
Quantum Radars and Lidars: Concepts, Realizations, Perspectives

Gregory Ya. Slepyan,1 Svetlana Vlasenko,2 Dmitri Mogilevtsev,2 and Amir Boag1

1School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978,
Israel (e-mail: slepyan@tauex.tau.ac.il and boag@tau.ac.il)

2B. I. Stepanov Institute of Physics, NAS of Belarus, Nezavisimosti ave. 68, 220072 Minsk, Belarus

Quantum radars and lidars are a novel, much-discussed, and rapidly evolving field of quantum
science and technology, promising remarkable advantages in such basic tasks as target detection,
ranging, and recognition. Quantum radars and lidars have already moved from the realm of the-
oretical considerations toward experiments, greenand, as is the case for lidars, toward practical
applications. Here, we review the underlying concepts and present basic configurations of quantum
radars and lidars based on photonic entanglement and single-photon detection. We also briefly
discuss methods of producing entangled photons, such as spontaneous parametric down conversion,
spontaneous four-wave mixing, Josephson parametric amplifier, and quantum antennas. We show
that quantum technologies open promising avenues toward enhancement of signal-to-noise ratio and
overcoming the Rayleigh limit in radar and lidar systems.

I. INTRODUCTION

The so-called first quantum revolution started in the
early 20th century and allowed scientists to understand
the atomic structure and quantum nature of the elec-
tromagnetic field. The first quantum revolution pro-
vided the foundations for the development of many im-
portant devices such as transistors and lasers. The sec-
ond quantum revolution started in the early 21st cen-
tury. It opened the ways for manipulating and exploit-
ing for practical purposes specifically quantum features,
such as non-classical correlations between individual par-
ticles and non-classicality of states of the electromagnetic
field. One of the most popular of these is the quantum
entanglement, the “spooky action at a distance”, which
Einstein et al. found disturbing as the fundamental prin-
ciple of quantum theory [1]. The second quantum revo-
lution already brought significant development of quan-
tum technologies and major technical advances in many
diverse areas, such as quantum computing and commu-
nications [2], metrology, sensors, and imaging [3].

Quantum technologies jointly with nanotechnologies
lead to a new field of engineering aimed at translating
the effects of quantum physics into practical applica-
tions. Using solid-state quantum systems, atoms, ions,
molecules, and photonic circuitry, one can design micro-
scopic, but intrinsically quantum devices for generating,
processing, emitting, and receiving quantum states [4–8].

In this article, we review the basic concepts of quan-
tum radars while highlighting the differences compared
to their classical counterparts. We discuss how several
concepts from the traditional radar technology [9] (target
detection sensitivity, noise resilience, and ranging accu-
racy) can be translated to quantum radars. We outline
new far-field sensing protocols, examine engineering op-
portunities, enabled by their different realizations, and
highlight recent controversy arising around these realiza-
tions. We consider the possibilities of achieving super-
sensitivity and super-resolution using quantum correla-
tions, and discuss the possibilities to create quantum

correlated states in practice. In particular, we review
the most commonly considered and relatively easy-to-
create sources of entangled photon pairs both at mi-
crowave (Josephson parametric amplifier (JPA)) and op-
tical frequencies (spontaneous parametric down conver-
sion (SPDC), spontaneous four-wave mixing). The radar
and its optical analogue (lidar) concepts are increasingly
appreciated and used in the design of quantum-based far-
field sensing devices. Thus, we believe that the discussed
theme holds a promise to become a prominent sub-field
of quantum technologies in the coming years.

II. QUANTUM RADARS

Radar is a system that uses electromagnetic waves
(pulsed or continuous) to obtain information about an
object (“target”) by detecting the field scattered by this
object. The simplest radar task is the target detection
or, in another words, the decision whether the target is
present or absent inside the region of interest. Another
type of the problem is to determine the target position
and estimate its velocity. The most complicated task in-
volves the recovery of the target configuration (imaging)
via the analysis of its scattering pattern [9].

Classical radars are able to successfully accomplish all
these tasks. However, there are limitations dictated by
sensitivity, noise, and losses of the detection systems,
as well as noise present in the environment and leading
to the existence of a threshold for signal-to-noise ratio
(SNR), and the necessity to overcome it for making a
functional radar. Also, there are fundamental limits dic-
tated by the wave nature of the electromagnetic radiation
which can be hardly overcome by increasing signal-to-
noise ratio (especially, if one wants “stealth action”, i.e.,
low probabilities of signal interception). For example,
for the task of resolving two close independently emit-
ting (or scattering) small objects by detecting intensity
of the emitted field, the resolution is limited by the well-
known relations between the wavelength of the field and
the numerical aperture of the imaging set-up [10, 11].
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So, when the details of the imaged target are smaller
than the limiting value, one cannot resolve these details.
The microscope-oriented version of this resolution crite-
rion was suggested by Abbe in 1873 [11]; while the an-
gular, far-field imaging oriented criterion was formulated
by Lord Rayleigh in 1879 [10]. These criteria are based
on rather empirical considerations, derived from the pic-
ture of overlapping diffraction patterns of the sources,
and are not strict. Nevertheless, going far beyond the
limits, imposed by these criteria, usually requires unfea-
sibly large expenditure of resources (measurement time,
field intensity, etc.) [12].

