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Quantum communication theory sets the maximum rates at which information can be encoded and decoded
reliably given the physical properties of the information carriers. Here we consider the problem of readout of
a digital optical memory, where information is stored by means of the optical properties of the memory cells
that are in turn probed by shining a laser beam on them. Interesting features arise in the regime in which the
probing light has to be treated quantum mechanically. The maximum rate of reliable readout defines the quantum
reading capacity, which is proven to overcome the classical reading capacity—obtained by probing with classical
light—in several relevant settings. We consider a model of optical memory in which information is encoded in
the (complex-valued) attenuation factor and study the effects on the reading rates of thermal and correlated
noise. The latter type of noise arises when the effects of wave diffraction on the probing light beam are taken
into account. We discuss the advantages of quantum reading over the classical one and show that the former is
substantially more robust than the latter under thermal noise in the regime of low power per pulse.
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I. INTRODUCTION

Data storage devices make use of different stable or
metastable states of suitable physical systems, typically or-
ganized in arrays of memory cells, which are employed to
store classical information. In turn, the process of retrieving
the stored information involves a second physical system used
to probe the state of the cells. The readout process is hence
made of three steps: (1) the probing system is prepared in a
given initial state; (2) the memory cells and the probe interact
according to the their physical properties; (3) the probe is
collected and measured in order to extract the information
encoded in the state of memory cells mirrored in the final
state of the probing system. The prototypical example is
that of digital optical memories, such as CDs, DVDs, and
BDs, where information is stored in digital form according
to the optical properties of the memory cells. In this case, the
readout process consists of shining a laser on the memory cells,
whose reflected beam is then collected and properly measured.
Under standard conditions, the use of classical coherent
light with a macroscopic number of photons is sufficient to
guarantee a faithful readout process with negligible probability
of error. On the other hand, this is no longer true in the
regime of weak signals in which quantum fluctuations become
predominant and, due to the uncertainty principle, forbid the
faithful discrimination of coherent states. Remarkably, as it
was first pointed out in [1], it is in the few photon regime that
nonclassical states of light can provide the optimal probing
states for the readout of a classical memory, hence overcoming
the performances of classical light sources. This result, which
is already interesting by its own, may open the way to novel
applications of quantum optics for data storage technologies,
e.g., by increasing the data storage capacity or the readout rate
or by allowing the safe and faithful readout of photodegradable
memories.

A model for studying the readout of digital classical
memories in the quantum regime was first considered in
[1]. There, a model of memory was introduced in which
information is encoded in a binary fashion according to the
optical reflectivity of each memory cell. That is, a low or
high reflectivity of the memory cell is used to store one bit
of classical information. Hence, depending on the reflectivity
value, a beam of light impinging on a memory cell results in
an attenuated amplitude of the reflected beam. It follows that
the problem of the memory readout is naturally formulated
as the problem of statistical discrimination between two lossy
bosonic channels [1,2], and its probability of success arises as a
suitable performance quantifier. Variants of this model include
the cases in which the interaction with the memory cell affects
other optical properties of the reflected beam, as phase [3]
or both phase and amplitude [4]. Other variants consider the
case where both the ports of the beam-splitter memory cell
are available to the probing light, with the problem of readout
becoming equivalent to a discrimination of unitaries [5,6]; see
also [7,8].

Moving beyond the case of the readout of a single bit of
information encoded in a memory cell, one has to consider
the more realistic setting for data storage devices in which
information is encoded in (long) arrays of memory cells.
Classical error correcting codes are also used to further reduce
the probability of faulty readout. General coding theorems
(see, e.g., [9]) can be applied to this setting to provide
expressions for the maximum rates at which information can
be reliably retrieved in the reading process. In particular,
when the memory cells are probed by a quantum system, the
asymptotically optimal and reliable readout rate is given in
terms of the Holevo information [10]. In this context one can
distinguish two main settings defined by the physical proper-
ties of the probing states. In the first one the quantum probe is
initialized in a “classical” state, that is, a state characterized by
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a positive Sudarshan-Glauber quasidistribution [11]. Classical
states can be written as convex combinations of coherent states
and have a well-defined classical limit for h̄ → 0. On the
other hand, nonclassical states are those that show typical
quantum features, for instance squeezing, entanglement, and
nonlocality. In both cases, we allow the presence of an
ancillary system in order to exploit (classical or quantum)
correlations with the probe. The classical reading capacity
is hence defined as the maximum rate of reliable memory
readout achievable when the state of the probe and ancillary
systems is a classical one. More generally, the quantum reading
capacity is the maximum rate over arbitrary quantum states,
including nonclassical ones [12]. An explicit expression for
the classical reading capacity was computed in [12], as a
function of the mean photon number of the probing light. While
the calculation of the quantum reading capacity remains an
open problem, several examples were provided of nonclassical
states outperforming all the classical ones [12], hence proving
that the quantum reading capacity is strictly greater than its
classical counterpart in several settings.

