varied

at will [47,48]. The experimental control parameter is the

detuning ω, the binding energy of a two-fermion bound state

(molecule). This parameter determines the strength of the

effective interaction between fermions and can be varied both

slowly and abruptly with the help of a Feshbach resonance.

Moreover, it is straightforward to make time-resolved mea-

surements of the subsequent evolution of the system. Thus,

cold atoms provide a natural platform to study quenches in

superfluids and in a variety of other setups [49,50].

At large ω we have fermionic atoms with weak effective

attraction that form a paired superfluid, an analog of the

superconducting state of electrons in a metal. As ω is

decreased, the atoms pair up into bosonic molecules which

then Bose condense. It was argued for a long time that both

the paired superfluid and the Bose-condensed molecules are in

the same phase of the fermionic gas, named the BCS-BEC

condensate [51,52]. As ω decreases, the strength of the

effective interaction (coupling) between fermions increases

from weak to strong and the system undergoes a BCS-BEC

crossover. At ω ≫ 2εF , where εF is the Fermi energy, the

system is deep in the BCS regime, while at large negative ω

it is deep in the BEC regime. It is not known how to recreate

such a crossover in a conventional solid-state superconductor

since the interaction strength cannot be easily adjusted.

In a quantum quench setup the system is prepared in the

ground state at a detuning ωi . At t = 0 the detuning is suddenly

changed, ωi → ωf . At t > 0 the system evolves with a new

Hamiltonian H (ωf ). The main goal is to determine the state

of the system at large times, t → ∞.

A. Models and approximations

We consider two closely related models in this paper in both

two and three dimensions. The first one is the well-known

two-channel model that describes two species of fermionic

atoms interacting via an s-wave Feshbach resonance

Ĥ2ch =
∑

p,σ=↑,↓
ǫpâ

†
pσ âpσ +

∑

q

(
ω + q2

4m

)
b̂†qb̂q

+ g
∑

pq

(
b̂†qâ q

2
+p,↑â q

2
−p,↓ + b̂qâ

†
q

2
−p,↓â

†
q

2
+p,↑

)
. (1.1)

It is convenient to think of the two types of fermions of mass

m and energy ǫp = p2/2m as spin-up and spin-down, created

and annihilated by operators â
†
pσ and âpσ . The interaction term

converts two fermions into a bosonic molecule and vice versa

at a rate controlled by the parameter g. Molecules are created

and annihilated by b̂
†
q and b̂q and have a binding energy ω.

The parameter g is set by the type of atoms and the specifics

of a particular Feshbach resonance and cannot be changed

in a single experiment; ω can be varied at will by varying the

magnitude of the magnetic field applied during the experiment.

This model describes atoms in the BCS regime when ω is

large, which undergo a crossover to the BEC regime as ω is

decreased.

A parameter with dimensions of energy important for our

analysis of this model is g2νF , where νF is the bulk density of

states (proportional to the total volume) at the Fermi energy

ǫF . A well-known parameter,

γ = g2νF

ǫF

, (1.2)

controls whether the resonance is narrow γ ≪ 1 or broad

γ ≫ 1. This parameter is the dimensionless atom-molecule

interaction strength or, equivalently, the resonance width.

A very convenient feature of the narrow resonance is that,

regardless of the regime of the system, controlled by ω, the

system is adequately described with mean-field theory [53].

This is already clear from the form of the Hamiltonian: Small

γ implies that interaction g is small.

Broad resonances, on the other hand, correspond to large

g. Under those conditions it is possible to integrate out the

molecules b̂q to arrive at a simpler Hamiltonian [53] describing

fermions interacting via a short-range attractive interaction

033628-2
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with variable strength,

Ĥ1ch =
∑

p,σ=↑,↓
ǫpâ

†
pσ âpσ

− λ

νF

∑

pp′q

â
†
q

2
−p,↓â

†
q

2
+p,↑â q

2
+p′,↑â q

2
−p′,↓, (1.3)

where

λ = g2νF

ω
= γ εF

ω
. (1.4)

This is the single (one)-channel, or BCS, model, which is

the second model we analyze in this paper. It also describes

the BCS-BEC crossover as ω is decreased (λ is increased).

However, while in the BCS and (to some extent) in the BEC

regimes corresponding to large and small λ, respectively,

mean-field theory holds in equilibrium, for the intermediate

values of λ (neither large nor small) the mean-field theory

is known to break down. A special value of λ in the middle

of the regime unaccessible to the mean-field theory already

in equilibrium is called the unitary point. It corresponds to

the interaction strength where molecules are about to be

formed. Noncondensed molecules play an important role in

the description of the unitary point and its special properties

are a subject of many studies in the literature [52,54].

Just as in earlier work on the far-from-equilibrium su-

perconductivity, we analyze the quench dynamics in the

mean-field approximation where no molecules are transferred

into or out of the BCS-BEC condensate after the quench;

i.e., the dynamics of the condensate is decoupled from

the noncondensed modes. We analyze the validity of this

approximation for nonequilibrium steady states produced by

quenches in the two-channel model in Appendix A. We find

that the situation is similar to that in equilibrium [53]. In the

case of a broad Feshbach resonance, mean field is expected

to hold for quenches where both initial and final detunings

are far from the unitary point. A quench into the unitary point

is a very interesting problem addressed by some publications

before [55], but the method we employ here is not applicable

to this case.

Nevertheless, a variety of quenches are still accessible to

our description even when the resonance is broad, includ-

ing BCS → BCS, BCS → BEC, BEC → BCS, and BEC →
BEC, where BCS and BEC stand for the value of the interaction

strength far weaker or far stronger than that at the unitary point.

In the case of BCS-BEC superfluids formed with interactions

generated by narrow Feshbach resonances, the mean-field

theory treatment is valid even at the threshold of the formation

of the bound state and throughout the BCS-BEC crossover.

Here we consider quenches of the detuning ω for both narrow

and broad resonances within the mean field. Note that in the

case of the one-channel model we expect the mean field on the

BEC side to be valid only in the far BEC limit where the ground

state essentially consists of noninteracting Bose-condensed

molecules [56].

In the mean-field treatment the condensate is described by

the q = 0 part of the Hamiltonian (1.1), which is decoupled

from q 	= 0 terms in this approximation. The Hamiltonian

therefore becomes

Ĥ2ch =
∑

p

2ǫpŝ
z
p + ωb̂†b̂ + g

∑

p

(b̂†ŝ−
p + ŝ+

p b̂), (1.5)

where

ŝ−
p = âp↑â−p↓, ŝz

p = 1
2

(
â
†
p↑âp↑ + â

†
−p↓â−p↓ − 1

)
(1.6)

are Anderson pseudospin- 1
2

operators [1] and

b̂ = b̂q=0.

Hamiltonian (1.5) is also known as inhomogeneous Dicke

or Tavis-Cummings model. In a quantum quench problem

we need to solve Heisenberg equations of motion for this

Hamiltonian for given initial conditions

d 
̂sp

dt
= 
̂Bp × 
̂sp,

db̂

dt
= −iωb̂ − igĴ−,

(1.7)

̂J =

∑

p


̂sp, 
̂Bp = 2g 
̂b + 2ǫpẑ,

where 
̂b = b̂x x̂ + b̂y ŷ, b̂x , and −b̂y are Hermitian and anti-

Hermitian parts of the operator b̂ = b̂x − ib̂y , and x̂,ŷ,ẑ are

coordinate unit vectors.

The second step in the mean-field treatment of the two-

channel model is to replace Heisenberg operator b̂(t) in the

first equation of motion in Eq. (1.7) with its time-dependent

quantum-mechanical average, b̂(t) → 〈b̂(t)〉 ≡ b(t), which is

expected to be exact in thermodynamic limit as long as the

q = 0 state is macroscopically occupied at all times. This

replacement can be shown to be exact in equilibrium using

the exact solution for the spectrum of the inhomogeneous

Dicke model [38,57] and numerically for the time-dependent

problem [58]. Upon this replacement equations of motion be-

come linear in operators and taking their quantum-mechanical

average, we obtain


̇sp = 
Bp × 
sp, ḃ = −iωb − igJ−,
(1.8)


J =
∑

p


sp, 
Bp = 2g
b + 2ǫpẑ,

where 
sp = 〈
̂sp〉. These are Hamiltonian equations of motion

for a classical Hamiltonian,

H2ch =
∑

p

2ǫps
z
p + ωb̄b + g

∑

p

(b̄s−
p + bs+

p ), (1.9)

which describes a set of angular momenta (classical spins or

vectors) coupled to a harmonic oscillator. Here, b̄ denotes the

complex conjugate of b. These dynamical variables obey the

Poisson brackets
{
sa

p ,sb
k

}
= −εabcδpks

c
p, {b,b̄} = i, (1.10)

where a, b, and c stand for spatial indicies x, y, and z.

Similar steps in the case of the single-channel model (1.3)

lead to a classical spin Hamiltonian,

H1ch =
∑

p

2ǫps
z
p − λ

νF

∑

p,p′

s−
p s+

p′ , (1.11)

together with the corresponding equations of motion.
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An important characteristic of the system both in and out

of equilibrium is the superfluid order parameter or the gap

function defined in the two-channel model as


(t) = −g〈b̂(t)〉 = −gb(t) ≡ 
x(t) − i
y(t). (1.12)

In the one-channel limit, this expression turns into


1ch(t) = λ

νF

∑

p

〈âp↑(t)â−p↓(t)〉 = λ

νF

∑

p

s−
p . (1.13)

The magnitude |
(t)| of the order parameter is known as

the Higgs or amplitude mode for its similarity with the

Higgs boson [20,59] and its time-dependent phase represents

a Goldstone mode. Note, however, that out of equilibrium

the gap function does not entirely determine the state of the

system. It specifies the effective magnetic field acting on each

spin according to Eq. (1.8), but there is still a certain freedom

in how the spin moves in this field. For example, even for

a constant field the spin can precess around it, making an

arbitrary constant angle with its direction.

In the above models we took a free single-particle spectrum,

εp = p2/2m, and labeled states with momenta p. This choice

is not essential for our analysis. We can as well consider an ar-

bitrary spectrum εi . The pairing is then between pairs of time-

reversed states [60,61]; see also the first two pages in Ref. [13]

for more details. For example, in Hamiltonian (1.5) this results

in relabeling 
̂sp → 
̂si , âp↑â−p↓ → âi↑âi↓, â
†
p↑âp↑ → â

†
i↑âi↑,

etc., where the state |i ↓〉 is the time-reversed counterpart of

|i ↑〉. Our results below depend only on the density of the

single-particle states ν(ε) in the continuum limit regardless of

whether these states are characterized by momenta p or any

other set of quantum numbers i.

B. Ground state

In the ground state


(t) = 
0e
−2iμt , (1.14)

where the magnitude 
0 is time independent. Apart from

an overall rotation about the z axis with frequency 2μ, the

ground state is a static solution of the equations of motion that

minimizes H2ch. The minimum is achieved when each spin is

directed against its effective magnetic field, i.e.,

s−
p = 
0e

−2iμt

2E(εp; 
0,μ)
, sz

p = − εp − μ

2E(εp; 
0,μ)
, (1.15)

where

E(ε; 
,μ) ≡
√

(ε − μ)2 + 
2. (1.16)

Note that the length of the spin sp = 1/2. This is because the

ground state is a tensor product of single spin- 1
2

wave functions

and 
sp = 〈
̂sp〉.
The equation of motion (1.8) for b yields

|J−| = (ω − 2μ)
0

g2
, (1.17)

which implies a self-consistency equation for 
0

(ω − 2μ)

g2
=
∑

p

1

2E(εp; 
0,μ)
. (1.18)

Further, the Hamiltonian (1.9) conserves

n = bb +
∑

p

(
sz

p + 1

2

)
, (1.19)

which is the average total number of bosons and fermion pairs.

This number is related to 
0 and the chemical potential μ as

2n = 2
2
0

g2
+
∑

p

[
1 − εp − μ

E(εp; 
0,μ)

]
. (1.20)

The Fermi energy εF is the chemical potential of the

fermionic atoms at zero temperature in the absence of any

interaction, when only fermions are present. It provides an

overall energy scale and it is convenient to measure all energies

in units of the Fermi energy. Thus, from now on, we set

everywhere below

εF = 1. (1.21)

Below we often switch from discrete to continuum (ther-

modynamic limit) formulations. In the former version, there

are N discrete single-particle energy levels εp with certain

degeneracy each. Any quantity Ap we consider in this paper

depends on p only through εp, Ap = A(εp). For example, all

spins 
sp on a degenerate level εp are parallel at all times

and effectively merge into a single vector. There are N such

vectors, so we count N distinct classical spins.

In thermodynamic limit, energies εp form a continuum

on the positive real axis, i.e., are described by a continuous

variable ε with a density of states ν(ε) that depends on the

dimensionality of the problem

ν(ε) = νF f (ε), (1.22)

where νF is the bulk density of states (proportional to

the system volume) at the Fermi energy, f (ε) = 1 in two

dimensions (2D), and f (ε) = √
ε in 3D. Summations over

p turn into integrations,

∑

p

Ap → νF

∫ ∞

0

A(ε)f (ε)dε. (1.23)

With only fermions present, the total particle number is

2n =
∫ 1

0

2ν(ε)dε = 4

d
νF , (1.24)

where d = 2,3 is the number of spatial dimensions. Interaction

redistributes this number between fermions and bosons as in

Eq. (1.20). Combining Eqs. (1.20) and (1.24) and taking the

continuum limit, we obtain

4

d
= 2
2

0

γ
+
∫ ∞

0

⎡
⎣1 − ε − μ√

(ε − μ)2 + 
2
0

⎤
⎦ f (ε)dε, (1.25)

where γ is the dimensionless resonance width defined in

Eq. (1.2).

Similarly, Eq. (1.18) becomes in the thermodynamic limit

2ω − 4μ

γ
=
∫ ε�

0

f (ε)dε√
(ε − μ)2 + 
2

0

, (1.26)

033628-4



QUANTUM QUENCH PHASE DIAGRAMS OF AN s-WAVE . . . PHYSICAL REVIEW A 91, 033628 (2015)

0 0.2 0.4 0.6 0.8 1

max

-12

-8

-4

0

F

FIG. 1. (Color online) Ground-state chemical potential μ for the

two-channel model in 3D in units of the Fermi energy εF as a function

of the ground-state gap 
0 for various resonance width γ . μ(
0) is

calculated from Eqs. (1.25) and (1.26). Note that in the two-channel

model 
0 is bounded from above by 
max.

where ε� is the high-energy cutoff. In 3D it can be eliminated

by an additive renormalization of the detuning ω; see, e.g.,

Ref. [53]. This, however, does not affect our results for the

quench dynamics as they depend on the difference between

the initial and final values of the detuning.

Equations (1.25) and (1.26) contain two independent

parameters not counting the cutoff. For example, we can

choose γ and ω and determine μ and 
0 from these equations,

or choose γ and 
0 and determine μ and ω etc.; see Fig. 1 for a

plot of μ(
0) for various γ in 3D. Note also that 
2
0 = g2b̄b is

proportional to the number of bosons and is therefore limited

by the total number of particles. Equation (1.25) implies


0 �

√
2γ

d
= 
max. (1.27)

C. Quench setup and initial conditions

In a quantum quench setup we prepare the system in a

ground state at a certain detuning ωi ; i.e., the initial state is

s−
p (t = 0) = 
0i

2E(εp; 
0i,μi)
,

(1.28)

sz
p(t = 0) = − εp − μi

2E(εp; 
0i,μi)
,

where 
0i,μi are the ground-state values determined by

Eqs. (1.25) and (1.26) with ω = ωi . We then quench the

detuning ωi → ωf and evolve the system with the two-channel

Hamiltonian (1.9) starting from the initial state (1.28) at t = 0.

The state of the system is fully determined by the many-

body wave function, which in the mean-field treatment is at all

times a product state of the form

|�(t)〉 = |ψ(t)〉 ⊗ (b̂†)n(t)|0〉, (1.29)

where n(t) = |b(t)|2 and |ψ(t)〉 is the fermionic part of the

wave function:

|ψ(t)〉 =
∏

p

[up(t) + vp(t)â
†
p↑â

†
−p↓]|0〉. (1.30)

Bogoliubov amplitudes up(t),vp(t) obey the Bogoliubov de

Gennes (BdG) equations

i
∂

∂t

(
up(t)

vp(t)

)
=
(

ǫp 
(t)


̄(t) −ǫp

)(
up(t)

vp(t)

)
, (1.31)

with the normalization condition |up|2 + |vp|2 = 1. Apart

from an overall time-dependent phase (which is important

for certain observables), these equations are equivalent to the

classical spin equations of motion (1.8) and spins are related

to the amplitudes as

s−
p

sp

= 2upvp,
sz

p

sp

= |vp|2 − |up|2, (1.32)

where sp is the length of the spin. For quench initial conditions

sp = 1/2, as explained below Eq. (1.16).

Each quench is uniquely characterized by three parameters:

the resonance width γ = g2νF and the initial ωi and final ωf

values of the detuning in units of the Fermi energy. Indeed,

ωi and γ determine 
0i and μi and thus the initial condition,

while the equations of motion (1.7) in the thermodynamic limit

depend only on ωf and γ . To see the latter, note that model

parameters enter the equation of motion for spin 
sp ≡ 
s(εp)

only through 
 = −gb, while the equation of motion for the

bosonic field b can be equivalently written as


̇ = −iωf 
 + iγ

∫ ∞

0

s−(ε)f (ε)dε. (1.33)

Instead of ωi,ωf we find it more convenient to characterize

the quench by 
0i,
0f , the ground-state gaps corresponding

to these values of the detuning. As discussed below Eq. (1.26),

for a given γ , the detuning ω uniquely determines 
0 and

vice versa. Note that 
0f has nothing to do with the time-

dependent gap function 
(t) and in particular with the large-

time asymptote 
(t → ∞). Whenever 
(t) goes to a constant

at large times, we denote this constant 
∞.

D. Main results

Our main result is a complete description of the long-time

dynamics of two- and one-channel models (1.9) and (1.11)

in two and three spatial dimensions following a quench of

the detuning ωi → ωf (coupling λi → λf in the one-channel

model) in the thermodynamic limit. A key effect that makes

such a description possible is a drastic reduction in the number

of effective degrees of freedom as t → ∞. It turns out that the

large-time dynamics can be expressed in terms of just a few

new collective spins plus the oscillator in the two-channel case

that are governed by the same Hamiltonians (1.9) and (1.11)

only with new effective parameters replacing εp and ω. The

number of collective spins is m = 0, 1, or 2 and m = −1, 0,

or 2 for one- and two-channel models, respectively, depending

on the quench. The difference is due to the presence of the

oscillator degree of freedom in the latter case. For example,

m = −1 means that the effective large-time Hamiltonian Hred

not only has no spins, but also the oscillator b is absent; i.e.,

Hred = 0. This reduction effect combined with integrability of

classical Hamiltonians (1.9) and (1.11) allows us to determine

the state of the system (its many-body wave function) at t →
∞. We explain this method in detail in Sec. II. This section
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provides a summary of main results obtained with the help of

this method.

In Secs. III and IV, we construct exact quench phase

diagrams shown in Figs. 2–5. Depending on the values of

ωi and ωf either system reaches one of three distinct steady

states labeled by I, II (including subregion II′), and III that can

be thought about as nonequilibrium phases with second-order

phase transition lines between them [t → ∞ limit of the order

parameter 
(t) is continuous along lines separating different

regions]. These steady states correspond to m = 0, 1, or 2

collective spins, respectively, for the one-channel model and

to m = −1, 0, or 2 in the case of two channels.

Each point in the quench phase diagrams represents a

particular quench specified by a pair of values (
0i,
0f ).

Here 
0 is the gap that the system would have in the

ground state at detuning ω, which is a known function of

ω. Values 
0i and 
0f —ground-state gaps for ω = ωi and

ωf , respectively—uniquely determine ωi and ωf at fixed

resonance width γ . Note that 
0f is not the magnitude of the

actual steady-state gap function |
(t)|. Each quench ωi → ωf

(or λi → λf ) therefore maps to a single point (
0i,
0f ) and

vise versa.

Steady states I, II, and III reached by the system at t → ∞
can be described in terms of the superfluid order parameter


(t). In region I of phase diagrams in Figs. 2–5 the gap

function vanishes at large times, 
(t) → 0; see Fig. 6.

In region II (including subregion II′) the magnitude of

the order parameter asymptotes to a nonzero constant 
∞
as illustrated in Fig. 7,


(t) → 
∞e−2iμ∞t−2iϕ, (1.34)

where 
∞,μ∞ are functions of ωi, ωf (or, equivalently, of 
0i

and 
0f ), and γ to be determined below, and ϕ is a constant

phase. Plots of 
∞ and μ∞ as functions of 
0f for fixed 
0i

are shown in Figs. 9, 18, and 19. The quantity μ∞ plays the

role of the out-of-equilibrium chemical potential. Subregions

II and II′ of region II correspond to μ∞ > 0 and μ∞ < 0,

respectively.

In region III of quench phase diagrams the amplitude of the

order parameter oscillates persistently at large times, as shown

in Fig. 8,


(t) →
√

�2(t) + h1e
−i�(t), (1.35)

where

�(t) = 
+dn[
+(t − t0),k′], k′ = 
−

+

, (1.36)

where dn is the Jacobi elliptic function and t0 is an integration

constant. The magnitude of the order parameter oscillates

periodically between 
b = (
2
− + h1)1/2 and 
a = (
2

+ +
h1)1/2. The phase contains linear and periodic parts [62],

�(t) = 2μt −
∫

κdt

�2(t) + h1

. (1.37)

Constants h1, 
+, 
−, μ, and κ are known functions of


0i, 
0f (or ωi,ωf ), and γ to be specified below; see also

Figs. 9 and 10 and refer to Sec. II D 2 for more information

about the periodic solution.

Previous studies of the BCS dynamics [3,7,16–19] were

performed in the weak-coupling regime when both 
0i and
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FIG. 2. (Color online) Detuning quench phase diagrams for the

two-channel model (1.1) in 2D for an assortment of resonance widths

γ . Each point represents a single quench labeled by 
0i (vertical

axis) and 
0f (horizonal axis), pairing gaps the system would have

in the ground state for initial and final detunings. At large times the

system ends up in one of three steady states shown as regions I, II

(including II′), and III. For quenches in region I the order parameter

vanishes, 
(t) → 0. In II 
(t) → 
∞e−2iμ∞t−2iϕ and in III |
(t)|
oscillates persistently. Subregions II and II′ differ in the sign of μ∞
(out of equilibrium analog of the chemical potential): μ∞ > 0 in

II and μ∞ < 0 in II′. The diagonal, 
0i = 
0f , is the no-quench

line. To the left of it are strong-to-weak-coupling quenches; to the

right are weak- to strong-coupling quenches. 
max = εF

√
γ in 2D is

the maximum possible ground-state gap and 
0× is the ground-state

gap corresponding to zero chemical potential; i.e., 
0× is given by

Eq. (1.25) for μ = 0.
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FIG. 3. (Color online) Same as Fig. 2 but in three spatial

dimensions.


0f are much smaller than a characteristic high-energy

scale (Fermi energy for cold gases and Debye energy for

conventional superconductors). This limit corresponds to an

infinitesimal vicinity of the origin 
0i = 
0f = 0 in our

quench phase diagrams in Figs. 2–5. The weak-coupling limit

is universal in that it is independent of the resonance width and

dimensionality and thus is the same in all diagrams. Critical

lines separating regions I from II and II from III are straight

lines in this case coming out of the origin with slopes


0i


0f

= e±π/2. (1.38)

Further, h1 = 0 in Eq. (1.35) and 
∞, 
± take a simpler form

given by Eqs. (3.27)–(3.29), and (3.31).

FIG. 4. (Color online) Interaction (λ) quench phase diagram for

the one-channel model (1.11) in 2D. Otherwise same as Fig. 2.

There are several qualitatively new effects beyond the

weak-coupling regime. At smaller resonance width γ < γc =
16/π2, gapless region I terminates below 
max at 
0i = γπ/4

along the vertical axis in 2D. This means that as initial coupling

gets stronger (
0i increases), even quenches to arbitrarily weak

final coupling (small 
0f ) do not result in vanishing 
(t) at

large times, in contrast to the weak-coupling regime, where

quenches with sufficiently large 
0f /
0i always do. The I-II

critical line also displays an interesting backwards bending

behavior for γ < γc = 16/π2; see the inset in Fig. 2(b) and

Eqs. (3.38) and (3.34).

