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Quantum reading under a local energy constraint
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Nonclassical states of light play a central role in many quantum information protocols. Very recently, their
quantum features have been exploited to improve the readout of information from digital memories, modeled as
arrays of microscopic beam splitters [Pirandola, Phys. Rev. Lett. 106, 090504 (2011)]. In this model of “quantum
reading,” a nonclassical source of light with Einstein-Podolski-Rosen correlations has been proven to retrieve
more information than any classical source. In particular, the quantum-classical comparison has been performed
under a global energy constraint, i.e., by fixing the mean total number of photons irradiated over each memory
cell. In this paper we provide an alternative analysis which is based on a local energy constraint, meaning that
we fix the mean number of photons per signal mode irradiated over the memory cell. Under this assumption,
we investigate the critical number of signal modes after which a nonclassical source of light is able to beat any
classical source irradiating the same number of signals.
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I. INTRODUCTION

Quantum information has disclosed a modern approach
to both quantum mechanics and information theory [1].
Very recently, this field has been further developed into the
so-called “continuous-variable” domain, where information
is encoded and processed by using quantum systems with
infinite-dimensional Hilbert spaces [2–5] (see also the recent
review [6]). The most important examples of these systems
are the bosonic modes of the electromagnetic field, today
manipulated with very high precision in quantum optics
labs. Thus, within the continuous-variable framework, a wide
range of results have been successfully achieved, including
protocols of quantum teleportation [7–12], teleportation net-
works [13–17], entanglement swapping [18–20], quantum
cryptography [21–30], quantum computation [31–39], and
cluster quantum computation [40–45].

One of the key resources in quantum information is
quantum entanglement. In the bosonic setting, quantum
entanglement is usually present under the form of Einstein-
Podolski-Rosen (EPR) correlations [46], where the quadrature
operators of two separate bosonic modes are so correlated to
beat the standard quantum limit [47]. The simplest source of
EPR correlations is the two-mode squeezed vacuum (TMSV)
state. In the number-ket representation, this state is defined by

|ξ 〉 = (cosh ξ )−1
∞∑

n=0

(tanh ξ )n|n〉s |n〉i , (1)

where ξ is the squeezing parameter and {s,i} is an arbitrary
pair of bosonic modes, that we may call “signal” and “idler.”In
particular, ξ quantifies the signal-idler entanglement and
determines the mean number of photons sinh2ξ in each mode.
Since it is entangled, the TMSV state cannot be prepared
by applying local operations and classical communications
(LOCCs) to a couple of vacua |0〉s ⊗ |0〉i or to any other kind of
tensor product state. For this reason, the TMSV state cannot be
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expressed as a classical mixture of coherent states |α〉s ⊗ |β〉i
with α and β arbitrary complex amplitudes. In other words, its
P representation [48,49],

|ξ 〉〈ξ | =
∫ ∫

d2αd2βP(α,β)|α〉s〈α| ⊗ |β〉i〈β|, (2)

involves a function P which is nonpositive and, therefore,
cannot be considered as a genuine probability distribution.
For this reason, the TMSV state is a particular kind of
“nonclassical” state. Other kinds are single-mode squeezed
states and Fock states. By contrast, a bosonic state is called
“classical” when its P representation is positive, meaning that
the state can be written as a classical mixture of coherent
states. Thus a classical source of light is composed by a set of
m bosonic modes in a state

ρ =
∫

d2α1 · · ·
∫

d2αmP(α1, . . . ,αm) ⊗m
k=1 |αk〉〈αk|, (3)

where P is positive and normalized to 1. Typically, classical
sources are made by just a collection of coherent states
with amplitudes {ᾱ1, . . . ,ᾱm}, i.e., ρ = ⊗m

k=1|ᾱk〉〈ᾱk|, which
corresponds to having

P =
m∏

k=1

δ2(αk − ᾱk). (4)

In other situations, where the sources are particularly chaotic,
they are better described by a collection of thermal states with
mean photon numbers {n̄1, . . . ,n̄m}, so that

P =
m∏

k=1

exp(−|αk|2n̄k)

πn̄k

. (5)

More generally, we can have classical states which are not just
tensor products but they have (classical) correlations among
different bosonic modes.

The comparison between classical and nonclassical states
has clearly triggered a lot of interest. The main idea is to
compare the use of a candidate nonclassical state, like the EPR
state, with all the classical states for specific information tasks.
One of these tasks is the detection of low-reflectivity objects
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in far target regions under the condition of extremely low
signal-to-noise ratios. This scenario has been called “quantum
illumination” and has been investigated in a series of papers
[50–55].

More recently, EPR correlations have been exploited for
a completely different task in a completely different regime
of parameters. In the model of “quantum reading” [56], EPR
correlations have been used to retrieve information from digital
memories which are reminiscent of today’s optical disks, such
as CDs and DVDs. A digital memory can in fact be modeled
as a sequence of cells corresponding to beam splitters with
two possible reflectivities, r0 and r1 (used to encode a bit
of information). By fixing the mean total number of photons
N irradiated over each memory cell, it is possible to show
that a nonclassical source of light with EPR correlations
retrieves more information than any classical source [56]. In
general, the improvement is found in the regime of few photons
(N = 1–100) and for memories with high reflectivities, as
typical for optical memories. In this regime, the gain of
information given by quantum reading can be dramatic, i.e.,
close to 1 bit for each bit of the memory. Further studies on
quantum reading of memories have been pursued by several
authors [57–63]. In particular, Ref. [57] shows that other
nonclassical states, such as Fock states, can have remarkable
advantages over classical sources. Reference [58] presents
an alternative model of quantum reading based on a binary
phase encoding. Reference [59] further studies the problem
of binary discrimination in optical devices. Reference [60]
both proposes and experimentally implements a model of
unambiguous quantum reading. Reference [61] defines the
notion of quantum reading capacity, a quantity which has been
also investigated in Ref. [62]. Finally, Ref. [63] has proposed
explicit capacity-achieving receivers for quantum reading.