Notice that the resolution is much dependent on the
statistical properties of the imaging field. For example,
for the task of resolving two close independently emitting
point sources, incoherent sources can give better resolu-
tion than coherent ones [13]. Recently, statistical infor-
mation approach to the classical imaging led to develop-
ment of a new class of superior imaging methods [14].
In the middle of the 20th century, use of correlations
between emitted and returned signal were suggested for
the so-called “noise radar” [15–17]. The noise radar pro-
duces a random signal, split into the transmitted beam
and reference signal. The received field interferes with
the delayed reference signal to produce the intensity cor-
relation function. For the delay corresponding to the
distance to the target, there is a sharp increase in the
observed correlations. Because of the signal randomness,
the noise radars were touted as having high immunity to
noise and low probability of intercept [15, 17].

Quantum correlations promise great advantages for
imaging and sensing. For example, quantum correlations
even allow one to reach the ultimate quantum limit for
measurement precision, the so called ”Heisenberg limit”
[18]. The starting point for a widely growing interest in
radar enhancement by the quantum correlations was cre-
ated by a groundbreaking and inspiring result of Seth
Lloyd in 2008. He invented the “Quantum Illumination”
(QI) scheme [19]. This scheme promised huge enhance-
ment of the target detection sensitivity despite the pres-
ence of strong noise background. Especially attractive
was the possibility of obtaining this enhancement for very
weak signal (at the level of a few photons), thus providing
the possibility of stealth action.

The last decade has seen intense development of
quantum-enhanced far-field sensing and establishing con-
nections with the other branches of quantum technolo-
gies, such as quantum metrology and imaging [20–22].
Initial theoretical developments (nicely summarized in
the monograph [21]) were followed by experiments in the
microwave and optical frequency ranges [23–29], and
the advantage over the optimal classical scheme was
demonstrated [23]. Recently, these experiments became
a subject of intense controversy leading to the conclu-
sion that for the moment there are no microwave QI
schemes demonstrating an advantage over the optimal
classical radars [30–34]. The very possibility of a re-
alistic QI radar was doubted, and even in the case of

such a radar being built it is predicted to be imprac-
tically expensive [35]. From the other side, QI proto-
col is certainly not the one and only possible way to
enhance radars and lidars by quantumness. For exam-
ple, there are such schemes as thresholded optical detec-
tion for enhancing sensitivity [36] and quantum ranging
[37]. Also, such specifically quantum technological ad-
vancements as single-photon detectors have already es-
tablished a firm place among lidar applications [38, 39].
Even in their simplest “click”/“no click” version, they en-
able a full reconstruction of a quantum state [40]. Single-
photon detectors are being developed now for microwave
fields [41, 42]. It would be useful to mention that spe-
cific quantum states designed to have low noise (so called
”squeezed states”) are successfully used to strongly en-
hance sensitivity of gravitational waves detection [43].

In summary, despite the controversies, set-backs and
technological obstacles, for the moment the quantum-
enhanced far-field sensing seems to be en route to devel-
oping practical highly sensitive devices, operating with
low-intensity signals, providing low probabilities of inter-
cept, and possibly achieving super-resolving target imag-
ing.

III. QUANTUM CONCEPTS

To explain the nature of possible quantum enhance-
ment in far-field sensing, let us first briefly outline some
fundamental principles of quantum theory. For dis-
cussing quantum radar implementations, we stick to a
simple operational definition of “quantumness” of states
as ability to provide observation results that cannot be
reproduced with classical states for a specific measure-
ment setup (for example, having zero probability of co-
incident clicks on the detectors in Hong-Ou-Mandel in-
terferometer with single-photon inputs [44], or violating
Bell inequalities [45] ). Here, under the “classical states”
we mean the ones obtained by arbitrary mixing of states
that can be produced by maser or laser devices, or by
classical current sources (i.e., positive-weight mixtures of
coherent states). For an introduction into fundamentals
of quantum optics, please, see the paper by G. Hanson
[46]; for a more detailed discussion of electromagnetic
field non-classicality, see, for example, a recent review
[47].