Region III of persistent oscillations terminates at a threshold

value of 
0f < 
max in 3D, see Figs. 3 and 5. This means that

even quenches from an infinitesimally weak initial coupling

(λi = 0+ in the one-channel model, which corresponds to

a vicinity of the normal state) to final couplings stronger

than a certain threshold value produce no oscillations and

|
(t)| instead goes to a constant. At finite but small initial

gap 
0i (e.g., along the dashed line in Fig. 3) there is a

0 0.4 0.8 1.2 1.6 2

0f
 / 

F

0

0.4

0.8

1.2

1.6

2

0
i /

 
F

I

II

III

II′

0x

0x

FIG. 5. (Color online) Interaction quench phase diagram for the

one-channel model (1.11) in 3D (otherwise the same as Fig. 2).

Consider, e.g., quenches from fixed infinitesimal coupling λi (small


0i) to various final couplings λf . Increasing λf (
0f ) we move

through gapless (I), gapped (II), then oscillating (III) steady states.

As λf increases, further oscillations disappear and we again end up

in a steady state characterized by constant asymptotic |
(t)| (II′).
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FIG. 6. (Color online) |
(t)| in region I for a 3D two-channel

model, γ = 1, obtained from numerical evolution of N = 5024 spins

following a detuning quench ωi → ωf . Here 
0i = 0.27
max, 
0f =
4.30 × 10−2
max [cf. Fig. 3(b)]. From these two values all other

parameters obtain, e.g. μi = 0.90εF and ωf − ωi = 1.97εF .

reentrant behavior in both 2D and 3D as the final coupling

(
0f ) increases when first there are no oscillations, then

they appear, and then they disappear again. The threshold

value of 
0f where the critical line separating regions II and
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FIG. 7. (Color online) |
(t)| in regions II (top) and II′ (bottom)

for a 3D two-channel model, γ = 1, obtained from numerical

evolution of N = 5024 spins after quenching the detuning ω. 
0i =
0.27
max, μi = 0.90εF in both panels (same as in Fig. 6). The

final detuning corresponds to (a) 
0f = 0.56
max = 2.07
0i and

(b) 
0f = 0.97
max = 3.59
0i . See also Fig. 3(b).
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FIG. 8. (Color online) Amplitude (Higgs mode) and phase �(t)

of the order parameter 
(t) in region III of Fig. 3(c) after detuning

quench from deep BCS to BEC in a 3D two-channel model for γ =
10. Numerical evolution with 5024 spins vs Eqs. (1.35) and (1.37).


0i = 3.20 × 10−3
max, 
0f = 0.45
max, and δω = −5.86γ .

III terminates is given by Eq. (3.47) (plotted as a function

of the resonance width in Fig. 22) and Eq. (4.18) for one-

and two-channel models, respectively. For more details about

quench diagrams, such as the shape of the critical lines, various

thresholds and termination points, and values of parameters

(e.g., 
∞, μ∞, 
+, and 
−) characterizing asymptotic 
(t),

see Secs. III and IV.

The large-time asymptote of 
(t) does not fully specify

the steady state. One also needs to know the Bogoliubov

amplitudes up(t → ∞),vp(t → ∞). We calculate them in

Sec. II D in all three steady states. In terms of spin vectors, this

translates into steady-state spin distribution. Even in regions I

and II where |
(t)| goes to a constant, the steady state of the

system is far from any equilibrium state. Time-independent

|
(t)| means that in a frame that rotates around the z axis

with frequency 2μ∞ the magnetic field 
Bp that acts on spin


sp in Eq. (1.7) is constant. In equilibrium 
sp aligns with 
Bp

or − 
Bp (ground state). In steady states I and II it instead

rotates around 
Bp, making a constant angle with it. Let θp

be the angle between 
sp and − 
Bp (negative z axis in steady

state I), so that in the ground state θp = 0. Out-of-equilibrium

θp determines the steady-state spin distribution function and is

given by Eq. (3.11). This expression for cos θ (εp) applies in all

three steady states, but its interpretation in region III is slightly

different and is explained below. A plot of the distribution
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FIG. 9. (Color online) Limiting values of |
(t)| for a 3D two-

channel model at large times after a detuning quench as functions

of 
0f (or, equivalently, of final detuning ωf ) at fixed small


0i = 0.05
max (fixed initial detuning deep in the BCS regime).

This corresponds to moving along a horizontal line (not shown)

in Figs. 3(a) and 3(c) going through regions I, where |
(t)| → 0,

II, where |
(t)| → 
∞ > 0, III, where |
(t)| oscillates periodically

between 
a and 
b, and into region II′, where again |
(t)| → 
∞ >

0. Note that persistent oscillations appear and then disappear again

as we decrease ωf − ωi (i.e., increase 
0f at fixed 
0i). The same

behavior is observed in the 3D one-channel model; see Fig. 5.

function cos θp is shown in Fig. 11. We explore the asymptotic

states produced by detuning or interaction quenches in detail

in Sec. II D. In Sec. VII we provide further insight into their

physical nature and discuss their experimental signatures.

We perform detailed analysis of linearized equations of

motion that goes much beyond previous work even in the

weak-coupling regime and yields a range of new results. Small

quenches of the detuning correspond to a small neighborhood

of the diagonal in quench diagrams in Figs. 2–5; i.e., they fall

within region II, where |
(t)| → 
∞ and Eq. (1.34) applies.

We show that within linear approximation 
∞ = 
0f and

μ∞ = μf ; i.e., there are no corrections to these equations

linear in the change of detuning or, equivalently, in δ
0 =

0f − 
0i . This is, in fact, a general result that has been

overlooked by previous work; to first order in deviations from

the ground state 
(t) always asymptotes to its ground-state

form for the Hamiltonian with which the system evolves at

t > 0. Note, however, that when quadratic correction is taken

into account one gets 
∞ < 
0f . For example, in the weak-

0.2 0.4 0.6 0.8

Δ
0f

 /Δ
max

-0.1

-0.05

0

0.05

0.1

h
1
 /

 Δ
2

γ = 0.1

3D

_
0.1 0.2 0.3 0.4

Δ
0f

 /Δ
max

-1

-0.8

-0.6

-0.4

-0.2

0

h
1
 /

 Δ
2

γ = 10

3D

_

0.2 0.4 0.6 0.8

Δ
0f

 /Δ
max

-0.1

-0.05

0

0.05

0.1

h
1
 /

 Δ
2

γ = 0.1

3D

_

(a)

(b)

FIG. 10. (Color online) Parameter h1 in Eq. (1.35) for asymptotic

|
(t)| in phase III as a function of 
0f at fixed small 
0i = 0.05
max

(same as in Fig. 9). For quenches within the weak-coupling limit

h1 = 0, so nonzero h1 quantifies deviations from this limit. Note that

one must have h1 � −
2
−, so that the expression under the square

root in Eq. (1.35) is non-negative.

coupling regime we find


∞ = 
0f − (δ
0)2

6
0f

. (1.39)

We obtain an exact expression for 
(t)—Eqs. (5.35)–

(5.37)—valid at all times and arbitrary coupling strength for

both one- and two-channel models. In the weak-coupling

regime this expression simplifies so that

|
(t)| = 
0f − 2δ
0

∫ ∞

0

dx

π

cos[2
0t cosh(πx/2)]

1 + x2
.

(1.40)

From here short- and long-time asymptotes follow. At short

times the order parameter amplitude rises or falls sharply as

|
(t)| = 
0i + δ
0

|ln(
0t)|
. (1.41)

The long-time behavior in the weak-coupling limit is

|
(t)| = 
0f − 2δ
0

π3/2

cos(2
0t + π/4)√

0t

. (1.42)

At stronger coupling in region II (but not II′) the long-time

asymptote is still given by Eq. (1.42); only the coefficient

in front of the second term on the right-hand side is more

involved.
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FIG. 11. (Color online) Spin distribution cos θp as a function of

εp (in units of Fermi energy) at large times after the quench in a 3D

two-channel model. In phases I and II, − cos θp/2 is the projection of

the spin 
sp onto its effective magnetic field (z axis in phase I) around

which it precesses. In equilibrium cos θp = ±1 (1 in the ground

state) for all momenta and in phase I cos θp = −1 and 1 correspond

to doubly occupied and unoccupied states, respectively. Quench

parameters are γ = 1 and (a) 
0i = 0.05
max, 
0f = 0.002
max

(BCS to deep BCS quench in phase I); (b) 
0i = 0.78
max, 
0f =
0.001
max (BEC to deep BCS quench in phase I). In both cases

μ∞ ≈ εF . Note the Fermi-like shape of the distribution function in

(a). Note that cos θp → 1 as εp → ∞, as it should, indicating that

states at very high energies are empty.

Regions II and II′ differ in the sign of the phase frequency

μ∞, μ∞ > 0 in II and μ∞ < 0 in II′. We see below that

frequency (Fourier) spectrum of quench dynamics in regions

II and II′ is E∞(εp) =
√

(εp − μ∞)2 + 
2
∞, so that the Fourier

transform of a dynamical quantity reads
∫∞

0
A(ε)e−2iE∞(ε)tdε.

For μ∞ > 0 the phase has a stationary point on the integration

path at ε = μ∞, while for μ∞ < 0 it is absent. As a result, the

long-time behavior in 3D in region II′ changes,

|
(t)| = 
0f

[
1 − c

δω

γ

cos(2Emint + π/4)

(2|μ|t)3/2

]
, (1.43)

where Emin =
√

μ2 + 
2
0, c is of order one, and δω = ωf −

ωi . The same expression holds for the one-channel model after

a replacement δω/γ → 1/λf − 1/λi . Oscillation frequency

Emin and 1/t3/2 decay are in agreement with Ref. [23] and

reflect the fact that in the absence of a stationary point, the long-

time asymptote is dominated by the end point of integration at

ε = 0, E(0) = Emin, and the density of states in 3D vanishes

as
√

ε at small ε.

In 2D linear analysis yields a different approach to the

asymptote in region II′

|
(t)| = 
0f

[
1 − δω

γ

sin(2Emint)

|μ|t ln2 t

]
, (1.44)

because of a constant density of states and ln ε divergence

of the Fourier amplitude of |
(t)| at small ε (see below).

We also determine the time-dependent phase of the order

parameter �(t) in all cases corresponding to Eqs. (1.40)–

(1.44), asymptotes of individual spins 
sp(t) as t → ∞, and

many other new results for the linearized dynamics in Sec. V.

Finally, we extend some of the above results for the long-

time behavior of |
(t)| to the nonlinear regime, though, unlike

the linear analysis, these results are not rigorous. In region II

|
(t)| = 
∞ + c′ cos(2
∞t + π/4)√

∞t

, (1.45)

where c′ is a dimensionless coefficient. This answer holds for

both one- and two-channel models in either dimension.

For region II′ we argue that the answer depends on

dimensionality similarly to the linear analysis and

|
(t)| = 
∞

[
1 − c1

sin
(
2Emin

∞ t
)

t ln2 t

]
in 2D, (1.46)

|
(t)| = 
∞

[
1 − c2

cos
(
2Emin

∞ t + π/4
)

t3/2

]
in 3D, (1.47)

where Emin
∞ =

√
μ2

∞ + 
2
∞.

The approach to the gapless steady state (region I) is

expected to be

|
(t)| = c4

t lnr t
in 2D, (1.48)

where r = 1 or r = 2, and

|
(t)| = c3

t3/2
in 3D. (1.49)

We discuss these nonlinear large-time asymptotes in more

detail in Sec. VI.

II. METHOD

Here we describe a method that allows one to determine

the asymptotic state of the system at long times. Both

the quantum (1.5) and classical (1.9) two-channel models

are integrable meaning that there are as many nontrivial

conservation laws as there are degrees of freedom. There

is an exact Bethe ansatz-type solution for the quantum

spectrum [38]. In the classical case integrability implies a

formal inexplicit solution of the equations of motion in terms of

certain multivariable special (hyperelliptic) functions [15] that

can be helpful for understanding certain general features of the

dynamics. Evaluating specific dynamical quantities of interest

for realistic initial conditions with this solution is, however,

roughly equivalent to just solving the equations of motion

numerically. However, the latter could be as well done directly

without the formal exact solution. This is a typical situation in

the standard theory of nonlinear integrable systems.
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Fortunately, it was realized that, at least for the BCS-type

models, the large-time dynamics dramatically simplifies in the

thermodynamic limit, so that the number of evolving degrees

of freedom effectively drops to just a few spins. Building on

this insight, Yuzbashyan et al. [16] were able to develop a

method that goes beyond the standard theory and explicitly

predicts the long-time dynamics in the thermodynamic limit.

The main idea of this method is as follows. First, we

construct a special class of reduced solutions of the classical

equations of motion for the two-channel model such that the

dynamics reduces to that of just few effective spins. Then we

choose a suitable reduced solution and fix its parameters so

that its integrals of motion match those for a given quench

in the thermodynamic limit. Reduced solutions have only few

additional arbitrary constants and cannot generally satisfy all

of the quench initial conditions (1.28). There are 2N + 2 initial

conditions (two angles per spin plus two initial conditions

for the oscillator mode b) and only N + 1 correspond to the

integrals of motion.

Next, exploiting the fact that for fixed 
(t) BdG equa-

tions (1.31) are linear in the amplitudes up and vp, we derive

the most general t → ∞ asymptotic solution that has the

same 
(t) as the reduced one. It has the same integrals as

the quench dynamics by construction and, in addition, N + 1

arbitrary independent constants to match the remaining initial

conditions. We conjecture that the so-constructed asymptotic

solution is the true large-time asymptote of the actual quench

dynamics. To verify this few spin conjecture it is sufficient to

show that the large-time asymptote of the actual 
(t) matches

that of the reduced (and therefore general asymptotic) solution.

We do so numerically in the nonlinear case and analytically for

infinitesimal quenches when the dynamics can be linearized.

We consider the two-channel model in this and the

following sections and then obtain similar results for the

one-channel (BCS) model in Sec. IV by taking the broad

resonance, γ → ∞, limit.

A. Integrability and Lax vector construction

An object called Lax vector plays a key role in our approach.

It encodes all the information about the integrals of motion

and turns out to be especially useful in analyzing the quench

dynamics in the thermodynamic limit. The Lax vector is

defined as


L(u) =
∑

p


sp

u − εp

− (ω − 2μ)

g2
ẑ + 2

g2
[(u − μ)ẑ − 

],

(2.1)

where u is an auxiliary complex variable and 

 ≡ 
x x̂ + 
y ŷ.

Poisson brackets of components of 
L(u) satisfy the following

Gaudin algebra:

{La(u),Lb(v)} = εabc

Lc(u) − Lc(v)

u − v
. (2.2)

This implies an important equality,

{ 
L2(u), 
L2(v)} = 0. (2.3)

Explicit evaluation of 
L2(u) yields


L2(u) = (2u − ω)

g4
+ 4Hb

ωg2
+
∑

p

[
2Hp

g2(u − εp)
+

s2
p

(u − εp)2

]
,

(2.4)

where

Hp = g2
∑

q 	=p


sp · 
sq

(εp − εq)
+ (2ǫp − ω)sz

p + g(bs−
p + bs+

p ),

Hb = bb +
∑

p

sz
p. (2.5)

It follows from Eq. (2.3) that these spin Hamiltonians mutually

Poisson commute, i.e.,

{Hp,Hp′} = {Hp,Hb} = 0. (2.6)

Moreover, the two-channel Hamiltonian (1.9) is

H2ch = ωHb +
∑

p

Hp. (2.7)

This implies that Hp and Hb are conserved by H2ch and

establishes the integrability of the two-channel Hamiltonian.

Note that 
L2(u) is also conserved for any value of u and serves

as a generator of the integrals of motion for the two-channel

model. The same construction works in the quantum case as

well; one only needs to promote classical dynamical variables

to corresponding quantum operators and replace Poisson

brackets with commutators.

Equations of motion can be conveniently and compactly

written in terms of the Lax vector as


̇L = (−2 

 + 2uẑ) × 
L. (2.8)

Comparing the residues at the poles at both sides of this

equation, we see that it is equivalent to the equations of motion

for spins (1.8).

The square of the Lax vector is of the form


L2(u) = Q2N+2(u)

g4
∏

εp
(u − εp)2

, (2.9)

where N is the total number of distinct single-particle energies

εp, the product is similarly over nondegenerate values of εp,

and Q2N+2(u) is a polynomial in u of degree 2N + 2. The

roots of this spectral polynomial [or equivalently of 
L2(u)]

play an important role in the further analysis of the asymptotic

behavior. Note that since 
L2(u) is conserved, so are its roots.

They thus constitute a set of integrals of motion alternative to

Eq. (2.5). Since 
L2(u) � 0 for real u, its roots come in complex

conjugate pairs.

B. Reduced solutions

Let us look for special solutions of equations of motion (2.8)

such that the Lax vector factorizes into time-dependent
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and -independent parts,


Lred(u) =
∑

p


σp

u − εp

− (ω − 2μ)

g2
ẑ + 2

g2
[(u − μ)ẑ − 

]

=
(

1 +
∑

p

dp

u − ǫp

)

Lm(u), (2.10)

where 
σp (not to be confused with Pauli matrices) denote spins

in this solution that can have arbitrary length to distinguish

them from spins 
sp for the quench dynamics that have

length 1/2. Further, dp are time-independent constants to be

determined later and 
Lm(u) is the Lax vector for an effective

m-spin system,


Lm(u) =
m−1∑

j=0


tj
u − ηj

− (ω′ − 2μ)

g2
ẑ + 2

g2
[(u − μ)ẑ − 

].

(2.11)

Here 
tj are new collective spin variables placed at new arbitrary

“energy levels” ηj . Note that the bosonic field 
b and therefore


 are the same in the original and reduced models.

Substituting Eq. (2.10) into the equations of motion (2.8),

we see that 
Lm(u) satisfies the same equation of motion.

This means that variables 
tj obey Bloch equations (1.8) with

εp → ηj and ω → ω′, and are therefore governed by the same

Hamiltonian,

H red
2ch =

m−1∑

j=0

2ηj t
z
j + ω′bb + g

m−1∑

j=0

(bt−j + bt+j ). (2.12)

We need at most m = 1 for analyzing the quench dynamics,

so we are able solve the equations of motions for 
tj directly.

Matching the residues at u = εp on both sides of Eq. (2.10),

we express original spins in terms of 
tj


σp = dp

Lm(εj ). (2.13)

Constants dp are determined from the above equation using


σ 2
p = σ 2

p , where |σp| is the length of spin 
σp. Note that σp can

be of either sign (for future convenience). We have

dp = − σp√

L2

m(εp)

. (2.14)

It is important to note that σp are arbitrary constants at this

point. We determine them later so that the integrals of motion

for the reduced solution match those for quench dynamics.

To satisfy Eq. (2.10), we also need to match the residues at

u = ηk and the u → ∞ asymptotic. This leads to the following

m + 1 equations:

1 +
∑

p

dp

ηk − εp

= 0 k = 0, . . . ,m − 1,

ω = ω′ − 2
∑

p

dp.
(2.15)

Equations (2.15) constrain the coefficients of the spectral

polynomial

Q2m+2(u) = g4 
L2
m(u)

m−1∏

k=0

(u − ηk)2, m � 0, (2.16)

of the m-spin system. Indeed, using Eq. (2.14), we can cast

these constraints into the following form:

∑

p

σpε
r−1
p√

Q2m+2(εp)
= −δrm

g2
, r = 1, . . . ,m,

(2.17)

ω′ = ω + 2

m−1∑

k=0

ηk +
∑

p

2σpg
2εm

p√
Q2m+2(εp)

.

Here m � 0. These equations can be viewed as equations for

determining the lengths of the collective spins 
tj .

We thus constructed a class of solutions such that the

dynamics reduces to that of a smaller number of spins. These

few-spin solutions, however, do not match the quench initial

conditions, but, as we will see, the long-time asymptote of 
(t)

after the quench coincides with 
(t) of an appropriately chosen

few-spin solution. Specifically, m = −1, 0, and 1 are realized

depending on the magnitude and the sign of the change in the

detuning ω. Let us therefore consider these particular cases.

1. m = −1 spin solutions

m = −1 refers to the case when there are no collective

spins and b = 0; i.e., the oscillator (which can be viewed as an

infinite length limit of a spin) is effectively absent as well. In

other words, Hred = 0 and 
Lm(u) = 2u−ω′

g2 ẑ. Equation (2.13)

then implies that all spins in the reduced solution are along the

z axis pointing in either a positive or a negative direction. It is

convenient to redefine the sign of σp (only for m = −1) so that


σp = −σpẑ. We see directly from the equations of motion (1.8)

that this configuration together with b = 0 is indeed a solution,

a stationary one in the present case.

2. m = 0 spin solutions

In this case the reduced problem consists of a free classical

oscillator as there are no collective spins; i.e., Hred = ω′b̄b.

Equations of motion reduce to ḃ = −iω′b. Therefore,


(t) = −gb = ce−2iμt , (2.18)

where c is a complex constant and we defined μ = ω′/2.

Expressions for the original spins follow from the reduced

Lax vector


Lm(u) = − 2

g2
[ 

 − (u − μ)ẑ]. (2.19)

Equations (2.13) and (2.14) imply


σp = σp

E(εp; 
,μ)
[ 

 − (εp − μ)ẑ], (2.20)

where E(εp; 
,μ) =
√

(εp − μ)2 + |
|2. We see that the

ground state (1.15) is a one-spin solution with c = 
0 and

σp = 1/2 (to minimize the energy). Excited states are also

one-spin solutions with different parameters.
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There is only one (last) constraint among Eqs. (2.17) for

m = 0, which we recognize as a generalization of the gap

equation (1.18).

3. m = 1 spin solutions

This example is substantially more involved than the

previous two. Now there is one collective spin 
t coupled to

an oscillator,

Hred = 2ηtz + ω′bb + g(bt− + bt+), (2.21)

making the dynamics rather nontrivial. Our main goal

presently is to derive a differential equation for |
(t)| =
g|b(t)| and to relate its coefficients to the spectral polynomial

Q4(u) of the reduced m = 1 problem given, in general, by

Eq. (2.16).

Hred conserves b̄b + tz. It follows that tz can be expressed

through |b|2 as tz = c1�
2 + c2, where c1,2 are constants and

we introduced a notation


 = �e−i�. (2.22)

Equation (2.13) then implies that the z component of the orig-

inal spins in the reduced solution can be similarly expressed

through |
| as

σ z
p = ap�

2 + bp. (2.23)

Note that constants ap and bp are inversely proportional to√

L2

m(εp) and therefore to
√

Q4(εp). It turns out that an efficient

strategy to derive an equation for � and relate its coefficients

to those of Q4(u) is somewhat indirect. First, we use equations

of motion for 
σp together with Eq. (2.23) to obtain an equation

for � and expressions for ap and bp. Identifying
√

Q4(εp) in

the latter with the help of Eq. (2.14), we relate the coefficients.

Bloch equations (1.8) for spins in the reduced solution,


s red
p ≡ 
σp, can be written as

σ̇ z
p = −i(σ−

p 
̄ − σ+
p 
), σ̇−

p = −2iσ z
p
 − 2iεpσ

−
p .

(2.24)

Substituting σ z
p from Eq. (2.23) into the first equation, we

obtain

σ−
p ei� − σ+

p e−i� = 2iap�̇. (2.25)

Multiplying the second equation in Eq. (2.24) by ei� and

adding the resulting equation to its complex conjugate, we

get

d

dt
(σ−

p ei� + σ+
p e−i�) = 4apεp�̇ − 2ap�̇�̇, (2.26)

where we also used Eq. (2.25). Integrating this and adding the

result to Eq. (2.25), we obtain

σ−
p ei� = 2apεp� − apA + iap�̇, (2.27)

where A =
∫

dt�̇�̇. Equation (2.27) implies

|σ−
p |2 = (2apεp� − apA)2 + a2

p�̇
2. (2.28)

Equations (2.28) and (2.23) combined with the conservation of

the length of the spin, (σ z
p )2 + |σ−

p |2 = σ 2
p , yield a differential

equation for �

(ap�
2 + bp)2 + (2apεp� − apA + cp)2 + a2

p�̇
2 = σ 2

p .

(2.29)

Dividing the last equation by a2
p and rearranging, we obtain

�̇2 + �4 + �2

(
2
bp

ap

+ 4ε2
p

)
− 4εpA� + A2

+
b2

p − σ 2
p

a2
p

= 0. (2.30)

It turns out that A is a certain function of �. To see this, let xp

be a set of numbers such that
∑

p xp = 0, multiply Eq. (2.30)

by xp, and sum over p. This yields

A = 2μ� + κ

�
, (2.31)

where μ and κ are arbitrary real constants. Substituting

Eq. (2.31) into Eq. (2.30), we obtain

�̇2 + �4 + 2�2

[
bp

ap

+ 2ξ 2
p

]
+ κ2

�2
+

b2
p − σ 2

p

a2
p

− 4κξp = 0,

(2.32)

where ξp = εp − μ. Note that the same equation obtains in the

reduced problem with ap → c1, bp → c2, etc. It follows that

coefficients must be p independent; i.e.,

bp

ap

+ 2ξ 2
p = 2ρ,

b2
p − σ 2

p

a2
p

− 4κξp = 4χ, (2.33)

where ρ and χ are p-independent constants. We find

bp = −2
(
ξ 2

p − ρ
)
ap,

(2.34)

ap = −σp

2

√(
ξ 2

p − ρ
)2 − κξp − χ

.

