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1. Introduction

Classical spheres can be constructed by gluing two discs along their boundaries.
Since an open disc is homeomorphic to R

2, this fact is reflected in the following
short exact sequence of C∗-algebras of continuous functions (vanishing at infinity
where appropriate):

0 −→ C0(R
2) ⊕ C0(R

2) −→ C(S2) −→ C(S1) −→ 0. (1.1)

On the other hand, one can obtain a disc D2 as the quotient of a sphere under the
Z2-action given by the reflection with respect to the equator plane. Two copies of
an open disc collapse to one copy, and we have the short exact sequence

0 −→ C0(R
2) −→ C(D2) −→ C(S1) −→ 0. (1.2)
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Similarly, real projective space RP 2 can be constructed from the antipodal action
of Z2 on the two-sphere. As for D2, removing S1 from RP 2 also leaves an open
disc, and again we have the short exact sequence

0 −→ C0(R
2) −→ C(RP 2) −→ C(S1) −→ 0. (1.3)

The aim of this paper is to present the noncommutative geometry of a q-deformation
of the aforementioned geometric setting. (This deformation is unique under some
assumptions.) It turns out that the q-deformation changes C0(R

2) in the above short
exact sequences into the ideal K of compact operators (see (2.32), (3.27), (4.32)).
Therefore, since C0(R

2) and K behave in a similar way in K-theory, it is not sur-
prising that the K-groups of these q-deformed surfaces coincide with the respective
K-groups of their classical counterparts. Since D2 has a boundary and RP 2 is non-
orientable, we hope that the study of their q-analogues will help one to understand
the concept of a boundary and orientability in the general noncommutative setting.

Deformations of SL(2,C) were studied in depth and classified [DL90, W-SL91,
WZ94]. The choice of the compact ∗-structure and the requirement of the exis-
tence of the C∗-norm lead then to the celebrated deformation of SU(2), which we
denote by SUq(2). (The literature on this quantum group motivating and treating
it from many different points of view is vast. E.g., see [KS97] for references.)
Subsequently, the study of quantum homogeneous spaces of SUq(2) leads to the
classification of quantum spheres [P-P87]. (See [S-A91] for the Poisson aspects.)
On the other hand, motivated by the Poisson geometry, noncommutative deforma-
tions of the unit disc were constructed in [KL92, KL93]. Gluings of quantum discs
which produce quantum spheres were studied in [S-A91, MNW91, CM00]. Finally,
quantum real projective space RP 2

q was defined in [H-PM96] within the framework
of the Hopf–Galois theory to exemplify the concept of strong connections on al-
gebraic quantum principal bundles (cf. [DGH01, Example 2.12]). It was obtained
as the quantum quotient space from the antipodal Z2-action on the equator Podleś
sphere. This action was already discovered in [P-P87], and is the only possible
Z2-action on quantum spheres compatible with the actions of SUq(2) (see above
Section 6 therein).

In this paper, we continue along these lines. We begin in Section 2 by reviewing
the relevant known results on quantum spheres (C∗-representations, K-theory).
Then we provide the Cartesian coordinates and compute an explicit form of the
C∗-isomorphisms between the C∗-algebra of the equator quantum sphere and the
C∗-algebras of the equilateral Podleś spheres (c ∈ (0,∞)). We also show that
these isomorphisms commute with the U(1)-actions inherited from the actions of
SUq(2) on quantum spheres. In Section 3, we prove that the q-disc of Klimek and
Lesniewski can be obtained as a noncommutative quotient of the equator quantum
sphere by an appropriate Z2-action. More precisely, first we show that the poly-
nomial algebra of the q-disc is a fixed-point subalgebra of the polynomial algebra
of the equator quantum sphere under a non-Galois Z2-action. Then we extend this
construction to the equilateral quantum spheres by employing the aforementioned
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C∗-isomorphisms. Since these isomorphisms are non-polynomial, we handle the
equilateral spheres only on the C∗-level. We complete this section by recalling
the topological K-theory of the q-disc. The paper ends with Section 4 where we
define the C∗-algebra of quantum RP 2, study its representations, and compute the
K-theory. Similarly to the quantum disc case, this C∗-algebra is obtained as a Z2-
action fixed-point subalgebra of the C∗-algebra of the equator quantum sphere. For
both the quantum disc and RP 2

q cases, we show that the Z2-actions are compatible
with the above-mentioned actions of U(1).