Here we examine the quantum reading capacity of a
classical digital memory in the presence of different kinds
of noise. For given mean photon number impinging on each
memory cell, we compare the classical reading capacity
with that achievable by an entangled state of the probe and
ancillary systems, which possess Einstein-Podolsky-Rosen
(EPR) correlations. First, we provide analytical expressions
in the presence of thermal background in the limit of faint
signals, showing that the reading rate with the entangled EPR
state probing is unaffected by thermal-like noise. Second,
we provide bounds on the quantum reading rates in the
presence of correlated noise due to light diffraction [13].
Indeed, wave diffraction of the reflected light causes cross
talks among signals scattered by neighboring memory cells.
Notwithstanding a potential reduction of the reading rates,
we show that the separation between classical and quantum
probing persists in the presence of this kind of correlated noise.

The article proceeds as follows. In Sec. II we review the
quantum reading in the optical framework and in Sec. III we
analyze the case of quantum reading in the presence of back-
ground thermal noise. In Sec. IV we introduce and characterize
the effects of diffraction in quantum reading. Finally, Sec. V
contains conclusions and remarks. Appendix contains detailed
calculations regarding the quantum description of diffraction.

II. QUANTUM READING CAPACITY OF OPTICAL
MEMORIES

We consider a model of classical optical memory consisting
of a long array of K � 1 memory cells, where the j th
cell encodes the d-ary variable u(j ) according to its optical
reflectivity. Hence, a probing beam of light impinging on
the j th cell will be attenuated by a complex-valued factor
zu(j ), describing both attenuation and delay. In order to
optimize the memory performance we allow information to
be encoded by means of a set of 2C distinct code words
ui = [ui(1),ui(2), . . . ,ui(K)] of length K , with i = 1, . . . ,2C ,
at a rate of C/K bits per cell. These code words define a
classical error correcting code for the memory. A quantum
description of the interaction between the j th memory cell

and the probing light is provided by an associated quantum
channel φu(j ) which maps the incoming beam of light into an
attenuated one and accounts for the presence of background
(thermal) noise. A single mode of incoming light, described
by the canonical ladder operators a, a†, is hence transformed
into an outgoing one according to the Heisenberg-picture
transformation,

a → zu(j ) a +
√

1 − |zu(j )|2 v + ν , (1)

where v denotes an environmental “vacuum” mode, and ν is
a Gaussian distributed classical random variable, with zero
mean and variance nth, modeling the background thermal
noise (note that an alternative way to introduce thermal noise
is to consider an environmental thermal mode instead of a
vacuum mode [1]). Associated with each code word of the error
correction code there is a sequence of single-mode quantum
channels φui (1) ⊗ φui (2) ⊗ · · · φui (K). We define the marginal
ensemble of quantum channels � = {pu,φu}, where pu is the
relative fraction of instances of the channel φu among the code
words. The ensemble � is also called the marginal cell of the
memory [12].

Given the memory model, a reading protocol is character-
ized by the physical properties of the probing light. Here we
consider a setting in which each memory cell is independently
probed by a collection of s bosonic modes [14], described by
the ladder operators {ak,a

†
k}k=1,...,s , which are jointly measured

with r ancillary modes, which are in turn associated with the
operators {bk′ ,b

†
k′ }k′=1,...,r . We refer to the collective state of the

s + r modes as the transmitter, and denote it as ρ(s,r). The
state of the transmitter after the interaction with a subarray of
cells encoding the code word ui reads

ρui (s,r) =
K⊗

j=1

ρui (j )(s,r)=
K⊗

j=1

(
φ⊗s

ui (j ) ⊗ I⊗r
)
[ρ(s,r)], (2)

where I is the identity transformation acting on each of
the ancillary modes. Finally, the last step of the reading
protocol consists of performing a collective measurement on
the outgoing light in order to discriminate among different
code words. The discrimination can be performed flawless
in the limit K → ∞ by choosing optimal code words and
collective measurements up to a rate given by the Holevo
information [10]:

χ [�|ρ(s,r)] = S

[∑
u

puρu(s,r)

]
−

∑
u

puS[ρu(s,r)], (3)

where S(·) = −Tr[(·) log2(·)] denotes the von Neumann en-
tropy and ρu(s,r) = (φ⊗s

u ⊗ I⊗r )[ρ(s,r)].
The quantum reading capacity of a classical memory with

marginal cell � is finally defined by optimizing the reading rate
χ [�|ρ(s,r)] over the choice of the probing state ρ(s,r) [12]:

C(�) = sup
s,r

sup
ρ(s,r)

χ [�|ρ(s,r)]. (4)

However, one has to notice that χ [�|ρ(s,r)] is upper
bounded by the Shannon entropy of the ensemble �, H (�) =
−∑

u pu log2 pu, which in turn can be made equal to log2 d

by letting pu to be the flat distribution. It is easy to show that
this bound is saturated by choosing ρ(s,r) to be a pure state
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and allowing s to be arbitrarily large [12]. For this reason,
the quantum reading capacity is a nontrivial notion only when
we optimize the transmitter state under a suitable constraint.
In the framework of optical readout, the most meaningful
physical constraint is given by fixing the mean number of
photons impinging on each memory cell. Thus, we consider
fixed-energy transmitters ρ(s,r,n) defined as those transmitters
ρ(s,r) which irradiate an average of n photons on each memory
cell, i.e., such that

Tr

[
ρ(s,r,n)

s∑
k=1

a
†
kak

]
= n . (5)

We hence define the constrained quantum reading capacity by
optimizing the reading rate over all the transmitters at fixed
energy [12],

C(�|n) = sup
s,r

sup
ρ(s,r,n)

χ [�|ρ(s,r,n)]. (6)

Note that an alternative (local) energy constraint consists
of fixing the mean number of photons per signal mode, as
recently adopted in Refs. [15,16] — see [2] for more details
on global and local energy constraints in quantum channel
discrimination. Also note that a different definition of optical
reading capacity has been recently given in Ref. [17], where
an optimization on the marginal cell is implicitly considered.