As mentioned above ap and bp are inversely proportional

to
√

Q4(εp). Equation (2.34) therefore implies

Q4(u) = [(u − μ)2 − ρ]2 − κ(u − μ) − χ, (2.35)

while the differential Eq. (2.32) for � reads

�̇2 + �4 + 4ρ�2 + κ2

�2
+ 4χ = 0. (2.36)

This equation can be solved in terms of elliptic function. Let

w = �2. We have

ẇ2 + 4w3 + 16ρw2 + 16χw + 4κ2 ≡ ẇ2 + 4P3(w) = 0.

(2.37)

Further, let P3(w) = (w − h1)(w − h2)(w − h3), where h3 �
h2 � h1, and define

ω = �2 + h1, 
2
+ = h3 − h1, 
2

− = h2 − h1. (2.38)

We get

�̇2 = (
2
+ − �2)(�2 − 
2

−), (2.39)

with the solution

� = 
+dn[
+(t − t0),k′], k′ = 
−

+

, (2.40)
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where dn is the Jacobi elliptic function and t0 is an arbitrary

integration constant.

It also follows from Eq. (2.31) and the definition of A below

Eq. (2.27) that the phase of the order parameter is determined

as

�̇ = dA

d�
= 2μ − κ

�2 + h1

, 
 =
√

�2 + h1e
−i�. (2.41)

C. Matching integrals of motion

Given the quench initial conditions, we can evaluate all

integrals of motion. This is equivalent to evaluating 
L2(u) in

the initial state as it is conserved and contains all the integrals

as residues at u = εp. It turns out that in the thermodynamic

limit it is possible to find a reduced (few-spin) solution that has

the same 
L2(u), i.e., exactly the same integrals as the quench

dynamics.

In the thermodynamic limit single-particle energies εp form

a continuum on the positive real axis and 
L2(u), therefore, has

a continuum of poles at u > 0. Additionally, 
L2(u) also has a

continuum of roots along the u > 0 half line, as we show in

Appendix B. Thus,
√


L2(u) has a branch cut along u > 0 in the

continuum limit. There can also be several isolated roots whose

imaginary parts remain finite in this limit. Isolated roots play

an important role in the dynamics; we determine them below

and see that there are at most four such roots (two pairs of

complex conjugate roots) for our quench problem.

Equation (2.10) implies

1 +
∫

dε′ d(ε′)ν(ε′)

u − ε′ = −z(u)

√

L2(u)


L2
m(u)

, z(u) = ±1, (2.42)

where 
L2(u) is evaluated for the quench initial conditions. Our

task is to find the parameters for the reduced problem—d(ε)

and 
L2
m(u)—so that this equation holds. Then the reduced

problem has the same integrals of motion as the quench

dynamics.

Both sides of Eq. (2.42) have a branch cut along the positive

real axis and tend to 1 as u → ∞ for an appropriate choice

of the sign z(∞). Further, provided that the isolated roots of

L2(u) coincide with the roots of 
L2

m(u), there are no more

branching points and both sides are analytic away from the

shared branch cut at u > 0. If we further ensure that the left-

and the right-hand sides of Eq. (2.42) have the same jump

across the branch cut, then their difference is an entire function

that vanishes at infinity. It is therefore identically zero by

Liouville’s theorem from complex analysis, and Eq. (2.42)

holds.

To equate jumps across the branch cut, we take u →
ε ± i0, apply the well-known formula 1/(x ± i0) = P(1/x) ∓
iπδ(x), and subtract one result from another. This fixes d(ε),

d(ε) = − z(ε)

2iπν(ε)

√

L2(ε−) −

√

L2(ε+)

√

L2

m(ε)

, (2.43)

where ε± = ε ± i0. According to expression (2.14) for dp ≡
d(εp) this is equivalent to fixing the lengths of the spins, |σp| ≡

|σ (εp)|, in the few-spin solution so that

σ (ε) = z(ε)

√

L2(ε−) −

√

L2(ε+)

2iπν(ε)
. (2.44)

Thus, the few-spin solution with this σ (ε) and 
L2
m(u), whose

roots are the same as the isolated roots of 
L2(u), has the same

integrals of motion as the quench problem.

D. Asymptotic solution for the quench dynamics

There are altogether 2(N + 1) initial conditions: two angles

for each classical spin and two initial conditions for the

oscillator. So far, we constructed a reduced m-spin solution that

matches N + 1 integrals of motion. This satisfies N + 1 initial

conditions. The dynamics of the reduced m-spin Hamiltonian

contains 2(m + 1) constants, m + 1 of which (integrals of

motion for Hred) are already fixed since we fixed 
L2
m(u).

The remaining m + 1 constants are not sufficient to match the

remaining N → ∞ initial conditions for the quench dynamics

at finite m. This is resolved as follows. We use the known

m-spin solution to derive a general asymptotic (i.e., valid

at t → ∞) solution of the equations of motion for spins


sp with the same 
(t) and the same integrals of motion as

the m-spin solution. Integrals of motion therefore are those

for the quench dynamics. In addition, this general solution

contains the correct number N + 1 of independent constants.

We therefore conjecture that this is the true solution for

the quench dynamics at large times after the quench. By

construction, to verify this few-spin conjecture, it is sufficient

to show that the true asymptote of 
(t) coincides with 
(t)

in the m-spin solution because given 
(t) we obtain the most

general asymptotic solution of equations of motion.

As discussed above Eq. (1.33), each quench is characterized

by three parameters: the resonance width γ and the final ωf

and initial ωi values of the detuning. We determine in the next

section that 
L2(u) for the quench dynamics can have zero, one,

or two pairs of isolated complex roots for any γ depending on

ωi and ωf . These, by construction, must also be all the roots

of 
L2
m(u), which has m + 1 pairs of complex conjugate roots

according to Eq. (2.16). Cases relevant for the quench phase

diagram are therefore m = −1, 0, and 1.

It is worthwhile to consider the m = −1 case separately

in some detail to illustrate this procedure. Suppose 
L2(u)

evaluated for the quench initial condition has no complex

(isolated) roots away from the real axis. Then there is an

m = −1 spin solution constructed above that in the N → ∞
limit has the same values of the integrals of motion as the

spin dynamics. Spins in this solution are all along the z axis,


σp = −σpẑ, and 
(t) = −gb(t) = 0. It is a particular solution

of the equations of motion (1.8) such that b(t) = 0.

The general solution of the spin part of the equations of

motion in Eq. (1.8) with b(t) = 0 is as follows: spins 
sp precess

around the z axis (or equivalently around the reduced spins σp)

with frequencies 2εp, i.e.,

sz
p =

σ z
p

σp

cos θp

2
, s−

p = sin θp

2
eiαp(t), (2.45)
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where θp is the angle 
sp makes with −ẑ and αp = −2εpt + δp.

Equivalently, this can be expressed as


sp = 
σp

σp

cos θp

2
+ 
s⊥

p , (2.46)

where 
s⊥
p is the component transverse to 
σp, which rotates

around 
σp with frequency 2εp. Note that the length of spin 
sp

is 1/2, as it should be for the quench initial conditions.

This spin configuration has N additional constants δp, but

it does not satisfy the equation of motion for b(t) in Eq. (1.8)

because b(t) = 0, while J−(t) =∑p s−
p =∑p fpe

−2εpt 	= 0,

where 2fp = sin θpe
iδp . However, in the thermodynamic limit

J−(t) =
∫

f (ε)ν(ε)e−2εt → 0 as t → ∞ and this solution

becomes self-consistent.

Next we set 2σp = cos θp and substitute 
sp = 
σp + 
s⊥
p into

the Lax vector,


L(u) = 
Lred(u) +
∑

p


s⊥
p

u − εp

. (2.47)

The second term vanishes by the Riemann-Lebesgue lemma

(dephases) as t → ∞ in the thermodynamic limit for u away

from the real axis similarly to J−(t) and therefore 
L(u) →

Lred(u). Constants σp are given by Eq. (2.44) to match the

integrals of motion. Then the solution given by Eq. (2.45) with

2σp = cos θp has the same integrals of motion as the quench

dynamics and the right number of additional constants to match

the remaining initial conditions. As explained above, to verify

that this is indeed the true asymptote of the quench dynamics,

we only need to show that asymptotic 
(t) coincides with 
(t)

of the m = −1 spin solution, i.e., that 
(t) → 0 at large times

after the quench whenever 
L2(u) has no isolated complex roots

(region I in quench phase diagrams above). We confirm this

numerically; see, e.g., Figs. 5 and 12 and Refs. [16,18]. There

is also a justification of this statement based on the general

theory of integrable Hamiltonian dynamics. It works for both

m = −1 and m = 0 and we present at the end of the m = 0

case below Eq. (2.65).

To summarize, if 
L2(u) has no isolated complex roots

for given (quench) initial conditions, then 
(t) → 0 at large

times in the thermodynamic limit and the steady-state spin

configuration is

sz
p = −cos θp

2
, s−

p = sin θp

2
e−2iεpt+iδp , (2.48)

where

cos θ (ε) = z(ε)

√

L2(ε−) −

√

L2(ε+)

iπν(ε)
, (2.49)

and θp ≡ θ (εp). This expression evaluates explicitly for quench

initial conditions; the answer is given by Eq. (3.11). The sign

z(ε) = ±1 is fixed by requiring that cos θ (ε) be smooth and

spins 
sp point in the negative z direction at εp → ∞ (so that

corresponding single-particles states be empty).

The logic for m � 0 is similar, but the calculation is a

bit more involved. To derive the analog of Eq. (2.45), it is

convenient to work with the BdG equations (1.31). In addition,

there is an equation of motion for b in Eq. (1.8), which can be

viewed as a self-consistency condition. In terms of 
 = −gb
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FIG. 12. (Color online) Order parameter 
(t) vanishes whenever

the square of the Lax vector 
L2(u) has no isolated roots. Panel

(a) shows real, Re[c], and imaginary, Im[cm], parts of the roots

cm, and panel (b) shows the corresponding |
(t)| for a detuning

quench in a 3D two-channel model with γ = 0.1 and N = 1024

spins. There are N + 1 pairs of complex conjugate continual roots

whose imaginary parts scale as 1/N so that in the N → ∞ limit they

form a continuum on the real axis. Here 
0i = 0.34
max, 
0f =
8.1 × 10−3
max, μi = 0.91εF , and δω = 3.45γ .

and Bogoliubov amplitudes it reads


̇ = −iω
 + ig2
∑

p

2spupv̄p. (2.50)

The reduced m-spin solution is a particular solution (Up,Vp) of

the BdG equations that also satisfies the above self-consistency

condition (with sp → σp). It is straightforward to check that

(V̄p,−Up) is also a solution of the BdG equations with the

same 
(t). Since for any fixed 
(t) these equations are linear

in the amplitudes, their most general normalized solution with

this 
(t) is a linear combination of these two independent

solutions,
(

up

vp

)
= cos

θp

2

(
Up

Vp

)
+ sin

θp

2

(
V̄p

−Ūp

)
. (2.51)

The coefficients are made real by dropping an unimportant

overall time-independent phase and including the relative

phase into the common phase of Up and Vp. At this point θp

is an arbitrary angle. This solution does not generally satisfy

the self-consistency condition (2.50) at finite t , but, as we see

below, becomes self-consistent as t → ∞.
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Let us now determine the spins corresponding to this

solution. Equation (2.51) implies

|vp|2 − |up|2 = (|Vp|2 − |Up|2) cos θp

− sin θp(ŪpV̄p + UpVp), (2.52)

upv̄p = UpV̄p cos θp + sin θp

2

(
V̄ 2

p − U 2
p

)
.

True spins 
sp are related to up, vp through Eq. (1.32) with

sp = 1/2. Spins 
σp are similarly related to Up,Vp. Let

Up = |Up| exp

[
i
αp − φp

2

]
,

(2.53)

Vp = |Vp| exp

[
i
αp + φp

2

]
.

We can express the absolute values of the amplitudes and their

relative phase through the spin components

|Vp|2 = 1

2
+

σ z
p

2σp

, |Up|2 = 1

2
−

σ z
p

2σp

, e−iφp =
σ−

p

|σ−
p | ,
(2.54)

while their common phase αp needs to be determined sepa-

rately from the BdG equations.

We obtain in this notation

sz
p =

σ z
p

σp

cos θp

2
−

|σ−
p |

σp

sin θp

2
cos αp,

(2.55)

s−
p =

σ−
p

σp

cos θp

2
+ sin θp

2
e−iφp

(
σ z

p

σp

cos αp − i sin αp

)
.

Note that σ z
p/σp and σ−

p /σp are components of the unit vector

along the spin in the reduced solution 
σp. Geometrically,

Eq. (2.55) says that 
sp makes a constant angle θp (or π − θp

for negative σp) with 
σp and rotates around it with an angular

velocity α̇p,


sp = 
σp

σp

cos θp

2
+ 
s⊥

p . (2.56)

To see this, consider a body set of axis for 
σp. Take z′ along


σp, x ′ axis along the intersection of the zz′ plane with the

plane perpendicular to 
σp, and y ′ normal to x ′z′ to form a

right-handed coordinate system as usual. Then αp is the angle

between 
s⊥
p and the x ′ axis and Eq. (2.55) follows.

The contribution of the second terms on the right-hand side

of Eqs. (2.55) and (2.56) (terms containing αp) to 
L(u) at u

away from the real axis and to J−(t) vanishes (dephases) at

large times at least for m = 0 and 1 in the thermodynamic

limit, the same as in the m = −1 case considered above. For

this to be true it is sufficient that αp contain a dispersing linear

in t term, i.e.,

αp = −2ept + Fp(t), (2.57)

where ep is a continuous nonconstant function of εp and Fp(t)

is a bounded function of t . Note that for m = −1, ep = εp and

Fp(t) = δp = const.

To derive the asymptotic state, we follow the same pro-

cedure as for m = −1 above. We set 2σp = cos θp, where

cos θp ≡ cos θ (εp) is given by Eq. (2.49). Then 
L(u) →


Lred(u), 
(t) is described by this m-spin solution at large times

and satisfies the self-consistency condition (2.50), and the

asymptotic spin configuration (2.55) and the m-spin problem

have the same integrals of motion as the quench dynamics.

The remaining N + 1 constants required to match the initial

conditions are in αp (see below) and in the phase of 
(t).

To determine αp, rewrite the BdG equations as

i∂t (ln Up) = εp + 

Vp

Up

, i∂t (ln Vp) = −εp + 
̄
Up

Vp

.

(2.58)

Adding these equations and using Eqs. (2.53) and (2.54), we

get, after some algebra,

α̇p = −
σp(
̄σ−

p + 
σ+
p )

|σ−
p |2 . (2.59)

1. m = 0

Suppose 
L2(u) has a single pair of isolated complex roots at

u = μ∞ ± i
∞. The 0-spin expression (2.18) for 
(t) reads


(t) = 
∞e−2iμ∞t−2iϕ . (2.60)

The notation 
∞ and μ∞ anticipates that this is also the

long-time asymptote for the quench dynamics. Equation (2.20)

implies

σ−
p

σp

= 
(t)

E∞
p

,
σ z

p

σp

= − ξp

E∞
p

, (2.61)

where E∞
p = E(εp; 
∞,μ∞) =

√
(εp − μ∞)2 + 
2

∞ and

ξp = εp − μ∞.

Equation (2.59) obtains α̇p = −2E∞
p . We see that αp is of

the form (2.57) and therefore the large-time asymptote of 
(t)

according to the few-spin conjecture is given by Eq. (2.60). The

asymptotic spin configuration is then Eq. (2.55) with cos θp ≡
cos θ (εp) given by Eq. (2.49). Explicitly, using Eq. (2.61) and

αp = −2E∞
p t − δp, we obtain

sz
p = − ξp

2E∞
p

cos θp − 
∞
2E∞

p

sin θp cos(2E∞
p t+δp),

s−
p e2iμ∞t+2iϕ = 
∞

2E∞
p

cos θp − sin θp

2
e2iE∞

p t+iδp (2.62)

−
(

ξp

E∞
p

− 1

)
sin θp

2
cos(2E∞

p t + δp).

In a reference frame rotating with frequency 2μ∞ around z

axis, 
(t) → 
∞ meaning that magnetic field acting on spin


sp is time independent. In this frame 
sp rotates around the field

or, equivalently, around the reduced spin 
σp with frequency

2E∞
p as described by Eq. (2.62).

We can also determine the Bogoliubov amplitudes corre-

sponding to the 0-spin solution from Eqs. (2.53) and (2.54),

Up =
√

1

2
+ ξp

2E∞
p

e−iE∞
p t−iμ∞t−iϕ,

(2.63)

Vp =
√

1

2
− ξp

2E∞
p

e−iE∞
p t+iμ∞t+iϕ .
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FIG. 13. (Color online) Roots of 
L2(u) (top) and |
(t)| for a

detuning quench in a 3D two-channel model for N = 1024 spins,

γ = 1.0. There is one pair of isolated roots c± = μ∞ ± i
∞ whose

imaginary part remains finite in the large N limit and N − 1 continual

roots cm close to the real axis (Im[cm] is magnified by 10). Observe

|
(t)| → 
∞ in agreement with the few-spin conjecture. Here


0i = 0.18
max, 
0f = 0.78
max, and δω = −2.26γ .

These in turn determine the “real” asymptotic amplitudes

according to Eq. (2.51) and therefore the many-body wave

function (1.29), which allows one to calculate various few-

particle Green’s functions.

As before, to verify the few-spin conjecture in the present

case it is enough to check that the large-time asymptote of 
(t)

after the quench is given by Eq. (2.60) as long as 
L2(u) has

one pair of isolated complex conjugate roots (regions II and

II′ in quench phase diagrams above). We do so numerically;

see, e.g., Figs. 7 and 13 and Refs. [16,18]. The large-time

asymptote of |
(t)| is in excellent agreement with 
∞ derived

as the imaginary part of the isolated root; see, e.g., Fig. 2 in

Ref. [18]. This is, however, guaranteed by conservation laws

without reliance on the few-spin conjecture. Indeed, suppose

we find 
(t) → 
̃∞e−2iμ̃∞t−2iϕ̃ . Starting with this, one can

retrace the steps that lead to Eq. (2.62) backwards and show

that 
L2(u) has a single pair of isolated complex conjugate roots

at μ̃∞ ± i
̃∞. In other words, μ̃∞ = μ∞,
̃∞ = 
∞, and the

constant ϕ is arbitrary in the 0-spin solution, so we can always

set ϕ̃ = ϕ. Let us prove this somewhat differently using Bloch

rather than BdG equations.

Going to a reference frame rotating around the z axis with

frequency 2μ̃∞ eliminates time dependence in the asymptotic


(t). In this frame, the effective magnetic field acting on

each spin 
sp in Eq. (1.8) is 
Bp = −2
̃∞x̂ + 2(ǫp − μ̃∞)ẑ

and is time independent. The spin therefore rotates around

the field, making a constant angle (call it π − θp) with it. It is

straightforward to determine spin components in this situation.

They are given by Eq. (2.62) with μ∞ → μ̃∞, 
∞ → 
̃∞,

and absent e2iμ∞t+2iϕ on the left-hand side in the rotating

frame.

Next we evaluate Lax vector (2.1) for this spin configura-

tion. For u away from the real axis, summations over p can be

safely replaced with integrations in the continuum limit and

contributions from oscillating terms on the right-hand side of

Eqs. (2.62) vanish at t → ∞. The same cancellation occurs in

the gap equation of motion (1.33), so that it becomes Eq. (5.4)

that we will later also need in a different context. Using this

gap equation to simplify the expression for 
L(u), we obtain


L(u) = [
̃∞x̂ − (u − μ̃∞)ẑ]L∞(u), (2.64)

where

L∞(u) = 2

g2
−
∑

p

1

2(u − εp)E∞
p

. (2.65)

We see that 
L2(u) = [
̃2
∞ − (u − μ̃∞)2]L2

∞(u) has a pair of

isolated roots at u = μ̃∞ ± i
̃∞; i.e., the parameters of the

asymptotic 
(t) must coincide with those of an isolated root.

Finally, there is a general argument explaining why the

actual quench dynamics at t → ∞ should be described by

the above asymptotic solutions derived from −1 and 0

spin solutions at least when 
L2(u) has none or only one

isolated root pair (m = −1 and 0). The general motion of

a classical Hamiltonian integrable model with N degrees of

freedom is quasiperiodic with N independent frequencies,


ω = (ω1, . . . ,ωN ), which are determined solely by the values

of its integrals of motion [63,64]. There are two types of

(quasi)periodic motion: libration and rotation [65]. Let us

explain this terminology with a 1D example. In libration, the

coordinate returns to its initial value after each period, such

as, e.g., the coordinate of a harmonic oscillator. In rotation, it

increases each time by a fixed amount, such as, e.g., the angle

of a rotating pendulum. Dynamical variables of libration type

can be decomposed in a multidimensional Fourier series as

Q(t) =
∑


m
c 
mei 
ω· 
mt , (2.66)

where 
m = (m1, . . . ,mN ) is a vector with integer components.

Dynamical variables of rotation type contain an additional

linear term, i.e.,

Q(t) = c0t +
∑


m
c 
mei 
ω· 
mt ; (2.67)

see, e.g., Ref. [65] for further details. In our case, the absolute

value of the order parameter, |
(t)| is of libration type, while

its phase is of rotation type.

The frequency spectra of asymptotic solutions con-

structed above are ω(εp) = 2εp for m = −1 and ω(εp) =
2
√

(εp − μ∞)2 + 
2
∞ for m = 0. Important for us is that

the spectra are continuous with no isolated frequencies in

the thermodynamic limit. Since setting 2σp = cos θp ensures

that the quench dynamics has the same integrals as this

033628-17



YUZBASHYAN, DZERO, GURARIE, AND FOSTER PHYSICAL REVIEW A 91, 033628 (2015)

solution (lives on the same invariant torus), it also must

have an identical frequency spectrum. Assuming |
(t)| is

continuously distributed over the spectrum as a collective

variable, i.e., the discrete summation in Eq. (2.66) turns into a

continuous Fourier transform, it must dephase at large times,

|
(t)| → const. Under the same assumption, the phase of

the order parameter according to Eq. (2.67) must tend to a

linear-in-time function as t → ∞. Therefore, 
(t) at large

times is of the form 
∞e−2iμ∞t−2iϕ . Since finite 
∞ also

implies an isolated root at μ∞ ± i
∞, while for m = −1 there

are no isolated roots by definition, we must have 
∞ = 0, i.e.,


(t) → 0 in this case.

We also prove the few-spin conjecture for infinitesimal

quenches in Sec. V D independently of above arguments and

numerics.

2. m = 1

Suppose we found that for some initial condition (quench

parameters) 
L2(u) has two pairs of isolated complex conjugate

roots c,c̄,c′,c̄′. Given c and c′, the above method allows us to

determine the long-time asymptote of 
(t), asymptotic spin

configuration, and time-dependent Bogoliubov amplitudes

up(t),vp(t) for the dynamics of the two-channel model (1.9)

starting from this initial condition at t = 0.

By construction, c,c′ are also the roots of 
L2
m(u) furnishing

the spectral polynomial for the reduced problem Q4(u) =
(u − c)(u − c̄)(u − c′)(u − c̄′) and therefore the parameters

μ,ρ,κ,χ through Eq. (2.35). We further obtain from Eq. (2.41)


(t) =
√

�2 + h1 exp

(
−2iμt − i

∫
κdt

�2 + h1

)
, (2.68)

where � is the Jacobi elliptic function dn,

� =
√

h3 − h1dn

[√
h3 − h1(t − t0),

√
h3 − h2

h3 − h1

]
, (2.69)

t0 is a constant, and h3 � h2 � h1 are the roots of the third-

order polynomial P3(w) = w3 + 4ρw2 + 4χw + κ2. The am-

plitude |
(t)| oscillates between a minimum 
b = √
h2 and

a maximum 
a = √
h1. Plots of 
a, 
b, and h1 for various

quenches are shown in Figs. 9 and 10. As we now see, the

parameter h1 also quantifies the deviation from the weak-

coupling limit, where h1 = 0.