Throughout the paper we use the jargon of Noncommutative Geometry referring
to quantum spaces as objects dual to noncommutative algebras in the sense of the
Gelfand–Naimark correspondence between spaces and function algebras. The un-
adorned tensor product means the completed (spatial) tensor product when placed
between C∗-algebras, and the algebraic tensor product over C otherwise. The al-
gebras are assumed to be associative and over C. They are also unital unless the
contrary is obvious from the context. By P(quantum space) we denote the polyno-
mial algebra of a quantum space, and by C(quantum space) the corresponding C∗-
algebra. In this paper, the C∗-completion (C∗-closure) of a ∗-algebra always means
the completion with respect to the supremum norm over all ∗-representations in
bounded operators.

2. Quantum Spheres

DEFINITION 2.1 ([P-P87]). The C∗-algebra C(S2
q∞) of the quantum sphere S2

q∞,
q ∈ R, 0 < |q| < 1, is defined as the C∗-closure of the ∗-algebra P(S2

q∞) :=
C〈A,B〉/Iq∞, where Iq∞ is the (two-sided) ∗-ideal in the free ∗-algebra C〈A,B〉
generated by the relations

A∗ = A, BA = q2AB, (2.4)

B∗B = −A2 + 1, BB∗ = −q4A2 + 1. (2.5)

The C∗-algebra C(S2
qc) of the quantum sphere S2

qc, c ∈ [0,∞) is defined analo-
gously, with (2.5) replaced by

B∗
c Bc = Ac − A2

c + c, BcB
∗
c = q2Ac − q4A2

c + c. (2.6)

The irreducible ∗-representations of the quantum spheres are determined in
[P-P87]. Let us denote by πc± and by πc

θ the infinite-dimensional and one-dimensio-
nal representations of C(S2

qc) (c ∈ [0,∞]), respectively. (In the c = ∞ case, in
agreement with the notation for generators in the above definition, we write π±
and πθ instead of π∞± and π∞

θ , respectively.) The complete list of the irreducible
∗-representations of C(S2

q∞) is given by

πθ(A) = 0, πθ(B) = eiθ , θ ∈ [0, 2π), (2.7)
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and

π±(A)ek = ±q2kek, π±(B)ek = (1 − q4k)1/2ek−1, π±(B)e0 = 0. (2.8)

Here {ek}k∈N is an orthonormal basis of a Hilbert space. Similarly, the irreducible
∗-representations of C(S2

qc), c ∈ (0,∞), are defined by

πc
θ (Ac) = 0, πc

θ (Bc) = c1/2eiθ , θ ∈ [0, 2π), (2.9)

and

πc
±(Ac)ek = λ±q2kek, πc

±(Bc)ek = c±(k)1/2ek−1, πc
±(Bc)e0 = 0, (2.10)

where

λ± = 1
2 ± (

c + 1
4

)1/2
, c±(k) = λ±q2k − (λ±q2k)2 + c. (2.11)

The direct sums πc+ ⊕πc−, 0 < c � ∞, are faithful representations. The representa-
tions πc± can be considered as embeddings of quantum discs onto the northern and
southern hemisphere, respectively, whereas the one-dimensional representations
are the classical points (forming a circle). For c = ∞, the classical points are
symmetric with respect to the hemispheres, i.e., they form the equator. With c

decreasing, the circle of classical points shrinks to a pole. Thus, in the limit case
c = 0, we can think of a quantum sphere as a quantum disc whose (classical)
boundary is glued to a point. For c = 0, the formulas (2.9)–(2.11) still define
∗-representations. Now, however, π0