In the following we evaluate bounds on C(�|n) by com-
puting χ [�|ρ(s,r,n)] for different choices of the transmitter.
First, we consider the case of “classical” states—those having
a positive Sudarshan-Glauber quasidistribution [11]—of s +
r modes. By restricting to classical transmitters, denoted
as ρc(s,r,n), one defines the constrained classical reading
capacity:

Cc(�|n) = sup
s,r

sup
ρc(s,r,n)

χ [�|ρc(s,r,n)]. (7)

Classical states form a convex set whose extremal points are
coherent states of s + r modes. It was proven in [12] that
for the noiseless case (nth = 0) the optimal classical probing
state is a single-mode coherent state with s = 1 and r = 0.
Here we conjecture, supported by numerical evidence, that
the same holds true even in the noisy case (nth > 0). Second,
we evaluate χ [�|ρ(s,r,n)] for an exemplary “nonclassical”
transmitter given by

ρEPR(s,s,n) = (|ξ 〉〈ξ |)⊗s, (8)

where

|ξ 〉 = (cosh ξ )−1
∞∑

m=0

(tanh ξ )m|m〉Sk
|m〉Rk

, (9)

with ξ = arc sinh
√

(n/s) and |m〉Sk
= (m!)−1/2(a†

k)m|0〉,
|m〉Rk

= (m!)−1/2(b†k)m|0〉 (|0〉 denoting the vacuum state). The
transmitter ρEPR(s,s,n) is the tensor product of s EPR states,
providing the simplest description of the output of parametric
down conversion; see, e.g., [18], as well as the prototypical
example of entangled state in the continuous-variable setting
[2,19].

III. QUANTUM READING CAPACITY UNDER
THERMAL NOISE

We start by considering the case of coherent state transmit-
ters and introduce the quantity,

Ccoh(�|n) = sup
s,r

sup
ρcoh(s,r,n)

χ [�|ρcoh(s,r,n)], (10)

where

ρcoh(s,r,n) =
s⊗

k=1

|αk〉〈αk|
r⊗

k′=1

|βk′ 〉〈βk′ |, (11)

is a coherent state of s + r modes and the photon-number
constraint reads

∑s
k=1 |αk|2 = n.

First of all, we notice that since the state ρcoh(s,r,n) is in the
form of a direct product between the state of the probe and the
state of the ancillary system, the subadditivity of the Holevo
information implies that the presence of the ancillary modes
cannot increase the reading rate, that is,

Ccoh(�|n) = sup
s

sup
ρcoh(s,0,n)

χ [�|ρcoh(s,0,n)]. (12)

We can hence restrict our attention to transmitters of the
form ρcoh(s,0,n) which, according to Eq. (1), are mapped into

ρcoh,u(s,0,n) =
s⊗

k=1

σu(αk), (13)

with

σu(αk) =
∫

dνkGnth (νk)|zuαk + νk〉〈zuαk + νk|, (14)

where Gnth (νk) denotes a Gaussian probability density distri-
bution with zero mean and variance nth. Then, we notice that
it is always possible to find a u-independent unitary matrix
U such that, given the energy constraint, the coherent-state
amplitudes in Eq. (14) transform as follows:

s∑
k=1

Uik(zuαk + νk) = δ1izu

√
n + ν ′

i , (15)

where the random variables ν ′
i’s are independent and identi-

cally distributed according to a Gaussian distribution with zero
mean and variance nth. The unitary transformation U on the
coherent-state amplitudes can be physically implemented by
a network of passive linear-optical elements, as beam splitters
and phase shifter. Due to the unitary invariance of the von
Neumann entropy such a transformation cannot change the
value of the Holevo information, hence the final state of the
transmitter can be assumed, without loss of generality, to be
of the form,

ρcoh,u(s,0,n) = σu(
√

n) ⊗ σ (0)⊗(s−1), (16)

where σ (0) = ∫
dνGnth (ν)|ν〉〈ν| is a u-independent thermal

state. We notice that such a state is the tensor product of a
state of the first probing mode and a u-independent state of
the remaining (s − 1) modes. Once again, the subadditivity
Holevo information implies that the presence of the (s − 1)
probing modes cannot increase the Holevo function. In
conclusion, we have obtained that a single-mode coherent state
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is optimal among coherent state transmitters, that is,

Ccoh(�|n) = χ [�|ρcoh(1,0,n)], (17)

where we can assume without loss of generality ρcoh(1,0,n) =
|√n〉〈√n|.