It is fundamental to remark that an important point in the
study of Ref. [56] is that the quantum-classical comparison is
performed under a global energy constraint, i.e., by fixing the
total average number of photons N which are irradiated over
each memory cell [see Fig. 1(a)]. Under this assumption, it is
possible to construct an EPR transmitter, made by a suitable
number of TMSV states, which is able to outperform any
classical source composed by any number of modes.

In this paper we consider a different kind of comparison: we
fix the number of signal modes irradiated over the target cell
(M) and the mean number of photons per signal mode (NS).
Under these assumptions, we compare an EPR transmitter with
a classical source. Then, for fixed NS , we determine the critical
number of signal modes M (NS ) after which an EPR transmitter
with M > M (NS ) is able to beat any classical source (with
the same number of signals M). Since we are here fixing
the average number of photons per signal mode, our energy
constraint is now local: it restricts the energy of each signal
mode but not the energy of the total set of signal modes. We call
this alternative model “locally constrained quantum reading”
[see Fig. 1(b)].

The difference between global and local energy constraints
is also discussed in Ref. [6] for the general problem of Gaussian
channel discrimination. Mathematically speaking, both these
energy constraints make the problem of channel discrimination
nontrivial in the continuous-variable setting, where the use of
infinite energy always allows one to distinguish two Gaussian

FIG. 1. Inset (a): Quantum reading of Ref. [56] is formulated
under a global energy constraint. This means that we fix the total
average number of photons N irradiated over the memory cell. Thus,
if the number of input signals is M , each one has an average of N/M

photons, which goes to zero for M → ∞. Inset (b): In this paper,
we consider an alternative model of quantum reading under a local
energy constraint (locally constrained quantum reading). In this case,
we fix the average number of photons NS for each input signal. Since
the total number of signals M can be arbitrary, we have that the total
energy irradiated over the cell MNS is generally unbounded.

channels in a perfect way. In the presence of a global energy
constraint, the error probability in the Gaussian channel
discrimination is generally different from zero and the problem
is to find the minimum value. In the presence of a local
energy constraint, the error probability goes to zero with the
number M of signals and the general problem is to study its
convergence, i.e., finding the best error exponent [6]. From
this point of view, the present paper shows that the best
convergence of the error probability has to be found within
the set of nonclassical states.

From a practical point of view, the use of a local energy
constraint is useful in all those situations where the energy
of each radiation mode has to be taken under control. For
instance, consider a photosensitive organic memory where
data is encoded in error-correcting blocks. For simplicity, we
may think of blocks of M cells where information is encoded
by means of an M-bit repetition code (the generalization to
more complex codes such as the Reed-Solomon codes is only
a technical issue [64]). In this scenario, the stored information
can be safely retrieved from the block if we irradiate a single
mode per cell with suitable low energy (for instance, a single
temporal mode, i.e., a pulse, with a mean energy NS which is
below the critical energy associated with the photodegradation
of the material). By contrast, optimizing the readout under
a global energy constraint may be unsafe in this specific
situation, since the optimal readout of the block could be
achieved by concentrating all the available energy into a single
mode. Thus, if we use a total of N = MNS mean photons, we
could have all these photons irradiated over a single cell of the
block, with inevitable damage for the memory.

The remainder of the paper is structured as follows. In
Sec. II we review the basic readout mechanism of quantum
reading specifying the analysis to the case of a local energy
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constraint. Then, in Sec. III we explicitly show how EPR
correlations can be used to beat any classical source of light in
the readout of information. Finally, Sec. IV is for conclusions.
Note that we also provide two appendices. In Appendix A
we discuss the general mathematical methods used in our
derivations, and Appendix B contains some technical proofs.

II. READOUT MECHANISM

Here we briefly review the basic readout mechanism of
Ref. [56], specifying the study to the case of a local energy
constraint. Consider a model of a digital optical memory (or
disk) where the memory cells are beam-splitter mirrors with
different reflectivities r = r0,r1 (with r1 � r0). In particular,
the bit value u = 0 is encoded in a lower-reflectivity mirror
(r = r0), that we may call a pit, while the bit value u = 1 is
encoded in a higher-reflectivity mirror (r = r1), that we may
call a land (see Fig. 2). Close to the disk, a reader aims to
retrieve the value of the bit u which is stored in each memory
cell. For this purpose, the reader exploits a transmitter (to probe
a target cell) and a receiver (to measure the corresponding
output). In general, the transmitter consists of two quantum
systems, called signal S and idler I , respectively. The signal
system S is a set of M bosonic modes which are directly shined
on the target cell. The mean total number of photons of this
system is simply given by N = MNS , where NS is the mean
number of photons per signal mode (simply called “energy,”
hereafter). At the output of the cell, the reflected system R is
combined with the idler system I , which is a supplementary
set of bosonic modes whose number L can be completely
arbitrary. Both the systems R and I are finally measured by
the receiver (see Fig. 2).

I

Memory

S R

ρρρρ

B

Receiver

Reader

0 1 1 0 01 1

Transmitter

Thermal
Bath

r0 r1( ),

FIG. 2. Model of memory. Digital information is stored in a
disk whose memory cells are beam-splitter mirrors with different
reflectivities: r = r0 encoding bit value u = 0, and r = r1 encoding
bit value u = 1. Readout. A reader is generally composed of a
transmitter and a receiver. It retrieves a stored bit by probing a
memory cell with a signal system S (composed of M bosonic modes)
and detecting the reflected system R together with an idler system
I (composed of L bosonic modes). In general, the output system R

combines the signal system S with a bath system B (M bosonic
modes in thermal states). The transmitter is in a state ρ which
can be classical (a classical transmitter) or nonclassical (a quantum
transmitter). In particular, we consider a quantum transmitter with
EPR correlations between the signal and idler systems. In this paper,
the quantum-classical comparison is performed under a local energy
constraint, i.e., by fixing the average number of photons NS per signal
mode. (The signal system S has a total average number of photons
N = MNS , which is generally unbounded.)