θ coincide for all θ , and π0
θ and π0+ are the

only irreducible representations. The representation π0− becomes trivial, and π0+
becomes faithful. The cases c = 0, 0 < c < ∞ and c = ∞ are referred to
as the standard, equilateral and equator quantum sphere, respectively. Futhermore,
it follows from [P-P87, Section 5] that the monomials Ak

cB
l
c, A

m
c B

∗n
c , k, l,m, n ∈

N, n > 0, c ∈ [0,+∞], viewed as elements of C(S2
qc) are linearly independent

and their span is dense in C(S2
qc). Since they also span P(S2

qc), they form a basis
of P(S2

qc). Thus P(S2
qc) ⊆ C(S2

qc). (The canonical map P(S2
qc) → C(S2

qc) is
injective.)

To make the aforementioned geometric picture explicit, we need to find the
Cartesian coordinates for quantum spheres. More precisely, we need to define self-
adjoint generators x, y, z of P(S2

qc), c ∈ [0,∞], which satisfy x2 + y2 + z2 = 1.
Note first that dividing (2.6) by c and rescaling the generators by c−1/2 would lead
to the formulas whose limit with c → ∞ would be (2.5). To include also the c = 0
case, let us rescale the generators by (1 + √

c)−1, i.e.,

Ãc := Ac

1 + √
c
, B̃c := Bc

1 + √
c
. (2.12)

Now, from (2.6), we have

B̃∗
c B̃c = Ãc

1 + √
c

− Ã2
c + c

(1 + √
c)2

,

B̃cB̃
∗
c = q2Ãc

1 + √
c

− q4Ã2
c + c

(1 + √
c)2

. (2.13)
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The relations (2.4) remain unchanged, that is, Ã∗
c = Ãc, B̃cÃc = q2ÃcB̃c. Contrary

to Ac and Bc, the generators Ãc and B̃c have limits with c → ∞ when thought of
as elements of P(SUq(2)). Indeed, remembering the definition of Ac,Bc [P-P87,
pp. 196, 200] in terms of the spin 1 representation

D1 :=
(

δ2 −(1 + q2)δγ −qγ 2

−q−1βδ 1 + (q + q−1)βγ αγ

−q−1β2 +(q + q−1)βα α2

)
(2.14)

of SUq(2) (with α, β, γ, δ being the generators of the algebra P(SUq(2))), we can
write

(
B̃∗
c , Ãc, B̃c

) =
( √

c

1 + √
c
,

1

1 + √
c
,

√
c

1 + √
c

)
D1

( 1 0 0
0 −(1 + q2)−1 0
0 0 1

)
+

+
(

0,
1

(1 + √
c)(1 + q2)

, 0

)
. (2.15)

It is clear now that the tilded generators are well-defined also for c = ∞. Since
the relations among the tilded generators become for c = ∞ the relations among
A and B, we can write Ã∞ := A, B̃∞ := B. Thus, we have a uniform description
of quantum spheres for all c ∈ [0,∞]. (See [BM00, Section 6] for a uniform
parameterisation of Podleś spheres by the unit interval [0, 1].) Remembering the
geometrical meaning of Ãc, B̃c (see [P-P87, pp. 196, 200, 201]), we put

x = iQx(B̃c − B̃∗
c ), y = Qy(B̃c + B̃∗

c ),

z = Qz(Ãc − ã0), c ∈ [0,∞]. (2.16)

Here Qx , Qy , Qz and ã0 are real-valued functions of q and c, so that x, y, z are
evidently self-adjoint. The condition x2 + y2 + z2 = 1 and the linear independence
of the monomials Ak

cB
l
c, A

m
c B

∗
c
n, k, l,m, n ∈ N, n > 0 [P-P89, p. 116] imply that

Q2
x = Q2

y . Let us put Qh := |Qx | = |Qy |. Then the sphere equation boils down to

2Q2
h(B̃cB̃

∗
c + B̃∗

c B̃c)+Q2
z(Ãc − ã0)