We now consider the case of generic classical transmitters.
First of all, since coherent states are classical states,

Cc(�|n) � Ccoh(�|n). (18)

On the other hand, any classical state ρc(s,r,n) can be written
as the convex sum of coherent states,

ρc(s,r,n)=
∫

dypy

s⊗
k=1

|αk(y)〉〈αk(y)|
r⊗

k′=1

|βk′(y)〉〈βk′ (y)|,

(19)

with py � 0 and
∫

dypy = 1. Using the convexity of the
Holevo information we get

Cc(�|n) �
∫

dypyCcoh(�|ny), (20)

where ny = ∑s
k=1 |αk(y)|2 with n = ∫

dypyny . It is worth
noticing that Eq. (20) does not suffice to conclude that
Cc(�|n) � Ccoh(�|n). As already discussed in [12], a suf-
ficient condition for having Cc(�|n) � Ccoh(�|n) is that
Ccoh(�|n) is in turn a concave function of n.

In the remainder of this section, we focus on the case of
binary encoding where the marginal cell � ≡ {p0,p1,z0,z1} is
identified by the probability weights p0, p1 = 1 − p0, and by
the complex valued attenuation factors z0, z1. In the noiseless
case, nth = 0, an analytical expression for Ccoh(�|n) has been
computed in [12] for (real) positive values of z0, z1. The latter
is immediately extended to generic values of the attenuation
factors, yielding

Ccoh(�|n) = h2
[

1
2 − 1

2

√
1 − 4p0p1(1 − e−n|�z|2 )

]
, (21)

where �z = z1 − z0 and

hd [q1, . . . ,qd−1] = −
(

1 −
d−1∑
i=1

qi

)
log2

(
1 −

d−1∑
i=1

qi

)

−
d−1∑
i=1

qi log2 qi (22)

is the d-ary Shannon entropy. The expression in (21) is a
concave function of n, hence implying that coherent states are
optimal among classical transmitters in the noiseless case, i.e.,
Cc(�|n) = Ccoh(�|n). For the noisy case, nth > 0, we are not
able to provide an analytical expression, however, Ccoh(�|n)
can be easily computed numerically. The numerical evaluation
of Ccoh(�|n) suggests that it is indeed a concave function of n.
This leads us to conjecture that Cc(�|n) = Ccoh(�|n) even in
the noisy case, i.e., coherent states are optimal among classical
transmitters even for nth > 0.

An approximate analytical expression for Ccoh(�|n) can be
obtained in the limit of faint signals, n � 1, where we can
approximate |√n〉 � √

1 − n|0〉 + √
n|1〉. Assuming nth � 1

(which is realistic in standard setups of optical reading [1]) we

get to the lowest orders in nth,

Ccoh(�|n) � h2[p0p1n|�z|2 + nth] − h2[nth]. (23)

This approximate expression for Ccoh(�|n) is a concave func-
tion of n, hence we conclude that, within this approximation,
Cc(�|n) = Ccoh(�|n). Furthermore, retaining only the leading
terms in n log2 n and nth log2 nth, Eq. (23) yields

Ccoh(�|n) � nth log2 nth − (p0p1n|�z|2 + nth)

× log2 (p0p1n|�z|2 + nth). (24)

Going beyond the set of classical transmitters we consider
the state ρEPR(s,s,n) = (|ξ 〉〈ξ |)⊗s as an exemplary nonclassi-
cal transmitter. In the noiseless limit, nth = 0, an analytical
expression can be easily derived for |z0| = |z1| = 1. In that
case information is encoded in the relative phase eiθ of the
reflected modes, yielding

χ [�|(|ξ 〉〈ξ |)⊗s] = h2
[

1
2 − 1

2

√
1 − 4p0p1(1 − qn,s,θ )

]
, (25)

where

qn,s,θ =
∣∣∣∣1 + n

s
(1 − eiθ )

∣∣∣∣
−2s

. (26)

A comparison with (21) shows that a “quantum advantage”
in the readout rate, i.e., χ [�|(|ξ 〉〈ξ |)⊗s] − Ccoh(�|n) > 0, can
be always attained (by choosing a sufficiently big s) when
θ < π/2, otherwise coherent states are always optimal probes.
The situation changes if one considers generic values of z0,
z1 [1,12] and if background thermal noise is added. Under
these more general conditions one can obtain an approxi-
mate expression in the limit n � 1 by truncating the EPR
state as |ξ 〉 � √

1 − n/s|0〉 + √
n/s|1〉Sk

|1〉Rk
and |ξ 〉⊗s �√

1 − n|0〉 + √
n|ℵ〉 where |ℵ〉 = s−1/2 ∑s

k=1 |1〉Sk
|1〉Rk

. If
also nth � 1, a straightforward calculation leads to the
following expression for the maximum readout rate, at the
lowest orders in nth,

χ [�|(|ξ 〉〈ξ |)⊗s] � h4[p0p1n|�z|2,(1 − 〈|z2|〉)n,nth]

−
1∑

u=0

puh3[(1 − |zu|2)n,nth], (27)

where 〈|z|2〉 = p0|z0|2 + p1|z1|2. By retaining only the lead-
ing terms in n log2 n and nth log2 nth we finally obtain

χ [�|(|ξ 〉〈ξ |)⊗s] � −p0p1n|�z|2 log2 (p0p1n|�z|2). (28)