We assume that Alice’s apparatus is very close to the disk,
so that no significant source of noise is present in the gap
between the disk and the decoder. However, we assume that
non-negligible noise comes from the thermal bath present at
the other side of the disk. This bath generally describes stray
photons, transmitted by previous cells and bouncing back to hit
the next ones. For this reason, the reflected system R combines
the signal system S with a bath system B of M modes.
These environmental modes are assumed in a tensor product of
thermal states, each one with NB mean photons (white thermal
noise). Thus, in this model we identify five basic parameters:
the reflectivities of the memory {r0,r1}, the temperature of the
bath NB , and the profile of the signal {M,NS}, which is given
by the number of signals M and the energy NS .

In general, for a fixed input state ρ at the transmitter
(systems S,I ), Alice will get two possible output states σ0

and σ1 at the receiver (systems R,I ). These output states are
the effect of two different quantum channels, E0 and E1, which
depend on the bit u = 0,1 stored in the target cell. In particular,
we have

σu = (Eu ⊗ I)(ρ), (6)

where the conditional channel Eu acts on the signal system,
while the identity channel I acts on the idler system. More
precisely, we have Eu = R⊗M

u , where Ru is a one-mode
lossy channel with conditional loss ru and fixed thermal
noise NB . Now, the minimum error probability Perr affecting
the decoding of u is just the error probability affecting the
statistical discrimination of the two output states, σ0 and σ1,
via an optimal receiver. This quantity is equal to

Perr = [1 − D(σ0,σ1)]/2, (7)

where D(σ0,σ1) is the trace distance between σ0 and σ1

[65–67]. Clearly, the value of Perr determines the average
amount of information which is decoded for each bit stored in
the memory. This quantity is equal to

J = 1 − H (Perr), (8)

where

H (x) := −x log2 x − (1 − x) log2(1 − x) (9)

is the usual formula for the binary Shannon entropy. In the
following, we compare the performance of decoding in two
paradigmatic situations, one where the transmitter is described
by a nonclassical state (a quantum transmitter) and one where
the transmitter is in a classical state (a classical transmitter).
In particular, we show how a quantum transmitter with
EPR correlations (an EPR transmitter) is able to outperform
classical transmitters. The quantum-classical comparison is
performed for a fixed signal profile {M,NS}. Then, for various
fixed values of the energy NS (local energy constraint), we
study the critical number of signal modes M (NS ) after which
an EPR transmitter (with M > M (NS ) signals) is able to beat
any classical transmitter (with the same number of signals M).

III. QUANTUM-CLASSICAL COMPARISON

First let us consider a classical transmitter. A classical
transmitter with M signals and L idlers is described by a
classical state ρ as specified by Eq. (3) with m = M + L. In
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other words, it is a probabilistic mixture of multimode coherent
states ⊗M+L

k=1 |αk〉〈αk|. Given this transmitter, we consider the
corresponding error probability P class

err which affects the readout
of the memory. Remarkably, this error probability is lower
bounded by a quantity which depends on the signal profile
{M,NS}, but not from the number L of the idlers and the
explicit expression of the P function. In fact, we have [56]

P class
err � C(M,NS) := 1 −

√
1 − F (NS)M

2
, (10)

where F (NS) is the fidelity between R0(|N1/2
S 〉〈N1/2

S |) and
R1(|N1/2

S 〉〈N1/2
S |), the two possible outputs of the single-mode

coherent state |N1/2
S 〉〈N1/2

S | (see Appendix A for more details).
As a consequence, all the classical transmitters with signal
profile {M,NS} retrieve information which is upper bounded
by

Jclass := 1 − H [C(M,NS)]. (11)

Now, let us construct a transmitter having the same signal
profile {M,NS} but possessing EPR correlations between
signals and idlers. This is realized by taking M identical copies
of a TMSV state, i.e., ρ = |ξ 〉〈ξ |⊗M , where NS = sinh2ξ .
Given this transmitter, we consider the corresponding error
probability P

quant
err affecting the readout of the memory. This

quantity is upper bounded by the quantum Chernoff bound
[68–72]

P quant
err � Q(M,NS) := 1

2 [Q(NS)]M, (12)

where

Q(NS) := inf
s∈(0,1)

Tr
(
θs

0θ1−s
1

)
(13)

and

θu := (Ru ⊗ I)(|ξ 〉〈ξ |). (14)

Since θ0 and θ1 are Gaussian states, we can write out their
symplectic decompositions [73] and compute the quantum
Chernoff bound using the formula for multimode Gaussian
states given in Ref. [72] (see Appendix A for more details).
Then, we can easily compute a lower bound,

Jquant := 1 − H [Q(M,NS)], (15)

for the information which is decoded via this quantum
transmitter.

In order to show an improvement with respect to the
classical case, it is sufficient to prove the positivity of the
“information gain:”

G := Jquant − Jclass. (16)

This quantity is in fact a lower bound for the average
information, which is gained by using the EPR quantum
transmitter over any classical transmitter. Roughly speaking,
the value of G estimates the minimum information which is
gained by the quantum readout for each bit of the memory.
In general, G is a function of all the basic parameters of
the model, i.e., G = G(M,NS,r0,r1,NB). Numerically, we can
easily find signal profiles {M,NS}, classical memories {r0,r1},
and thermal baths NB , for which we have the quantum effect
G > 0. Some of these values are reported in Table I.

TABLE I. Information gain G for various choices of the basic
parameters.

M NS r0 r1 NB G(bits)

1 3.5 0.5 0.95 0.01 6.2 × 10−3

10 1 0.2 0.8 0.01 3.4 × 10−2

30 1 0.38 0.85 1 1.2 × 10−3

100 0.1 0.25 0.85 0.01 5.9 × 10−2

200 0.1 0.6 0.95 0.01 0.22
2 × 105 0.01 0.995 1 0 0.99

Note that we can find choices of parameters where G � 1,
i.e., the classical readout of the memory does not decode any
information whereas the quantum readout is able to retrieve
all of it. As shown in the last row of the table, this situation can
occur when both the reflectivities of the memory are very close
to 1. From the first row of the table, we can observe another
remarkable fact: for a land reflectivity r1 sufficiently close to 1,
one signal with a few photons can give a positive gain. In other
words, the use of a single, but sufficiently entangled, TMSV
state |ξ 〉〈ξ | can outperform any classical transmitter, which
uses one signal mode with the same energy (and potentially
infinite idler modes).