2 = 1. (2.17)

Plugging in (2.13) to the above formula yields

2Q2
h

(
−(1 + q4)Ã2

c + 1 + q2

1 + √
c
Ãc + 2c

(1 + √
c)2

)
+Q2

z(Ãc − ã0)
2 = 1. (2.18)

Employing again the linear independence of the monomials Ak
c , one can compute:

Qh = −
√

2(1 + q4)

1 + q2
(1 + √

c)z∞, |Qz| = −2(1 + q4)

1 + q2
(1 + √

c)z∞,

ã0 = 1 + q2

2(1 + q4)
(1 + √

c)−1, (2.19)
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where z∞ := −(8c 1+q4

(1+q2)2
+ 1)−1/2. (The meaning of this number will shortly

become clear.) Let us choose Qx = Qh = Qy , Qz = |Qz|. The formulas (2.16)
read now:

x = −i
√

2(1 + q4)

1 + q2
(1 + √

c)z∞(B̃c − B̃∗
c ),

y = −
√

2(1 + q4)

1 + q2
(1 + √

c)z∞(B̃c + B̃∗
c ),

z = −2(1 + q4)

1 + q2
(1 + √

c)z∞Ãc + z∞. (2.20)

(Observe that

z∞|c=∞ = 0 and ((1 + √
c)z∞)|c=∞ = − 1 + q2

2
√

2(1 + q4)
.)

The eigenvalues z±
k of πc±(z) are given by

πc
±(z)ek =

(
z∞ − z∞λ±

2(1 + q4)

1 + q2
q2k

)
ek, c ∈ [0,∞]. (2.21)

(Note that

(z∞λ±)|c=∞ = ∓ 1 + q2

2
√

2(1 + q4)
.)

It is evident that limk→∞ z±
k = z∞. Since we also have πc

θ (z) = z∞, we can say
that the eigenvalues of πc±(z) converge (from both sides) to the circle of classical
points (space of one-dimensional representations) given by πc

θ . For c = ∞ we have
z∞ = 0, so that the circle is the equator, whereas for c = 0 the circle shrinks to
the south pole (z∞ = −1). Finally, let us remark that, as (1 + √

c)z∞ �= 0 for any
c ∈ [0,∞], the equations (2.20) can be solved for Ãc, B̃c, B̃

∗
c , and consequently

x, y, z generate the algebra P(S2
qc). Since they are also self-adjoint and satisfy

x2 + y2 + z2 = 1, we call them the Cartesian coordinates of quantum spheres.
We recall from [S-A91, Proposition 1.2] that πc+ ⊕ πc− is for all c ∈ (0,∞] a

C∗-isomorphism of C(S2
qc) onto C∗(S) ⊕σ C

∗(S). Here C∗(S) is the C∗-algebra
of the one-sided shift (Toeplitz algebra). It is the C∗-algebra generated by the shift
operator Sei = ei+1, where {ei}i∈N is an orthonormal basis of a Hilbert space. The
map σ : C∗(S) → C(S1) is the so-called symbol map defined by S �→ u, where u
is the unitary generator of C(S1). The algebra C∗(S) ⊕σ C

∗(S) is defined as the
gluing of two copies of C∗(S) via σ , i.e.,

C∗(S) ⊕σ C
∗(S) := {(a1, a2) ∈ C∗(S) ⊕ C∗(S) | σ (a1) = σ (a2)}. (2.22)

Let

χc := (π+ ⊕ π−)−1 ◦ (πc
+ ⊕ πc

−): C(S
2
qc) −→ C(S2

q∞) (2.23)



QUANTUM REAL PROJECTIVE SPACE, DISC AND SPHERES 175

be the isomorphism composed from the isomorphisms

π+ ⊕ π−: C(S2
q∞) → C∗(S) ⊕σ C

∗(S)

and

πc
+ ⊕ πc

−: C(S2
qc) → C∗(S)⊕σ C

∗(S).

