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Abstract. Understanding the non-equilibrium dynamics of extended quantum
systems after the trigger of a sudden, global perturbation (quench) represents
a daunting challenge, especially in the presence of interactions. The main
difficulties stem from both the vanishing timescale of the quench event, which can
thus create arbitrarily high energy modes, and its non-local nature, which curtails
the utility of local excitation bases. We here show that nonperturbative methods
based on integrability can prove sufficiently powerful to completely characterize
quantum quenches: we illustrate this using a model of fermions with pairing
interactions (Richardson’s model). The effects of simple (and multiple) quenches
on the dynamics of various important observables are discussed. Many of the
features that we find are expected to be universal to all kinds of quench situations
in atomic physics and condensed matter.
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1. Introduction

The experimental realization [1] of cold atomic systems with a high degree of tunability of
Hamiltonian parameters, and the ability to evolve in time with negligible dissipation, has
reignited the study of many-body quantum systems away from equilibrium. How Gibbs or
any other relaxed states can ultimately result from unitary dynamics is a question that has
received a lot of attention recently [2]–[6], but which still lacks a general understanding.

Suppose an extended quantum system is prepared in one eigenstate |ψµ
g0
〉 of some

Hamiltonian Hg0
, where g0 is a tunable, global parameter (interaction strength, external

field, . . .). At a given time, say t = 0, this parameter is suddenly changed to a different
value g, and the system thus starts evolving unitarily according to the dynamics governed
by a different Hamiltonian Hg. This is what is referred to as a quantum quench. The
resulting time evolution is simply given by the solution of the Schrödinger equation
|ψ(t)〉 = e−iHgt|ψµ

g0
〉. Since |ψµ

g0
〉 is not an eigenstate of Hg, this can be extremely difficult

to quantify. The most straightforward way to tackle the problem is therefore to write the
initial state |ψµ

g0
〉 as a sum over the complete set of eigenstates |ψν

g 〉 (having energy ων
g )

of Hamiltonian Hg, leading to the time-dependent post-quench state

|ψ(t)〉 =
∑

ν

e−iων
g t〈ψν

g |ψ
µ
g0
〉|ψν

g 〉. (1)

The complexity of the problem is encoded first in the distribution of energies ων
g , but

most importantly in the matrix of overlaps of eigenstates pertaining to the two different
Hamiltonians,

Qνµ
gg0

≡
〈

ψν
g |ψ

µ
g0

〉

, (2)
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Quantum quenches from integrability: the fermionic pairing model

which we call the quench matrix. This matrix is of dimension equal to that of the
Hilbert space6, but in practice we mainly need a single column expressing the initial
eigenstate of Hg0

in terms of the eigenstates of Hg. However, even in the very few cases
when all eigenstates of a many-body Hamiltonian can be classified and written down, the
calculation of the quench matrix coefficients is a severe challenge, whose computational
complexity generally grows factorially with system size. Shortcuts can be found for
systems having a representation in terms of free particles (like the 1D Ising chains [5, 6])
where Wick’s theorem suffices for calculating all the overlaps, but for truly interacting
systems this remains a very ambitious program. Most of the theoretical work on quantum
quenches has up to now concentrated on the calculation of correlation functions in specific
regimes [2, 3], with little reference to the post-quench state of the system.

Besides describing the state resulting from a quench of state µ, it is also important to
be able to characterize the time dependence of physical observables O after the quench.
Formally, we can write

〈O(t)〉 ≡ 〈Ψ(t)|O|Ψ(t)〉 =
∑

ν,ξ

ei(ων
g−ω

ξ
g)tQµν

g0gQ
ξµ
gg0

〈

ψν
g

∣

∣ O
∣

∣ψξ
g

〉

, (3)

where calculating the matrix elements 〈ψν
g |O|ψξ

g〉 represents an additional hurdle for
interesting observables in nontrivially interacting models. Even if we are able to obtain
these matrix elements, the leftover double sum over the full Hilbert space is enormous,
and one could wonder whether this way of proceeding is of any practical use. New
nonperturbative methods are clearly needed to obtain a proper description of the physics
involved.