Here an important point to remark is that, once that we find a
positive gain G > 0, this positivity is preserved if we increase
the number of signals M . In other words, if G is positive for
some M̃ , then it is positive for every M � M̃ (keeping the other
parameters fixed). This is trivial to prove. In fact, G(M̃) > 0
is equivalent to Q(M̃,NS) < C(M̃,NS), which is equivalent to

1

2
QM̃ <

1 −
√

1 − FM̃

2
, (17)

according to Eqs. (10) and (12). This means that

Q < (1 −
√

1 − FM̃ )1/M̃ . (18)

For every M � M̃ , we then have

QM < (1 − √
1 − x)m, (19)

where m := M/M̃ and x := FM̃ . Now we can use the
algebraic inequality

(1 − √
1 − x)m � 1 − √

1 − xm, (20)

which holds for every m � 1 and x ∈ [0,1]. We then get

QM < 1 −
√

1 − FM, (21)

which is equivalent to

Q(M,NS) < C(M,NS) (22)

for every M � M̃ .
Thanks to this property, for given reflectivities {r0,r1}

and bath temperature NB , i.e., for a fixed memory, if a
quantum transmitter with signal profile {M̃,NS} outperforms
the classical transmitters, then any other quantum transmitter
with the same energy NS and M � M̃ is also able to beat the
classical readout.

It is also important to note that the advantage of quantum
transmitters over classical transmitters is asymptotically negli-
gible in the limit of a large number of signals. Mathematically
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FIG. 3. Contour plots of the information gain G∗ as a function of the signal energy NS and the number of signal modes M (in logarithmic
scale). Reflectivities are r0 = 0.6 and r1 = 0.95. Thermal noise is NB = 10−3 (left plot) and NB = 10−2 (right plot). In the bottom black area,
we have G∗ = 0. The maximum values of G∗ are taken in the intermediate white area where G∗ � 0.3 bits. For a large number of modes M ,
we have G∗ → 0.

speaking, the information gain G = G(M,NS,r0,r1,NB) al-
ways goes to zero for M → +∞. This is clearly a consequence
of the specific constraint that we consider in this work, for
which the limit of M → +∞ corresponds to the limit of
infinite energy, a regime where any transmitter is able to
retrieve information with negligible error probability. In fact,
given a memory with two reflectivities r0 �= r1 and finite
temperature NB , an arbitrary transmitter in any tensor product
state ρ = ω⊗M has error probability

Perr � QM

2
, (23)

where the quantum Chernoff bound Q is evaluated over the
single-copy output states. Now, for nonzero signal energy
NS > 0, we have Q < 1, so that Perr → 0 for M → +∞. The
situation is clearly different from Ref. [56], where the global
energy constraint is adopted, i.e., the mean total number of
photons N is fixed. In that case, the broadband limit M → +∞
implies a vanishing energy per signal mode NS = NM−1. As
a result, we have Q → 1 and the upper bound no longer
guarantees that Perr tends to zero. As a matter of fact, in
Ref. [56], the broadband limit is absolutely nontrivial and gives
the optimal gain for the most important class of memories.

Contrary to what happens in Ref. [56], in the present
model of locally constrained quantum reading we have that
the maximum advantage, i.e., the optimal gain G, occurs for
intermediate values of the signal mode number M . Given
a memory with parameters {r0,r1,NB}, there is an optimal
range of numbers M depending on the signal energy of
the transmitter NS . In order to numerically investigate this
behavior, we consider an estimate for the information gain
G∗ � G which is provided by using the quantum Battacharyya
bound in the place of the quantum Chernoff bound [72]. In
other words, we consider

G∗ := J ∗
quant − Jclass, (24)

where

J ∗
quant := 1 − H [B(M,NS)] (25)

and

B(M,NS) := 1
2

[
Tr

(
θ

1/2
0 θ

1/2
1

)]M
(26)

is the quantum Battacharyya bound computed over the two
equiprobable output states θ0 and θ1.

Given a memory specified by a set of parameters
{r0,r1,NB}, we can study the information gain G∗ as a function
of the signal profile {M,NS}. This is done in Figs. 3–5. As we
can see from Fig. 3, the information gain G∗ is zero for low
values of M (black area in the figure). It takes its maximum
for M belonging to an intermediate range of values (this range
corresponds to the white area in the figure). Then, for higher
values of M , the value of G∗ gradually decreases to zero.
For a memory with reflectivities r0 = 0.6 and r1 = 0.95 and
affected by a thermal noise NB = 10−3 − 10−2, we can reach
an optimal gain G∗ � 0.3 by using around M = 10 modes with
NS = 2. At lower energies, we achieve the same performance
by using more signal modes.

In Fig. 4 we consider a memory of better quality, i.e.,
with higher reflectivities (equal to r0 = 0.95 and r1 = 0.98,
respectively). As we can see from the figure, the information
gain can reach optimal values above 0.7 bits if we consider
around M = 103 signals.

Finally, in Fig. 5 we consider even better memories, with
high reflectivities and low thermal noise. As we can see from
the figure, gains above 0.8 bits can be reached by using M =
102 − 103 signal modes.

A. Ideal memories

According to our numerical investigation, the quantum
readout is generally more powerful when the land reflectivity
is sufficiently high (i.e., r1 � 0.8). For this reason, it is very
important to analyze the scenario in the limit of ideal land
reflectivity (r1 = 1). Using the terminology of Ref. [56], we
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FIG. 4. Contour plots of the information gain G∗ as a function of the signal energy NS and the number of signal modes M (in logarithmic
scale). Reflectivities are r0 = 0.95 and r1 = 0.98. Thermal noise is NB = 10−3 (left plot) and NB = 10−2 (right plot). In the bottom black area,
we have G∗ = 0. The maximum values of G∗ are taken in the intermediate white area where G∗ � 0.7 bits. For a large number of modes M ,
we have G∗ → 0.

call an “ideal memory” a classical memory with r1 = 1.
Clearly, this memory is completely characterized by the value
of its pit reflectivity r0. For ideal memories, the quantum
Chernoff bound of Eq. (12) takes an analytical form given
by the “Chernoff term,”

Q(NS) = 1

[1 + (1 − √
r0)NS]2 + NB(2NS + 1)(1 − r0)

,

(27)

and the classical bound of Eq. (10) can be computed using

F (NS) = γ −1 exp[−γ −1(1 − √
r0)2NS], (28)

where γ := 1 + (1 − r0)NB (see Appendix A for more de-
tails). Using these formulas, we can study the behavior of the
gain G in terms of the remaining parameters {M,NS,r0,NB}.