Of interest is the particular case when the parameter

κ = 0. As we see below, this is realized for quenches deep

within the weak-coupling BCS regime in the broad resonance

limit when the two-channel model is equivalent to the

BCS Hamiltonian (1.11). κ = 0 implies h1 = 0, 4χ = h2h3,

4ρ = −h2 − h3, and Q4(u) = [(u − μ)2 − ρ]2 − χ . Let h3 =

2

+,h2 = 
2
− in accordance with the notation of Eq. (2.38).

The roots of Q4(u) in this case take a simple form with shared

real part. Namely, they are

μ ± i

+ ± 
−

2
, (2.70)

and the expression (2.68) simplifies as well,


(t) = 
+dn[
+(t − t0)]e−2iμt−2iϕ . (2.71)

This expression for 
(t) and the corresponding m = 1 spin

solution were constructed in Ref. [7].

The general expression for the reduced spins obtain from

Eqs. (2.23), (2.27), and (2.34),

σ z
p

σp

= −
|
|2 − 2ξ 2

p + 2ρ

2
√

Q4(εp)
,

(2.72)
σ−

p

σp

= −2ξp
 − 2μ
 + i
̇

2
√

Q4(εp)
,

where ξp = εp − μ and 
 is given by Eq. (2.68). Bogoliubov

amplitudes corresponding to the 1-spin solution can now be

derived from Eq. (2.58). The imaginary and real parts of

the right-hand sides determine the absolute values of the

amplitudes and their phases, respectively,

Up =

√
2c+

p − |
|2

2Q
1/4

4 (εp)
e−iμt+iξpt exp

[
i

∫
κ − 4ξpc

+
p

2c+
p − |
|2 dt

]
,

Vp =

√
2c−

p + |
|2

2Q
1/4

4 (εp)
eiμt−iξpt exp

[
i

∫
κ + 4ξpc

−
p

2c−
p + |
|2 dt

]
,

(2.73)

where c±
p = √Q4(εp) ± (ξ 2

p − ρ).

The common phase of the amplitudes αp is the sum of their

phases in the above equations; i.e.,

αp =
∫ [

κ − 4ξpc
+
p

2c+
p − |
|2 +

κ + 4ξpc
−
p

2c−
p + |
|2

]
dt. (2.74)

The integrand is a periodic function of time. Therefore, αp

is of the form (2.57), which is seen, e.g., by expanding the

expression under the integral in Fourier series. The linear

part ept comes from the zeroth harmonics. We only need to

show that ep is a nonconstant (dispersing) function of εp. For

this, we expand the integrand for large εp, ep = εp + O(1).

Therefore, ep is indeed dispersing and the contribution of

second terms on the right-hand sides of Eq. (2.55) to 
L(u)

and J−(t) dephases similarly to m = −1,0 cases. By few-

spin conjecture the asymptotic behavior of 
(t) is then

given by Eqs. (2.68). The asymptotic spin configuration

obtain by substituting Eqs. (2.74) and (2.72) into Eq. (2.55),

where cos θp ≡ cos(εp) is given by Eq. (2.49) and e−iφp =
σ−

p /|σ−
p | straightforwardly derives from the second equation

in Eq. (2.72).

As before, to verify the few-spin conjecture, it is sufficient

to check that 
(t) at large times after the quench is described

by Eq. (2.68) whenever 
L2(u) has two pairs of isolated roots.

We do this numerically; see Figs. 8 and 14–16. In these plots

we compare 
(t) from direct numerical evolution of 5024

spins to Eq. (2.68), where parameters h1,h2,h3, and μ obtain

from the isolated roots of 
L2(u). Note that there are no fitting

parameters apart from an overall shift t0 along the time axis.

III. QUENCH PHASE DIAGRAM AND ASYMPTOTIC SPIN

DISTRIBUTION FOR THE TWO-CHANNEL MODEL

We established in the previous section that the long-time

dynamics of the system after a quench are determined by
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FIG. 14. (Color online) Roots of 
L2(u) (top) and |
(t)| for a

detuning quench in a 3D two-channel model with N = 1024 spins

and γ = 1.0. There are two pairs of isolated roots (c,c̄) and (c′,c̄′) and

N − 2 continual roots close to the real axis. The large-time asymptote

of |
(t)| is described by Eq. (2.68), where parameters hi are extracted

from the isolated roots, in agreement with the few-spin conjecture.

The phase of 
(t) is also in excellent agreement; see, e.g., Figs. 8

and 15. Quench parameters are 
0i = 2.68
max, 
0f = 0.76
max,

and δω = −4.13γ .

the isolated complex roots of 
L2(u). We now proceed to

evaluate the roots and thus construct the quench phase diagram:

identify all possible steady states for quenches throughout the

BCS-BEC crossover. We find that, depending on the quench

parameters, 
L2(u) has zero, one, or two pairs of complex

conjugate roots and the long-time behavior is therefore that

described in Secs. II D, II D 1, or II D 2, respectively. Imaginary

and real parts of the roots determine the parameters of the

asymptotic behavior. For example, in the Volkov and Kogan

regime (region II in our quench phase diagrams) where


(t → ∞) → 
∞e−2iμ∞t−2iϕ , the roots are μ∞ ± i
∞. We

first derive general equations for the roots, lines separating

distinct regimes, and the asymptotic distribution function

and then consider various cases, such as 2D and 3D, wide

(one-channel) and narrow resonance limits, and deep BCS and

BEC regimes.

After the quench the system evolves with the Hamilto-

nian (1.9), where ω = ωf starting from the spin configura-

tion (1.28), which is the ground state for ω = ωi . Since 
L2(u)

is conserved, we can evaluate it at any t . It is convenient to do

so at t = 0. The Lax vector at t = 0 obtains by plugging the
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FIG. 15. (Color online) Magnitude and phase of 
(t) in region III

(two pairs of isolated roots) after detuning quench from deep BCS to

BEC in a 3D two-channel model for γ = 1. Numerical evolution with

5024 spins against Eq. (2.68). Parameters h1,h2, etc., are obtained

from isolated roots of 
L2(u) as described in the text. 
0i = 2.65 ×
10−2
max, 
0f = 0.80
max, μi = 1.00εF , δω = −4.59γ .

initial condition into the definition (2.1)


L(u)|t=0 = [
0i x̂ − (u − μi)ẑ]L0(u) − δω

g2
ẑ, (3.1)

where δω = ωf − ωi and

L0(u) = − 2

g2
+
∑

p

1

2(u − εp)Ei(εp)
, (3.2)

Ei(εp) = E(εp; 
0i,μi) =
√

(εp − μi)2 + 
2
0i and we also

used the gap equation (1.18).

Taking the square of the above expression for 
L(u) and

equating it to zero, we obtain an equation for the roots

(u − μi ∓ i
0i)

[
2

g2
−
∑

p

1

2(u − εp)Ei(εp)

]
= δω

g2
. (3.3)

Suppose first that the single-particle levels εp are discrete and

there are N ≫ 1 distinct εp. Then this is a polynomial equation

with N + 1 pairs of complex conjugate roots. Most of the

pairs are close to the real axis, at distances of the order of

the spacing between εp, which is inversely proportional to N

(system volume) and goes to zero in the thermodynamic limit.

In the thermodynamic limit most of the roots of 
L2(u) coalesce

to the real axis merging with its poles to form a branch cut along
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FIG. 16. (Color online) Postquench |
(t)| for a 3D two-channel

model in region III, where 
L2(u) has two pairs isolated roots.

Numerical evolution with 5024 spins against Eq. (2.68). γ = 0.1,


0i = 0.035
max in all three panels. 
0f /
max = 0.54,0.67, and

0.85 in (a)–(c), respectively.

the real axis. We fully verify this picture in this section and in

Appendix B. Here we consider the roots whose imaginary part

remains finite as N → ∞ and in Appendix B we evaluate the

roots with vanishing imaginary parts to order 1/N .

Consider first the ground state. This corresponds to δω = 0

in Eq. (3.3) and 
L2(u) = [(u − μ)2 + 
2
0]L2

0(u). There is a

pair of complex roots at c± = μ ± i
0. The remaining 2N

roots solve L0(u) = 0 and are double degenerate and real;

see Fig. 17. This is because L0(u) goes from +∞ to −∞
as u goes from the left vicinity of one pole at u = εp to

the right vicinity of the next one along the real axis, always

crossing zero between consecutive εp’s. In the thermodynamic
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FIG. 17. (Color online) Roots of 
L2(u) for the ground state of a

3D two-channel model for N = 54 spins and γ = 1.0. There are N

doubly degenerate real roots cm (shown as circles and squares), N − 1

of them located between discretized energy levels εp → εm, and two

isolated complex roots c± = μi ± 
0i . Here 
0i = 0.1εF .

limit, spacings between εp’s vanish and real zeros and poles

merge into a continuous line. For δω 	= 0 the real roots acquire

imaginary parts, each degenerate root splitting into a complex

conjugate pair, as shown in Figs. 12–14. The imaginary parts,

however, scale as 1/N .

We first take the continuum limit in Eq. (3.3) for u away

from the real axis. Then only isolated complex roots remain

and we find that there are only zero, one, or two pairs of

such roots depending on δω. At δω = 0 there are two isolated

complex conjugate roots at u = μi ± i
0i . One pair of roots

persists for sufficiently small |δω|, but beyond a certain

threshold the number of isolated roots changes, as we now

demonstrate. The continuum limit of Eq. (3.3) reads

2

u − μi ∓ i
0i

δω

γ
+
∫ ∞

0

f (ε)dε

(u − ε)Ei(ε)
= 4

γ
, (3.4)

where, as always, we measure energies in units of εF and f (ε)

is the dimensionless density of states defined in Eq. (1.22).

As δω is decreased or increased, the single pair of roots

can collapse to the real axis or a new pair of isolated roots

can emerge from it. The threshold (critical) value of δω when

this occurs is determined by looking for roots of Eq. (3.4)

with an infinitesimal imaginary part. Replace u → u ± iδ in

Eq. (3.4) and use (u − ε ± iδ)−1 = P (u − ε)−1 ∓ iπδ(u − ε)

to separate its real and imaginary parts. The latter yields critical

values of δω when the number of roots changes

|δω|
γ

= πf (u)Ei(u)

2
0i

, (3.5)

where u is real positive and obtains from the real part of

Eq. (3.4),
∫ ∞

0

− f (ε)dε

(u − ε)Ei(ε)
+ sgn(δω)

π (u − μi)f (u)

Ei(u)
0i

= 4

γ
, (3.6)

where the dashed integral indicates principal value.

The last two equations determine critical lines in quench

phase diagrams shown in Figs. 2, 3, 20, and 21. We construct

the diagrams in the (
0f ,
0i) plane, ground-state gaps at

final and initial detunings ωi and ωf . The resonance width

033628-20



QUANTUM QUENCH PHASE DIAGRAMS OF AN s-WAVE . . . PHYSICAL REVIEW A 91, 033628 (2015)

(dimensionless interaction strength) γ is fixed throughout the

diagram. 
0i , 
0f , and γ uniquely determine μi , ωi , and

ωf through ground-state Eqs. (1.25) and (1.26). Each point

in this plane represents a particular quench of the detuning

ωi → ωf . We choose 
0i (or, equivalently, the ratio μi/
0i)

and the sign of δω and solve Eq. (3.6) for real u. Equation (3.5)

then yields the final detuning ωf and therefore 
0f . We thus

obtain a critical line, 
0f as a function of 
0i , in the (
0f ,
0i)

plane. The number of isolated root pairs changes by one as one

crosses this line.

It turns out there is one critical line for either sign

of δω. There are therefore three nonequilibrium phases or

regimes, qualitatively different long-time behaviors, indicated

as regions I, II (including subregion II′), and III in Figs. 2, 3, 20,

and 21. Region II contains the 
0f = 
0i or, equivalently,

ωf = ωi line, which corresponds to no quench, i.e., to the

system remaining in the ground state at all times. Therefore,

in region II Eq. (3.4) yields a single pair of isolated complex

roots u = μ∞ ± i
∞. This, in turn, implies that 
(t) →

∞e−2iμ∞t−2iϕ as t → ∞. For all quenches in region II

the system thus goes into the asymptotic state described in

Sec. II D 1.

Negative δω corresponds to 
0f > 
0i . As we cross the

critical line going from region II into region III the number

of isolated root pairs changes by one. It can be shown

both analytically and numerically by analyzing Eq. (3.4) that

this number increases; i.e., there are two pairs of complex

conjugate isolated roots in region III. For quenches in this

part of the diagram the large-time asymptote of 
(t) is given

by Eq. (2.68) and the large-time state of the system is that

obtained in Sec. II D 2. Plots of 
∞ and μ∞ as functions of


0f at two fixed values of 
0i are shown in Figs. 18 and 19.

Similarly, as we enter region I from region II, 
∞ → 0 and

the single pair of isolated roots collapses to the real axis at the

critical line. There are hence no isolated roots in region I and

therefore 
(t) → 0 for quenches in this regime and the system

goes into the gapless steady state detailed at the beginning of

Sec. II D.

Of interest is the line along which the real part of the root

pair μ∞ ± i
∞ in region II vanishes, i.e., μ∞ = 0 (the line

separating subregions II and II′ in quench phase diagrams).

This can be thought of as a nonequilibrium extension of

the BCS-BEC crossover going from a positive to a negative

chemical potential. Out of equilibrium, as we see below, the

change of sign of μ∞ affects the approach of 
(t) to its

asymptote. For example, in 3D the approach changes from

1/t1/2 in II to 1/t3/2 in II′. Setting u = ±i
∞ in Eq. (3.4) and

separating the real and imaginary parts, we obtain equations

determining this line,

μi


0i − 
∞
ImF + ReF = 4

γ
,

(3.7)
δω

γ

2(
∞ − 
0i)

μ2
i + (
∞ − 
0i)2

= ImF ,

where

F =
∫ ∞

0

f (ε)dε

(i
∞ − ε)Ei(ε)
. (3.8)
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FIG. 18. (Color online) 
(t) → 
∞e−2iμ∞t−2iϕ as t → ∞ after

a detuning quench ωi → ωf in a 3D two-channel model in region II

of the quench phase diagram in Fig. 3. 
∞ extracted from the single

isolated root pair of the Lax vector norm is shown as a function of 
0f

(ground-state gap for ωf ) at two fixed values of 
0i (ground-state gap

for the initial detuning ωi). Note that 
∞ > 
0f for BEC to BCS

quenches 
0i = 0.99
max for γ = 0.1.

Equation (3.7) determines the μ∞ = 0 line via a procedure

similar to that for critical lines separating region I from II and

II from III. For a given 
0i , the first equation yields 
∞. We

then find δω and consequently ωf and 
0f from the second

equation.

Note the intersection of the μ∞ = 0 line with the 
0i =

0f (no-quench) line. Along the latter line we also have 
∞ =

0i and, therefore, at the intersection point μi = μf = 0 or

the first term in the first equation in Eq. (3.7) would blow up.

In equilibrium μ = 0 corresponds to a certain ground-state

gap 
0 = 
0×, which obtains from Eq. (1.25) and provides a

characteristic energy scale for the crossover from the BCS to

BEC regime. Vanishing of μi and μf at the intersection point

implies that straight lines 
0i = 
0×, 
0f = 
0×, and 
0i =

0f and the μ∞ = 0 line must cross at the same point, which

is indeed seen in all quench phase diagrams in Figs. 2, 3, 20,

and 21.

Let us also obtain an explicit expression for the asymptotic

spin distribution function Eq. (2.49) in all three regimes.

Equation (3.1) implies


L2(u) = 
2
0iL

2
0(u) +

[
(u − μi)L0(u) + δω

g2

]2

. (3.9)
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FIG. 19. (Color online) 
(t) → 
∞e−2iμ∞t−2iϕ as t → ∞ after

a detuning quench ωi → ωf in a 3D two-channel model in region II

of the quench phase diagram in Fig. 3, where μ∞ plays the role of

the out-of-equilibrium analog of the chemical potential. Here μ∞ is

extracted from the single isolated root pair of the Lax vector norm

and is shown as a function of 
0f (ground-state gap for ωf ) at two

fixed values of 
0i (ground-state gap for the initial detuning ωi). Note

that μ∞ behaves similarly to the ground-state chemical potential in

Fig. 1.

In the thermodynamic limit,

L0(u) = − 2

g2
+
∫ ∞

0

f (ε)dε

2(u − ε)Ei(ε)
. (3.10)

We evaluate L0(ε±) using (ε − ε′ ± iδ)−1 = P (ε − ε′)−1 ∓
iπδ(ε − ε′). This results in

cos θ (ε) = z(ε)

iπf (ε)

√

A2
−
2

0i +
[

(ε − μi)A− + δω

γ

]2

− z(ε)

iπf (ε)

√

A2
+
2

0i +
[

(ε − μi)A+ + δω

γ

]2

,

(3.11)

where

A∓ = − 2

γ
± iπf (ε)

2Ei(ε)
+
∫ ∞

0

− f (ε′)dε′

2(ε − ε′)Ei(ε′)
. (3.12)

The integral here is the same as in Eq. (3.6). We evaluate

it in elementary functions in 2D, in the weak-coupling BCS
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FIG. 20. (Color online) Detuning quench phase diagrams for

two-channel model in 2D for various resonance widths γ obtained

from Eqs. (3.16) and (3.17). Each point represents a single quench

labeled by 
0i and 
0f , pairing gaps the system would have in the

ground state for initial and final detunings. At large times the system

ends up in one of three steady states shown as regions I, II (including

II′), and III. For quenches in region I the order parameter vanishes.

In II 
(t) → 
∞e−2iμ∞t−2iϕ and III |
(t)| oscillates persistently.

Subregions II and II′ differ in the sign of μ∞ (out-of-equilibrium

analog of the chemical potential): μ∞ > 0 in II and μ∞ < 0 in II′. The

diagonal, 
0i = 
0f , is the no-quench line. 
0× is the ground-state

gap corresponding to zero chemical potential; i.e., 
0× is given by

Eq. (1.25) for μ = 0.

regime, and in BEC regime in Secs. III A and III B below;

see also Eqs. (B4) through (B7) for explicit expressions.

Note cos θ (ε) = 1 for δω = 0 (no quench) as it should.
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FIG. 21. (Color online) Detuning quench phase diagrams for a

two-channel model in 3D for various resonance widths γ obtained

from Eqs. (3.40) and (3.41) (otherwise, the same as Fig. 20).

Representative plots of the spin distribution function for two

quenches appear in Fig. 11. For future use we also write the

first two terms in large ε expansion of Eq. (3.11),

cos θ (ε) ≈ 1 −
(

δω

γ

)2
2
2

0i

E2
i (ε)[H 2(ε) + π2f 2(ε)]

, (3.13)

which are also independently the first two terms in its small

δω expansion. The function H (ε) is defined in Eq. (B8).

Next, we consider 2D and 3D separately, as well as various

special cases such as wide (single-channel limit) and narrow

resonance and deep BCS and BEC regimes.

A. 2D

In 2D the dimensionless density of states f (ε) = 1 and all

integrals above in this section can be evaluated in terms of

elementary functions. It is convenient to introduce a notation:

x = μi


0i

, v = u − μi


0i

. (3.14)

Equation (3.4) reads

ln

[
− (v + x)(v +

√
1 + v2)√

1 + x2
√

1 + v2 − xv + 1

]

= −2δω(v ∓ i)

γ
√

1 + v2
+ 4
0i

γ

√
1 + v2. (3.15)

The critical lines separating the three asymptotic regimes are

determined by Eqs. (3.6) and (3.5), which become

|δω|
γ

= π

2

√
1 + v2, (3.16)

ln

[
(v + x)(v +

√
1 + v2)√

1 + x2
√

1 + v2 − xv + 1

]

= −sgn(δω)πv + 4
0i

γ

√
1 + v2, (3.17)

where v is real and v > −x. It is straightforward to analyze

Eq. (3.17) graphically and to find v and thus the critical lines

numerically.

Positive δω mean 
0f > 
0i and the corresponding v

determine the critical line separating regions I and II. In this

case, for γ above a certain threshold γc to be determined below,

there is a single root for any 
0i . This means that a horizontal


0i = const line intersects the I-II line once for any value of the

const and region I therefore extends all the way up to 
0i =√
γ = 
max as seen in Figs. 2(c), 20(b), and 20(c). When

γ < γc, the number of roots for positive δω changes from one

to two and then to zero as 
0i increases. The I-II line then

displays peculiar reentrant behavior; see the inset in Fig. 2(b).

Negative δω means 
0f < 
0i . The roots v in this case

yield the II-III critical line. There are two roots for 
0i below

a certain threshold and no roots above it, implying that a

horizontal 
0i = const line intersects the II-III critical line

twice for a sufficiently small value of the const.

The shape of the critical lines as well as the complex roots

of Eq. (3.15) can be determined analytically when the initial

and/or final value of the detuning ω is deep in the BCS or BEC

regime. The BCS limit corresponds to detuning ω → +∞.

For the ground state this implies μ → εF = 1, 
0 → 0. The

gap equation (1.26) then yields

ln
4ε�


2
0

= 2ω − 4

γ
. (3.18)

The deep BEC regime obtains when ω → −∞. In this case

μ → −∞ in the ground state. The gap and chemical potential

equations switch roles in the sense that the former determines

the chemical potential and the latter the ground-state gap.

Equation (1.26) becomes

ln
ε�

|μ| = 2ω + 4|μ|
γ

(3.19)
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and Eq. (1.25) reads in this limit


0 =
(

1

γ
+ 1

4|μ|

)−1/2

. (3.20)

First, we consider quenches originating deep in the BCS

regime; i.e., ωi → +∞ and, therefore, 
0i → 0, μi → 1.

Such initial states correspond to x → +∞. Equation (3.17)

becomes

ln

[
(v + x)(

√
1 + v2 + v)

x(
√

1 + v2 − v)

]
= −sgn(δω)πv. (3.21)

The roots are v → 0 for either sign of δω and v → −x + 0

for δω < 0. This translates into

u ≈
{
μi, δω > 0,

μi or +0, δω < 0.
(3.22)

For v → 0 Eq. (3.16) yields δω/γ = ±π/2. Therefore, both


0f and 
0i are deep in the BCS regime. The gap equation

Eq. (3.18) implies 
0 ∝ exp(−ω/γ ) and, hence,


0i


0f

= e±π/2. (3.23)

This result has been already obtained in Refs. [17,18], which

studied quenches within the single-channel model in the weak-

coupling (BCS) limit. Weak coupling means small 
0i and


0f , which corresponds to a vicinity of the origin, 
0i =

0f = 0, in our phase diagrams. Equation (3.23) is the slope

of the I-II and II-III critical lines at the origin in Figs. 2, 3, 20,

and 21.

As we see below, Eq. (3.23) also holds in 3D. This is

expected on general grounds because, in the BCS limit,

superconducting correlations come from a narrow energy

window around the Fermi energy. The main contribution to

integrals determining the roots comes from these energies.

The density of states is then well approximated by a constant

rendering the 2D and 3D cases equivalent.

The second root at δω < 0, v → −x + 0, yields δω/γ ≈
−πx/2. This means that the initial state is deep in the BCS

regime, while ωf → −∞ and the ground state at ωf is in the

BEC limit. Further, μi → εF = 1, so x ≈ 1/
0i . Subtracting

Eq. (3.18) from Eq. (3.19), we obtain

ln

2

0i

4|μf | = − π


0i

+ 4|μf |
γ

+ 4

γ
. (3.24)

Here we assume that γ is finite and treat the single-channel

limit γ → ∞ separately below. Since the 1/
0i term diverges

much faster than the logarithm in the above equation, we get

4|μf | ≈ πγ/
0i . Equation (3.20) now obtains


0f


max

= 1 − 
0i

2π
. (3.25)

This equation shows that the II-III critical line terminates

at (
0f ,
0i) = (
max,0) linearly with a slope 
0i/(
0f −

max) = −2π/

√
γ .

Simpler expressions can also be derived for complex roots

for quenches within the BCS regime, i.e., in the vicinity of

the of the origin in the phase diagrams. By Eq. (3.22) the real

parts of the roots in this regime Re[u] ≈ μi ≈ εF . Then v is

purely imaginary and also |v| ≪ x because Im[u] is related to

the asymptotic value of order-parameter amplitude, which is

much smaller than εF . Equation (3.15) becomes

ln

[
v +

√
1 + v2

v −
√

1 + v2

]
= − v ∓ i√

1 + v2

2δω

γ
. (3.26)

This equation is symmetric with respect to complex conjuga-

tion and with respect to v → −v. The latter symmetry reflects

emergence of the particle-hole symmetry in the BCS limit.

Note that when there is only one root, these two symmetries

together require that it be purely imaginary.

Let v = −i cosh φ in Eq. (3.26), where φ is either purely

real or purely imaginary, so that v is purely imaginary.