The purpose of the present paper is to introduce a new line of attack on quantum
quench problems, not only sufficiently powerful to yield the quench matrix of specific
interacting problems (and thus the ensuing non-equilibrium state), but also able to
provide matrix elements of physical observables, and thus their time dependence after the
quench. This approach is based on the exact solvability of certain many-body quantum
problems known as integrable or Bethe ansatz [7] solvable theories. Integrability came
into prominence as a means of obtaining exact results for the equilibrium thermodynamics
of one-dimensional systems (see [8, 9] and references therein). More recently, a description
of correlation functions at equilibrium has been achieved by exploiting results from the
algebraic Bethe ansatz (ABA), which provides economical expressions for matrix elements
of local operators in the basis of exact Bethe eigenstates. The existence of these expressions
stems from two results: Slavnov’s formula [10] for the overlap of a Bethe state with a
generic state, and the solution of the so-called quantum inverse problem [11], i.e. the
mapping of physical operators to ABA operators. These matrix elements are of great
utility in the computation of equilibrium correlation functions. One very important
feature is that Bethe states typically offer a very optimized basis in which only a very
small minority of eigenstates carry substantial correlation weight, allowing the summation
over intermediate states to be drastically truncated without significantly affecting the
results. This novel approach has been successfully applied to equilibrium correlations of

6 Formally, the pre- and post-quench Hamiltonians do not have to share the same Hilbert space (a quench could
for example be defined which would kill off or introduce new degrees of freedom). The quench matrix thus
technically has dimensions dim(Hg) × dim(Hg0

), and is well-defined provided we adopt a proper measure for the
scalar product.
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Quantum quenches from integrability: the fermionic pairing model

quantum spin chains [12] and atomic Bose gases [13]. We here further extend the reach
of integrability into the domain of non-equilibrium quench dynamics.

2. The model and its solution

We consider a model of spin 1/2 fermions in a shell of energy levels ǫα with a Cooper
pairing-like interaction

H =
∑

α

∑

σ

ǫα

2
c†ασcασ − g

∑

α,β

c†α↑c
†
α↓cβ↓cβ↑, (4)

which was introduced by Richardson [14] in the context of nuclear physics, and has found
applications in the physics of ultrasmall metallic grains [15]. It reduces to conventional
Bardeen–Cooper–Schrieffer (BCS) theory [16] in the thermodynamic (TD) limit. The
model has a pseudospin representation with S−

α = cα↓cα↑ (see the appendix) with N spins.
Central to our approach is the fact that this Hamiltonian can be diagonalized using the
Bethe ansatz [15, 17]. The Hilbert space separates into sectors of fixed number of down
spins Nr. The eigenstates of the model are given by Bethe wavefunctions, each individually
characterized by a set of Nr rapidities {wj} obeying a set of algebraic equations known as
the Richardson equations

1

g
=

N
∑

α=1

1

wj − ǫα

−

Nr
∑

k $=j

2

wj − wk

j = 1, . . . , Nr, (5)

and are obtained by repeated action of an operator B(wj) on the fully polarized reference
state |0〉:

|{wj}〉 =
∏

j

B(wj)|0〉 =

Nr
∏

k=1

N
∑

α=1

S−
α

wk − ǫα

|0〉. (6)

The
(

N

Nr

)

different solutions to (5) then allow us to construct a full set of orthogonal
eigenstates, providing us with a proper basis of the Hilbert space.

In Bethe ansatz solvable models, Slavnov’s formula [10], gives the overlap of an
eigenstate |{w}〉 with a state built with a general set of rapidities {v} (see the appendix).
The main difference from other models solvable using the algebraic Bethe ansatz (like the
one-dimensional Bose gas or the XXZ chain) is that in the definition of the eigenstates (6),
the coupling constant g enters only implicitly through the solutions of the Richardson
equation for wj. Consequently, for this model, Slavnov’s formula is enough for calculating
the overlaps between two generic states at any coupling. For other models, where B(wj)
depends explicitly on g, it can only be used between states defined by the same operators
B(wj) and therefore the same g, and a more general expression for the overlaps remains
to be found.

We can then exploit the accessibility to the quench matrix for the Richardson model
to show how useful integrability can be when studying quenches. However, before entering
into the details of the quantum dynamics, it is important to remember that in the TD limit
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Nr, N → ∞ at fixed filling, the dynamics becomes classical [19, 20] because of suppression
of quantum fluctuations. In this limit, the dynamics of the canonical order parameter can
be obtained analytically by exploiting classical integrability [19, 20]. The framework that
we propose in this study works in the mesoscopic regime (finite N), allowing us to study
the effects of quantum fluctuations. With this tool at hand, we can characterize in an
exact manner the crossover taking place between microscopic and macroscopic physics, a
task impossible to achieve with thermodynamical approaches.