In quantum mechanics, an observable physical quan-
tity is described by the corresponding Hermitian opera-
tor. The state of the physical system is described by the
wave-function, or, more generally, by the density matrix,
which describes a statistical mixture of states correspond-
ing to different wave-function. Knowing the density ma-
trix, one can predict the average results of all possible
measurements performed with this state. An expected
averaged measured value of any observable is given as
the trace of the corresponding operator multiplied by the
density matrix

The nature of the quantum measurement is intrinsi-
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cally stochastic. Repeating the measurement with the
copies of the same quantum state will generally produce
different results. So, any quantum measurement process
gives an experimenter a sample of some probability dis-
tribution defined by the measurement setup and the state
[2]. For example, with a simple “bucket” detector able
to distinguish only between the presence or absence of
signal, one can sample a binomial distribution (which is
actively exploited for producing very high-quality ran-
dom number generators, and some of them are already
commercially available [48]).

Importantly, the quantumness can be manifested in
lowering measurement noise below the classically attain-
able level. For example, the field in the state with a
particular integer number of photons (i.e., Fock state)
will have maximally low intensity noise, and, as such, is
a perfect candidate for estimation of transmission, which
can be done with Fock states with much better precision
than with coherent states [49]. Another example is the
already mentioned squeezed states. They are able to ex-
hibit suppressed amplitude noise and successfully used
for reducing measurement noise [43, 50].

The modes of multi-mode field states can exhibit such
specifically quantum correlations as entanglement, which
is actively exploited in the quantum radar schemes for
lowering noise. If the state of the multi-mode system is
pure (i.e., can be described by just one wave-function),
the entanglement manifests itself by inseparability. This
implies that it is impossible to describe the evolution of
every subsystem by its own independent wave-function,
and the dynamics of the whole system as a direct product
of individual wavefunctions. For example, such situation
arises when an emitter has equal possibility to create just
N photons into the spatially separated modes a and b
[20]. The total state produced in that manner is named
N00N state and is described by the wave function |Ψ〉 ∝
|N〉a|0〉b+ |0〉a|N〉b, where |N〉a,b are the N -photon Fock
states and |0〉a,b are the vacuum states of the modes a
and b, respectively. The entangled states are non-trivial
to create and measure. One needs non-linear processes
or emitters that produce no more than several photons
in every emission act [51].

For a mixed state described by the density matrix, the
determination of the entanglement presence is more com-
plicated than for pure states [52]. A mixed state can ex-
hibit other kinds of correlations, which are weaker than
the entanglement, but, nevertheless, are quantum. This
is referred to as a quantum discord, which is defined as a
measure of non-classicality of information content of the
state [53]. In contrast to the notoriously fragile quantum
entanglement (which can even disappear completely, or
suffer a “sudden death” for a finite time under the actions
of losses and added noise [54]), the presence of discord
can be very robust, and even be increased due to losses
[53]. The very ability of the quantum radar to outper-
form classical radars might be based on the resilience of
the discord remaining after the initial entanglement is
lost [55].

Often, one needs to build a quite involved quantum
measurement to realize the advantage offered by a quan-
tum state (such as projection on the entangled state)
and assess all the available information (as is actually the
case for the quantum illumination [20]). For example, a
thresholded detection by filtering out low photon num-
bers, has been recently suggested for quantum-enhanced
lidar [36]. There is a way to check whether this or that
kind of quantum measurement is sufficient to infer the
information about the target. If one has measurements
results, described by a complete set of J probabilities,
pj(x1, . . . , xM ), dependent on parameters xm, which we
want to infer, for the unbiased estimation, the variances
of the estimated parameters are bounded from below by
the Cramér-Rao inequality

varxm ≥
[
F−1

]
mm

N
, [F ]mn =

J∑
j

1

pj

∂pj
∂xm

∂pj
∂xn

, (1)

which is well known and much used in statistical esti-
mation theory [56]. In expressions (1), F is the Fisher
information matrix and N is the number of the mea-
surement runs or state copies (generally proportional to
the measurement time). Quantum mechanics allows one
to determine the quantum bound corresponding to the
maximization of the Fisher information over all possible
measurements. To do that, one needs to know only the
quantum state [57]. Inequality (1) demonstrates another
way to manifest quantumness through the measurement:
the possibility to transcend a typical estimation error de-
pendence on the number of runs, when this error changes
as 1/

√
N . This kind of dependence is known as “the stan-

dard quantum limit” (SQL). With entangled states such
as the N00N state, one can reach the so-called “Heisen-
berg limit”, with the error changing as 1/N , which is the
maximal estimation precision allowed by quantum me-
chanics [18].

Notice that quantumness can be potentially manifested
also by the difference in the way the target back-scatters
the field for quantum and classical illuminating states
(i.e., between corresponding radar cross sections) [21].
For example, this might take place when multi-photon
scattering processes are significant (however, it is hardly
the case for practical radar applications) [58].