Let us consider an ideal memory with generic r0 ∈ [0,1) in
a generic thermal bath NB � 0. For a fixed energy NS , we
consider the minimum number of signals M (NS ) above which
G > 0. To be precise, the critical number M (NS ) that we
consider is a solution of the equation G = 0. From this real
value we derive the minimum number of signals (which is an
integer) by taking its ceiling function �M (NS ). The critical
number M (NS ) can be defined independently from the thermal
noise NB by performing a numerical maximization over NB .
Then, for a given value of the energy NS , the critical number
M (NS ) becomes a function of r0 alone, i.e., M (NS ) = M (NS )(r0).
Its behavior is shown in Fig. 6 for different values of the energy.

It is remarkable that for low-energy signals (NS = 0.01 − 1
photons), the critical number M (NS )(r0) is finite for every
r0 ∈ [0,1). This means that for ideal memories and low-energy

NS NS

lo
g

  M 10

lo
g

  M 10

FIG. 5. Contour plots of the information gain G∗ as a function of the signal energy NS and the number of signal modes M (in logarithmic
scale). Thermal noise is equal to NB = 10−5. In the left plot, reflectivities are r0 = 0.95 and r1 = 0.98. In the right plot, reflectivities are
r0 = 0.95 and r1 = 0.999. In the bottom black area, we have G∗ = 0. The maximum values of G∗ are taken in the intermediate white area
where G∗ � 0.7 (left) and G∗ � 0.8 (right). For large number of modes M , we have G∗ → 0.
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N  = 0.1S

N  = 0.5S

FIG. 6. Number of signals M (logarithmic scale) versus pit
reflectivity r0. The curves refer to NS = 0.01, 0.1, and 0.5 photons.
For each value of the energy NS , we plot the critical number M (NS )(r0)
as a function of r0. All the curves have an asymptote at r0 = 1. For
NS � 2.5 photons (curves not shown), we have another asymptote at
r0 = 0.

signals, there always exists a finite number of signals M (NS )

above which the quantum readout of the memory is more
efficient than its classical readout. In other words, there
is an EPR transmitter with M > M (NS ) able to beat any
classical transmitter with the same number of signals M .
In the low-energy regime considered, M (NS )(r0) is relatively
small for almost all the values of r0, except for r0 → 1 where
M (NS )(r0) → ∞. In fact, for r0 � 1, we derive

M (NS )(r0) � [4NS(2NS + 1)(1 − r0)]−1, (29)

which diverges at r0 = 1. Such a divergence is expected, since
we must have P

quant
err = P class

err = 1/2 for r0 = r1 (see Appendix
B for details). Apart from the divergence at r0 = 1, in all the
other points r0 ∈ [0,1), the critical number M (NS )(r0) decreases
for increasing energy NS (see Fig. 6). In particular, for an NS =
1 photon, we have M (NS )(r0) � 1 for most of the reflectivities
r0. In other words, for energies around one photon, a single
TMSV state is sufficient to provide a positive gain for most of
the ideal memories. However, the decreasing trend of M (NS )(r0)
does not continue for higher energies (NS � 1). In fact, just
after NS = 1, M (NS )(r0) starts to increase around r0 = 0. In
particular, for NS � 1, we can derive

M (NS )(0) � (ln 2)[2 ln(1 + NS) − NS]−1, (30)

which is increasing in NS and becomes infinite at NS � 2.5.
As a consequence, for NS � 2.5 photons, we have a second
asymptote appearing at r0 = 0 (see Appendix B for more
details). This means that the use of high-energy signals
(NS � 2.5) does not assure positive gains for memories with
extremal reflectivities r0 = 0 and r1 = 1.

IV. CONCLUSION

In conclusion, we have considered the basic model of
digital memory studied in Ref. [56], which is composed of
beam-splitter mirrors with different reflectivities. Adopting
this model, we have compared an EPR transmitter with
classical sources for fixed signal profiles, finding positive

information gains for memories with high land reflectivities
(r1 � 0.8). Analytical results can be derived in the limit of
ideal land reflectivity (r1 = 1), which defines the regime of
ideal memories. In this case, by fixing the mean number of
photons per signal mode (local energy constraint), we have
computed the critical number of signals above which an EPR
transmitter gives positive information gains, therefore beating
any classical transmitter. For low-energy signals (0.01–1
photons) this critical number is finite and relatively small for
every ideal memory. In particular, an EPR transmitter with one
TMSV state can be sufficient to achieve positive information
gains for almost all the ideal memories.

Thus our results corroborate the outcomes of Ref. [56],
providing an alternative study which considers a local energy
constraint instead of a global one. As discussed in Ref. [56]
and its supplementary materials, potential applications are
in the technology of optical digital memories where we
could increase data-transfer rates and storage capacities. For
instance, let us fix the mean signal power P which is irradiated
on the memory cell during the readout time t . This is
approximately given by P = hνNt−1, where h is the Planck
constant, ν is the carrier frequency, and N is mean total number
of photons. Suppose that we can access low values of NS

using a reasonably low number of modes M so that the value
of N is globally low. Now, at fixed power and frequency, the
low-energy regime (low N ) corresponds to short readout times
t , i.e., high data-transfer rates. Equivalently, at fixed power
and readout time, the low-energy regime corresponds to high
frequencies ν, i.e., dense storage devices.

Finally, another potential application is the readout of
organic digital memories, which are devices extremely pho-
tosensitive at high frequencies. In this case, the use of faint
quantum signals could safely read the data without damaging
the storing devices. As discussed before, locally constrained
quantum reading may be particularly suitable for the readout
of these fragile memories thanks to the direct control of the
mean energy of each radiation mode.