We will argue in the following that, similarly to what is observed for equilibrium
correlation functions, only a relatively small set of states contributes significantly to the
decomposition of the initial state in the new eigenbasis. The natural approach is then
to truncate in an optimal way the Hilbert space, so that a faithful representation of the
initial state is obtained. The induced truncation error is easily evaluated looking at how
close

∑

µ |〈ψ
0
g0
|ψµ

g 〉|
2 is to the desired value of 1. Using the truncated Hilbert space we can

then calculate any observable or correlation function by brute force, summing the relevant
contributions.

Compared to other numerical truncation methods, this approach has the great
advantage that time enters only as a parameter. The explicit expression (1) for the
wavefunction means that at any time, expectation values can be computed without
knowing the previous history of the system (apart from the initial state) and there is
therefore no accumulation of errors as time passes. On the other hand, unlike for numerical
exact diagonalization, matrix elements can be expressed using Slavnov’s formula as matrix
determinants whose computational complexity is algebraic and not exponential in the
system size and/or number of excitations, thereby allowing one to reach large system
sizes.

3. Numerical results

Let us now report explicit results starting with the quench matrix itself. We concentrate
on the case of equally spaced levels ǫα at half-filling, but the method is clearly not
limited to this case. Let us start from N = 2Nr = 16, when the Hilbert space has a
dimension of ‘only’ 12 870. We can then numerically compute the rapidities for every
single state. We report in figure 1 the square of the overlaps for several quenches as
obtained from Slavnov’s formula (see the appendix). Starting from the non-interacting
(g = 0) ground state, the top panel shows the overlaps with all the states at three different
finite couplings. This allows us to understand some general features: having access to the
complete quench matrix, one realizes that only a few of the eigenstates at coupling g make
a large contribution to |ψ0〉. Therefore, getting a nearly exact description of the dynamics
requires only a small subset of the states. The final state having the largest overlap with
the initial ground state is always one of the states that at g = 0 is built by flipping from up
(down) to down (up) the Np spins right below (above) the Fermi level. We refer to these
Nr + 1 states as ‘single-block states’. For the cases that we studied here, quenching from
a non-interacting initial state, these states always contribute more than 60% of the total
amplitude (see figure 2). The total contribution of single-block states is non-monotonic
in g showing (after decline at small interaction) a rise as g gets sufficiently large.

The ‘band-like’ structure of the overlaps in figure 1 makes it reasonable to assume
that additional large contributions can be found for states built by slightly deforming the
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Quantum quenches from integrability: the fermionic pairing model

Figure 1. First column of the quench matrix (ground state overlaps) for several
quenches. In all plots N = 2Nr = 16 and the ground state energies (represented
by vertical lines) have been shifted for clarity. Top: decomposition of the g = 0
ground state with states at g = 0.05, 0.5, 0.95. Center: decomposition of several
initial ground state g0 = 0, 0.15, 0.3, 0.5 in terms of the states at g = 1. Bottom:
decomposition of the g0 = 1 ground state in terms of g = 0.95, 0.55, 0.15, 0 states.

Figure 2. Left: pictorial representation of single-block states obtained by
promoting contiguous blocks of Np ≤ Nr rapidities from right below to right
above the Fermi level. Right: total contribution of these states to the amplitude
of the initial state at g0 = 0, as a function of the interaction.
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Quantum quenches from integrability: the fermionic pairing model

single-block ones, e.g. by adding a single particle–hole excitation either above or below the
Fermi level. The remaining most relevant states will then be those with two additional
excitations. Following this assumption inductively, we add to the truncated Hilbert space
multiple-block states obtained by slightly deforming single-block ones. This allows us
to describe larger systems while retaining a tractable number of states. This procedure
works extremely well; e.g. at N = 32, for all the quenches from g0 = 0 to g ∈ (0, 1], we
were always able to find at minimum 97% of the weight of the initial state by using only
7000 states, i.e. only 1/105 of the full Hilbert space. Moreover, for a given final value of
g, less than 1000 of these states gives an actual important contribution.

In the center of figure 1, we report the overlaps obtained by quenching from different
initial values of g0 to the same final g = 1. We see that the same band-like structure is
present as when starting from a non-interacting state, leading to no qualitative change
of the dynamics. Vice versa, the structure of the quench matrix for a reversed quench,
i.e. from large to small g, reported in the bottom of figure 1 is different: the weight of the
state goes down exponentially with the energy of the states (almost straight lines in the
figure), and for large quenches the decay rate in energy is slow. An adequate representation
of the initial state therefore requires that lots of states be taken into account. In this case,
the optimal truncation procedure is still easily defined by simply keeping a sufficient
number of low energy states.