IV. QUANTUM RADAR CONFIGURATIONS

Here, we consider quantum enhancement of radars for
all three basic radar tasks: target detection, target rang-
ing, and target imaging. For illustrating the concepts
and their realizations, we discuss three schemes: the
already-famous much debated QI scheme [19], and two
more recent ones [37, 59]. All three schemes are based
on the sources emitting entangled photons (Fig. 1).



4

A. Quantum illumination for target detection

QI scheme considers detection of a low radar cross sec-
tion (RCS) object in a thermal noise environment [19].
Let us demonstrate how the QI functions and why it did
generate such interest as a means for quantum enhance-
ment of far-field sensing. To that end, we consider a
simple reference case of just a single photon illuminating
a target, being reflected, and registered.

Figure 1. (a) Quantum illumination scheme for the target de-
tection. Only a single beam of the entangled pair illuminated
the target. (b) Quantum radar scheme for the ranging and
resolving the target. All the entangled field illuminates the
target. Correlation measurements on the returned field are
performed.

Let us assume that we have d field modes, e.g. fre-
quencies; our photon is somehow distributed among these
modes and is described by the state |θ〉. This photon is
sent toward a weakly reflecting target. So, only a small
portion, R� 1, of the sent photons returns to the receiv-
ing detector. On the way, this portion is mixed with a
d-mode thermal state with n photons per mode, while the
total number of photons is small, dn � 1. The receiver
checks whether the returning photon is in the state |θ〉
(projects the returning state on the state |θ〉). Then, the
probability to get a positive result for the target detec-
tion when the target is not actually present is pfalse ≈ n,
and the probability to get the positive result in the pres-
ence of the target is ptrue ≈ n+R [19]. These results are
quite intuitive: the larger the reflection, the more prob-
able is the target detection. The larger is the noise, the
more probable is the erroneous detection.

Now, let us consider the quantum illumination scheme
depicted in Fig. 1(a). For such illumination, the follow-
ing entangled state of two photons, equally distributed
between 2d field modes, will be used:

|Ψ〉 =
1√
d

d∑
k=1

|1k〉s|1k〉i. (2)

Here, indices s and i indicate signal and idler modes,
correspondingly; also, |1k〉s and |1k〉i describe the states
where there is just one photon in the signal and idler
mode k and no photons in the other modes. All signal
modes are sent toward the target, while all idler modes
are stored locally. When the reflected photon arrives,
both the idler and signal modes are measured by pro-
jecting their state on the initial one (2). Then, the prob-

ability to get a positive result for the target detection
when the target is not actually present is pfalse ≈ n/d.
So, we have shown that the “false-positive” error prob-
ability can be hugely reduced for a wide-band (i.e., for
d� 1) field! At the same time, the probability of target
detection when the object is really there is not changed
that much ptrue ≈ n/d+R [19].

Unfortunately, the promise of QI scheme did not de-
liver equally powerful practical results. The history of
the scheme development is well described and discussed
in the recent work of Shapiro [30]. First of all, the
QI requires rather complicated non-local detection. Sec-
ond, the mentioned huge and potentially unlimited ad-
vantage takes place only in comparison with single non-
entangled photons. It appeared that by replacing sin-
gle photons with unit-amplitude coherent states, one can
perform not worse than with entangled ones [60]. How-
ever, the scheme is “saved” when one goes beyond the
single-photon approximation. It has been shown that
implementing multi-photon entangled states (more pre-
cisely, a set of entangled modal pairs, each being in the
squeezed vacuum state)

|Ψ〉 =

∞∑
n=0

µ
n
2

(µ+ 1)
n
2 +1
|n〉s|n〉i, (3)

one can still get potentially 6 dB of SNR advantage in
comparison with the optimal scheme implementing co-
herent states [61, 62]. For that purpose, one needs a
rather involved detection scheme; an example of such a
scheme, based on the sum-frequency generation, has been
recently suggested in [63]. In Eq. (3), the vectors |n〉s
and |n〉i describe n-photon Fock states in the signal and
idler modes, respectively, µ is the average photon number
in both modes.

The QI scheme was experimentally demonstrated at
optical wavelengths [23, 24], and was shown to be quite
robust with respect to losses and noise [23]. Notice that
for the optical wavelength region, the background noise
is quite weak. So, thermal noise was artificially added to
the signal. In 2015, a QI target-detection system that op-
erates in the microwave regime was presented [29]. In this
case, the target region can be interrogated at a microwave
frequency, while the QI joint measurement, needed for
target detection, is made at an optical frequency.