APPENDIX A: METHODS

Here we provide more details about the methods used
in our computations. We start with a brief review of the
bosonic Gaussian states (Appendix A 1). Then we give a
detailed description of the readout problem, discussing the
main techniques for computing the performances of classical
and nonclassical transmitters (Appendix A 2). Finally, we
consider the special case of ideal memories, for which we
can derive simple analytical formulas (Appendix A 3).

1. Bosonic systems and Gaussian states

A bosonic system is generally composed of n modes. This
means that the system is associated with a tensor product
Hilbert space H⊗n and described by a vector of quadrature
operators

x̂T := (q̂1,p̂1, . . . ,q̂n,p̂n), (A1)
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which satisfy the commutation relations [x̂k,x̂l] = 2ikl ,
where

� :=
n⊕

i=1

(
0 1

−1 0

)
(A2)

defines a symplectic form (correspondingly, a real matrix S is
called “symplectic” if S�ST = �).

By definition, a bosonic state ρ is “Gaussian” if its Wigner
function is Gaussian [6]. As a result, a Gaussian state ρ is fully
characterized by its first- and second-order statistical moments.
These are the displacement vector

x̄ := Tr(x̂ρ) (A3)

and the covariance matrix (CM) V, with generic element

Vkl := 1
2 Tr({x̂k,x̂l}ρ) − x̄kx̄l , (A4)

where {,} is the anticommutator. The CM is a 2n × 2n real
symmetric matrix which must satisfy the uncertainty principle
[6,74]

V + i� � 0. (A5)

According to Williamson’s theorem [75], every CM V can be
decomposed in the form

V = SWST , (A6)

where S is a symplectic matrix and

W =
n⊕

i=1

νiI =

⎛
⎜⎜⎜⎜⎜⎜⎝

ν1

ν1

. . .

νn

νn

⎞
⎟⎟⎟⎟⎟⎟⎠

(A7)

is called the “Williamson form” of V. In this matrix, the diago-
nal elements {ν1, . . . ,νn} represent the “symplectic spectrum”
of V. The symplectic spectrum provides powerful ways to
express physical properties of the Gaussian state. For instance,
the uncertainty principle can be formulated as [6,73]

V > 0, νi � 1. (A8)

2. Quantum reading versus classical reading

In our model of classical memory, each memory cell
is represented by a beam-splitter mirror with two possible
reflectivities, i.e., the pit reflectivity r0 and the land reflectivity
r1. This dichotomic choice r ∈ {r0,r1} is used to encode an
information bit u ∈ {0,1} in the memory cell. Then, one side
of the memory is subject to decoding, while the other side is
affected by white thermal noise, with average photon number
per mode equal to NB . It is clear that this model of memory
corresponds to a problem of Gaussian channel discrimination.
In fact, each memory cell can be seen as an attenuator channel,
transforming an input-signal mode into an output-reflected
mode. In particular, this attenuator channel has a transmission
efficiency (or “linear loss”) which is given by the dichotomic
reflectivity of the cell r ∈ {r0,r1} and a thermal noise which is
fixed and equal to NB . Depending on the bit u ∈ {0,1} which
is stored in the cell, we then have two possible attenuator

channels that we denote R0 and R1. In other words, the
unknown bit u stored in the cell is encoded into a conditional
attenuator channel Ru.

Let us describe explicitly the action of Ru. Given the
quadratures x̂T

s := (q̂s ,p̂s) of an input signal mode s, the
quadratures x̂r of the output-reflected mode r are given by
the Heisenberg relation,

x̂r = √
r x̂s + √

1 − r x̂b, (A9)

where r ∈ {r0,r1} and x̂b are the quadratures of a bath mode
b. In particular, the bath mode is described by a thermal state
ρb(NB) with NB average photons, i.e., a Gaussian state with
zero mean and CM

Vb = (2NB + 1)I. (A10)

Once we have specified the action of a memory cell over
an arbitrary signal mode s, we can analyze its full action on
an arbitrary transmitter. In general, we have a system S of
M signal modes impinging on the cell, besides an ancillary
system I of L idler modes which bypass the cell. At the output
of the cell, the system R of the M reflected modes is combined
with the idler system I in a joint measurement at the receiver.
The fundamental parameters of the transmitter are contained in
its signal profile {M,NS}, which is composed by the number
of signal modes M and the average number of photons per
signal NS .

Let us denote by ρSI the global state of the input systems
{S,I }. The memory cell does not affect the idler system I but
acts on the signal system S by coupling every signal mode
s ∈ S with an independent thermal mode b, which belongs to
a bath system B in the multimode thermal state

ρB = ρb(NB)⊗M. (A11)

Since the action on the signal system S is one-mode and
conditional, the global state of the output systems {R,I } can
be written as

ρRI (u) = (
R⊗M

u ⊗ I⊗L
)

(ρSI ), (A12)

where I⊗L is the identity channel acting on the idler system.
For a fixed state ρSI at the transmitter, we have a conditional
output state ρRI (u) at the receiver, which depends on the bit u

stored in the memory cell. Thus, the minimum error probability
in decoding the stored bit is just the error probability affecting
the optimal discrimination of the two output states ρRI (0) and
ρRI (1). As we know, this error probability is equal to [65]

Perr = 1
2 {1 − D[ρRI (0),ρRI (1)]} , (A13)

where D[ρRI (0),ρRI (1)] is the trace distance between ρRI (0)
and ρRI (1). Clearly, the value of Perr determines the average
amount of information which is decoded for each bit stored
in the memory. This average information is equal to J =
1 − H (Perr), where H (x) is the usual formula of the binary
Shannon entropy.