The first measurable quantity easy to derive from the knowledge of the quench matrix
is the probability distribution of the ‘work’ [6]

P (W ) =
∑

µ

|〈ψ0
g0
|ψµ

g 〉|
2δ(W − ωµ

g + ω0
g0

), (7)

reported for some quenches from g0 = 0 in figure 3. These figures have been obtained by
smoothing the δ function with a Gaussian of width proportional to the inter-level spacing.
It is straightforward to derive the average and the width of this distribution

〈W 〉 = 〈ψ0
g0
|(Hg − Hg0

)|ψ0
g0
〉 = (g0 − g)NrΨ

g0

OD,

〈W 2〉 = 〈ψ0
g0
|(Hg − Hg0

)2|ψ0
g0
〉 = (g0 − g)2N2

r Ψ
g0

2 ,
(8)

where Ψ
g0

OD = 〈ψ0
g0
|(
∑N

α,β=1 S+
α S−

β )/Nr|ψ
0
g0
〉 is the off-diagonal order parameter in the

initial state, and Ψ
g0

2 = 〈ψ0
g0
|(
∑N

α,β=1 S+
α S−

β /Nr)
2|ψ0

g0
〉 is a four-point correlator. Higher

cumulants are similarly obtained and only depend on the initial state7. From TD
relations [6], it is generically expected that the probability of work per spin w = W/N
becomes a delta function. For finite N , P (W ) is nontrivial: it shows a dominant peak
close to W = 〈W 〉, but with a structure dictated by the presence of the state with the
right quantum numbers at the given energy. In the top panel we report several quenches
at N = 32, where the formation of subdominant peaks is explicitly shown. In the bottom
panel we show P (W ) at different N keeping gN fixed. It is evident that despite the fact
that the structure changes drastically with N , the width of the distribution is constant,
indicating that, when written in terms of W/N , it becomes a delta function.

7 In passing, we note that these relations also offer further sum rules connected to the conservation of energy. In
the truncated approach that we used, these are well saturated.
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Quantum quenches from integrability: the fermionic pairing model

Figure 3. Distribution of work P (W ). Left: different quenches at fixed N = 32,
showing the formation of multiple peaks for large quenches. Right: at different
N keeping fixed gN .

4. Order parameter evolution

We now present results for observables, concentrating on the off-diagonal order parameter
defined as

ΨOD(t) = 〈ψ(t)|
1

Nr

N
∑

α,β=1

S+
α S−

β |ψ(t)〉. (9)

In the equilibrium canonical ensemble ΨOD for N → ∞ is related to the BCS gap and so
it is a natural quantity to use to understand the superconducting tendency even out of
equilibrium (on the same footing as the canonical order parameter used in [19]). According

to equation (3) we can write the time evolution once the form factors for
∑N

α,β=1 S+
α S−

β

are known. They have a representation in terms of a sum of Nr determinants of Nr × Nr

matrices depending on the rapidities (see the appendix). In the bottom left part of figure 4
we present the resulting real-time evolution of ΨOD(t) starting from g0 = 0 and evolving
with several different g for N = 32. The information contained here is better extracted
from the Fourier transforms reported on the right of figure 4.

For small values of g, the various frequencies entering are very close to integers, as
a result of the almost perfect equispacing of the levels. This regime could simply be
described using perturbation theory and does not show any striking features different
from free fermions. With increasing g, the spectrum becomes very complicated since a
large number of incommensurate frequencies contribute to the order parameter evolution.
This is the realm of quantum fluctuations which makes the evolution highly irregular.
Still increasing g, some regularity appears again. This can be understood in terms of
results in the TD limit [19]. In fact, for N → ∞, quenching from a weak interaction
to a much larger one leads to an order parameter which shows persistent non-harmonic
periodic evolution, i.e. a Fourier transform with equispaced peaks. Within the canonical
description presented here, this feature will be reproduced when quenching to a large
final value of g since, as was shown in [21], excited states in this regime form equispaced
bands at energy E ≈ ∆NG + O(N0) (NG being the number of gaudinos, i.e. the relevant
excitations in this regime [21]). As can be readily seen looking at the energy distribution

doi:10.1088/1742-5468/2009/03/P03018 8
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Quantum quenches from integrability: the fermionic pairing model

Figure 4. Bottom left: off-diagonal order parameter evolution for N = 32. Right:
Fourier transform; the various plots are shifted on the vertical axis for clarity. Top
left: non-equilibrium finite-size ‘phase diagram’ resulting from the time-averaged
canonical gap obtained from the off-diagonal order parameter, as explained in
the text.

of the points in figure 1, for finite large couplings, the low energy bands are already clearly
formed, progressively collapsing to a single energy E ≈ ∆NG. The slight remaining width
of these bands would only result in additional low frequency corrections to the mean-field
BCS result.