An explicit form of the isomorphisms χc is given by:

PROPOSITION 2.2. Let ηc(t) := √
t − t2 + c (cf. (2.11)), and let Fc and Gc be

functions given by

Fc(x) :=
{
λ+x, for 0 � x � 1,

−λ−x, for − 1 � x < 0,
(2.24)

Gc(x) := (1 − q4x2)−1/2

{
ηc(q

2λ+x), for 0 � x � 1,

ηc(−q2λ−x), for − 1 � x < 0.
(2.25)

Then χc(Ac) = Fc(A) and χc(Bc) = Gc(A)B.
Proof. First, note that, since π±(A) is diagonal and Fc and Gc are continu-

ous functions defined on the spectrum of π±(A), the operators Fc(π±(A)) and
Gc(π±(A)) make sense and are easily computable. Subsequently, notice that
χc(Ac) = Fc(A) if and only if πc±(Ac) = Fc(π±(A)). To verify the latter equality,
we check that

πc
±(Ac)ek = λ±q2kek = Fc(π±(A))ek. (2.26)

Similarly, to verify χc(Bc) = Gc(A)B, we observe that

Gc(±q2k) = c±(k + 1)1/2

(1 − q4(k+1))1/2

and compute

π±(Gc(A)B)ek = Gc(π±(A))π±(B)ek = πc
±(Bc)ek, (2.27)

which proves the proposition. ✷
The above proposition shows that the isomorphisms χc are of non-polynomial

nature. Therefore we suspect that:

CONJECTURE 2.3 The polynomial ∗-algebras of the quantum spheres S2
qc and

S2
qc′ are non-isomorphic for c �= c′.

Our next step is to consider the compatibility of the isomorphisms χc with the
actions of U(1) inherited from the actions of SUq(2) on quantum spheres. Let c ∈
(0,∞], and let

δ := (id ⊗ p) ◦,R: C(S2
qc) → C(S2

qc)⊗ C(U(1))
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be the right coaction got from the coaction ,R: C(S2
qc) → C(S2

qc) ⊗ C(SUq(2))
[P-P87, p. 194] with the help of the C∗-epimorphism p: C(SUq(2)) → C(U(1))
sending α to u (the unitary generator of C(S1)), δ to u∗ and β, γ to 0. From (2.15),
we have explicitly

δ(Ac) = Ac ⊗ 1, δ(Bc) = Bc ⊗ u2. (2.28)

Since δ: C(S2
qc) → C(S2

qc) ⊗ C(U(1)) is a ∗-homomorphism, it is continuous.
Therefore, identifying C(S2

qc)⊗C(U(1)) with C(U(1), C(S2
qc)) (continuous func-

tions on U(1) with values in C(S2
qc); see [W-NE93, Proposition T.5.21]), we obtain,

for any g ∈ U(1), a C∗-homomorphism

δg: C(S2
qc) −→ C(S2

qc), δg(a) := δ(a)(g). (2.29)

Furthermore, as δ is a coaction, each δg is a C∗-automorphism of C(S2
qc). This

defines an action of U(1) on S2
qc. Contrary to the action of SUq(2), the action of

U(1) on S2
qc is compatible with the quantum ‘homeomorphisms’ among the spheres

S2
qc, i.e., (χ−1

c′ ◦ χc) ◦ δg = δg ◦ (χ−1
c′ ◦ χc). This follows from Proposition 2.4:

PROPOSITION 2.4. ∀g ∈ U(1): δg ◦ χc = χc ◦ δg .
Proof. Since both χc and δg are C∗-homomorphisms, it suffices to check this

equality on the generators. It follows from (2.28) that δg(Ac) = Ac and δg(Bc) =
g2Bc. Taking advantage of Proposition 2.2, one can compute:

(δg ◦ χc)(Ac) = δg(Fc(A)) = Fc(δg(A)) = Fc(A)

= χc(Ac) = (χc ◦ δg)(Ac), (2.30)

(δg ◦ χc)(Bc) = δg(Gc(A)B) = Gc(δg(A))δg(B)