In our work, we estimate the average decoded information
J in two paradigmic situations, i.e., for a quantum transmitter
with EPR correlations (JQ), and for a generic classical
transmitter (JC). By fixing the signal profile {M,NS}, we
compare JQ and JC . More exactly, we fix all the basic
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parameters of the model, i.e., besides fixing the signal profile
{M,NS}, we also fix the reflectivities of the memory {r0,r1} and
the thermal noise NB . Then, we investigate what are the values
of the basic parameters {M,NS,r0,r1,NB} for which JQ > JC .
In particular, for proving this enhancement, we compare a
lower bound of JQ with an upper bound of JC .

a. Classical transmitters

Let us start considering an arbitrary classical transmitter.
For a classical transmitter with M signals and L idlers,
we can exploit the classical discrimination bound proven in
Ref. [56]. The minimum error probability P class

err affecting the
readout of the memory cell is lower bounded by C(M,NS) in
Eq. (10), where F (NS) is the fidelity between the two states
R0(|N1/2

S 〉〈N1/2
S |) and R1(|N1/2

S 〉〈N1/2
S |). Using the formula of

the fidelity for single-mode Gaussian states [77–79], we get

F (NS) = 1√
γ 2 + θ − √

θ
exp

[
− (

√
r1 − √

r0)2

γ
NS

]
,

(A14)

where

γ = 1 + (2 − r0 − r1)NB (A15)

and

θ = 4N2
B

∏
i=0,1

(1 − ri)[1 + (1 − ri)NB]. (A16)

Notice that the lower-bound C(M,NS) depends on the signal
profile {M,NS}, but not from the number L of idlers and the
explicit P representation describing the classical state of the
transmitter. As a consequence, all the classical transmitters
with the same signal profile {M,NS} are lower bounded by
C(M,NS). The average information JC which is decoded from
the memory cell is upper bounded by the quantity

Jclass := 1 − H [C(M,NS)]. (A17)

b. Quantum transmitter

Now, let us consider a quantum transmitter with the
same signal profile {M,NS} but possessing EPR correlations
between signals and idlers (EPR quantum transmitter). In this
case, we have the same number of signals and idlers (M = L),
and the global state for the input systems {S,I } is a tensor
product of M identical two-mode squeezed vacuum states,
i.e.,

ρSI = |ξ 〉si〈ξ |⊗M, (A18)

where the single-copy state |ξ 〉si〈ξ | refers to a single pair of
signal and idler modes {s,i} ∈ {S,I }. Recall that a two-mode
squeezed vacuum state |ξ 〉si〈ξ | is a Gaussian state with zero
mean and CM

Vsi =
(

(2NS + 1)I 2
√

NS(NS + 1)Z

2
√

NS(NS + 1)Z (2NS + 1)I

)
, (A19)

where I = diag(1,1), Z = diag(1,−1), and the squeezing
parameter ξ is connected to the signal energy by the relation
NS = sinh2 ξ . At the output of the cell, the conditional state of
the systems {R,I } is given by

ρRI (u) = ρri(u)⊗M, (A20)

where

ρri(u) = (Ru ⊗ I)(|ξ 〉si〈ξ |) (A21)

is the single-copy output state, i.e., describing a single pair
of reflected and idler modes {r,i} ∈ {R,I }. In fact, since the
memory cell corresponds to a one-mode channel and the
state of the transmitter to a tensor product, the output state
at the receiver is also a tensor product state. In particular,
it corresponds to M identical copies of the two-mode state of
Eq. (A21). Then, the decoding of u corresponds to the M-copy
discrimination between the two states ρri(0) and ρri(1). The
corresponding minimum error probability P

quant
err can be upper

bounded by the quantum Chernoff bound, i.e.,

P quant
err � Q(M,NS) := 1

2 [Q(NS)]M, (A22)

where

Q(NS) := inf
s∈(0,1)

Tr[ρri(0)sρri(1)1−s]. (A23)

Notice that the single-copy state ρri(u) is a Gaussian state with
zero mean and CM

Vri(u) =
(

[ruμ + (1 − ru)β]I
√

ru(μ2 − 1)Z√
ru(μ2 − 1)Z μI

)
, (A24)

where

μ := 2NS + 1, β := 2NB + 1. (A25)

Since ρri(0) and ρri(1) are two-mode Gaussian states, we
can compute the quantum Chernoff bound Q(M,NS) by
using the formula of Ref. [72], which exploits the symplectic
decomposition of the Gaussian states. It is important to note
that the CM of Eq. (A24) is in a special form, for which we can
easily provide analytical expressions for both the symplectic
spectrum and the diagonalizing symplectic matrix S. In fact,
let us set

a := ruμ + (1 − ru)β, b := μ (A26)

and

c :=
√

ru(μ2 − 1) � 0, (A27)

so that the CM takes the special normal form

V =
(

aI cZ

cZ bI

)
. (A28)

The corresponding symplectic eigenvalues are given by [6]

ν1 = 1
2 (

√
y + a − b) (A29)

and

ν2 = 1
2 (

√
y + b − a), (A30)
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where y := (a + b)2 − 4c2 � 4. Thus, the Williamson form
of V is given by

W = ν1I ⊕ ν2I

= 1

2

(
(
√

y + a − b)I
(
√

y + b − a)I

)
. (A31)

The symplectic matrix S which realizes the symplectic
decomposition V = SWST is given by the formula [6]

S =
(

x+I x−Z

x−Z x+I

)
, (A32)

where

x± :=
√

a + b ± √
y

2
√

y
� 0. (A33)

Now, by writing the symplectic diagonalization for the two
possible cases u = 0 and u = 1, we have

Vri(u) = S(u)[ν1(u)I ⊕ ν2(u)I]S(u)T . (A34)

Using this decomposition, we can compute the quantum
Chernoff bound by means of the formula of Ref. [72].
Unfortunately, the analytical expression is cumbersome, but
we can easily derive numerical values for every choice of the
parameters.