The static correlation functions studied in [18, 22] depend mainly on low energy
properties, and BCS-like behavior was always found when g ! g∗ = (2 lnN)−1, i.e. the
criterion for the presence of superconductivity. In the problem at hand though, the
quench matrix clearly shows that quantum quenches lead to an important occupation of
the higher energy bands. These clearly differ from the BCS spectrum even for values of
g much larger than g∗ (that for N = 32 is only 0.144 . . .). Quenches, since they probe
high energy properties of the system, open up the possibility of probing interaction effects
not captured by the mean-field treatment. Non-mean-field features are manifest in non-
equispaced dominant peaks in the frequency dependence of the order parameter. These
accessible experimental quantities could thus be used as a spectroscopic tool (as proposed
for other models in [4]) for studying quantum fluctuations.

We also considered the evolution of the canonical order parameter defined as Ψ(t) =
∑N

α=1

√

1
4
− 〈Sz

α(t)〉2, using the knowledge of the form factors for Sz
α (see the appendix).

It displays the same qualitative features as ΨOD(t) and consequently will not be discussed
here.

doi:10.1088/1742-5468/2009/03/P03018 9
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Let us conclude this section with a discussion of the long time asymptotic. It is difficult
to extract any information about it from the highly irregular and oscillatory behavior
reported in figure 4. Furthermore in a finite system, (approximate) quantum recurrence
will always spoil any signature of an eventual asymptotic state. However, if in the TD
limit the asymptotic value of an observable exists, it must be equal to its time average,
that is straightforwardly obtained with the tools at hand for finite systems. In fact, in
equation (3) all the terms with ν += ξ average to zero and so Ō =

∑

ν |Q
0ν
g0g|

2〈ψν
g |O|ψν

g〉,

(the overline stands for the time average). Ψ̄OD is obtained with little effort using

the Hellmann–Feynman theorem 〈ψν
g |

∑N

α,β=1 S+
α S−

β |ψ
ν
g 〉 = −(∂ων

g /∂g), thus without

involving determinants. The non-equilibrium ‘phase diagram’ for N → ∞ [19] shows
that the final asymptotic value of the canonical gap ∆∞ defines a universal curve when
expressing ∆∞/∆g versus ∆g0

/∆g, where ∆g is the equilibrium value at coupling g. In our

normalization, ∆g = gΨ/Nr = g
√

ΨOD/Nr − 1/Nr [18] (the −1 cancels the first correction
for large Nr). We take the last equation also off-equilibrium for the definition of the
time-averaged canonical gap in finite size. The resulting ‘finite-size phase diagram’ is
reported in figure 4 (top left), where most of quenches from g0 to g both in [0, 1] are
shown, for N = 8, 16, 32 at half-filling (we excluded the points with an equilibrium ΨOD

much different from the BCS prediction, that are not expected to approach the asymptotic
result). It is evident how on increasing N the curves tend to the Barankov–Levitov result
shown as a full line8.

5. The double quench

We move now to address the very interesting dynamics that appear when we consider
sequences of multiple quenches, gi → gi+1 at times ti. For brevity, we concentrate here
on the problem of the double-quench, or quench–dequench sequence, defined by g = g0

for t < 0, g = g1 for 0 ≤ t < tq and g = g0 for t ≥ tq. Starting from a specific eigenstate
of Hg0

, the quench at t = 0 populates excited states of Hg1
according to the quench

matrix (2). Letting the system evolve up to time tq and then ‘dequenching’ back to g0

results in a nontrivial amplitude of occupation for eigenstates of Hg0
, given by the quench

propagator

Pβα(tq) =
∑

γ∈Hg1

Qβγ
g0g1

Qγα
g1g0

e−iωγ
g1

tq , (10)

where α, β ∈ Hg0
are respectively the labels for the pre- and post-quench states. For

tq = 0, this propagator falls back onto the identity matrix. For finite duration tq > 0,
interference effects lead to nontrivial states (see the left panel of figure 5). For a specific
initial state α and final state β, the quench propagator can be visualized as the sum
of arrows of length |Qβγ

g0g1
Qγα

g1g0
| rotating as a function of tq at frequency ωγ

g1
from an

initial phase arg(Qβγ
g0g1

Qγα
g1g0

). When arrows of non-negligible length align, constructive
interference occurs, favoring the weight of the final state β (see the right panel of figure 5).
Since all arrows rotate at different frequency, the occupation probability of state β is a