The expressions (27), (28) have several remarkable prop-
erties. First of all, they are independent of s, that is, within
this approximation the number of EPR states cannot affect the
reading rate, which is only a function of the overall mean pho-
ton number n. That implies χ [�|(|ξ 〉〈ξ |)⊗s] � χ [�||ξ 〉〈ξ |] up
to higher order terms. Notice that, as suggested by the results
of [1] and discussed in [12], this property does not generally
hold true if n �� 1. The second thing to be noticed is that,
contrarily to (24), Eq. (28) is independent of nth, which implies
that the reading rate with the EPR transmitter is insensitive
to thermal-like background noise to the leading order in
n and nth. In particular we have χ [�||ξ 〉〈ξ |]/Ccoh[�|n] �
log2 n/ log2 nth > 1 for n < nth � 1, that is, classical light is
never optimal in this regime. On the other hand, χ [�||ξ 〉〈ξ |] �
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FIG. 1. (Color online) Density plots of the absolute information
gain Ga (left) and of the relative information gain Gr (right)
comparing the EPR transmitter with the coherent state transmitter,
as a function of z0, z1, for positive values of the attenuating factors
(0 � z1 � z0 � 1). The top plots are for n = 0.1, nth = 1; those on
the bottom are for n = 1, nth = 1.

Ccoh[�|n] for 1 � n � nth (implying that the quantum advan-
tage χ [�||ξ 〉〈ξ |] − Ccoh[�|n] is of higher order in this region
of the parameters n and nth). Finally, it is worth remarking
that both Eqs. (24) and (28) are functions of p0p1n|�z|2,
suggesting that the approximate expressions hold true even if
n �� 1 as long as p0p1n|�z|2 � 1.

For higher values of n, nth we resort to numerical calcu-
lations. For the sake of presentation, we put p0 = p1 = 1/2
(this choice of the probability maximizes both the noiseless
coherent-state reading capacity—see Eq. (21)—and the noisy
one due to symmetry reasons). Figure 1 shows numerical
calculations of the absolute information gain in the reading
rate,

Ga = χ [�|ρEPR(1,1,n)] − χ [�|ρcoh(1,0,n)], (29)

and of the relative one,

Gr = Ga/χ [�|ρcoh(1,0,n)], (30)

provided by the EPR transmitter over the classical transmitters,
for real-positive values of z0, z1. These plots can be compared
to the analogous ones in [12] concerning the noiseless limit
nth = 0. It can be noticed that, contrarily to the noiseless
case, in the noisy setting the information gain is positive
almost everywhere. That shows, in accordance with Eqs. (24)
and (28), the robustness of quantum reading with the EPR
transmitter against thermal background noise.

Figure 2 shows the information gain as a function of n and
nth for examples of amplitude encoding (z0 = 0, z1 = 1) and
phase encoding (z0 = 1, z1 = −1). For amplitude encoding
the gain is always positive. For phase encoding the gain is
negative in the noiseless setting, that is, classical transmitters
are optimal for nth = 0. However, the EPR transmitter always
gives better performances for sufficiently high background
thermal noise. It is worth noticing that in both amplitude and
phase encoding the relative information gain allowed by the
EPR transmitter is maximum for n � nth in accordance with
the expressions in (24) and (28).
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FIG. 2. (Color online) Density plot of the information gain Ga

(left) and of the relative information gain Gr (right) as a function
of n and nth for amplitude encoding z0 = 0, z1 = 1 (top) and phase
encoding z0 = 1, z1 = −1 (bottom).

IV. DIFFRACTION-INDUCED INTERBIT INTERFERENCE

In order to retrieve information, the probe and ancillary
modes have to be collected and jointly measured. Any
measurement setup must include suitable optical components
to focus the incoming light on the surface of the detector.
Such an optical system is characterized by its finite numerical
aperture [20] which induces losses and diffraction. Because of
the interference of the beams of light scattered by neighboring
memory cells, the corresponding signals overlap on the
detector surface [13], leading to a kind of correlated error
in the reading process known as interbit interference [21,22].
Our aim is hence to study to what extent this kind of error
limits the efficacy of the readout protocols. In order to pursue
a first quantitative analysis of this kind of noise we evaluate
bounds on the reading capacity in the presence of diffraction.

We model the optical system as a thin converging lens, with
radius R and focal distance f . Under focusing conditions, the
diffraction pattern produced by the optical system is character-
ized by the associated Rayleigh length, xR := λDo/R, where
λ is the wavelength of a monochromatic probing light, and
Do is the distance between the memory cells and the lens.
In this setting, the optical system is characterized by a set of
input “normal modes,” associated with the canonical operators
{Ai,A

†
i }i=−∞,...,∞ which are independently transmitted and

attenuated by the factors {ti}i=−∞,...,∞ (see Appendix). Thus,
the optical system maps the input “normal modes” into a cor-
responding set of output modes {Bi,B

†
i }i=−∞,...,∞ according

to the relations,

Bi = ti Ai +
√

1 − |ti |2 Ei, (31)

where {Ei,E
†
i }i=−∞,...,∞ are vacuum modes.

A monochromatic mode {aj ,a
†
j } probing the j th memory

cell is scattered into a reflected mode, denoted by {a′
j ,a

′
j
†},

with

a′
j = zu(j ) aj +

√
1 − |zu(j )|2 vj + νj . (32)

Moreover, we assume that the memory cells are located along
a straight line of length L on the surface of the optical memory.
The j th memory cell is at positions j�, where � denotes the
spacing between neighboring cells. In general, the scattered
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modes do not form a complete set. However, they can be
completed by defining a suitable set of (possibly infinite)
normal modes {ek,e

†
k} (assumed to be in the vacuum state).