It is clear that from the upper bound P
quant
err � Q(M,NS), we

can derive a lower bound for the average information JQ which
is decoded via this quantum transmitter. This lower bound is
simply given by

Jquant := 1 − H [Q(M,NS)]. (A35)

c. Comparison

In order to compare quantum and classical reading, we fix
the basic parameters of the model {M,NS,r0,r1,NB} and we
consider the difference

G := Jquant − Jclass, (A36)

that we have called “information gain.”It is trivial to check that

G � JQ − JC. (A37)

In other words, G is a lower bound for the average information
which is gained by using the EPR quantum transmitter instead
of any classical transmitter. A positive gain (G > 0) is a
sufficient condition for the superiority of the quantum reading
(JQ > JC). In general, this quantity is a function of all the
basic parameters of the model, i.e., G = G(M,NS,r0,r1,NB).
Numerically, we can find signal profiles {M,NS}, classical
memories {r0,r1}, and thermal baths NB for which we have the
quantum effect G > 0. Some of these values are shown by the
table in the main text. As explained in the main text, we can also
resort to the further lower bound G∗ � G, which is defined by
using the quantum Battacharyya bound instead of the quantum
Chernoff bound. By exploiting G∗, we can plot Figs. 3–5.

3. Ideal memories

Quantum reading is generally more powerful when the
land reflectivity is sufficiently high (i.e., r1 � 0.8). For this
reason, it is important to analyze the scenario in the limit of

ideal land reflectivity (r1 = 1), defining the so-called “ideal
memories.”In the presence of an ideal memory, one of the two
possible outputs of the cell is just the input state, i.e., we have

ρRI (1) = ρSI . (A38)

Clearly, this fact leads to a simplification of the calculus. In
the case of an EPR quantum transmitter, the input state is pure
and given by Eq. (A18). As a consequence, we have

ρRI (1) = ρri(1)⊗M = |ξ 〉si 〈ξ |⊗M, (A39)

i.e., one of the two output states is pure. Thus the quantum
Chernoff bound can be reduced to the computation of the
quantum fidelity. In fact, we have [76]

Q(NS) := inf
s∈(0,1)

Tr[ρri(0)sρri(1)1−s]

= inf
s∈(0,1)

Tr[ρri(0)s |ξ 〉si 〈ξ |1−s]

= lim
s→1−

Tr[ρri(0)s |ξ 〉si 〈ξ |1−s]

= F [ρri(0), |ξ 〉si 〈ξ |], (A40)

where the fidelity F [ρri(0),|ξ 〉si〈ξ |] is between a mixed
two-mode Gaussian state ρri(0) with CM given in Eq. (A24)
and a pure two-mode Gaussian state |ξ 〉si〈ξ | with CM given
in Eq. (A19). Then we can apply the formula of Ref. [76] for
the quantum fidelity between multimode Gaussian states. We
achieve

Q(NS) = F [ρri(0),|ξ 〉si〈ξ |]
= 1

[1 + (1 − √
r0)NS]2 + NB(2NS + 1)(1 − r0)

,

(A41)

which is the result given in the main text.
In the case of a classical transmitter, we just have to consider

the lower bound of Eq. (10) where now we set r1 = 1 in the
expression of the fidelity given in Eq. (A14). One can easily
check that the resulting fidelity takes the analytical form given
in Eq. (28).

APPENDIX B: TECHNICAL PROOFS

Here, we explicitly prove the asymptotic expansions which
have been presented in the main text and used for the analysis
of the ideal memories.

1. General asymptote (r0 = 1)

According to Fig. 6, the critical number M (NS )(r0) diverges
for r0 → 1. Let us analyze the behavior of G around the
singular point r0 = 1 by setting r0 = 1 − ε and expanding
G for ε → 0+. It is easy to check that, for every NB , we have
G > 0 if and only if

M > [4NS(2NS + 1)ε]−1. (B1)

In particular, in the absence of thermal noise (NB = 0), we
have

G = MNS(4MNS − 1)ε2

8 ln 2
+ O(ε3), (B2)

which is positive if and only if M > (4NS)−1.
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These conditions are easy to prove. In fact, note that G > 0
if and only if

� := Q(M,NS) − C(M,NS) < 0. (B3)

Thus, let us expand � = �(M,NS,NB,1 − ε) at the first order
in ε. For a given NB > 0, we have

� = 1
2 [(MNBε)1/2 − M(NB + NS + 2NBNS)ε] + O(ε3/2),

(B4)

which is negative if and only if

M >
NB

(NB + NS + 2NBNS)2ε
:= κ(NB). (B5)

Notice that κ(NB) is maximum for

N∗
B = NS(1 + 2NS)−1. (B6)

Then, for every NB > 0, we have � < 0 if and only if

M > κ(N∗
B) = 1

4NS(2NS + 1)ε
. (B7)

Now, let us consider the particular case of NB = 0. In this
case, we have the first-order expansion

� = (MNS)1/2[1 − 2(MNS)1/2]ε/4 + O(ε2), (B8)

or, equivalently, the second-order expansion of G given in
Eq. (B2). It is clear that � < 0, i.e., G > 0, when M > 1/4NS .
However, this condition is less restrictive than the one in
Eq. (B7), which therefore can be extended to every NB � 0.

2. High-energy asymptote (r0 = 0)

Let us analyze the behavior of M (NS )(r0) for NS � 1 and
r0 = 0. One can check that for NS � 1, the greatest value of

0 0.5 1.51 2

2

4

6

8

10

12

NS

M

FIG. 7. Minimum number of signals M versus energy NS . The
solid curve represents M (NS )(0) while the dashed curve represents M̃ .
Notice that the minimum number of signals is actually given by �M,
where �· · ·  is the ceiling function.

M (NS )(0) occurs when NB = 0. In this case, i.e., for r0 = NB =
0 and r1 = 1, we have

Q(M,NS) = (1 + NS)−2M

2
(B9)

and

C(M,NS) = 1 − √
1 − e−MNS

2
M�1−→ e−MNS

4
:= C∞. (B10)

Let us consider the critical value M (NS )(0) of M such that
G(M,NS) = 0, which is equivalent toQ = C. We also consider
the value M̃ such that Q = C∞. We find that M (NS )(0) � M̃

with very good approximation when NS � 1 (see Fig. 7). Then,
for every NS � 1, we can set

M (NS )(0) � M̃ = (ln 2)[2 ln(1 + NS) − NS]−1. (B11)

The latter quantity becomes infinite for 2 ln(1 + NS) = NS ,
i.e., for NS � 2.51 photons.
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