8 Notice that for ∆g0
/∆g < e−π/2 in [19] a branch point is predicted resulting in an oscillatory behavior. We

limit ourself to considering the average.
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Figure 5. Left: a typical quench g0 → g populates all states according to the
quench matrix. A general dequench g → g0 redistributes the weight among all
states. Right: a targeted dequench after a chosen time can populate a targeted
state.

Figure 6. Occupation probabilities and moments after a double quench between
g = 0 and 0.5, as a function of the quench duration tq, for a system of 16 spins.
The top plot gives the ground state occupation probability, clearly displaying
vanishing and reconstruction effects. The middle plot gives the occupation
probabilities for the three more relevant states. The lower graph shows the
moments Iq, quantifying the degree of localization in Hilbert space after the
double quench.

highly nontrivial function of the quench time, which is however completely characterized
from the information we now have at hand.

We consider for definiteness a double quench starting from the ground state of Hamil-
tonian Hg0

. As a function of the quench duration tq, the amplitudes of eigenstates α after
the dequench will thus be given by Aα(tq) = Pα0(tq). We present in figure 6 the results of
such double-quench calculations. We specifically use a system of 16 spins, and trace over
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all intermediate states, allowing us to verify that the sum of square amplitudes remains
equal to one (up to numerical accuracy of order 10−7) at all quench times. The top panel
shows the ground state occupation, which is inevitably the dominant state for small tq.
However, we find that surprisingly its weight essentially vanishes (square amplitude below
0.005), first around quench time tq = 0.56, and also repeatedly afterward. The ground
state is also periodically reconstructed to a large degree, showing that substantial sloshing
of the occupation weight in the Hilbert space occurs as a function of the quench duration.

The occupation of individual excited states after the double quench also displays
prominent time-dependent interference effects. Their amplitudes all begin at zero for
tq = 0, but individual states can attain non-negligible amplitudes when the ‘arrows’ in
their quench propagator add up constructively for particular quench durations. This
is shown in the middle panel of figure 6, where we plot the occupation probability of
three example states among the single-block states. The times at which such alignments
take place can be predicted using a simple algorithm based on what could be called a
continuous sieve of Eratosthenes. Namely, for a given final state β, the double-quench
weights |Qβγ

g0g1
Qγα

g1g0
| for all γ are first ordered in decreasing value. The dominant mode

(relabeled 0) has a time-dependent phase φ0(tq) = ω0
g1

tq − φ0 with φ0 ≡ arg(Qβγ0

g0g1
Qγ0α

g1g0
),

with similar defined phases for the subdominant modes i > 0. Choosing an arbitrary
phase alignment tolerance δθ, the requirement that |φi(tq) − φ0(tq)| < δθ for a given
‘arrow’ i defines excluded time intervals on the quench timeline tq ∈ [0,∞[. Erasing
all such intervals for all states up to a level n leaves only the times at which all phases
φ0(tq), . . . , φ

n(tq) are aligned to the chosen tolerance, and for which a certain amount of
constructive interference occurs. For example, in the middle panel of figure 6, the b state
peaks around tq - 4.8; it can be checked that this is a level 8 alignment (with tolerance
chosen as δθ = π/8). Alignments of a given order n and tolerance δθ occur more or
less periodically. Increasing the order or reducing the tolerance δθ makes alignments of
higher quality but quickly increasing rarity. In view of this sieve of Eratosthenes logic, an
interesting question is whether the distribution of quench alignment times can be linked
to that of e.g. prime numbers.

A study of the amplitudes Aα after a double quench for each individual final state is
clearly prohibitive. Characterizing the distribution of amplitudes is more enlightening, and
is best performed by exploiting tools common in the theory of localization in disordered
systems, i.e. by considering the inverse participation ratios (IPRs) Iq =

∑

α |Aα|
2q, with

I1 = 1. In the bottom panel of figure 6, we plot the second and third IPRs for excited
states (defined as Iq,r =

∑

α>0 |Aα|
2q/(

∑

α>0 |Aα|
2)q, i.e. summing over excited states

only), which display the localization tendencies of the excited states’ amplitude weight in
the Hilbert space after the double quench. Curves of I2,r and I3,r (always ≤I2,r) approach
one another when one excited state becomes dominant, and indicate smoother weight
distribution otherwise.