Equation (3.26) yields, depending on the sign choice on the

right-hand side,

φ = −δω

γ
coth(φ/2), (3.27)

φ = −δω

γ
tanh(φ/2). (3.28)

Note that in this regime δω/γ = ln(
0i/
0f ). It is straightfor-

ward to analyze these equations graphically and to determine

when they have solutions. We summarize the results.

Region I: 
0i/
0f > eπ/2. There are no isolated roots and,

hence, 
(t) → 0 at large times.

Region II: e−π/2 < 
0i/
0f < eπ/2. There is a single pair

of isolated roots at μ∞ ± i
∞,

μ∞ = εF , 
∞ = 
0i cosh φ, (3.29)

where φ is real for δω < 0 and imaginary for δω > 0 and is the

solution of Eq. (3.27). One can show 
∞ � 
0f for any δω,

where the equality is achieved only at δω = 0. The long-time

dynamics is that described in Sec. II D 1.

It is instructive to evaluate 
∞, the asymptotic value of

the magnitude of the gap, for infinitesimal quenches, when

|
0f − 
0i | ≪ 
0i . Expanding Eqs. (3.27) and (3.29) in small

φ, we obtain, after some calculation,


∞ = 
0f − (
0f − 
0i)
2

6
0f

. (3.30)

Note that within linear analysis 
∞ = 
0f . As we show

in Sec. V, this is a general feature of linearized dynamics

around the ground state regardless of coupling strength

or initial conditions: |
(t)| tends to its ground-state value

corresponding to the Hamiltonian with which the system

evolves at t > 0.

Region III: 
0i/
0f < e−π/2. There are two pairs of

complex conjugate roots,

εF ± i
0i cosh φ1, εF ± i
0i cosh φ2, (3.31)

where φ1 is the solution of Eq. (3.27) and φ2 is the solution of

Eq. (3.28); φ2 is real when δω/γ = ln(
0i/
0f ) � −2 and

imaginary otherwise. We see that the roots are indeed of the

form Eq. (2.70). The asymptotic state is that of Sec. II D 2,

while 
(t) takes the simplified form Eq. (2.71).

Just as in Eq. (3.23), the above results starting with

Eq. (3.26) are universal in that they hold for quenches within

the BCS regime independent of the dimensionality and also

hold for the single-channel model.
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Next, consider quenches originating deep in the BEC,

which corresponds to μi → −∞, 
0i → √
γ , and x → −∞.

Since v > −x in Eq. (3.17), we also have v → ∞ provided a

real root exists. Equation (3.17) for δω > 0 simplifies to

ln

[
v + x

|x|

]
= v

(
4
0i

γ
− π

)
. (3.32)

For 4
0i/γ < π , there is a single root at v → −x, which

corresponds to u ≈ 0. Since 
0i �
√

γ = 
max, the condition


0i < πγ/4 can be fulfilled only if γ > γc, where

γc = 16

π2
. (3.33)

For γ � γc Eq. (3.17) at δω > 0 has a single root for any 
0i

and, in particular, for 
0i → 
max. This means that the I-II

critical line extends all the way up to 
0i = 
max, terminating

at (
0i,
0f ) = (
max,0).

It is interesting to work out the shape of the I-II critical

line near its termination point. First, let γ > γc. Since v ≈
−x, Eq. (3.16) implies δω/γ ≈ π |x|/2. Using Eqs. (3.19)

and (3.20) to determine 
0i and μi and Eq. (3.18) for 
0f , we

get


0f


max

= 1√
2ε

exp

(
− α

2ε

)
,

(3.34)

ε = 
max − 
0i


max

, α =
√

γ

γc

− 1.

This behavior is seen in Figs. 2(c), 20(b), and 20(c). Note the

difference between γ = 5 and γ = 50 in Figs. 20(b) and 20(c)

that correspond to α ≈ 0.8 and α ≈ 4.6, respectively.

Next, let γ < γc. In this case, the I-II critical line goes up,

then bends backward, reaching a maximum, goes down, and

terminates on the 
0i axis below 
max; see, e.g., the inset in

Fig. 2(b). Near the termination point μi and ωi are finite since


0i < 
max, while ωf → ∞ since 
0f → 0. Equation (3.16)

implies v → ∞ and δω/γ ≈ πv/2. In this limit, Eq. (3.17)

becomes

ln

[
2v√

1 + x2 − x

]
= v

(
4
0i

γ
− π

)
. (3.35)

We see that v diverges as 
0i → πγ/4 = π
√

γ
max/4 ≡

th. Therefore, the I-II critical line terminates at (
0i,
0f ) =
(
th,0). For 
0i above 
th and below a certain upper value,

which we do not determine explicitly, Eq. (3.17) has two roots.

For 
0i below 
th there is one root.

The shape of the I-II critical line as it approaches the

termination point for γ < γc obtains from Eq. (3.35). Let

ε = (
0i − 
th)/
th ≪ 1. Equation (3.35) implies

v ≈ 1

πε
ln

[
2(

√
1 + x2 + x)

πε

]
. (3.36)

The gap equation (1.26) yields in 2D

√
1 + x2 + x = 2

(
γ − 
2

0i

)

γ
0i

. (3.37)

Since ωf → ∞ corresponds to the BCS limit, we have 
0f ∝
e−ωf /γ ∝ e−πv/2. Combining this with the last two equations

and using 
0i ≈ 
th = πγ/4, we get


0f = C exp

(
− 1

2ε
ln

[
γc − γ

γ ε

])
, (3.38)

where C is independent of ε.

The I-II critical line for γ < γc is shown in Figs. 2(a), 2(b),

and 20(a), which correspond to 
th/
max ≈ 0.25,0.78, and

0.18, respectively. 
th appears somewhat larger in these plots

since exponentially small, but finite, 
0f in Eq. (3.38) is not

noticeable; the critical line effectively goes down along the 
0i

axis. In the same way, the I-II critical line appears to terminate

below 
max in Fig. 20 for γ = 50 due to exponential smallness

of 
0f in Eq. (3.34).

B. 3D

Three-dimensional diagrams for various values of reso-

nance width γ are shown in Figs. 3 and 21. Overall, they are

qualitatively similar to 2D diagrams. A notable difference is

that, in 3D, region III of the oscillating order parameter 
(t) for

sufficiently large γ terminates at 
0f < 
max = √
2γ /3. This

means that quenches from infinitesimally weak to sufficiently

strong coupling produce no oscillations. Also, in contrast to

the 2D case, the critical line separating the gapless region I,

in principle, always extends all the way up to 
0i = 
max and

terminates at 
0f = 
I-II
0f > 0. This is, however, not noticeable

at small γ because in this case the value of 
I-II
0f is exponentially

small.

In 3D the dimensionless density of states f (ε) = √
ε and

Eq. (3.4) becomes

∫ ∞

−x

dy
√


0i(x + y)

(v − y)
√

y2 + 1
= − 2δω

γ (v ± i)
+ 4
0i

γ
, (3.39)

where y = ε/
0i − x, and x and v are defined in Eq. (3.14).

Similarly, Eqs. (3.6) and (3.5) determining critical lines read

|δω|
γ

= π

2

√

0i(x + v)(v2 + 1), (3.40)

∫ ∞

−x

− dy
√


0i(x + y)

(v − y)
√

y2 + 1
+ sgn(δω)

πv
√


0i(x + v)√
v2 + 1

= 4
0i

γ
,

(3.41)

The integral here is a complete elliptic integral. Substitution

y = 1/t − x reduces it to one of the Carlson elliptic integrals

with known asymptotic behaviors in various regimes [66,67].

We, however, find it more convenient to evaluate the limiting

behaviors by a direct analysis of the integral.

First, we consider initial states deep in the BCS regime,

i.e., ωi → +∞, which implies 
0i → 0, μi → 1, and x →
1/
0i → +∞. To evaluate the integral in Eqs. (3.39)

and (3.41) in this regime, we split the integration range into

three intervals—(−x,−y�),(−y�,y�), and (y�,∞)—where

y� is such that 1 ≪ y� ≪ x. Let the corresponding integrals

be I1, I2, and I3. To the leading order in 1/y� and y�/x

we can replace
√

y2 + 1 → |y| in I1 and I3 and replace√
x + y → √

x in I2. The resulting integrals evaluate in terms
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of elementary functions

I1 + I3 = 2
√

x

v
ln

4x

y�

−
√

x + v

v
ln

4x(
√

x + v + √
x)2

y2
� − 4x(

√
x + v − √

x)2
,

I2 =
√

x√
1 + v2

ln
(
√

1 + v2

√
1 + y2

� + vy�)(v + y�)

(
√

1 + v2

√
1 + y2

� − vy�)(v − y�)

,

where we used 1 ≪ y� ≪ x to simplify expressions. The

dependence on y� should, of course, cancel from I1 + I2 + I3

to the leading order in 1/y� and y�/x.

The gap equation (1.26) in the BCS regime is handled

similarly by splitting the integral into three, resulting in

ω

γ
− 2

γ
= √

ε� − 2 + ln
8


0

. (3.42)

Suppose the final detuning is also in the BCS regime. The

above equation then implies

δω

γ
= ln


0i


0f

, (3.43)

the same as in 2D. Because δω/γ must remain of order one

as x → +∞, it follows from Eq. (3.40) that v is also of order

one for quenches within the BCS regime. Therefore, |v| ≪
y� in the above expressions for I1 + I2 and I3. We obtain

|I1 + I2| ≪ 1 and

I1 + I2 + I3 ≈ I3 ≈ 1

1 + v2
ln

[
v +

√
1 + v2

v −
√

1 + v2

]
. (3.44)

Equation (3.39) now turns into the 2D Eq. (3.26), and

Eq. (3.40) yields |δω|/γ = π/2 and therefore Eq. (3.23). Thus,

quenches within the BCS regime in 3D are identical to those

in 2D and all results from Eq. (3.26) to Eq. (3.31) also hold in

3D. As we already commented above, this is expected since

in the BCS regime superconductivity comes from the vicinity

of the Fermi energy, making the dependence of the density of

states on the energy and thus the dimensionality inessential.

The horizontal 
0i = const line for infinitesimal values of

the const intersects the II-III critical line twice, once near the

origin and the second time near the termination point of the

II-III critical line. The former intersection corresponds to small

v, as we saw above, and the latter to v of order x. To determine

the termination point, we therefore take |v| ≫ y� in the above

expressions for I1 + I3 and I2. Equation (3.39) becomes

√
x + v√

x
ln

(
√

x + v + √
x)2

−(
√

x + v − √
x)2

= −2

[
δω

γ
+ ln

8


0i

− 2v
0i

γ

]
± 2iδω

vγ
. (3.45)

The real root of this equation is v ≈ −x ≈ −1/
0i , yielding

δω

γ
= − ln

8


0i

− 2

γ
. (3.46)

0 10 20 30 40 50
0

1

2

3

4

5

6

0f

max

II-III

FIG. 22. (Color online) Termination point of the II-III critical

line as a function of resonance width γ in units of Fermi energy for

a 3D two-channel model. This line encloses region III of persistent

oscillations in Figs. 3 and 21. It starts at the origin and ends at


II-III
0f along the 
0f axis. This reflects an interesting phenomenon:

There are no persistent oscillations for quenches to couplings stronger

than a certain threshold (i.e., quenches to detunings ωf such that the

corresponding ground-state gaps 
0f � 
II-III
0f ) no matter how weak

the initial coupling is (i.e., for any initial detuning). At γ → ∞
(one-channel limit) 
II-III

0f saturates at 1.49εF , in agreement with

Eq. (4.19).

Combining this with Eq. (3.42), taking the limit 
0i → 0, and

plugging into the gap equation (1.26), we obtain

4 + 4μf

γ
=
∫ ∞

0

[
1

ε
− 1√

(ε − μf )2 + 
2
0f

]√
εdε, (3.47)

where we sent the cutoff ε� to infinity. Equation (3.47),

together with the chemical potential equation (1.25), determine

the value of 
II-III
0f , where the II-III critical line terminates on

the 
0f axis. 
II-III
0f is a function of γ only; see Fig. 22.

We also note that it follows from the above analysis that,

just as in 2D, for initial states deep in the BCS regime, there

are three roots: v → 0 for either sign of δω and v → −x + 0

for δω < 0. Therefore, Eq. (3.22) holds in 3D as well.

Second, consider quenches from deep BEC to larger

detuning ωf > ωi , i.e., ωi → −∞,δω > 0,μi → −∞,x →
−∞,
0i → 
max. Since y � |x| ≫ 1 in Eq. (3.41), we can

replace
√

y2 + 1 → y. The principal value integral evaluates

to −π
√|x|/v and Eq. (3.41) becomes

−π
√|x|
v

+ π
√

v − |x| = 4
√


0i

γ
, (3.48)

where we also took into account that we need v � |x| so that

Eq. (3.40) yields real δω. The solution for large |x| is

√
v − |x| ≈ 4

√

0i

πγ
+ 1√|x| . (3.49)

Equation (3.40) now yields

δω

γ
≈ 2|μi |

γ
+ π

2

√
|μi | + 32
2

max

π2γ 3
, (3.50)
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FIG. 23. (Color online) Unlike 2D, in 3D 
0f tends to a finite

value 
I-II
0f along the I-II critical line as the initial detuning ωi → −∞

(
0i → 
max) for quenched two-channel model; see, e.g., Fig. 21.

The gapless regime thus persists even for quenches from arbitrarily

large negative ωi to finite ωf . Here we compare 
I-II
0f (in units of the

Fermi energy) as a function of the resonance width γ extrapolated

from actual phase diagrams with that obtained from Eqs. (3.51)

and (3.52). Note that 
I-II
0f is exponentially small at small γ , so that

the I-II critical line appears to close earlier at zero 
0f in Fig. 21(a).

where we replaced 
2
0i → 
2

max = 2γ /3 up to terms of order

|μi |−1/2. The overall correction to this expression is also

proportional to |μi |−1/2 at large |μi |.
Similar simplifications occur in the gap equation (1.26). We

replace the square root with ε − μi to obtain

ωi

γ
≈ √

ε� − 2|μi |
γ

− π

2

√
|μi |.

The last two equations determine ωf and from the gap

equation (1.26) for ω = ωf we obtain

128

3π2γ 2
− 4μf

γ
=
∫ ∞

0

⎡
⎣

√
ε√

(ε − μf )2 + 
2
0f

− 1√
ε

⎤
⎦ dε,

(3.51)

where we eliminated the cutoff similar to Eq. (3.47). This

equation combined with Eq. (1.25) determines the termination

point (
0i,
0f ) = (
max,

I-II
0f ) of the I-II critical line. The

plot of 
I-II
0f as a function of γ is shown in Fig. 23.

Note that, in contrast to the 2D case, this critical line

formally always extends up to 
0i = 
max and 
I-II
0f does not

vanish as 
0i → 
max. This means that the gapless regime

persists even for quenches to finite final detunings from initial

states lying arbitrarily deep in the BEC regime. But for small

γ the value of 
I-II
0f is exponentially small and the critical

line appears to have closed at smaller 
0i ; see Figs. 3(a)

and 21(a). Small γ implies a large left-hand side in Eq. (3.51)

and therefore the final state deep in the BCS regime. In this

regime μf → 1 and the integral in Eq. (3.51) is twice the

right-hand side of Eq. (3.42) without
√

ε� resulting in


I-II
0f = 8 exp

[
− 64

3π2γ 2
+ 2

γ
− 2

]
. (3.52)

We see from Fig. 23 that 
I-II
0f becomes noticeable for γ �

0.45. For smaller γ the gapless region I appears to close at

smaller 
0i and zero 
0f . Figure 23 also shows that Eq. (3.52)

provides a reasonable estimate of 
I-II
0f even for large γ , which

is useful in our analysis of the one-channel model below.

IV. ONE-CHANNEL MODEL

In this section we collect for reference purposes analogous

results for the asymptotic steady state after a quench λi → λf

in the one-channel model given by Eqs. (1.3) and (1.5).

As explained in Sec. I A, the one-channel model obtains in

the broad resonance limit via replacements,

ω

γ
= ω

g2νF

→ 1

λ
, γ = g2νF → ∞ (4.1)

(in units of εF ). Our task is to go over equations of

previous sections performing these replacements. All essential

reasoning and methods are the same.

Chemical potential and gap Eqs. (1.25) and (1.26) now read

4

d
=
∫ ∞

0

⎡
⎣1 − ε − μ√

(ε − μ)2 + 
2
0

⎤
⎦ f (ε)dε, (4.2)

and

2

λ
=
∫ ε�

0

f (ε)dε√
(ε − μ)2 + 
2

0

, (4.3)

respectively.

The Lax vector becomes


L(u) =
∑

p


sp

u − εp

− ẑ

λνF

. (4.4)

Gaudin algebra, i.e., Eqs. (2.2) and (2.3), as well as the Lax

equation of motion (2.8) are the same. The numerator of the

conserved 
L2(u) is now a polynomial of degree 2N ,


L2(u) = Q2N (u)

(λνF )2
∏

p(u − εp)2
, (4.5)

where N is the number of nondegenerate εp.

Reduced solutions are constructed in the same way with

minor modifications. Specifically, the expressions for 
Lred(u)

in terms of 
σp and 
Lm(u) in terms of 
tj are replaced in

Eqs. (2.10) and (2.11) with the corresponding one-channel Lax

vectors according to Eq. (4.4). The Hamiltonian governing the

collective spin variables 
tj is

H red
1ch =

m−1∑

j=0

2ηj t
z
j − λνF

m−1∑

j,k=0

t−j t+k . (4.6)

Equations (2.13) and (2.14) as well as constraints (2.15) are

the same, except that the last equation relating ω and ω′ is

absent. In terms of the m-spin spectral polynomial Q2m(u) the

constraints become

∑

p

σpε
r−1
p√

Q2m(εp)
= − δrm

(λνF )2
, r = 1, . . . ,m. (4.7)
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Further, since the degree of the m-spin spectral polynomial is

2m rather than 2(m + 1), an m-spin solution of the two-channel

model becomes an (m + 1)-spin solution of the one-channel

model. This name change reflects the fact that the oscillator

mode b in the two-channel model is effectively an additional

spin, which was not counted as such.

All remaining equations in Sec. II, i.e., Eqs. (2.18)

through (2.74), are identical for the one-channel model, except

Eq. (2.21) is replaced with Eq. (4.6) for m = 2 and the

self-consistency condition (2.50) is now given by Eq. (1.13).

Equations determining isolated roots, critical lines, and

μ∞ = 0 line for the one-channel model are Eq. (3.4), Eqs. (3.6)

and (3.5), and Eq. (3.7), respectively, with replacements

δω

γ
→ 1

λf

− 1

λi

≡ β,
1

γ
→ 0. (4.8)

Asymptotic spin distribution—the constant angle the spin


s(ε) makes with the spin 
σ (ε) in the corresponding m-spin

solution—is

cos θ (ε) = z(ε)

iπf (ε)

√
A2

−
2
0i + [(ε − μi)A− + δβ]2

− z(ε)

iπf (ε)

√
A2

+
2
0i + [(ε − μi)A+ + δβ]2, (4.9)

where

A± = ± iπf (ε)

2Ei(ε)
+
∫ ∞

0

− f (ε′)dε′

2(ε − ε′)Ei(ε′)
. (4.10)

Equation (4.9) is in excellent agreement with the actual

spin distribution obtained from direct simulation of spin

dynamics [18]; see Fig. 3 therein.

A. Quench phase diagram

Quench phase diagrams for one-channel model in 2D and

3D are shown in Figs. 4 and 5. There is only one diagram in

each case extending to positive infinity in both 
0i and 
0f

directions because γ → ∞ and therefore 
max → ∞.

As we commented below Eqs. (3.23) and (3.31), the weak-

coupling part of the diagrams (the region of small 
0i and


0f near the origin) is independent of the dimensionality and

is exactly the same for the one-channel model. In other words,

all results contained in Eqs. (3.26) through (3.31) and the

surrounding text apply to the one-channel model in both 2D

and 3D; one only needs to replace δω/γ → δβ.

When either the initial or final coupling is outside the deep

BCS regime, we need to treat 2D and 3D cases separately.

1. 2D

It is straightforward to take the broad resonance limit

in Eqs. (3.15) to (3.21). In particular, the critical lines are

determined by taking this limit in Eqs. (3.16) and (3.17),

|δβ| = π

2

√
1 + v2, (4.11)

ln

[
(v + x)(v +

√
1 + v2)√

1 + x2
√

1 + v2 − xv + 1

]
= −sgn(δβ)πv. (4.12)

Equation (3.22), describing quenches originating in deep BCS,

remains as is, except the sign of δω translates into the sign of

δβ. The two roots u ≈ μi for either sign of δβ correspond

to quenches also terminating in deep BCS, so they are in the

universal regime given by Eqs. (3.26) through (3.31), which is

shared by both models regardless of the dimensionality.

The analysis for the root u ≈ +0 at δβ < 0 leading to

Eq. (3.25) requires some modifications. The γ → ∞ limit

in Eqs. (3.24) and (3.20) yields 4|μf | = 
2
0ie

π/
0i , 
0f =√
4|μf |, and finally


0f = 
0ie
π/2
0i , 
0i → 0. (4.13)

This equation gives the asymptotic form of the II-III critical

line in the (
0i,
0f ) plane in Fig. 4. We see that this line never

terminates in the 2D one-channel model.

Finally, let us work out the shape of the I-II critical line

for large 
0i , i.e., for quenches originating deep in the BEC

regime. Equation (3.32) becomes

ln

[
v + x

|x|

]
= −πv. (4.14)

Now there is always a single root v → −x (u ≈ 0). Equa-

tion (4.11) implies

δβ = 1

λf

− 1

λi

= π |x|
2

= π |μi |
2
0i

. (4.15)

We also need the gap equation in BCS and BEC limits and

the chemical potential equation in the BEC limit. Sending γ

to infinity in Eqs. (3.18)–(3.20), we obtain

ln
4ε�


2
0i

= 2

λi

, ln
ε�

|μf | = 2

λf

, 
0i =
√

4|μi |. (4.16)

Combining these equations with Eq. (4.15), we get


0f = 
0ie
−π
0i/8, 
0i → ∞. (4.17)

We see that 
0f exponentially vanishes along the I-II critical

line (gapless regime closes) as 
0i increases. The vertical

range of Fig. 4 is not enough to fully display this behavior,

though we see that I-II line does incline towards the 
0i axis

at large 
0i .

2. 3D

In addition to quenches that fall within the universal weak-

coupling regime described in Eqs. (3.26) to (3.31) and the

corresponding text, let us derive the termination point of the

II-III critical line and analyze the I-II line at large 
0i .

First, we consider the II-III line. The termination point is

given by Eq. (3.47). In the γ → ∞ limit we have

4 =
∫ ∞

0

⎡
⎣1

ε
− 1√

(ε − μf )2 + 
2
0f

⎤
⎦√

εdε. (4.18)

Chemical potential equation (4.2) provides another relation

between μf and 
0f . Numerical solution of these two

equations is

μII-III
f ≈ −1.4602εF , 
II-III

0f ≈ 1.4875εF . (4.19)

This value of 
II-III
0f agrees with Fig. 22. Unlike 2D, in 3D

region III encloses a finite area, resembling a dome between

the origin and the point (
0i,
0f ) = (0,
II-III
0f ).
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Next we turn to the critical line separating the gapless region

I from region II. For finite γ we analyzed the termination point

(
0i,
0f ) = (
max,

I-II
0f ) of this line at the end of Sec. III B.

In the single-channel case, 
max → ∞, so the I-II line does

not close. As 
0i → ∞, the value of 
0f for a point on this

line tends to 
I-II
0f , which is determined by the γ → ∞ limit

of Eq. (3.51),

0 =
∫ ∞

0

⎡
⎣ 1√

(ε − μf )2 + 
2
0f

− 1

ε

⎤
⎦√

εdε, (4.20)

together with Eq. (4.2). The solution of these equations is

μf ≈ 0.5906εF , 
I-II
0f ≈ 0.6864εF . (4.21)

V. TRANSIENT DYNAMICS: LINEAR ANALYSIS

Here we solve the dynamics for small deviations from the

ground state. Linear analysis for the one-channel model in

the weak-coupling BCS regime was performed by Volkov and

Kogan [3]; see also Ref. [18]. Gurarie [23] extended this study

to strongly coupled superconductors. Both these studies of the

linearized dynamics conclude that


(t) → 
∞e−2iμ∞t−2iϕ (5.1)

as t → ∞, but the approach to this asymptote is different.

Our analysis adds several new results to this prior work.