= g2Gc(A)B = g2χc(Bc) = (χc ◦ δg)(Bc). (2.31)

This proves the proposition. ✷
For the sake of completeness (cf. (1.1), (3.27), (4.32)), let us end this section by

recalling the topological K-theory of the quantum spheres. First, there is an exact
sequence [S-A91, Proposition 1.2]:

0 −→ K ⊕ K −→ C(S2
qc) −→ C(S1) −→ 0, (2.32)

where K is the ideal of compact operators. It induces the 6-term exact sequence
in K-theory, from which it follows that K0(C(S

2
qc))

∼= Z ⊕ Z, K1(C(S
2
qc))

∼= 0
[MNW91, Proposition 4.1].
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3. Quantum Disc

DEFINITION 3.1 ([KL93]). The C∗-algebra C(Dq), 0 < q < 1, of the quantum
disc Dq is the C∗-closure (obtained from ∗-representations in bounded operators)
of the algebra P(Dq) := C〈x, x∗〉/Jq . Here C〈x, x∗〉 is the unital free algebra
generated by x and x∗, and Jq is the two-sided ideal in C〈x, x∗〉 generated by the
relation

x∗x − qxx∗ = 1 − q. (3.1)

The goal of this section is to determine the relationship between the thus defined
quantum discs and the equator and equilateral quantum spheres (cf. [NN94, p. 278]
and references therein). The objects Dq form a one-parameter sub-family of the
two-parameter family of quantum discs described in [KL93]. Explicitly, the latter
family is given by

x∗x − qxx∗ = 1 − q + µ(xx∗ − 1)(x∗x − 1).

It is known ([KL93, Proposition VI.1], [CM00, Proposition 15], [KL92, Theo-
rem IV.7], [S-A91, p. 222]) that for

0 � µ < 1 − q and q = 1, 0 < µ < 1,

the quantum-disc C∗-algebras are all isomorphic to the Toeplitz algebra (the C∗-
algebra generated by the one-sided shift Sei = ei+1). Furthermore, we know from
[KL93, Theorem IV.3] that every irreducible bounded ∗-representation of P(Dq)

is unitarily equivalent to a one-dimensional representation πθ defined by

πθ(x) = eiθ , πθ (x∗) = e−iθ , 0 � θ < 2π, (3.2)

or an infinite-dimensional representation π given on an orthonormal basis {ei}i∈N

by the formulas

π(x)ei = (1 − qi+1)1/2 ei+1, i � 0, (3.3)

π(x∗)ei =
{

0, i = 0,

(1 − qi)1/2 ei−1, i � 1.
(3.4)

The infinite-dimensional representation π is faithful [KL93, p. 14]. Also, one can
directly verify that π is faithful on the polynomial algebra P(Dq), so that P(Dq) ⊆
C(Dq) [CM00, p. 380]. Finally, let us mention that there are also unbounded
representations of the relation (3.1). They are given, e.g., in [KS97, Section 5.2.6].

Now we are going to show that the above-defined q-disc can be obtained by
collapsing the equator quantum sphere. In the classical case, the Z2-action on S2

collapsing it to a disc is not free, as it leaves the equator invariant. This entails that
the map

ψ : S2 × Z2 � (x, g) �−→ (x, xg) ∈ S2 × S2 (3.5)
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is not injective, whence S2 → D2 is not a principal fibration. (The considered
Z2-action is not Galois.) The Z2-action on quantum spheres that we are looking
for should identify ‘points’ of the same type and leave only the equator invariant.
Recall that a classical point y is a homomorphism from the algebra to C and the
action of −1 is an automorphism r1 of the algebra. If y is not on the equator,
then y ◦ r1 should be another classical point different from y. Therefore, since the
standard sphere contains only one classical point (pole), we exclude it from our
considerations. Our first step is to define the desired Z2-action on the polynomial
algebra of the equator quantum sphere. As in the classical case, we define it as the
reflection with respect to the equator plane, i.e., via the ∗-algebra automorphism
r1 of P(S2