Another interesting quantity to look at, which also has the advantage of being more
directly accessible in experiments, is the work

W (tq) =
∑

α

(ωα
g0
− ω0

g0
)|Aα(tq)|

2, (11)

or in other words the energy which is pumped into the system by a quench–dequench se-
quence of duration tq. Starting from the ground state means that W (tq) is strictly positive.

doi:10.1088/1742-5468/2009/03/P03018 12

http://dx.doi.org/10.1088/1742-5468/2009/03/P03018


J.
S

ta
t.

M
e
c
h
.

(2
0
0
9
)

P
0
3
0
1
8

Quantum quenches from integrability: the fermionic pairing model

Figure 7. Total energy (work) pumped into the system by the quench–dequench
sequence with g0 = 0 and g1 = 0.5 and 16 spins, as a function of the quench
duration tq. Inset: work as a function of tq for the first oscillations of the envelope.
These persist for much longer times, which are not plotted for clarity. Main plot:
Fourier transform of the work, showing the main peak associated with the energy
difference of the two dominant intermediate states.

Since the quench–dequench sequence populates excited states in a highly tq-dependent
way, this quantity will also display a rich frequency profile. In figure 7, we plot (inset) the
work as a function of tq, which displays nontrivial oscillatory behavior dominated by a
frequency ω - 4.62 corresponding to the energy difference between the two dominant in-
termediate states during the quench. The Fourier transform W (ωq) is plotted in the main
part of the figure, clearly displaying the above-mentioned peak but also the non-negligible
contributions from a broad range of frequencies. The position of the peaks corresponds to
excited energy level differences of the Hamiltonian during the quench, their height giving
information on the size of the relevant quench matrix elements. The work can thus be
used not only as a spectroscopic tool, but as a way to quantify eigenstate overlaps.

6. Conclusion

In this work, we have proposed a novel method for tackling quantum quenches, based on
integrability. We applied the method to the fermionic pairing model, showing the large
amount of information that can be obtained on e.g. the work probability density, physical
observables (and correlation functions) and their time evolution, and multiple-quench
settings. Everything has been derived in an exact (or numerically exact) manner in the
mesoscopic regime, where quantum fluctuations govern the dynamics. We gave evidence
of how single-and double-quench dynamics can be effectively used to extract spectroscopic
data from simple measurable quantities like the work done on the system.

To obtain these results we explored the peculiar property that the quench matrix
of the pairing model can be obtained using Slavnov’s formula. This is not true in a
general integrable model, and the generalization of the quench matrix representation is
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an open problem in the theory of integrable systems. When this representation becomes
available, the methods that we propose here will allow exact calculations for a large
variety of experimental relevant models, most importantly the one-dimensional Bose gas
and Heisenberg spin chains.
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Appendix

A.1. Solving the Richardson equations

Because of the blocking effect excluding singly occupied levels from the dynamics [14],

Richardson’s model also has a pseudospin representation S−
α = cα↓cα↑, S+

α = c†α↑c
†
α↓,

Sz
α = c†α↑c

†
α↓cα↓cα↑ − 1/2. The Hamiltonian becomes

H =

N
∑

α=1

ǫαSz
α − g

N
∑

α,β=1

S+
α S−

β , (A.1)

where N is the number of unblocked levels.
At g = 0 the

(

N

Nr

)

solutions to the Richardson equations are trivial. They are given

by equation (6) with the Nr rapidities set to be strictly equal to one of the energies ǫα.
Apart from for a few particular cases with a small number of particles, the Richardson
equations are not solvable analytically when g += 0, and one should solve them numerically.
The solutions are such that every wj is either a real quantity or forms, with another
parameter wj′, a complex conjugate pair (CCP), i.e. w∗

j′ = wj. The mechanism for the
CCPs formation is very easy: as interactions are turned on, all wj are real quantities for
small enough g, but at a certain critical value of the coupling g∗

j two rapidities will be
exactly equal to one of the energy levels (wj = wj′ = ǫγ(j)) and for g > g∗

j , the two
parameters that collapsed will form a CCP at least for a finite interval in g. The situation
is in fact rather intricate: the values g∗