A curious detail about the QI scheme is that the condi-
tion for its functioning seems to negate the very prereq-
uisite for its functioning. As such, a QI scheme requires
entangled states. However, there is no more entangle-
ment between the idler and signal, latter returning after
the low-probability reflection and dilution with noise [23].
A more resilient kind of quantum correlations, namely,
quantum discord might be responsible for the QI gain
[53, 55].
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Figure 2. (a) A scheme of the microwave quantum-enhanced
noise radar [64]. (b) A scheme of the optical diffusive target
detection [25]. QI (CI) photons are the sources of quantum
(classical) light. Detectors D1 and D2 are used to register the
photons from the scattered signal and the idler; the jamming
laser is used as background light source. Reprinted with per-
mission from [25]. Copyright (2019) by the American Physical
Society.”

B. Beyond the original quantum illumination

Notice that the original QI scheme seems quite lim-
ited in terms of practical realizations. Even without tak-
ing into account the difficulties with the projection-on-
entangled-states measurement, the QI scheme assumed
that the distance to the target is known and used to cal-
culate the delay between the idler and the signal. Fur-
thermore, a specific (thermal) noise model is implied, and
the target is assumed to be just reflecting without intro-
ducing additional noise to the signal [19, 30]. So, a
number of attempts were made to modify and enhance
the QI. For example, it was suggested to simplify the
detection of the returning signal and the idler making it
local, to use conventional detection schemes, and to avoid
actual interference between the returning signal and idler
fields (though, one will pay for it with a lower available
improvement, for example, reducing possible gain to 3
dB [62]).

Recently, a microwave scheme has appeared where one
does not use the interference of the returning signal and
the idler [64]. It is depicted in Fig. 2. The entangled
state (3) is produced in the superconducting JPA acting
as a microwave parametric down-conversion source (see
the section on the microwave photon-pair generation).
In contrast to the scheme in Fig. 1(b), the returning

signal and the idler are recorded separately and the cor-
relations of the recorded measurement data are analyzed
[64]. A similar scheme was also implemented in the op-
tical wavelength range for detecting a diffusely reflecting
target [25].

Note that rough-surface target, inducing amplitude
and phase noise, can also make getting quantum ad-
vantage by the QI scheme highly problematic (here we
assume that the quantum advantage is the ability of
a device to perform better, say, provide for a better
SNR) with non-classical states in comparison with the
classical ones, for the same spent resources (say, aver-
age number of photons of the signal field). As was re-
cently shown, a realistic so-called “Rayleigh-fading tar-
get”, inducing Rayleigh-distributed amplitudes and uni-
formly distributed phases of the scattered field, com-
pletely negates the possibility to obtain the 3 dB gain
achievable for the local detection. Also, it reduces to 3
dB possible gain from the advanced detection scheme of
[63], which ideally allows 6 dB of SNR gain for the QI
scheme with a noiseless reflective target [65].

However, even if the target completely suppresses the
spatial correlations of the illuminating field, one can still
resort to the temporal correlations between the emit-
ted photons [25]. In that case, the registration of non-
classicality can be done just by the standard photo-
counting measuring coincidences using a pair of detec-
tors. In Fig. 2(b), the scheme of the experiment carried
out in [25] is shown. This scheme is sufficiently simple
and illustrative, so, let us show how the quantum advan-
tage was sought for in this case. In the classical case of
a coherent illuminating source, in the absence of back-
ground, the probability of detecting a signal photon in a
given time-bin is εPs. Here Ps is the probability of scat-
tering toward the detector, and ε is the overall collection
efficiency, which incorporates all the collection losses and
the detector efficiency. In the presence of background,
the probability of detecting a background photon in the
same time-bin is Pb. The SNR is therefore simply given
by SNRclassic = εPs/Pb. In the quantum case and in
the absence of background, the probability of simultane-
ous detection of the signal and idler photons is Psi. In
the presence of background, the probability of acciden-
tally detecting a background photon in coincidence with
an idler photon is PbPi, where Pi is the probability of
detecting an idler photon. The SNR is therefore given
by SNRquant = εPsi/PiPb. So, the ratio of the quan-
tum and classical SNRs does not include the probability
of the background photon detection. For the squeezed
vacuum illumination field (3), it is just proportional to
the inverse average number of photons µ, provided that
µ� 1

SNRquant

SNRclassic
=

Psi

PiPs
∼ 1

µ
. (4)

The work [25] claims that the quantum enhancement
on the order of 103 was demonstrated in this way. Alas,
the classical detection taken for comparison is far from
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being the optimal one for the case. Very recently, it has
been shown that by implementing thermal fields of var-
ious temperatures, correlated just by asymmetric beam-
splitting, one can reduce the quantum advantage to al-
ready mentioned 3dB [32]. Besides, lately the temporal
correlations of twin-photons have been suggested for en-
hancing the performance of a lidar [27], and a scheme
utilizing simultaneously both spatial and temporal cor-
relations has been proposed in [28].

One should emphasize that very recently rather serious
doubts were voiced about the very existence of quantum
advantage in the so far realized QI radar schemes [30–
34]. Also, practical perspectives and cost of a presumably
lab-successful QI radar were also predicted to be quite
pessimistic [35].