The input normal modes Ai’s can hence be expanded as

Ai =
∑

j

Mij a′
j +

∑
k

Nik ek, (33)

for suitable matrices of coefficients Mij and Nik . It follows
that

Bi = ti
∑

j

Mij a′
j + ti

∑
k

Nik ek +
√

1 − |ti |2 Ei. (34)

In the far-field and near-field regimes it is possible to estimate
the values of the attenuating factors [13]. Here we consider the
near-field regime, in which ti � 1 for |i| < L/xR, and ti � 0
for |i| > L/xR (see Appendix), yielding, for |i| < L/xR,

Bi =
∑

j

Mij a′
j +

∑
k

Nik ek. (35)

Since the matrix M has in general nonzero off-diagonal
terms, the light beams reflected by different memory cells
do overlap at the surface of the detector. To analyze this
phenomenon, we introduce the singular value decomposition,

Mij =
∑

h

V∗
hi τh Uhj (for |i| < L/xR), (36)

where U and V are unitary matrices, and τh � 0 are the
(squared) singular values of M. We can hence introduce the
new sets of canonical modes B̃h := ∑

|i|<L/xR
VhiBi , and ã′

h :=∑
j Uhja

′
j , in terms of which the transformation becomes

diagonal,

B̃h = τh ã′
h +

∑
|i|<L/xR,k

Vhi Nikek. (37)

Finally, we notice that consistency with the canonical com-
mutation relations for the operators {B̃h,B̃

†
h} enforces that∑

|i|<L/xR,k VhiNikek =
√

1 − |τh|2 ẽh, where {ẽh,ẽ
†
h} is a suit-

ably defined set of vacuum modes. Thus, Eq. (37) expresses
the fact that the modes ã′

h are independently attenuated, with
attenuating factors {τh}.

It is worth remarking that the independently attenuated
modes ã′’s do not coincide with the modes a′’s carrying
the information on the state of the individual memory cells.
This is the very effect of diffraction, which mixes the signal
scattered by different memory cells. As a consequence, the
state ρui (s,r) in Eq. (2) has to be replaced with a state of the
form ρ ′

ui (s,r) = (EKs ⊗ I⊗Kr )ρui (s,r), where EKs is the map
describing the attenuation of the signal modes ã′’s, and I⊗Kr

is the identity map on the remaining Kr ancillary modes. For
the sake of presentation, here we assume that diffraction only
involves the signal modes. The case of diffraction on both the
signal and ancillary modes is simply obtained by substituting
the map (EKs ⊗ I⊗Kr ) with (EKs ⊗ EKr ). In both cases, the
tensor-product structure of Eq. (2) is lost. This prevents us
from expressing the reading rate in terms of a “single-letter”
expression, as in Eq. (3).

Nevertheless, upper and lower bounds can be estimated
by exploiting the “data processing inequality” for the Holevo
information, which implies that the extra noise term expressed

by the attenuating channel EKs can only reduce the reading
rates. Such a reduction is in a range determined by the
maximum and minimum values of the attenuating factors {τh},
denoted by τmax and τmin. We hence consider the fictitious
channels Emax and Emin which independently attenuate all the
modes ã′’s by factors τmax and τmin, respectively. As a matter of
fact, due to the linear relation between the modes ã′’s and the
modes a′’s, the latter are also independently attenuated by the
maps Emax and Emin. It follows that the fictitious channels do
preserve the tensor product structure of Eq. (2), hence allowing
us to employ the single-letter formula for the reading rate. We
can hence write the following bounds for the reading rate
R[ρ(s,r)] in the presence of diffraction:

χ [�min|ρ(s,r,n)] � R[ρ(s,r,n)] � χ [�max|ρ(s,r,n)], (38)

where �min = {pu,φmin,u} and �max = {pu,φmax,u} are the
channel ensembles obtained by composition of the ensemble
� = {pu,φu} with the single-mode attenuating channels with
attenuating factors τmin and τmax, respectively. Explicitly, the
channels φmin,u , φmax,u , respectively, transform a probing mode
{a,a†} according to

a → τminzu(j ) a +
√

1 − |τminzu(j )|2 v + τminν, (39)

and

a → τmaxzu(j ) a +
√

1 − |τmaxzu(j )|2 v + τmaxν. (40)

A. Bounds on the reading rates

In this section, we estimate the upper and lower bounds
in (38) on the reading rates in the presence of diffraction
by computing the maximum and minimum of the attenuation
factors τh’s. We model the optical system associated with the
measurement device as a converging thin lens of radius R, and
assume that the memory cells are located along a straight line
on the surface of the optical memory, where each cell has linear
extension d, and neighboring cells are spaced by � for a total
length equal to L. A characterization of the light propagation
inside such an optical system is presented in Appendix (based
on [13]).