j are implicit functions of all other rapidities, and
can only be read off a full solution of the Richardson equations for a specific choice of
state. Moreover, CCPs can split back into real pairs, whose components can then re-pair
with neighboring rapidities. Different choices of the parameters ǫα and of their eventual
degenerations specify different models. We specialize to the case of equally spaced levels.
We make the choice to use ǫα = α which sets the zero of energy and implies that every
energy will be given in units of the (pair) inter-level spacing. Furthermore we consider
only half-filling of the energy levels (N = 2Nr), when the number of rapidities Nr equals
the number of particles Np, while in general in our notation Nr + Np = N . At the precise
value of g at which a pair of rapidities (wj , wj′) collapse into a CCP (wj = wj′ = ǫγ(j)),
the Richardson equation (5), labeled j and j′, will include two diverging terms whose
sum remains finite. In order to be able to treat these points numerically, one can define
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the real variables, w1,j ≡ wj + wj′ and w2,j ≡ (2ǫγ(j) − wj − wj′)/(wj − wj′)
2. As first

discussed in [23], we need to know beforehand which rapidities will form a CCP and at
which ǫγ(j) it will happen in order to use this type of change of variables. Here we find the
various solutions to the Richardson equations numerically by increasing g in small steps
starting from the solution at g = 0 and can therefore predict, at every step, the upcoming
formation of CCPs. As a consequence of this procedure, any given state at finite coupling
can then be defined uniquely by the g = 0 state from which it emerges (and the actual
value of g).

A.2. Scalar products and form factors

In Bethe ansatz solvable models, Slavnov’s formula [10] is an economical representation of
the overlap of an eigenstate |{w}〉 with a general Bethe state |{v}〉 constructed using the
same operators, but for which the set of rapidities {v} does not fulfil the Bethe equations.
This overlap is given as a determinant of an Nr by Nr matrix, which in the problem at
hand reads [17]

〈{w}|{v}〉 =
detNr

J({va}, {wb})
∏Nr

a$=b(vb − wa)
∏

b<a(wb − wa)
∏

a<b(vb − va)
, (A.2)

with the matrix elements of J given in [17, 18],

Jab =
vb − wb

va − wb

[

N
∑

α=1

1

(va − ǫα)(wb − ǫα)
− 2

Nr
∑

c $=a

1

(va − vc)(wb − vc)

]

. (A.3)

The solution to the inverse problem allows a determinant representation for the
necessary form factors [17]

〈{w}|Sz
α|{v}〉 =

Nr
∏

a=1

(wa − ǫα)

(va − ǫα)

detNr
((1/2)T −Q(α))

∏

b>a(wb − wa)
∏

b<a(vb − va)
,

with the matrix elements of T ,Q given by

Tab =
2
∏Nr

c $=a(wc − vb)

wa − vb

[

∑

c $=b

1

(vb − vc)
−

∑

c $=a

1

(vb − wc)

]

,

Qab(α) =

∏

c $=b(vc − vb)

(wa − ǫα)2
.

(A.4)

We explicitly used the fact that both states are solutions to the Richardson equations
in order to write the matrix elements of T in a more compact form than in previous
publications [17, 18].

The form factors for S−
α S+

β can be written as a sum of Nr determinants by generalizing
the method of [18] for {v} = {w} starting from the double sums in [17]. For α += β we
have

〈{v}|S−
α S+

β |{w}〉 =

∏

c ((vc − ǫα)/(wc − ǫα))
∏

k $=q (wk − wq)
∏

b>a(va − vb)
∏

a>b(wa − wb)

Nr
∑

q=1

wq − ǫα

wq − ǫβ

detJ q
α,β, (A.5)
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where, defining Aab = Jab

∏

c $=b(vc − wb), the matrix elements are given by

Jab = Aab −

∏

k $=b,q(wk − wb)
∏

k $=b+1,q(wk − wb+1)

wb − ǫα

wb+1 − ǫα

Aab+1, b < q − 1,

Jaq−1 = Aaq−1 + 2
(wq − ǫβ)(wq−1 − ǫα)

wq−1 − wq

∏

c

(

vc − ǫβ

wc − ǫβ

)

×
∏

k $=q−1

(wk − wq−1)
(2va − ǫα − ǫβ)

(va − ǫα)2(va − ǫβ)2
,

Jaq = 1/(va − ǫα)2, Jab = Aab, b > q.

(A.6)

For α = β they are calculated using the Hellmann–Feynman theorem as explained in the
main text.
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