C. Quantum ranging

As noted above, even for the possibility to hope gain-
ing an advantage with QI, one needs to know the distance
to the target. On the other hand, it has been recently
shown that one can perform ranging of the target with
a quantum advantage [37].The scheme of this quantum
radar is depicted in Fig. 1(b). Let us explain it with our
standard testing of the state of entangled photon pairs.
Both photons impinge on a point target, and then the
scattered photons are registered by two detectors at some
distance one from another. These detectors measure the
second-order delayed intensity correlation function of the
scattered field. Then, one can get

√
2 fold advantage

in the standard deviation of each average coordinate of
the target. The advantage is achieved with the following
state

|φ〉n ∼
∑
j

φ̄j |nj〉, (5)

where the function φ̄j describes how photons are dis-
tributed through the modes, and |nj〉 denotes the state
with n photons in the j-th mode and vacuum in all other
modes. For the case of entangled photon pairs, n = 2,
and by measuring the second-order intensity correlation
function, the following result is obtained [37]:

G(2)(~r1, t1, ~r2, t2) ∼ |f(2[t̃− t0], 2[~r − ~r0])|2, (6)

where the function f(t, ~r) is the Fourier-transform of the
wave-function φ̄; t̃ = (t1 + t2)/2, and tj , j = 1, 2 is the
photon arrival time at the first or the second detector;
~r = (~r1+~r2)/2, and ~rj is the position of the j-th detector;
t0 is the state generation time, ~r0 is the target position.

For two independent photons with the state described
by the product of the wavefunctions |φ〉1 (5), the second-
order intensity correlation function G(2)(~r1, t1, ~r2, t2) (6)
is the product of two independently measured first-order
correlation functions (i.e., intensities)

G(1)(~r1, t1) ∼ |f(tj − t0, ~rj − ~r0)|2, (7)

Figure 3. A scheme of a target-resolving quantum radar with
spatially and temporally correlated photon pairs emitted by
the simplest two-emitter quantum antenna [66].

So, the comparison of Eqs. (6) and (7) shows that the

entangled state (5) for n = 2 indeed gives
√

2 reduction
in the standard deviation of the average time of photon
arrival in comparison with the case of two unentangled
photons, and the same advantage in standard deviation
for each of the two components of the target average posi-
tion. However, the practical realization of this advantage
seems rather problematic. To find the maximum of the
function (6), it is necessary to probe all the detector po-
sitions for all possible arrival times. This problem can be
alleviated to some extent by considering the non-ideally
entangled state (5), but rather a partially entangled state
with finite correlation time and length, at a cost of re-
ducing the advantage [37]. Losses and noise also pose
a quite hard problem in the described scheme, and lead
to further degradation of the gain. On the other hand,
this scheme holds a considerable promise as well. Indeed,
for the state of n entangled photons (5), the scheme can
potentially give

√
n gain for each target coordinate.

D. Quantum radar for target imaging

The final task for the quantum radar/lidar considered
here is the target recognition, i.e., the determination of
the target spatial shape. In its simplest version, this
problem can be reduced to the one typical for imaging:
estimating the distance between two close point targets.
Concerning this task, the main obstacle is the same as
for the general imaging problem: the field diffraction.
A point object is imaged not into a point, but into some
region/spot. For two or more point objects, these regions
can be strongly overlapping and point objects cannot be
resolved in the measurement result. For classical radar
imaging, the fundamental resolution is dictated by the
Rayleigh limit [67]. So, the task for the quantum radar
is to provide possibility to go beyond this limit.

Here, we will discuss a generic imaging-like scheme
(like that in Fig. 1(b)). Like for the quantum ranging
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scheme, the entire generated field is directed toward the
target, and the measurement set-up infers the correla-
tions between the returning photons. Recently, a simple
realization of this scheme has been suggested [66]. In
this set-up (dubbed the ‘quantum noise radar’), a pho-
ton pair, produced by a simple antenna of two interact-
ing two-level emitters, irradiates the target composed of
several point objects (see Fig. 3). Then, the delayed
second-order intensity correlation function of the return-
ing field is measured. It was demonstrated that using
entangled photons one can vastly outperform the same
measurement with two uncorrelated photons [66]. More
precisely, it is possible to avoid the so-called “Rayleigh’s
Curse” using the correlations of the registered photons.
The “Rayleigh’s Curse” is a recently appeared sobriquet
for the well-known diffraction-caused loss of ability to re-
solve two close point sources by common intensity mea-
surements [68]. Formally, this “curse” appears as the
information (1) about the distance between the objects,
calculated for such intensity measurements, tending to
zero, when the distance tends to zero. However, the
quantum analogy of the Fisher information (1) is not
zero in the limit of zero distance between the objects. It
means that one can find a measurement beat frequency in
the diffraction limit, thus “dispelling” the “curse”. The
scheme, suggested in [66], indeed allows one to dispel the
“curse”. The information stays finite for an arbitrary
small distance between the objects providing their res-
olution within finite measurement time. Moreover, for
inferring the distances between more than two objects,
the “quantum noise radar” also allows one to outperform
sensing with the uncorrelated photons.