We demonstrate that within linear analysis the amplitude

of the order parameter asymptotes to its ground-state value

for the Hamiltonian with which the system evolves after

nonequilibrium conditions are created, i.e., 
∞ = 
0f , a point

that seems to have been missed by the earlier work. Also,

μ∞ = μf , the ground-state chemical potential. In other words,


∞ − 
0 and μ∞ − μf are second order in the deviation. This

is a general result that holds for both one- and two-channel

models and is independent of the type of perturbation that

drives the system out of equilibrium.

Further, we solve linearized equations of motion using the

machinery of the exact solution [13,15], which provides much

more detailed information. For example, we also determine

the short-time behavior, normal modes, full explicit long-time

form 
(t), and individual spins with all prefactors and phases,

etc., unavailable to conventional linear analysis. Note that

in quench phase diagrams constructed above small quenches

correspond to the vicinity of the diagonal 
0i = 
0f ; see, e.g.,

Figs. 20 and 21.

A. Asymptotic �(t) and spins

Consider an infinitesimal quench of the detuning δω =
ωf − ωi . More generally, δω can be any small parameter

that measures the deviation from the ground state in the

two- or one-channel model. We work to linear order in

δω. Suppose 
(t) → 
∞e−2iμ∞t−2iϕ . For the detuning or

interaction quenches, this follows from the few-spin conjecture

and quench phase diagrams derived above and we also verify

it independently below. Let us go to a reference frame that

rotates with frequency 2μ∞ around the z axis. In this frame


(t) = 
∞ and the magnetic field 
Bp = (−2
∞,0,2εp −
2μ∞) acting on spin 
sp in Eq. (1.8) is time-independent. Note

that transformation to the rotating frame results in shifts to εp

and ωf . Then the spin rotates around 
Bp, making a constant

angle π − θp with it. This is, in fact, the asymptotic solution

described in Sec. II D 1,


sp(t) = 
np

2
cos θp + 
s⊥

p (t), (5.2)

where 
np is a unit vector along − 
Bp,

nx
p = 
∞

E∞
p

, ny
p = 0, nz

p = −εp − μ∞
E∞

p

. (5.3)

Equation (1.8) with ḃ = 0 further implies 
∞ = −gb =
g2J−/(ωf − 2μ∞). The contribution of 
s⊥

p to J− dephases

as t → ∞. The latter is therefore
∑

p nx
p/2, the sum of

components of 
sp along 
Bp projected onto the xy plane,


∞ = g2

ωf − 2μ∞

∑

p


∞ cos θp

2
√

(εp − μ∞)2 + 
2
∞

. (5.4)

In the ground state 
sp is aligned with − 
Bp; i.e., θp = 0. This

implies that θp must be proportional to δω and therefore

corrections to cos θp = 1 are second order in δω. However, for

cos θp = 1, Eq. (5.4) is the ground-state gap equation (1.18)

for ω = ωf . Moreover, applying the same argument to Jz

and Eq. (1.19), we find that 
∞ and μ∞ also satisfy the

ground-state chemical potential equation (1.20). It follows that

for small oscillations around the ground state one always has


∞ = 
0f , μ∞ = μf . (5.5)

For the same reason the nonoscillatory part of 
sp (zeroth

harmonic) in the steady state is the same as in the ground

state at ω = ωf , i.e., is given by Eq. (1.15) with 
0 → 
0f

and μ → μf .

The same is true for the one-channel model. Note also

that infinitesimal quenches in the BCS regime conform to this

conclusion; see Eq. (3.30). Moreover, this result generalizes

to finite spin dynamics, where, as we show below, zeroth

harmonics of 
(t) and 
sp to linear order in δω coincide with

the ω = ωf ground-state values.

B. Normal modes and finite-size dynamics

Now we turn to the linear analysis per se. At this point

it is convenient to rewrite summations over p as summations

over single-particle energies. We adopt the following model

of discrete spectrum. Let us discretize the magnitude of

the momentum, p → pk . The corresponding energies are

εk = p2
k/2m with degeneracy Nk = N (εk), the number of

states in a momentum shell between pk and pk+1, which is

a smooth function of εk . The level spacing δk = εk+1 − εk

is also assumed to depend on εk smoothly. We include this

dependence in Nk , so without loss of generality we take

it to be constant, δk = δ. Our final results depend only on

the density of states ν(εk) = Nk/δ, the number of states per

unit energy. Equivalently, εi can represent levels of some

other single-particle potential, e.g., a 3D harmonic oscillator

potential; see the discussion at the end of Sec. I A. All

quantities and equations, including spins 
sp, Hamiltonians,

equations of motion, and initial conditions, considered in this
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paper depend on p only through εp. For any such quantity

Ap = A(εp),

∑

p

Ap =
N∑

k=1

NkAk →
∫

ν(ε)dε, (5.6)

where Ak = A(εk). In particular, the Lax vector (2.1) reads


L(u) =
N∑

k=1

Nk
sk

u − εk

− (ω − 2μ)

g2
ẑ + 2

g2
[(u − μ)ẑ − 

].

(5.7)

A convenient tool for linear analysis of the dynamics are

the separation variables introduced in Refs. [13,15] for the

one- and two-channel models, respectively. As we will see,

in linearized dynamics these variables are simply the normal

modes. Separation variables uj are defined as the solutions of

L−(uj ) ≡ Lx(uj ) − iLy(uj ) = 0; i.e.,

L−(u) = 2b

g
+

N∑

k=1

Nks
−
k

u − εk

= 0. (5.8)

Because u = uj are the zeros of the rational function L−(u)

and u = εk are its poles, we can also write it as

L−(u) = 2b

g

∏
j (u − uj )

∏
k(u − εk)

. (5.9)

Matching the residues at u = εk and u = ∞ in Eqs. (5.8)

and (5.9), we express the spins in terms of uj ,

Nks
−
k = 2b

g

∏
j (εk − uj )

∏
m	=k(εk − εm)

, (5.10)

J− =
∑

k

Nks
−
k = 2b

g

∑

k

(εk − uk). (5.11)

Equations of motion in terms of new variables are

u̇k = − 2i
√

Q2N+2(uk)∏
m	=k(uk − um)

,

(5.12)

ḃ = −2ib

[
ω

2
+
∑

k

(εk − uk)

]
;

see Ref. [15] for a detailed derivation. Here Q2N+2(u) is the

spectral polynomial defined in Eq. (2.9).

Roots of Q2N+2(u) are the same as roots of 
L2(u)

determined by Eq. (3.3). In our new notation,

(
u − μ ∓ i
0

)
[

2

g2
−
∑

k

Nk

2(u − εk)E(εk)

]
= δω

g2
, (5.13)

where E(εk) =
√

(εk − μ)2 + 
2
0. Here and everywhere be-

low in this section μ and 
0 without a subscript indicate

ground-state values μi and 
0i for the initial detuning ω = ωi .

In the ground state 
L2(u) = [(u − μi)
2 + 
2

0i]L
2
0(u). There is

a pair of complex roots c± = μi ± i
0i and 2N real double

degenerate roots xk that solve

L0(x) = − 2

g2
+
∑

k

Nk

2(x − εk)E(εk)
= 0, (5.14)

A plot of L0(x) reveals that xk are located between consecutive

εk , i.e., εk < xk < εk+1.

Since 
L2(xk) = L2
x(xk) + L2

y(xk) + L2
z(xk) = 0 in the

ground state and xk is real, all components of 
L(xk) must van-

ish, Lx(xk) = Ly(xk) = Lz(xk) = 0. It follows that L−(xk) =
0, meaning that the separation variables are frozen in the real

double roots, uk = xk . After a quench they start to move from

these initial positions, uk(t) = xk + δuk , where δuk vanishes

at t = 0 and is proportional to δω for an infinitesimal quench.

For δω 	= 0 real double roots of Q2N+2(u) split into pairs

of complex conjugate roots ck = xk + δck and c̄k = xk + δc̄k .

Therefore, the expression for Q2N+2(uk),

Q2N+2(uk) = (uk − ck)(uk − c̄k)(uk − c+)(uk − c−)

×
∏

m	=k

(uk − cm)(uk − c̄m), (5.15)

to lowest nonzero order in δω becomes

Q2N+2(uk) = (δuk − δck)(δuk − δc̄k)�2
k

×
∏

m	=k

(xk − xm)2, (5.16)

with �k =
√

(xk − μ)2 + 
2
0, not to be confused with function

�(t) in Sec. II B 3. Similarly, the denominator of the equation

of motion (5.12) for uk to the lowest order
∏

m	=k(uk − um) =∏
m	=k(xk − xm), so this equation reads

δu̇k = ±2i�k

√
(δuk − δck)(δuk − δc̄k). (5.17)

Corrections to the roots due to the quench obtain by setting

u = xk + δck in Eq. (5.13) and linearizing in δck . Separating

real and imaginary parts, δck = ak + ibk , we have

ak = δω(xk − μ)

g2�2
kFk

, bk = δω
0

g2�2
kFk

, (5.18)

where

Fk =
∑

m

Nk

2(xk − εm)2E(εm)
. (5.19)

Let us also evaluate the correction to the complex root pair

c± = μi ± i
0i . Writing the perturbed roots as μ′ ± i
′, we

obtain from Eq. (5.13) to linear order in δω

μ′ − μi = δω

g2

βk

α2
k + β2

k

,

(5.20)


′ − 
0i = −δω

g2

αk

α2
k + β2

k

,

where αk and βk are defined in Eq. (C5). Comparing this

with first-order shifts in the ground-state gap and chemical

potentials that readily derive from Eqs. (C7), we conclude that

μ′ = μf , 
′ = 
0f , (5.21)

as it should be according to Sec. II D 1; see the text following

Eq. (2.65) and also below.

Equation (5.17) is a harmonic oscillator equation, which

yields

δuk(t) = ak(1 − cos 2�kt) + ilk sin 2�kt, (5.22)
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FIG. 24. (Color online) As a result of a quench, doubly degen-

erate roots of 
L2(u) in Fig. 17 split into pairs of complex conjugate

roots cm (not all N = 54 pairs of roots are shown). In linear analysis,

separation variables move periodically on ellipses around the brunch

cuts of [ 
L2(u)]−1/2 connecting complex conjugate cm without crossing

any of the brunch cuts. Each separation variable has its own distinct

frequency and corresponds to a normal mode of small oscillations

around the ground state. Here 
0f = 0.12εF , δω/γ = −0.1, and

other parameters are the same as in Fig. 17.

where

lk = ±
√

a2
k + b2

k = δω

g2�kFk

. (5.23)

In deriving Eq. (5.22) we took into account the initial condition

δuk(0) = 0 and used expressions (5.18). We set the sign in the

last equation in Eq. (5.23) to be plus, which we justify later in

this section.

Equation (5.22) shows that uk(t) are the normal modes of

small oscillations around the ground state and that the normal

frequencies are 2�k = 2
√

(xk − μ)2 + 
2
0, where xk are the

roots of Eq. (5.14). Equation (5.22) also shows that in linear

analysis separation variable uk(t) moves on an ellipse with

semiaxes ak and
√

a2
k + b2

k around the roots ck,c̄k . The latter

are the focal points of the ellipse. The function
√

Q2N+2(u)

entering equations of motion for separation variables has

branch cuts connecting pairs of conjugate roots ck and c̄k ,

so one can also say that separation variables move on ellipses

around brunch cuts without crossing any of them; see Fig. 24.

Next, we determine deviations of the spins δ
sk(t) and the

order parameter δ
(t) from their initial ground-state configu-

ration (1.14) and (1.15). We go to a rotating reference frame,

s−
k → s−

k e−2iμt , b → be−2iμt , (5.24)

to get rid of the time dependence in the unperturbed dynam-

ical variables. This shifts ω → ω − 2μ in the equation of

motion (5.12) and now ḃ = 0 in the ground state before the

quench, i.e., for ω = ωi . Linearizing Eq. (5.10), we obtain a

decomposition of spin deviations in terms of the normal modes,

δs−
k (t)

s−
k (0)

= δ
(t)


0

−
∑

j

δuj

εk − xj

. (5.25)

Similarly, the second equation in Eq. (5.12) linearized and

integrated in the rotating frame after the quench, i.e., with

ω = ωf , yields


(t)


0

= 1 −
∑

k

lk
1 − cos 2�kt

�k

− iδωt + 2it
∑

k

ak

− i
∑

k

ak sin 2�kt

�k

, (5.26)

where we took into account 
(t) = −gb(t), 
(0) = 
0 and

expressions (5.22). The iδωt appears because for unperturbed

uk the bracketed term in the second equation in Eq. (5.12)

vanishes for ω = ωi , while after the quench ω = ωf .

Linearizing spin equations of motion (1.8) directly and

plugging expressions (5.25) and (5.26), one can verify that the

correct sign in the last equation in Eq. (5.23) is indeed plus,

even though there is probably a simpler way to show this.

The imaginary part in Eq. (5.26) comes from the phase of

the order parameter, so we write


(t) =
(


0 − 
0

∑

k

lk
1 − cos 2�kt

�k

)

× exp

[
−iδωt + 2it

∑

k

ak − i
∑

k

ak sin 2�kt

�k

]
.

(5.27)

This coincides with Eq. (5.26) to first order in δω. Moreover,

we know from Eq. (5.5) that the linear part of the phase

(zeroth harmonic in the derivative of the phase) is −2μf t

in the continuum limit, where μf is the ground-state chemical

potential at detuning ωf . Similarly, the zeroth harmonic in the

amplitude of 
(t) is equal to 
0f . It turns out that this is true

even in the discrete case, i.e.,


0 − 
0

∑

k

lk

�k

= 
0f ,

(5.28)
2μ + δω − 2

∑

k

ak = 2μf ,

where we restored the phase of 
(t) to the original reference

frame according to Eq. (5.24). Recall that in this section μ and


0 without a subscript indicate ground-state values μi and 
0i

for the initial detuning ω = ωi . With the help of Eqs. (5.18)

and (5.23) these relations become

∑

k

xk − μ

�2
kFk

= g2

2
− g2 δμ

δω
,

(5.29)∑

k


0

�2
kFk

= −g2 δ
0

δω
,

where δμ = μf − μ and δ
0 = 
0f − 
0. These are in fact

identities, as we prove in Appendix C. Thus,


(t) =
(


0f + 
0

∑

k

lk
cos 2�kt

�k

)

× exp

[
−2iμf t − i

∑

k

ak sin 2�kt

�k

]
, (5.30)

in the original reference frame.
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An expression for s−
k (t) obtains similarly from Eqs. (5.25)

and (5.26) with the help of identity (C8),

s−
k (t) = s−

kf

⎛
⎝1 +

∑

j

lj cos 2�j t

�j

+
∑

j

aj cos 2�j t

εk − xj

− i
∑

j

lj sin 2�j t

εk − xj

⎞
⎠

× exp

⎡
⎣−2iμf t − i

∑

j

aj sin 2�j t

�j

⎤
⎦ , (5.31)

where

s−
kf ≡ s−

f (εk) = 
0f

2
√

(εk − μf )2 + 
2
0f

. (5.32)

The last term in round brackets in Eq. (5.31) can be as well

included into the phase; to linear order the two versions are

equivalent. The present form is more convenient for the long-

time analysis below. We see that again nonoscillatory parts of

the magnitude and phase of s−
k (t) and magnitude of sz

k are the

same as in the ground state for final detuning ω = ωf .

Finally, the expression for sz
k (t) follows the conservation of

|
sk| = 1/2, sz
k = ±

√
1/4 − |s−

k |2 expanded to the linear order

in δω,

sz
k (t) = sz

kf

⎡
⎣1 −


2
0f

(εk − μf )2

∑

j

lj cos 2�j t

�j

−

2

0f

(εk − μf )2

∑

j

aj cos 2�j t

εk − xj

⎤
⎦ , (5.33)

where

sz
kf ≡ sz

f (εk) = − εk − μf

2
√

(εk − μf )2 + 
2
0f

. (5.34)

C. Continuum limit

In N → ∞ limit, xk → εk and summations in the above

expressions for sz
k (t), s−

k (t), and 
(t) turn into integrations.

With the help of Eqs. (5.18), (5.23), (5.6), and (B9), Eq. (5.30)

obtains (as always in units of the Fermi energy εF )


(t)


0f

= [1 + X1(t)] exp[−2iμf t − iX2(t)], (5.35)

where

X1(t) = δω

γ

∫ ∞

0

2 cos[2E(ε)t]f (ε)dε

E(ε)[π2f 2(ε) + H 2(ε)]
, (5.36)

X2(t) = δω

γ

∫ ∞

0

2(ε − μ) sin[2E(ε)t]f (ε)dε

E2(ε)[π2f 2(ε) + H 2(ε)]
, (5.37)

where E(ε) =
√

(ε − μ)2 + 
2
0 and H (ε) is defined in

Eq. (B8). In deriving this expression, we also used, �k →
E(εk), ν(ε) = νF f (ε), g2νF = γ , and δ = Nk/ν(εk). Equa-

0 20 40 60 80

t
0f

0.98

1

1.02

|
(t

)|
/

0
f

numerics
analytics, Eq. (5.35)

FIG. 25. (Color online) Comparison of Eq. (5.35) with |
(t)|
computed by numerically evolving N = 5024 spins in a 3D two-

channel model after a detuning quench. Here γ = 1.0, 
0i =
0.122
max, 
0f = 0.126
max, and both Eq. (5.35) and the spin chain

in the numerics are cut off at ε� = 10εF .

tion (5.35) is in excellent agreement with numerical results;

see, e.g., Fig. 25.

Expressions (5.33) and (5.31) for s−
k (t) and sz

k (t) contain

two extra summations as compared to 
(t). These are handled

as in Appendix C by splitting each sum into two parts, over

xj inside and outside a small interval around εk . The same

method works for summations over xj because according to

Eq. (B8) ̺(ε) is a smooth function and therefore xj are locally

equally spaced with spacing δ just as εk . The second and the

third sums in round brackets in Eq. (5.31) are

Y1(ε,t) = δω

γ

∫ ∞

0

− 2(ε′ − μ) cos[2E(ε′)t]f (ε′)dε′

(ε − ε′)E(ε′)[π2f 2(ε′) + H 2(ε′)]

− δω

γ

2(ε − μ)H (ε) cos[2E(ε)t]

E(ε)[π2f 2(ε) + H 2(ε)]
, (5.38)

Y2(ε,t) = δω

γ

∫ ∞

0

− 2 sin[2E(ε′)t]f (ε′)dε′

(ε − ε′)[π2f 2(ε′) + H 2(ε′)]

− δω

γ

2H (ε) sin[2E(ε)t]

π2f 2(ε) + H 2(ε)
, (5.39)

respectively. Thus,

s−(ε,t)

s−
f (ε)

= [1 + X1(t) + Y1(ε,t) − iY2(ε,t)]

× exp[−2iμf t − iX2(t)], (5.40)

sz(ε,t)

sz
f (ε)

= 1 −

2

0f

(ε − μf )2
[X1(t) + Y1(ε,t)]. (5.41)

Functions X1 and X2 are related via differentiation. Define

X̃1(t) =
∫ ∞

0

K(ε)e2iẼ(ε)tdε, (5.42)

where Ẽ(ε) =
√

(ε − μ̃)2 + 
2
0 and

K(ε) = δω

γ

2f (ε)

E(ε)[π2f 2(ε) + H 2(ε)]
. (5.43)
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Then

X1(t) = ReX̃1(t)|μ̃=μ, (5.44)

X2(t) = 1

2t
Re

∂X̃1(t)

∂μ̃

∣∣∣∣
μ̃=μ

. (5.45)

A similar relationship holds for Y1 and Y2.

D. Validity of the few-spin conjecture

We are now in the position to prove the few-spin conjecture

for infinitesimal quenches independently of either numerics

or arguments of Sec. II. At t → ∞ integrals in Eqs. (5.36)

and (5.37) vanish by the Riemann-Lebesgue lemma. There-

fore,


(t) → 
0f e−2iμf t . (5.46)

According to the few-spin conjecture this asymptotic behavior

of 
(t) occurs when there is a single isolated root pair at

μf ± i
0f . Equation (5.21) shows that our 
L2(u) does have

this pair of roots. Moreover, the remaining 2N roots are given

by Eq. (5.18) and we explicitly see from Appendix B that their

imaginary parts scale as 1/N at large N and that they merge

into a continuum of roots on the real axis in the N → ∞ limit.

Thus, there is indeed a single isolated root pair at μf ± i
0f

in the thermodynamic limit.

E. Weak-coupling limit

Simpler expressions obtain in the weak-coupling (BCS)

limit when 
0 is much smaller than other energy scales (Fermi

energy in gases and Debye energy in metals). This limit

describes superconductivity in metals and applies to recent

experiments on nonadiabatic BCS dynamics [25,31]. In our

quench phase diagrams (Figs. 2–4, etc.) the weak-coupling

regime corresponds to a small neighborhood of the origin.

At weak coupling μ ≈ εF = 1. Integrals (5.36) and (5.37)

are dominated by energies close to the Fermi energy, |ε −
μ| ∼ 
0, where f (ε) ≈ 1 independent of dimensionality. It

is convenient to change the integration variable to ξ = ε − μ

and extend the integration to the entire real axis. X2(t) vanishes

by particle-hole symmetry (integrand is odd in ξ ). The error

due to these approximations is proportional to 
0/εF , which

vanishes in the weak-coupling limit. Equation (5.35) implies

|
(t)| = 
0f − 4δ
0

∫ ∞

0

cos[2E(ξ )t]dξ

E(ξ )[π2 + H 2(ξ )]
, (5.47)

where E(ξ ) =
√

ξ 2 + 
2
0, δ
0 = 
0f − 
0i , and

H (ε) = ln

[
E(ξ ) − ξ

E(ξ ) + ξ

]
. (5.48)

In deriving Eq. (5.47) we used the weak-coupling gap formula


0 ∝ exp(−ω/γ ) and Eqs. (B6) and (B8). [Note that at

relevant energies 4E(ε)/γ ∝ 
0/εF → 0.] We also used the

fact that the integrand is even in ξ to convert the integration

range from (−∞,∞) to (0,∞).

The phase of the order parameter defined through


(t) = |
(t)|e−i�(t) (5.49)

is simply �(t) = 2εF t . Let us also note that in terms of ξ =

0 sinh(πx/2) Eq. (5.47) reads

|
(t)| = 
0f − 2δ
0

∫ ∞

0

dx

π

cos[2τ cosh(πx/2)]

1 + x2
, (5.50)

where τ = 
0t .

F. Long-time behavior of �(t): BCS side

Integrands in Eqs. (5.36) and (5.37) are highly oscillatory.

The argument of the cosine is stationary at ε = μ, E′(μ) = 0.

For μ > 0 the stationary point is inside the integration range.

For μ < 0 there are no stationary points on the integration

path. This leads to qualitatively different behavior of 
(t) on

the BCS (μ > 0) and BEC (μ < 0) sides.

Consider first the BCS regime. We evaluate X̃1(t) in

Eq. (5.42) in stationary-phase approximation

X̃1(t) = K(μ̃)

√
π
0

t
e2i
0t+iπ/4 + O(1/t), (5.51)

where we used Ẽ(μ̃) = 
0, Ẽ′′(μ̃) = 1/
0. With the help of

Eq. (5.44) we obtain from Eq. (5.35) for the order parameter

amplitude

|
(t)| = 
0f + √
πK(μ)
2

0

cos(2
0t + π/4)√

0t

. (5.52)

The phase of the order parameter obtains with the help of

Eq. (5.45),

�(t) = 2μf t + √
πK ′(μ)
2

0

cos(2
0t + π/4)

2(
0t)3/2
. (5.53)

Coefficients K(μ),K ′(μ) are given by Eqs. (5.43), (B8),

and (B4). Simpler expressions for G(ε) are available in 2D

and in the weak-coupling (BCS) limit; see Eqs. (B5) and (B6).

For example, in the BCS limit (
0/εF → 0),


(t) =
[

0f − 2δ
0

π3/2

cos(2
0t + π/4)√

0t

]
e−2iμf t , (5.54)

where δ
0 = 
0f − 
0i and we additionally used 
0 ∝
exp(−ω/γ ). Note that the second term in Eq. (5.53) is

proportional to 
0/εF . This expression for 
(t) holds in the

BCS limit for both one- and two-channel models in 2D and

3D. Equation (5.54) for μf = 0 appeared in Ref. [18] without

derivation.

Let us also mention that long times for which asymptotes

of the order parameter derived in this section apply in practice

(e.g., in numerical simulations) mean t such that 1/
0 ≪ t ≪
1/δ. At times of order of the inverse level spacing 1/δ partial

recurrences occur; see Fig. 26. Oscillations with frequency

2
0 and 1/
√

t decay in the weak-coupling limit of the one-

channel model were identified by Volkov and Kogan [3].

G. Long-time behavior of �(t): BEC side

In the absence of stationary points, integrals of the type

of Eq. (5.42) are dominated by the end point, ε = 0 here.