We assume that the mode describing the light reflected at
the j th memory cell, on the surface of the optical memory, is
of the form,

a′
j = 1√

d

∫ j�+d/2

j�−d/2
dxA(x), (41)

where x is a linear coordinate at the memory surface, and
the continuous set of operators {A(x),A†(x)} corresponds to
the quantized amplitudes of the electromagnetic field on the
surface. The latter can be in turn expressed in terms of the
discrete set {Ah,A

†
h} of Fourier-transformed modes on the line

[defined in Eq. (A5)]. These are the input “normal modes”
which are independently attenuated by the optical system. We
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hence obtain

a′
j =

∞∑
h=−∞

Ah

∫ j�+d/2

j�−d/2

dx√
dL

exp
[
i2πh

x

L
+ iθo(x)

]

�
∞∑

h=−∞
Ahe

iθo(j�)
∫ j�+d/2

j�−d/2

dx√
dL

exp
(
i2πh

x

L

)

=
√

d

L
eiθo(j�)

∞∑
h=−∞

sin (πhd/L)

πhd/L
exp

(
i2πjh

�

L

)
Ah,

(42)

where i stands for the imaginary unit and θo(x) is a position-
dependent phase factor, which can be assumed to be constant
on the intervals [j� − d/2,j� + d/2] as long as d2 � λDo

(see Appendix). From that we get the expression for the
(adjoint of the) matrix of Eq. (33):

M∗
hj =

√
d

L
eiθo(j�) sin (πhd/L)

πhd/L
exp

(
i2πjh

�

L

)
. (43)

This is a rectangular semi-infinite matrix [with j =
−L/(2�), . . . ,L/(2�)] that we will truncate by restricting it to
the modes Ah’s actually transmitted across the optical systems.
In the near-field regime this corresponds to restrict the range to
h = −L/xR, . . . ,L/xR, where xR := λDo/R is the Rayleigh
number (see Appendix).

The (squared) singular values of the matrix M are the
eigenvalues of the Hermitian matrix MM†, with elements:

(MM†)kj = d

L

∑
h

[
sin (πhd/L)

πhd/L

]2

exp

[
i2π (j − k)n

�

L

]
.

(44)

In the limit L/xR � 1 and �/L � 1, we get

(MM†)kj = d

�

∫ �/xR

−�/xR

dx

[
sin (πxd/�)

πxd/�

]2

ei2π(j−k)x. (45)

The matrix MM† is a Toeplitz matrix, with entries only
depending on the difference j − k. The spectrum of a Toeplitz
matrix is bounded by the maximum and the minimum of the
Fourier transform [23],

f (z) =
∑

q

(MM†)q e−izq , (46)

for z ∈ [0,2π ], where (MM†)q := (MM†)kj for j − k = q.
Notice that the integer q varies in the range q ∈ [−L/�, −
L/�]. In the limit L/� � 1, the summation over q can be
extended up to ±∞, yielding

f (z) �
∞∑

q=−∞

d

�

∫ �
xR

−�
xR

dx

[
sin (πxd/�)

πxd/�

]2

ei(2πx−z)q

= d

�

∫ �
xR

−�
xR

dx

[
sin (πxd/�)

πxd/�

]2 ∞∑
m=−∞

δ

(
x + m − z

2π

)

=
y/(2π)+�/xR∑

m=y/(2π)−�/xR

d

�

[
sin [π (y/(2π ) − m)d/�]

π [y/(2π ) − m]d/�

]2

. (47)
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FIG. 3. (Color online) The plot shows as a function of the ratio
�/xR: (a) the attenuating factors τmin and τmax; (b), (c), (d) the lower
and upper bounds on the reading rates for p0 = p1 = 1/2 with
the EPR transmitter (solid lines) and the coherent-state transmitter
(dashed lines). In (b) z0 = 0, z = 1, n = 1, nth = 1; in (c) z0 = 0,
z1 = 1, n = 0.1, nth = 1; in (d) z0 = 1, z1 = −1, n = 0.1, nth = 1.

From the extrema of this function one can finally com-
pute the attenuating factors τmin, τmax, and the bounds
χ [�min|ρ(s,r,n)], χ [�max|ρ(s,r,n)].

In particular, we consider the binary marginal cell � ≡
{p0,p1,z0,z1} with p0 = p1 = 1/2 and real attenuation factors
and compute the bounds on the classical reading rate by putting
ρcoh(1,0) = |√n〉〈√n| to be a single-mode coherent state of
amplitude

√
n. As an example of a nonclassical transmitter,

we also compute the bounds on the reading rate by probing
with a single EPR state, ρEPR(1,1) = |ξ 〉〈ξ |. In the region
with n,nth � 1, these bounds can be computed according
to Eqs. (23) and (27). Outside of this region, we can still
compute exactly the bounds on the classical reading capacity
for nth = 0 [12]; otherwise we have to rely on numerical
calculations. Figure 3 shows the bounds, for d/� = 1, as
a function of the dimensionless parameter �/xR. The limit
�/xR � 1 corresponds to the diffraction-free setting analyzed
in Sec. III in which (MM†)kj � δkj . On the other hand, in the
region �/xR � 1 the effects of diffraction become sensible.
The choice d/� = 1 is optimal as it maximizes the value of
τmax, yielding τmax = 1. Notice that in the high-diffraction re-
gion �/xR < 1/2, the lower bound χ [�min|ρ(s,r,n)] becomes
trivial, since τmin = 0. The separation between the lower bound
for the EPR state probing and the upper bound for the classical
reading capacity shows that the information gain in the reading
capacity persists in the presence of interbit interference caused
by light diffraction.