Here, one should notice that there are possibilities to
significantly enhance the resolution in the target recog-
nition problem even using classical illuminating fields
by designing sophisticated “quantum-inspired” detection
schemes, for example, for building telescopes for astro-
nomical applications [14].

E. Single-photon lidars

Devices, designed specifically for quantum detection,
can also greatly enhance the performance of far-field sens-
ing schemes, even if classical illuminating fields are used.
For example, such a typically quantum device as an ar-
ray of single-photon avalanche diodes (SPAD), suitable
for registering non-classical photon statistics, can bring
a considerable advantage to lidar schemes [38, 39]. A
scheme of the implementation of a single-photon lidar
with a detector array is depicted in Fig. 4. A laser pulse
is split into a large number of narrow beams propagat-
ing toward the target. Then, an array of single-photon
detectors registers the returning signal, which is at the
single-photon level. After collecting sufficient data statis-
tics, the object characteristics can be inferred. Such
single-photon lidars are already commercially available
and widely used. They provide a number of important

Figure 4. A scheme of the lidar with a single-photon detector
array: initial laser beam is split into many beamlets using
a diffractive optical element (DOE), the returning signal is
imaged with the SPAD.

advantages, such as high-sensitivity, possibility of us-
ing weaker laser sources, eye-safety, low cost, potentially
higher area coverage performance, improved depth reso-
lution, and accuracy. These advantages come at a price:
necessity of high computing power and advanced meth-
ods for object reconstruction and noise removal, espe-
cially if one aims at real-time imaging of moving targets.
Curiously, in the spirit of the “quantum-inspired imag-
ing” [14], it has been very recently claimed that single-
photon lidars are able to achieve twofold enhancement of
spatial resolution over the diffraction limit for distances
of more than 8 km [69].

V. GENERATION OF ENTANGLED PHOTON
PAIRS

In all our quantum radar examples, we have considered
twin-photon generators as a basic tool of entangled states
for realizing quantum advantage. Here, we give a brief
description of the ways to build these generators aiming
at the radar applications. Generally, they are based on
the second- and the third-order nonlinearities. However,
particular implementations significantly depend on the
targeted frequency range. Also, here we address such
emerging field as quantum antennas.

A. Twin-photons for optical frequencies

For optical frequencies, the cheapest and most widely
used mechanisms of entangled states generation are
those based on spontaneous parametric-down conversion
(SPDC) and spontaneous four-wave mixing (SFWM)
[70]. The illustration of their operating principles are
shown in Fig. 5. For SPDC, the second-order nonlinear
medium is pumped by a pump beam at some frequency
ωp.

Each pumping photons can be split giving birth to two
photons with lower frequencies ωs and ωi, named “signal”
and “idler”, satisfying energy conservation, ωs +ωi = ωp.

Momentum conservation requires that ~ks+~ki = ~kp, where
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Figure 5. The schemes of the (a) SPDC and (b) SFWM
sources of entangled photon pairs.

~ks,i,p are the wavevectors for the signal, idler, and pump
photons, respectively. These conservation laws lead to
the appearance of entanglement between the signal and
idler photons. Indeed, registering a photon flying in the

direction ~ks means that there is another photon flying in

the direction ~kp−~ks. For a weak pump, a superposition of
the entangled state (2) with the vacuum can be produced.
The SPDC-based sources can be routinely produced now,
for example, using potassium titanyl phosphate crystals,
or similar media exhibiting the second-order nonlinearity
[70].

In the SFWM process occurring by the third-order
nonlinearity, two pump photons are converted into signal
and idler photons while satisfying the energy and mo-
mentum conservation laws providing the entanglement
of the generated state (which is also of the form (2) for
a weak pump). Photon pairs can be produced by the
SFWM mechanism even in such common structures as
index-guiding optical fibers; glass usually possesses some
weak third-order nonlinearity [70, 71].