Normally, they vanish as 1/t at large t , but in the present case
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FIG. 26. (Color online) Finite-size effects, such as partial

recurrences in |
(t)|, develop at times of order of the inverse

level spacing δ ∝ 1/N between discretized single-particle energy

levels εk . Long-time behaviors derived in our paper apply at

times tδ ≪ 1. In other words, we take the thermodynamic limit

first and large-time limit second. Two detuning quenches in a 3D

two-channel model are shown for N = 5024 and (a) γ = 0.5, 
0i =
3.0 × 10−2
max, 
0f = 2.9 × 10−4
max, δ = 3.4 × 10−3
max, and

(b) γ = 0.1, 
0i = 0.97
max, 
0f = 0.99
max, δ = 8.0 ×
10−3
max.

K(0) = 0 in both 2D and 3D, so they vanish faster. Unlike

the BCS side, the long-time behavior on the BEC side is not

universal in that it depends on the form of K(ε) at small ε, i.e.,

on the density of states and on the asymptotic spin distribution.

As a result, for example, it is different in 2D and 3D.

We first integrate by parts to obtain

X̃1(t) = − 1

2it

∫ ∞

0

[
K(ε)

Ẽ′(ε)

]′
e2iẼ(ε)tdε. (5.55)

In 2D the dimensionless density of states f (ε) = 1 and it

follows from Eqs. (5.43), (B8), and (B5) that K(ε) ∝ 1/ ln2 ε.

We evaluate the large t asymptote of this integral by splitting

the integration range into three, (0,1/�t),(1/�t,�/t), and

(�/t,∞), where � is such that 1 ≪ ln � ≪ ln t . In the first

integral we expand the integrand in small ε, which leads to an

integral
∫ 1/�t

0
d(ln ε)/ ln3 ε and

X̃1(t) = δω

γ

ie2iẼ(0)t

Ẽ′(0)E(0)

1

t ln2 t
. (5.56)

The other two integrals vanish as 1/t ln3 t and are therefore

negligible. Equations (5.35), (5.44), and (5.45) yield the

amplitude and the phase of the order parameter,

|
(t)| = 
0f

[
1 − δω

γ

sin(2Emint)

|μ|t ln2 t

]
, (5.57)

�(t) = 2μf t − δω

γ

cos(2Emint)

Emint ln2 t
, (5.58)

where Emin =
√

μ2 + 
2
0.

In 3D f (ε) = √
ε and K(ε) ∝ √

ε at small ε. This follows

from Eqs. (5.43), (B8), and (B4) and is, for example, readily

verified in the strong-coupling limit with the help of the last

expression in Eq. (B7). We split the integration range in

Eq. (5.55) into two, (0,1/�) and (1/�,∞), where t ≫ � ≫ 1.

In the first integral we can expand in small t , which results

in a Gaussian integral that behaves as 1/
√

t at large t . The

second integral vanishes faster as t → ∞. We thus determine

the following (exact) large-time asymptote:

X̃1(t) = − π1/2

(2t)3/2

δω

γ

e2iẼ(0)t+iπ/4

[−Ẽ′(0)]3/2E(0)H 2(0)
. (5.59)

With the help of Eqs. (5.44) and (5.45) we finally derive

|
(t)| = 
0f

[
1 − c

δω

γ

cos(2Emint + π/4)

(2|μ|t)3/2

]
, (5.60)

�(t) = 2μf t − c
|μ|
Emin

δω

γ

sin(2Emint + π/4)

(2|μ|t)3/2
. (5.61)

The coefficient c depends on μ, 
0, and γ . It is known exactly

from Eq. (5.59), but involves G(0), which in 3D is an elliptic

integral according to Eq. (B4). In the strong-coupling BEC

limit, μ → −∞, G(ε) is independent of ε and takes a simple

form (B7). In this case,

c =
√

π |μ|
εF

(
4|μ|
γ εF

+ π

√
|μ|

0

)−2

, (5.62)

where we restored the original energy units.

H. Long-time behavior of spins

Let us also work out the long-time behavior of individual

spins given by Eqs. (5.40) and (5.41) and compare it to the

asymptotic spin distribution, Eqs. (2.62) and (3.11), obtained

earlier. The latter result is based on the few-spin conjecture,

so the agreement with linear analysis provides yet another

(though redundant because we already proved the few-spin

conjecture for infinitesimal quenches in Sec. V D) check.

Functions X1,2 vanish as t → ∞, while the large-time limit

of Y1,2 derives from the identity

lim
t→∞

∫ ∞

0

− dε′F (ε′)e±2iE(ε′)t

ε′ − ε
= ±iπαF (ε)e±2iE(ε)t , (5.63)

where α is the sign of tdE(ε′)/dε′ at ε′ = ε and F (ε′) is an

arbitrary bounded continuous function.

Applying this identity to Eqs. (5.38) and (5.39) and

substituting resulting expressions into Eqs. (5.40) and (5.41),
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we obtain

s−
∞(ε,t)e2iμf t

s−
f (ε)

= 1 − 2δω

γ

exp[−2iE(ε)t − iφ]√
π2f 2(ε) + H 2(ε)

− 2δω

γ

[
ξ

E(ε)
− 1

]
cos[2E(ε)t + φ]√
π2f 2(ε) + H 2(ε)

,

(5.64)

sz
∞(ε,t)

sz
f (ε)

= 1 + 2δω

γ


2
0f

ξE(ε)

cos[2E(ε)t + φ]√
π2f 2(ε) + H 2(ε)

, (5.65)

where ξ = ε − μ and φ is defined through

cos φ = H (ε)√
π2f 2(ε) + H 2(ε)

,

(5.66)

sin φ = πf (ε) sgn(tξ )√
π2f 2(ε) + H 2(ε)

.

In our case t > 0, but we still kept it under the sign function

to ensure proper behavior under time reversal; see Eq. (6.2).

Equations (5.64) and (5.65) match Eq. (2.62) with

θ (ε) ≈ sin θ (ε) = 2δω

γ


0

E(ε)
√

π2f 2(ε) + H 2(ε)
. (5.67)

(Not that in the present case 
∞ = 
0f and μ∞ = μf .) This

indeed agrees with Eq. (3.13) obtained from the few-spin

conjecture.

I. Short-time behavior

Here we analyze the short-time behavior of |
(t)| for

quenches within the universal weak-coupling regime. For

large quenches from weaker to stronger coupling, when


0f /
0i ≫ 1, or from the normal state (zero initial coupling)

in this regime |
(t)| grows as e
0f t . This exponential growth

reflects the instability of the normal state in the presence of

superconducting interactions [7,16]. At the same time, even for

small quenches |
(t)| rises or falls sharply at short times; see

Figs. 7 and 25. Sharp growth is seen in experiment, too, though

most of it is probably due to a different mechanism [31].

A direct small t expansion of the cosine in Eq. (5.36)

diverges at high energies. Cutting off the integral at ε�

(Debye energy in the case of metals), one obtains [12]

δ|
(t)| ∝ δ
0(ε�t)2. This is cutoff dependent and applies

only to ultrashort times t ≪ 1/ε� that vanish as the cutoff is

sent to infinity. We are interested in times 1/ε� ≪ t ≪ 1/
0.

Consider Eq. (5.50). The argument of the cosine is small

for x ≪ x0, where x0 is determined by e
πx0

2 = 1/τ , i.e., x0 =
2
π

ln(1/τ ). Let us divide the domain of the integration into three

intervals: [0,x0 − a], [x0 − a,x0 + a], and [x0 + a,∞) and let

the corresponding integrals be I1, I2, and I3, respectively.

The auxiliary parameter a, 1 ≪ a ≪ x0, is such that 1/a →
0,a/x0 → 0 as x0 → ∞. For example, one can take a = √

x0.

Expanding the cosine in small τ in I1 and integrating, we

obtain

I1 = 1

2
− 1

πx0

− a

πx2
0

+ o
(
a/x2

0

)
. (5.68)

In I2 we replace x2 + 1 → x2
0 up to terms of order a/x0. After

this, a substitution y = exp πx/2 transforms it into the cosine

integral
∫

dy cos y/y with known behavior, leading to

I2 = a

πx2
0

+ o
(
a/x2

0

)
. (5.69)

Integrating by parts in I3, we see that it is proportional to

e−πa/2/x2
0 , which is negligibly small. Thus,

I1 + I2 + I3 = 1

2
− 1

2| ln(τ )| + o

[
1

| ln(τ )|

]
. (5.70)

Note the cancellation of the auxiliary parameter a. Finally,

plugging this into Eq. (5.50), we derive the short-time behavior

of the gap function amplitude

|
(t)| = 
0i + 
0f − 
0i

|ln(
0t)|
. (5.71)

VI. APPROACH TO THE ASYMPTOTE IN THE

NONLINEAR CASE

Here we discuss the approach of 
(t) to its large-time

asymptote in the nonlinear case. We consider regimes I

and II, the gapless phase and the phase where 
(t) →

∞e−2iμ∞t−2iϕ . Rather than rigorously deriving the t → ∞
asymptote in its entirety as we did for the linearized dynamics,

we present an argument based only on our knowledge of

the frequency spectrum that works under certain general

assumptions about relevant Fourier amplitudes.

As t → ∞ spins tend to their steady-state form, 
s(ε,t) →

s∞(ε,t), where 
s∞(ε,t) is given by Eqs. (2.45) and (2.62) in

regimes I and II, respectively. In phase II, in a reference frame

rotating with frequency 2μ∞ around the z axis, 
s∞(ε) rotates

with a constant frequency 2E∞(ε) = 2
√

(ε − μ∞)2 + 
2
∞. As

mentioned above, an integrable model with N degrees of free-

dom is characterized by N incommensurate frequencies [63]

that are determined by the integrals of motion and are fixed

throughout its time evolution. The Fourier decomposition of

any dynamical quantity can have only these basic frequencies

in its spectrum. In particular,

|
(t)| = 
∞ +
∫ ∞

0

F (ε) cos[2E∞(ε)t]f (ε)dε, (6.1)

with some unknown function F (ε).

Terms containing sin[2E∞(ε)t] are absent by time-reversal

symmetry [cf. Eq. (5.35)] of the equations of motion (1.8)

and (1.33) [see also Eq. (2.24)]

sz(−t) = sz(t), s+(−t) = s−(t), 
̄(−t) = 
(t), (6.2)

where we suppressed ε dependence of spins for compactness.

These relations hold at all times as long as the initial condition

at t = 0 satisfies them, which our initial state (1.28) does.

A common practice in previous work is to attempt to deter-

mine the approach of |
(t)| to its asymptotic value 
∞ from

the steady-state spins 
s∞(ε,t). Consider the one-channel case

for simplicity. Continuum version of Eq. (1.13) at t = ∞ is


∞(t) = λ

∫ ∞

0

s−
∞(ε,t)f (ε)dε. (6.3)
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The constant part of s−
∞(ε,t) yields 
∞, while the contribution

of the oscillating part integrated over ε vanishes (dephases) as

t → ∞. One can further determine the large-time asymptote

of Eq. (6.3) similarly to how we evaluated the large-time

behavior of Eq. (5.35). This is, however, not the correct

asymptote of the actual 
(t). Not only does it not yield the

correct coefficient of the time-dependent part of 
(t) [such

as the coefficient c in Eq. (5.60)], but also the actual time

dependence can be different.

At finite t there is a correction to the steady-state value of

the spin, 
s(ε,t) = 
s∞(ε,t) + δ
s(ε,t), so that the actual order

parameter is


(t) = λ

∫ ∞

0

s−
∞(ε,t)f (ε)dε + λ

∫ ∞

0

δs−(ε,t)f (ε)dε.

(6.4)

Even though δs−(ε,t) is small as compared to the oscillating

part of s−
∞(ε,t) at large times, this is no longer true after

integrating these quantities over ε. Consider, for example,

Eq. (5.40). We showed in Sec. V H that s−
∞(ε,t) comes from

functions Y1,2(ε,t). However, we see from Eq. (5.35) that the

integral of these functions over ε vanishes and, as a result,

they do not contribute to 
(t). The correction δs−(ε,t), on the

other hand, comes from both X1,2(t) and Y1,2(ε,t). It is this

contribution from X1,2(t) to δs−(ε,t) that actually determines


(t). Thus, there is a partial cancellation between the two

integrals in Eq. (6.4) and the true large-time behavior of 
(t)

can only be determined by keeping both.

Nevertheless, 
∞(t) being a legitimate dynamical quantity

has the right frequency spectrum and also contains the

dimensionless density of states f (ε). So, it still produces a

correct large-time dependence when, for example, the latter is

set by a stationary point as in Eq. (5.52) or by the behavior of

f (ε) at small ε as in Eq. (5.60). The situation on the BEC side

in 2D is different. The ln2 t dependence in the denominator

of Eq. (5.57) comes from K(ε) ∝ 1/ ln2 ε behavior of the

Fourier amplitude at small ε; see Eq. (5.42) and the text

below Eq. (5.55). This is, in turn, a consequence of K(ε) ∝
H−2(ε) and H (ε) ∝ ln ε, which follow from Eqs. (5.43), (B8),

and (B5). Were we to evaluate the large-time asymptote of

|
(t)| using Eq. (6.3), we would obtain 1/(t ln t) instead of

1/(t ln2 t). To see this, note that Eq. (5.64) implies that the

oscillating part of s−
∞(ε,t) is proportional to H−1(ε), i.e., to

1/ ln ε, at small ε and apply the same steps as in the text below

Eq. (5.55). The 1/ ln ε dependence cancels in Eq. (6.4) due

to the second term on the right-hand side. We note also that

Eqs. (2.62) and (3.11) imply s−
∞(ε,t) ∝ 1/ ln ε in all of region

II in 2D, not just in the linear approximation.

Similar considerations apply in analyzing Eq. (6.1). Let us

work out the large-time behavior of |
(t)| in steady states I,

II, and II′ separately.

A. Regime II

In steady states II and II′ 
(t) → 
∞e−2iμ∞t−2iϕ . For

quenches in region II μ∞ > 0, so it can be viewed as a nonequi-

librium extension of the BCS regime. The frequency spectrum

2E∞(ε) has a stationary point at ε = μ∞, E′
∞(μ∞) = 0, which

in regime II lies within the integration range. The large-time

behavior of Eq. (6.1) obtains with the help of stationary point

method [cf. Eq. (5.52)]

|
(t)| = 
∞ + √
πF (μ∞)
2

∞
cos(2
∞t + π/4)√


∞t
. (6.5)

The only assumption about F (ε) here is that it is smooth.

This is an extension of Eq. (5.52) to the nonlinear regime.

In the weak-coupling BCS limit this result was published

in Ref. [16]. In this limit 
∞ is given by Eq. (3.29) and

generally it obtains from Eqs. (3.15) and (3.39) in 2D and

3D, respectively, and Eq. (3.14) as the imaginary part of u.

Here we see that expression (6.5) holds throughout the entire

region II for both one- and two-channel models.

B. Regime II′

Regime II′ has the same asymptotic 
(t) as II by definition

only with μ∞ < 0. There are now no stationary points on the

integration path. The approach to the asymptote is therefore

determined by the behavior of F (ε)f (ε) near the end points,

ε = 0 in this case. We assume this behavior is the same as

in linear analysis, since we expect the time dependence to

have the same functional form throughout a given regime.

According to Sec. V G, this means finite nonzero F (0) in 3D

and F (ε) ∝ 1/ ln2 ε for ε ≪ 1 in 2D.

Expanding Eq. (3.11) in small ε and using Eq. (2.62), we

see that the spin components at t → ∞ do behave the same

as in linear analysis, though this in itself does not prove our

assumption. Moreover, the asymptotic spin distribution (3.11)

is continuous across critical lines separating various regimes,

so the same small ε form holds in gapless region I as well.

As long as our assumptions about F (ε) are correct, the

analysis of the integral in Eq. (6.3) is the same as that in

Sec. V G, resulting in

|
(t)| = 
∞

[
1 − c1

sin
(
2Emin

∞ t
)

t ln2 t

]
in 2D (6.6)

and

|
(t)| = 
∞

[
1 − c2

cos
(
2Emin

∞ t + π/4
)

t3/2

]
in 3D, (6.7)

at large times, where Emin
∞ =

√
μ2

∞ + 
2
∞ and c1 and c2 are

real coefficients that depend on 
0i, 
0f , and γ .

C. Gapless regime

Finally, we turn to regime I. Now 
(t) → 0 at t → ∞.

Spins 
s∞(ε) rotate with frequencies 2ε around the z axis, so

that the Fourier transform of the order parameter magnitude is

of the form

|
(t)| =
∫ ∞

0

F (ε) cos(2εt)f (ε)dε, (6.8)

and the sin(2εt) term vanishes by time-reversal symme-

try (6.2).

In 3D we similarly assume finite and nonzero F (0). Steps

outlined below Eq. (5.58) in Sec. V G now lead to the following

large-time behavior:

|
(t)| = c3

t3/2
. (6.9)
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In 2D we speculate that F (ε) ∝ 1/ lnr ε at small ε, where r

is either 1 or 2. As discussed before in this section, s−
∞(ε,t) ∝

1/ ln ε in 2D, so that 
∞(t) ∝ 1/(t ln t). The 1/ ln ε term,

however, cancels from F (ε) at least in linear analysis and it

ends up being proportional to 1/ ln2 ε instead. In the gapless

case we allow for a possibility that such a cancellation does

not occur. The analysis of the integral in Eq. (6.8), analogous

to that leading to Eq. (5.60), then yields

|
(t)| = c4

t lnr t
. (6.10)

The gapless regime contains the 
0i = 
0f = 0 point, the

origin of quench phase diagrams. It therefore includes the

weak-coupling limit 
0i/εF → 0 and 
0f /εF → 0. Equa-

tion (6.8) becomes in this limit [see Sec. V E]

|
(t)| =
∫ ∞

−∞
F (ξ ) cos(2ξ t)dξ, (6.11)

where F (ξ ) is even in ξ . Now there can be no power law

in t contribution at large t coming from integration limits.

Instead, |
(t)| vanishes exponentially [17,18] as A(t)e−2α
0i t

independent of dimensionality, where α ∼ 1 and A(t) is a

decreasing power law, A(t) ∼ 
0i at t ∼ 1/
0i . Recall that

throughout this paper we have been using units where εF = 1.

To convert to arbitrary units in Eqs. (6.9) and (6.10), one

needs to replace t → εF t . Guided by linear analysis, we

further assume that coefficients c4 and c5 are of order 
0f ,

which we take to be comparable to 
0i . It is clear that at any

finite 
0i/εF ≪ 1 power laws in Eqs. (6.9) and (6.10) coming

from the lower integration limit will eventually win over the

exponential decay. The comparison of e−2α
0i t with (εF t)−1

shows that the weak-coupling result is valid at times such that

ln(εF /
0i) ≫ 
0i t ≫ 1, while for 
0i t ≫ ln(εF /
0i) it has

to be replaced with Eqs. (6.9) and (6.10).

VII. EXPERIMENTAL SIGNATURES

Far-from-equilibrium states of fermionic superfluids de-

scribed in this paper can be observed in different systems with

various experimental techniques.

Matsunaga et al. [25,26] directly measured the time-

dependent amplitude |
(t)| induced by an ultrafast electro-

magnetic perturbation in Nb1-xTixN films using terahertz-

pump–terahertz-probe spectroscopy. The underlying system

is a BCS superconductor [weak-coupling regime of the one-

channel model (1.3)] and for perturbation strength below

certain threshold its nonadiabatic dynamics falls within region

II of our quench phase diagrams. Even though we considered

BCS interaction quenches in the one-channel model in this

paper, it is clear from our arguments that our results apply

more generally to any kind of nonadiabatic global perturbation.

Therefore, we expect |
(t)| to be described by Eq. (6.5) de-

rived originally in nonlinear regime by Yuzbashyan et al. [16].

These experiments indeed measure damped oscillations with

frequency 2
∞, where 
∞ is the asymptotic value of |
(t)|
even when the system is deep in the nonlinear regime and 
∞
is much different from the ground-state gap. The power-law

approach, however, appears to be faster than 1/t1/2.

In this paper we primarily focused on detuning or in-

teraction quenches in cold fermions. Experiments address-

ing superfluidity in these systems include measurements of

the molecular condensate fraction [47,48], radio-frequency

absorption spectra [68], and observation of vortices [69].

Signatures of “far-from-equilibrium phases” I, II, and III—

gapless, gapped (Volkov-Kogan), and oscillatory—in these

experiments can be derived from the many-body wave function

�(t) determined above.

The pseudospin (fermionic) part of �(t) is a direct

product of spin- 1
2

wave functions
∏

p(ūp|↓〉 + v̄p|↑〉) found

in Sec. II D. In the gapless steady state
(

up

vp

)
= cos

θp

2

(
1

0

)
e−iεpt + sin

θp

2

(
0

1

)
eiεpt−iδp , (7.1)

where cos θp ≡ cos θ (εp) is given by Eq. (3.11) in all three

phases. The second term represents an occupied pair of states

±p (pseudospin up); the first represents an empty pair of

states (pseudospin down). �(t) in the gapless phase is a

coherent superposition of eigenstates of a free Fermi gas with

different energies reflecting the fact that 
(t) → 0 implies

vanishing of interactions between fermions on the mean-field

level. Effectively, the system is governed by a noninteracting

Hamiltonian at t → ∞. It nevertheless retains superconduct-

ing correlations. For example, in the weak-coupling regime

its superfluid density is half that in the ground state and in

phase II [18]. Phase I is therefore a nonequilibrium gapless

superfluid.

In the gapped steady state Eqs. (2.51) and (2.63) imply

(
upe

iμ∞t

vpe
−iμ∞t

)
= cos

θp

2

ground-state pair︷ ︸︸ ︷(
|Up|
|Vp|

)
e−iE∞

p t

+ sin
θp

2

excited pair︷ ︸︸ ︷(
|Vp|

−|Up|
)

eiE∞
p t , (7.2)

where

|Up| =
√

1

2
+ ξp

2E∞
p

, |Vp| =
√

1

2
− ξp

2E∞
p

, (7.3)

ξp = εp − μ∞, and we dropped the nonessential constant

phase ϕ. Bogoliubov amplitudes |Up| and |Vp| are the same

as in the BCS ground state [70] with gap 
∞ and chemical

potential μ∞. The two wave functions on the right-hand side

of Eq. (7.2) are the two orthonormal eigenstates of the BdG

Hamiltonian,

HBdG =
(

ξp 
∞

∞ −ξp

)
. (7.4)

The first one is a Cooper pair wave function in the BCS ground

state and corresponds to an alignment of the pseudospin 
sp

antiparallel to the effective magnetic field. The second one is

an excited state of the Cooper pair (
sp parallel to the effective

magnetic field) termed an excited pair in the original BCS

work [71]. It is interesting to note that these excitations of

the condensate in superconducting metals carry no charge and

spin, so nonadiabatic dynamics considered here provides a

unique venue for creating and measuring them [19]. The steady

state in phase II therefore is a coherent mixture of ground-state
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and excited pairs, a superposition of eigenstates of the BCS

Hamiltonian with gap 
∞ and chemical potential μ∞.

A similar interpretation of the oscillatory state obtains by

Fourier transforming the amplitudes (2.73),

(
upe

iμ̃t

vpe
−iμ̃t

)
=

∞∑

n=−∞

{
cos

θp

2

(
apn

bpn

)
e−i(ep−nω
)t

+ sin
θp

2

(
b̄pn

−āpn

)
ei(ep−nω
)t

}
, (7.5)

where ω
 is the oscillation frequency of |
(t)|, μ̃ and −2ep

are the zeroth harmonics of the phase of 
(t) and the common

phase of the amplitudes [see Eqs. (2.53) and (2.57)], and we

again dropped the constant phase ϕ. This expression derives by

first going to a frame rotating with frequency 2μ̃ to get rid of

the linear term in the phase of 
(t). This makes e−iφp , the term

involving the relative phase, periodic according to Eq. (2.54)

and it does not contribute to the momentum-dependent phases

on the right-hand side. Phase III, therefore, can be understood

as a superposition of generalized excited- and ground-state

pairs with dispersions ±ep and quanta of the amplitude (Higgs)

mode |
(t)|. As noted in Sec. II D 2, ep → εp at large εp.

The knowledge of the steady state allows us to compute

far-from-equilibrium correlation and Green’s functions in all

three phases. For example [72],

iGp,>(t,t ′) = 〈âp↑(t) â
†
p↑(t ′)〉 = ūp(t)up(t ′),

−iGp,<(t,t ′) = 〈â†
p↑(t ′) âp↑(t)〉 = v̄p(t ′)vp(t), (7.6)

G+
p (t,t ′) = 〈â†

−p↓(t) â
†
p↑(t ′)〉 = vp(t)ūp(t ′).