V. CONCLUSIONS

Quantum reading exploits quantum features of light to boost
the statistical discrimination of bosonic channels, which is the
essential mechanism in the readout of digital optical memories.
The advantages of quantum light over the classical one can be
remarkable in the region of low power per pulse, a feature
that may lead to technological applications for a high-density
data storage device and fast memory readout. Moreover, it
may allow noninvasive and reliable utilization of data storage
devices based on photodegradable materials.
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We have analyzed the quantum reading capacity in the
presence of thermal background noise and correlated noise
arising from diffraction of the probing light. We have shown
that probing the memory with EPR states allows a reading
rate which is, contrarily to classical states of light, mostly
insensitive to thermal noise in the regime of low power per
pulse. This feature mirrors the quantum advantage allowed by
quantum illumination for the problem of target detection [24]
and conveys the physical mechanism at the root of a class
of two-way cryptographic protocols [26,27] (see Ref. [25]
for general protocols of two-way quantum cryptography with
continuous-variable systems).

Potential applications for high-density data storage tech-
nologies motivated us to study quantum reading under the
effects of diffraction, which induces correlated noise in
the reading process (interbit interference). By modeling the
diffraction as caused by a linear optical system characterized
by its Rayleigh number, we have shown that the advantage of
quantum probing over the classical one persists in the presence
of this kind of correlated noise.

The problem remains open of designing optimal codes and
collective measurements (allowing one to achieve the optimal
rates expressed by the Holevo information) which can be
experimentally implemented with current technologies. This
is in particular true in the presence of intersymbol interference
caused by diffraction, in which case one has to face a strategy
to counteract cross talks among different modes. Remarkably,
an explicit capacity-achieving receiver for quantum reading
has been put forward in the noiseless limit for the case
in which binary information is encoded in phase, that is,
|zu| = 1 [28].
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APPENDIX: MODELING DIFFRACTION

Here we model the effects of diffraction by assuming that
the probing light is collected and focused on the detector
through a converging linear optical system. The latter is
modeled as a thin lens of focal length f , which is at
distances Do, Di from the object plane (the memory surface)
and the image plane (the surface of the detector), respec-
tively. The focusing condition is expressed by the lens law,
1/Do + 1/Di = 1/f .

We assume that memory cells are disposed along a
straight line on the surface of the optical memory. Let us
consider the amplitude of the classical (scalar) electromag-
netic field at wavelength λ, A(xo), where xo is a Cartesian
coordinate on the line at the memory surface, and the
amplitude B(xi), with xi a coordinate on the corresponding
line on the detector surface. For monochromatic light, the

amplitude on the object and image plane are related by the
relations [20]:

B(xi) =
∫

dxo T (xi,xo) A(xo), (A1)

where the point-spread function is

T (xi,xo) = eiθ

∫
dxP (x)

λ
√

DoDi

exp

[
−i2π

(xi/M − xo)x

λDo

]
,

(A2)

M = Di/Do is the magnification factor, and θ =
θ (xi,xo) = θo(xo) + θi(xi) with θo(xo) = π |xo|2/(λDo) +
2πDo/λ, θi(xi) = π |xi |2/(λDi) + 2πDi/λ. The function
P (x) is the characteristic function of the entrance pupil of
the optical system. We consider a slit-shaped entrance pupil,
characterized by

P (x) =
{

1 for |x| < R ,

0 for |x| > R ,
(A3)

which yields the following expression for the point-spread
function:

T (xi,xo) = eiθ(xi ,xo)R

λ
√

DoDi

sin [2π (xi/M − xo)/xR]

π (xi/M − xo)/xR
, (A4)

where xR := λDo/R is the Rayleigh length.
For describing the propagation of light through the optical

system, we consider a line element of length L at the memory
surface and its image of length ML on the detector, and
introduce the Fourier-transformed field amplitudes:

Ak :=
∫ L

2

−L
2

dxo√
L

exp

[
−i2π

kxo

L
− iθo(xo)

]
A(xo), (A5)

Bk :=
∫ ML

2

−ML
2

dxi√
ML

exp

[
−i2π

kxi

ML
− iθi(xi)

]
B(xi), (A6)

where θo(xo), θi(xi) are phase factors introduced to compensate
θ (xi,xo) in Eq. (A2). They satisfy the relation,

Bk =
∑

h

Tkh Ah , (A7)

where the transfer matrix has entries,

Tkh = 1

λ
√

DoDi

∫
dxP (x)�kh(x), (A8)

with

�kh(x) = 1√
ML

∫ L/2

−L/2
dxo exp

[
i2π

(
h

L
+ x

λDo

)
xo

]

×
∫ ML/2

−ML/2
dxi exp

[
−i2π

(
k

L
+ x

λDi

)
xi

]
.

(A9)

The expression for the transfer matrix simplifies in the near-
field limit and far-field limits [13]. In particular, in the near-
field limit, L/xR � 1 we have

�kh(x) � λ
√

DoDi δkh δ

(
x + λDoh

L

)
, (A10)
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yielding

Tkh = th δkh, (A11)

with

th =
{

1 for |h| < L/xR,

0 for |h| > L/xR.
(A12)

Upon quantization, the field amplitudes on the memory
and the detector surface are promoted to the canonical
operators {Ah,A

†
h} and {Bh,B

†
h}. The form of Eq. (A11)

hence implies that the modes {Ah,A
†
h} are independently

attenuated with attenuation factors {th}, from which Eq. (31) is
deduced.
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