B. Entangled photons for microwave frequencies

Notice that creating entangled fields in the microwave
frequency region is considerably more difficult than at
the optical wavelengths. There are no readily avail-
able nonlinearities. Nowadays, the quantum radar re-
searchers exploit mostly two radically different ways to
create quantum-correlated microwave fields for quantum
radar schemes. The first is to create initially correlated
field in the optical wavelengths range, and then to trans-
fer the entanglement into the microwave wavelength field.
The second way is to use directly the available (and
rather expensive) methods, such as microwave paramet-
ric amplifiers (based on superconducting Josephson junc-
tions [72]) to generate entangled microwave fields. The
first way was realized in the experiment on the microwave
realization of the QI scheme [29]. This setup is based
on the coupling between microwave and optical cavities,
which allows one to transfer the entanglement creating
quantum correlations between the signal illuminating the
target and the optical idler (Fig. 6(a)). The optical sig-
nal modulates the microwave cavity and entangles the
microwave signal with the stored idler. Then the mi-
crowave signal travels to the target, returns, and gets
quantum correlated with the optical mode. Finally, the
correlation measurement of this optical mode and the

stored idler is performed (Fig. 6(b)).

Figure 6. (a) The scheme of the converter device in which a
mechanical resonator couples microwave and optical cavities.
(b) The scheme of the microwave-optical QI using converters
shown in the panel (a). The transmitter’s converter entan-
gles signal optical and microwave fields. The receiver’s con-
verter transfers the returning field back to the optical domain.
Reprinted with permission from Ref. [29]. Copyright (2015)
by the American Physical Society.

The second way is, essentially, a microwave analog of
the optical SPDC (Fig. 4(a)) realized by the JPA. Such a
parametric amplifier is able to generate entangled states
of the squeezed vacuum type (3). For example, the JPA
device discussed for the purpose of the entangled state
generation in the recent work [73], is realized as a trans-
mission line resonator with the resonant frequency mod-
ulated with the help of the superconducting loop inter-
rupted by two Josephson junctions, and requires mil-
likelvin temperatures for operations. Recently, JPA state
generators have been successfully used for the implemen-
tation of purely microwave QI-like schemes [26, 74].

Figure 7. The scheme of 1D array antenna of identical quan-
tum dipoles for generating entangled photon pairs [59].
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C. Quantum antennas

Finally, we mention another way to generate propa-
gating entangled states potentially suitable for the quan-
tum radar and drastically different from the photon mix-
ing schemes described above: quantum antenna arrays.
They comprise sets of quantum emitters arranged in the
manner typical for conventional classical arrays. The
purpose of such antennas is to use both quantum cor-
relations of the emitters and classical interference of the
emitted states to shape the correlations and spatiotempo-
ral characteristics of the emitted field in the far-field zone
[8]. An example of such a quantum antenna as a source
for a target-recognizing quantum radar was considered in
the previous section [66]. There, just two interacting two-
level emitters were shown to be sufficient to create photon
pairs achieving super-resolved target imaging. Gener-
ally, manipulating the state of the multi-emitter antenna
even with the simplest geometry (such, for example, as
a 1D array considered in [59], Fig. 7), one can strongly
change the correlation shape. For example, one can make
emitted photons fly together or in opposite directions, or
completely suppress the field in the far-field zone [59].
Quantum antennas can be realized in a number of differ-
ent ways: with quantum dots, atoms and ions in traps,
fluorescent nanodiamonds, etc. They can also be imple-
mented by spatially arranging elements performing three
or/and four-wave mixing [8, 75].

VI. CONCLUSION AND OUTLOOK

In this article, we have reviewed the basic theory, de-
sign, preliminary experiments, and potential applications
of quantum radars and lidars. Given the high poten-
tial of quantum technologies for this branch of science
and engineering, we find it crucial to attract the tra-
ditional radar community to this area of research and

to leverage the conventional radar concepts to improve
the design of radars and lidars based on quantum tech-
nologies. Here, we have also discussed how traditional
quantum optical concepts (such as entanglement) can be
and have been translated and applied to the microwave
and THz frequency ranges despite the drastically differ-
ent implementations in optics. We have described several
ideas for enhancing SNR by quantum effects for the tar-
get detection, ranging and imaging, referenced several
experiments (both in optics [23–25, 27] and microwaves
[26, 29, 76]) attempting to overcome classical limits with
the QI quantum radar protocol (very recently, an excel-
lent popular introduction to QI radars and lidars has
appeared [77]). For the moment, there is an opinion
that in the microwave region quantum advantage still
seems out of reach. Also, technological difficulties re-
main formidable, and they are considerably limiting per-
spectives of practical realizations [35]. In the same time,
there are schemes potentially allowing one to go beyond
QI [36], outlining the way to achieve quantum advan-
tages in ranging and target imaging employing entangled
photon pairs [37, 66]. In particular, quantum radars and
lidars open the way to go beyond the classical resolution
limit for target imaging [77].

We expect that the ideas, discussed in this article, will
be increasingly appreciated and actively employed by the
quantum optical and electrical engineering communities.
We also expect that in the coming years the usage of
quantum technological developments in far-field sensing
will be steadily increasing in the form of novel efficient
detecting schemes, and also novel target sensing, ranging
and imaging protocols.
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