With these we can evaluate various observables such as the

superfluid density mentioned earlier in this section. Note also

that the steady-state momentum distribution n∞
p (t)dp is simply

related to the z component of the pseudospin according to

Eq. (1.6). Taking into account that p and −p are both included

in sz
p and integrating over the angles, we have

n∞
p (t) = 2p2

(
2sz

p + 1
)
. (7.7)

Expressions for sz
p in phases I, II, and III appear in Eq. (2.48),

Eq. (2.62), and Eqs. (2.55) and (2.72), respectively.

Finally, let us discuss the signatures of nonequilibrium

phases in radio-frequency (RF) spectroscopy [73–79]. Recall

that in an atomic Fermi gas the pairing occurs between atoms

in two different hyperfine states, |↑〉 ≡ |1〉 and |↓〉 ≡ |2〉. The

RF photon transfers atoms from one of these states, say |2〉, to

the third hyperfine state |3〉 that does not interact with |1〉 and

|2〉. In an unpaired Fermi gas where atoms |2〉 are free, the RF

absorption spectrum has a peak at the atomic transition energy

ω = E23. In the paired ground state, the peak shifts to ω > E23

by an amount equal to the minimum binding energy of Cooper

pairs [73].

The RF response of steady states I, II, and III was calculated

in Ref. [19] for quenches within the BCS regime and in

Ref. [36] for quenched p-wave superfluids. The calculation in

the present case is identical [80], so we do not reproduce it here.

The RF spectrum of phase I is similar to that of the normal state,

a peak at ω = E23. In phase II there are two peaks—at ω > E23

and ω < E23—which come from the ground-state and excited

pairs, respectively; see Eq. (7.2). The first peak corresponds to

a process in which an RF photon breaks a ground-state pair; the

second peak corresponds to a process in which an RF photon

breaks an excited pair. The RF response of phase III similarly

reflects the structure of the corresponding steady-state wave

function (7.5). There are two series of peaks spaced by ω
,

the frequency of oscillations of |
(t)|, coming from processes

where an RF photon breaks a ground-state (excited) pair and

absorbs or emits several quanta of the amplitude (Higgs) mode

|
(t)|.

VIII. CONCLUSION

In this paper we studied the coherent dynamics of an

isolated BCS-BEC condensate in two- and one-channel (BCS)

models in two and three spatial dimensions. Our main focus

was on detuning quenches ωi → ωf (interaction quenches

λi → λf in the one-channel model). We constructed exact

quench phase diagrams and predicted the order parameter

dynamics 
(t) and the full time-dependent wave function �(t)

of the system at large times for any pair of values (ωi,ωf ).

In contrast to most previous work, we considered quenches

beyond the weak-coupling limit of BCS-to-BCS quenches. We

add to this BCS-to-BEC and BEC-to-BCS quenches across the

Feshbach resonance, as well as quenches on the BEC side. We

showed that the weak-coupling limit is universal in that it is

model and dimension independent. Outside of this limit, there

are several qualitatively different features, the two-channel

model having richer quench phase diagram as it contains an

extra parameter: dimensionless resonance width γ . All results

for the one-channel model obtain from the two-channel ones

by taking the broad resonance, γ → ∞, limit.

We find the same three main nonequilibrium phases

(asymptotic states) as in the weak-coupling regime. Inter-

estingly, this seems to be a universal, model-independent

feature of quench dynamics of fermionic condensates, at least

when there is a global complex order parameter, so that the

Cooper pairs interact only through this collective mode. The

same three phases occur, for example, in p-wave supercon-

ductors [36,37], spin-orbit coupled superfluids [81], and s-

wave superconductors with energy-dependent interaction [20].

One can speculate that similar universality according to the

order parameter type exists among quench phase diagrams

of multicomponent superfluids, such as three fermion species

with pairing interactions or multiband superconductors.

The above three main phases are phase I, where 
(t)

vanishes; phase II, where 
(t) → 
∞e−2iμ∞t up to a constant

phase factor; and phase III, where |
(t)| oscillates persistently.

It turns out that μ∞ plays the role of a nonequilibrium analog

of the chemical potential. For quenches within the weak-

coupling regime μ∞ ≈ εF , while for quenches to deep BEC

μ∞ → −∞. Some of the new effects as one moves beyond

the weak-coupling regime are as follows. The oscillatory

approach of |
(t)| to a constant (Volkov-Kogan behavior)

changes from 1/
√

t for μ∞ > 0 to 1/t3/2 in 3D and 1/(t ln2 t)

in 2D for μ∞ < 0, and the oscillation frequency changes

from 2
∞ to 2
√

μ2
∞ + 
2

∞. For resonance width below a

certain threshold, the asymptotic gap amplitude 
∞ can be

much larger than 
0f , the ground-state gap at final detuning

ωf . Similarly, exponential vanishing of |
(t)| in phase I

gives way to a power-law behavior. Persistent oscillations
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in phase III are first suppressed for stronger quenches and

then disappear altogether. For example, in 3D one-channel

model there is a critical coupling λc, such that even quenches

from an infinitesimally small λi to λf > λc produce no such

oscillations. As λf approaches λc from below, the oscillation

amplitude first increases, then decreases, and finally vanishes

at λf = λc.

The postquench asymptotic state of the condensate is a

coherent superposition of ground-state and excited pairs at

each momentum [multiple bands of such pairs shifted by the

oscillation frequency of |
(t)| in phase III]. These are two

orthogonal eigenstates of a Cooper pair in the self-consistent

field, and, for instance, the BCS ground state is a direct

product of ground-state pair wave functions. Our steady state

in phases I and II is a direct product of such time-dependent

superpositions. In the Anderson pseudospin language, ground-

state (excited) pairs correspond to the alignment of pseudospin

antiparallel (parallel) to the magnetic field. Even though we

refer to these states as ground-state or excited pairs, we should

stress that they are not the same as similar states of Cooper

pairs in the ground or excited states of the BCS Hamiltonian

since the self-consistent field is different. Excited pairs are

elusive excitations in superconductors; it is difficult to couple

to them as they carry no charge or spin. Nonadiabatic dynamics

of the BCS-BEC condensate provides an opportunity to access

them, e.g., in the RF absorption spectrum.

Our treatment of the dynamics of the BCS-BEC condensate

neglects the coupling to the noncondensed modes (mean-

field approximation), molecules with nonzero momenta q

in the two-channel model. We check the validity of this

approximation for the two-channel model by estimating the

rates of the decoherence processes due to these terms for

postquench steady states in phase II and comparing them to the

typical time scale on which the quench dynamics occurs. Our

preliminary results indicate that the mean-field approach is

justified for quenches sufficiently far from the μ∞ = 0 line in

the quench phase diagrams, e.g., quenches within deep BEC,

deep BCS, or across the resonance from deep BCS to deep

BEC and vice versa. A more thorough study of these effects is

necessary to fully clarify the situation.

In mean-field various pairing Hamiltonians, e.g., one- and

two-channel models considered here, chiral p-wave BCS, a

certain class of d-wave BCS models [39], is equivalent to

integrable classical spin (or spin-oscillator) chains with long-

range interactions. The most remarkable general feature of

their dynamics is a reduction in the number of effective degrees

of freedom as t → ∞. Consider, e.g., the one-channel model.

As explained above, its dynamics in the thermodynamic limit

at long times after the quench can be described in terms of

just a few—zero (phase I), one (phase II), or two (phase III)—

collective classical spin variables. In other words, the number

of spins at long times reduces from infinity to zero, one, or two.

Moreover, the spin times evolve with the same Hamiltonian

only with “renormalized” parameters. For example, in phase

I the effective Hamiltonian at large times is simply H = 0,

and in phase II it is H = 2μ∞Sz − gS−S+, where 
S is the

collective spin of length | 
S| = 
∞/g and g is the original

BCS coupling constant. The order parameter 
(t) coincides

with that of the few-spin problem, while the original spins

relate to the collective ones in a more involved fashion.

It is this feature of the dynamics together with the inte-

grability of the underlying model that allowed us to explicitly

determine the exact postquench asymptotic state of the system.

In this paper we presented for the first time a comprehensive,

consistent overview of a general method to explicitly evaluate

the large-time asymptotic solution in classical integrable

systems that support this kind of reduction. We are not aware

of any similar method for other integrable nonlinear models,

the rather different soliton resolution conjecture [82] being the

closest analog we were able to identify.

An interesting open question is whether a similar reduction

in the number of degrees of freedom in the course of time

evolution occurs also in nonintegrable pairing models. This

can explain the aforementioned universality of the quench

phase diagrams among systems characterized by a global

complex order parameter. It seems nonaccidental indeed that

the nonintegrable spin-orbit coupled superfluid [81] has the

same three main postquench phases and that, moreover, 
(t)

in phase III is given by an elliptic function dn. Presumably, a

generalization of this method to nonintegrable models would

rely on more general considerations without recourse to

integrability-specific techniques and thus would clarify the

underlying physical mechanism. It would also make a number

of interesting problems, such as, e.g., the competition between

chiral and antichiral components in p-wave superconductors

upon switching on superconducting interactions and, more

generally, the dynamical interplay among various components

in a multicomponent superfluid, potentially amenable to in-

depth analysis.

ACKNOWLEDGMENTS

This work was supported in part by the David and Lucile

Packard Foundation (M.S.F. and E.A.Y.), by the Welch

Foundation under Grant No. C-1809, and by an Alfred P. Sloan

Research Fellowship (Grant No. BR2014-035) (M.S.F.).

APPENDIX A: PAIR-BREAKING RATES

In this Appendix, we perform a preliminary analysis of

the validity of neglecting q 	= 0 terms far from equilibrium

in the Hamiltonian (1.1). So far, we have studied the quench

dynamics of the condensate decoupled from these noncon-

densed modes. There are two kinds of relevant processes

due to the q 	= 0 terms: (i) excitation of molecules out of

the condensate and (ii) excitation of fermionic quasiparticles

through two-particle collisions. We estimate characteristic

time scales of both processes in the postquench steady state.

We find that sufficiently far from the μ∞ = 0 line in our quench

phase diagrams (see Figs. 3 and 21) these time scales are much

larger than the characteristic time of the quench dynamics. This

means that dropping q 	= 0 terms is indeed justified at times it

takes for the quench dynamics to develop and reach the steady

state. At much later times, after the quench dynamics plays

out, these terms set in, presumably leading to decoherence

and eventual thermalization of our (isolated) system. We note

also that the μ∞ = 0 line can be very roughly interpreted as

a far-from-equilibrium generalization of the unitarity point.

Quenches away from this line are from BCS or BEC initial
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detuning to the far BCS and BEC side, including quenches

across the resonance.

In what follows we consider a 3D condensate and, for

simplicity, we content ourselves with steady states in phase

II (including II′), where pairing amplitude asymptotes to a

constant, |
(t → ∞)| = 
∞.

1. Steady-state molecular production

Here we compute the rate at which molecules with nonzero

momentum are produced in steady state II, where initially all

molecules have zero momentum. To the lowest order in the

interaction, the corresponding scattering amplitudes are [83]

Ab(p1,p2)δ(Efin − Ein) =
∫ ∞

−∞
〈�fin|V̂ (t)|�in〉dt, (A1)

where |�in〉 and Ein are the steady-state wave function and

energy. |�fin〉 obtains from |�in〉 by destroying two pairs and

creating a molecule with momentum q = p1 + p2 and two

unpaired atoms with momenta p1 and p2. The energy of the

final state is

Efin = Ein + ζq ± E∞
p1

± E∞
p2

, (A2)

where plus (minus) corresponds to a ground (excited) pair and

ζq = q2

4m
+ ωf − 2μ∞ (A3)

is the energy of the molecule. The interaction V̂ (t) is described

by the last term in Eq. (1.1),

V̂ (t) = g
∑

p1,p2

[
b̂
†
p1+p2

(t)âp1↑(t)âp2↓(t)

+ b̂p1+p2
(t)â

†
p2↓(t)â

†
p1↑(t)

]
. (A4)

Since our initial state does not contain molecules with

nonzero momentum, only the first term in Eq. (A4) contributes

to the matrix element (A1). One also needs to keep in mind

that our steady state contains superpositions of a ground-state

pair with energy −E∞
p and an excited pair with energy +E∞

p

for each p. Equations (7.2) and (A1) then yield four scattering

amplitudes [72],

A
(−−)
b (p1,p2) = g cos

θp2

2
cos

θp1

2

∣∣Vp2

∣∣∣∣Vp1

∣∣,

A
(+−)
b (p1,p2) = g sin

θp2

2
cos

θp1

2

∣∣Up2

∣∣∣∣Vp1

∣∣, (A5)

A
(++)
b (p1,p2) = g sin

θp2

2
sin

θp1

2

∣∣Up2

∣∣∣∣Up1

∣∣,

where − (+) describes breaking a ground-state (excited) pair

and A
(−+)
b (p1,p2) = A

(+−)
b (p2,p1).

Molecular production rate per atom at zero temperature

obtains from these amplitudes and Fermi’s golden rule [83],

τ−1
mol = 2π

Nf

∑

p1p2αβ

∣∣A(αβ)
b (p1,p2)

∣∣2

× δ
(
ζp1+p2

− αE∞
p2

− βE∞
p1

)
. (A6)

In this expression Nf is the total number of fermions in the

absence of molecules and we took into account that there are

no molecules with nonzero momentum in our steady state.

Let us specialize to quenches into either deep BCS (ωf →
+∞) or deep BEC (ωf → −∞). We expect a much higher

rate in the latter case, because in the BCS regime ζq → +∞,

requiring excited pairs of extremely high energy to create a

molecule. For quenches to the far BEC side μ∞ → −∞, while


∞ remains finite regardless of the initial detuning; see, e.g.,

Figs. 18 and 19. It follows that E∞
p ≈ ξp = |μ∞| + p2/2m and

Eq. (5.4) implies ωf ≈ 2μ∞. For α = β = −1 the argument

of the δ function in Eq. (A6) is always positive; i.e., energy

conservation cannot be satisfied, meaning that the ground-state

pairs do not contribute to the rate. Similarly, if α = β = 1 (two

excited pairs),

ζp1+p2
− E∞

p1
− E∞

p2
≈ (p1 + p2)2

4m
+ ωf − p2

1 + p2
2

2m

= ωf − (p1 − p2)2

4m
< 0. (A7)

Therefore, only scattering processes involving one fermion

from an excited pair and another from a ground-state pair

contribute. Expression (A6) for the rate in this case is

τ−1
mol ≈ 4πg2

Nf

∑

p1,p2

sin2 θp2

2
cos2 θp1

2

∣∣Up2

∣∣2∣∣Vp1

∣∣2

×δ

(
3p2

1 + 2p1 · p2 − p2
2

4m

)
. (A8)

Next we go from summations to integrations, integrate over

the angle between p1 and p2, and change integration variables

from momenta to energies, which results in

τ−1
mol ≈ 3γ

2εF

∫ ∞

0

dε2 sin2 θ (ε2)

2
|U (ε2)|2

×
∫ ε2

ε2/9

dε1 cos2 θ (ε1)

2
|V (ε1)|2. (A9)

We replace the cosine with one, use |V (ε1)|2 ≈ 
2
∞/4(ε1 +

|μ∞|)2, which follows from Eq. (7.3) together with |U (ε1)|2 ≈
1, and integrate over ε1. According to Eq. (3.13), the

probability of finding an excited pair is

sin2 θ (ε2)

2
→ 
2

0i(δω)2

16E4
i (ε2)

as ε2 → ∞. (A10)

A larger rate obtains for finite ωi than for ωi close to ωf .

In this case, δω ≈ 2μ∞ and sin2[θ (ε2)/2] appreciably differs

from zero at energies about
√


0i |μ∞|. We obtain

τ−1
mol ∼ γ
2

∞
0i

εF |μ∞| → 0. (A11)

In deriving Eq. (A10) we assumed finite resonance width γ . A

separate estimate for the broad resonance limit for quenches to

deep BEC finds a rate that also vanishes, but as γ −1/3|μ∞|−1/2.

This result for the molecular production rate should be

compared with the typical time scale τdyn of the quench

dynamics for quenches to the far BEC side. Equations (5.60)

and (6.7) imply

τ−1
dyn ∼ |μ∞|. (A12)

We see that indeed τdyn ≪ τmol.
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2. Two-particle collisions

Next we estimate the relaxation rate due to two-particle

collisions. In contrast to the molecular production, we find

that here the contribution coming from just the ground-state

pairs is of the same order of magnitude or larger than that from

collisions that involve excited pairs. We therefore consider

ground-state pairs only and take the probability of finding

such a pair at a given momentum p to be cos2(θp/2) ≈ 1.

Let us analyze quenches to the far BCS side of the Feshbach

resonance from any initial detuning. In this case, ωf ≫ μ∞ ≈
ǫF ; see, e.g., Fig. 19. The total scattering amplitude for this

case has been studied in Ref. [2] [see Eq. (71) therein], which

also estimates the corresponding rate as

τ−1
in ∼

(
g2νF

ωf

)2

2

∞
ǫF

= γ 2ǫF

(

∞
ωf

)2

. (A13)

In fact, this is the well-known Fermi liquid result for the

quasiparticle lifetime. Indeed, λ = g2νF /ωf is the strength of

the effective interaction between fermions [see Eq. (1.4)] and


∞ is the typical excitation energy, the energy scale at which

spins deviate appreciably from their ground-state positions.

Equation (A13) has to be compared with the characteristic

time scale of the dynamics for quenches to the far BCS side.

According to Eq. (6.5) this time scale is

τdyn ∼ 1


∞
. (A14)

We see that τdyn ≪ τin for any finite resonance width γ since

ωf → ∞ in deep BCS. In the broad resonance limit, too,

τdyn/τin = λ2
∞/εF ≪ 1. This is because at large γ quenches

to the far BCS in phase II are only possible from initial

detunings also on the far BCS side; see, e.g., Figs. 3(c) and 5.

It then follows from Eq. (3.29) that 
∞ � 
0f ≪ εF .

A preliminary analysis for quenches to the far BEC

side shows that, at least for a finite resonance width γ

and sufficiently large |ωf |, one still has τdyn ≪ τin. Thus,

neglecting two-particle collisions is justified at the times it

takes the quench dynamics to fully develop and reach its

asymptote.

APPENDIX B: FINITE-SIZE CORRECTIONS

TO THE ROOTS

As mentioned in Sec. III, in the thermodynamic limit 
L2(u)

for quench initial conditions has a continuum of roots along the

positive real axis. Here we verify this and determine finite-size

corrections to these roots.

Roots of 
L2(u) are determined by Eq. (3.3) or, equivalently,

by Eq. (5.13) in notation explained in the beginning Sec. V B,

which we employ here as well. The level spacing δ is of order

1/N . Thermodynamic limit means N → ∞, so εk become

continuous with density ν(ε).

Let us look for a pair of complex conjugate roots close to

εm, writing it as cm = εm + ςmδ. We take ςm ≡ ς (εm) to be

of order 1, to be confirmed below. Note that ςm is generally

complex. Our goal is to evaluate cm to first order in 1/N .

We split the summation in Eq. (5.13) into two parts: over εk

in a small interval (εm − 
ε,εm + 
ε) and over remaining

εk . The interval is, however, sufficiently large so that it

contains many εk . Specifically, 
ε → 0, but 
ε/δ → ∞ in

the thermodynamic limit. For example, 
ε = δ
√

N fulfills

these conditions. The latter summation becomes a principal

value integral in the N → ∞ limit, while the former one to

leading order in 1/N reads

N (εm)

2E(εm)δ

∞∑

p=0

[
1

p + ςm

− 1

p + 1 − ςm

]
= πν(εm)

2E(εm)
cot πςm.

(B1)

The first sum is from εk < εm, the second sum is from εk > εm.

Here it is important that the degeneracy Nk ≡ N (εk) and the

spacing between εk vary smoothly with εk . As long as this is

the case, we can include any variation of the spacing into Nk .

Thus, Eq. (5.13) to leading order in 1/N becomes

2

g2
−
∫ ∞

0

− ν(ε′)dε′

2(εm − ε′)E(ε′)
− ν(εm)

2E(εm)
cot πςm

= δω

g2

εm − μ ± i
0

E2(εm)
. (B2)

Recalling that ν(ε) = νF f (ε) and g2νF = γ in units of Fermi

energy, we obtain

π cot πς (ε) = 4E(ε)

γf (ε)
− G(ε)

f (ε)
− 2δω

γ

ε − μ ± i
0

E(ε)f (ε)
, (B3)

where

G(ε) = E(ε)

∫ ∞

0

− f (ε′)dε′

(ε − ε′)E(ε′)
. (B4)

This principal value integral is the same as in Eq. (3.6).

We evaluated it in elementary functions for various cases in

Secs. III A and III B. Specifically, in 2D,

G2d(ε) = ln

⎧
⎨
⎩

ε[ε − μ + E(ε)]

E(ε)

√
μ2 + 
2

0 + μ2 + 
2
0 − με

⎫
⎬
⎭ ; (B5)

in the weak-coupling (BCS) limit, μ ≈ εF ≫ 
0, for energies

not too far from the Fermi energy, in both 2D and 3D,

Gwc(ε) = ln

[
E(ε) + ε − μ

E(ε) − ε + μ

]
; (B6)

in the strong-coupling (BEC) limit in 2D and 3D,

G2d
sc (ε) = ln

ε

|μ| , G3d
sc (ε) = −π

√
|μ|

0

. (B7)

Ground-state continual roots xk = εk + ̺kδ obtain by

setting δω = 0 in Eq. (B3); i.e.,

π cot π̺(ε) = 4E(ε)

γf (ε)
− G(ε)

f (ε)
≡ H (ε)

f (ε)
. (B8)

The quantity Fk ≡ F (εk) defined in Eq. (5.19) evaluates

similarly to Eq. (B1),

F (ε) = − N (ε)

2E(ε)δ2

∂

∂̺

∞∑

p=0

[
1

p + 1 − ̺
− 1

p + ̺

]

= ν(ε)

2E(ε)δ

π2f 2(ε) + H 2(ε)

f 2(ε)
. (B9)
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APPENDIX C: IDENTITIES

In this Appendix we prove Eq. (5.29). To this end, consider

a function

R(u) = L0(u)
[
(u − μ)2 + 
2

0

]
, (C1)

where L0(u) is given by Eq. (5.14). Since zeros of L0(u) are

xk and its poles are εk it alternatively can be written

R(u) = − 2

g2

∏N
k=1(u − xk)

∏N
k=1(u − εk)

[
(u − μ)2 + 
2

0

]
. (C2)

Equation (5.29) follows by matching two leading terms in 1/u

expansions of function 1/R(u) obtained with the help of these

two alternative forms.

Because 1/R(u) is a rational function with poles at u = xk

and μ ± i
0, we have

1

R(u)
=
∑

k

1

(u − xk)L′
0(xk)�2

k

+ 1

2i
0(u − c+)L0(c+)

− 1

2i
0(u − c−)L0(c−)
, (C3)

where c± = μ ± i
0 and we took into account that the square

bracket in Eq. (C1) evaluated at u = xk is equal to �2
k . Note also

that L′
0(xk) = −Fk; see Eq. (5.19). Equation (5.14) implies

L0(c±) = −βk ∓ iαk, (C4)

where

αk =
∑

k

Nk
0

2[E(εk)]3/2
, βk = 2

g2
+
∑

k

Nk(εk − μ)

2[E(εk)]3/2
. (C5)

The leading term in 1/u expansion of 1/R(u) according

to Eq. (C2) is −2/(g2u2). Therefore, the coefficient at 1/u in

Eq. (C3) vanishes and that at 1/u2 is −2/g2. This yields

∑

k


0

Fk�
2
k

= αk

α2
k + β2

k

,

(C6)
∑

k

xk − μ

Fk�
2
k

= g2

2
− βk

α2
k + β2

k

.

Gap and chemical potential equations (1.18) and (1.20) in

the notation of Sec. V B read

ω − 2μ

g2
=
∑

k

Nk

2E(εk)
,

(C7)

2n = 2
2
0

g2
+
∑

k

Nk

[
1 − εk − μ

E(εk)

]
.

Differentiation of these equations with respect to ω obtains

δμ/δω and δ
0/δω and comparison of the resulting quantities

with the right-hand side of Eq. (C6) proves Eq. (5.29).

Another identity used in Sec. V B derives by noting

that, according to Eq. (C2), 1/R(εk) = 0. Setting u = εk in

Eq. (C3), we obtain after some algebra

∑

j

1

(εk − xm)Fm�2
m

= αk(εk − μ) − 
0βk

2
0

(
α2

k + β2
k

)
[E(εk)]2

. (C8)
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