q∞) sending B to itself, and A to −A. (It is immediate from the commu-
tation relations of the equator quantum sphere that r1 is well defined.) Dualizing
the Z2-action r1 on S2

q∞ we get the coaction ,1: P(S2
q∞) → P(S2

q∞) ⊗ P(Z2)

making P(S2
q∞) a right P(Z2)-comodule algebra. (See [M-S93, Section 1.6] for

generalities.) Explicitly, denoting by � the action of Z2 on P(S2
q∞), we have

,1(p) = (1 � p)⊗ 1∗ + ((−1) � p)⊗ (−1)∗

= 1
2

(
p ⊗ (1 + α)+ r1(p)⊗ (1 − α)

)
. (3.6)

Here {1∗, (−1)∗} denotes the basis dual to the basis {1,−1} of the group ring
C[Z2], and α(±1) = ±1. The main claim of this section is that the quantum disc
is a non-Galois quotient of the equator quantum sphere:

PROPOSITION 3.2. The polynomial algebra of the equator quantum sphere is
a non-Galois Z2-extension of the polynomial algebra of the quantum disc via the
above defined action r1, i.e.,

(1) P(D2
q4)

∼= P(S2
q∞/Z2) := {a ∈ P(S2

q∞) | r1(a) = a} (Z2-extension).

(2) The canonical map P(S2
q∞) ⊗P(D2

q4 )
P (S2

q∞) � p ⊗P(D2
q4 )

p′ �→ p,1(p
′) ∈

P(S2
q∞)⊗ P(Z2) is not bijective. (The extension is not Galois.)

Proof. (1) We know from [P-P89, p. 116] that the monomials

AkBl, AmB∗n, k, l,m, n ∈ N, n > 0, (3.7)

form a linear basis of P(S2
q∞) ⊆ C(S2

q∞). Since r1(A) = −A and r1(B) = B,
taking advantage of the above basis, one can see that r1(a) = a if and only if
a is a linear combination of basis monomials that have A in the even power. It
follows now from (2.5) that any r1-invariant a is a polynomial in B and B∗. Thus,
since every polynomial in B and B∗ is r1-invariant, P(S2

q∞/Z2) is the ∗-subalgebra
generated by B. On the other hand, one can conclude from (2.5) that

BB∗ − q4B∗B = 1 − q4. (3.8)

This equation, together with (3.1), allows us to define a ∗-epimorphism

ϕ: P(Dq4) −→ P(S2
q∞/Z2), ϕ(x) = B∗. (3.9)
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To complete the proof, we need to show that ϕ is injective. It is immediate from
formula (2.8) that π± ◦ ϕ = π , where π is defined by (3.3), (3.4). Hence the
injectivity of π implies the injectivity of ϕ.

(2) It suffices to show that the map

κ: P(S2
q∞) ⊗ P(S2

q∞) � p ⊗ p′ �→ p,1(p
′) ∈ P(S2

q∞)⊗ P(Z2) (3.10)

is not surjective. (The considered Z2-action on S2
q∞ is not free.) Note first that in

the classical case to detect the lack of surjectivity of the pullback map ψ∗ (see
(3.5)), we can use the function 1 ⊗ α. Indeed, for any point x on the equator, we
have

ψ∗(anything)(x, 1) = (anything)(x, x) = ψ∗(anything)(x,−1), (3.11)

whereas (1 ⊗ α)(x, 1) = 1 �= −1 = (1 ⊗ α)(x,−1). It turns out that 1 ⊗ α also
does the job in the quantum case. Suppose that 1 ⊗ α is in the image of κ . Then
there exists a tensor

∑
i pi ⊗ p′

i such that

1

2

∑
i

pi
(
p′
i ⊗ (1 + α)+ r1(p

′
i)⊗ (1 − α)

) = 1 ⊗ α. (3.12)

Evaluating the right tensorands on both sides at 1 and −1 yields∑
i

pip
′
i = 1,

∑
i

pir1(p
′
i) = −1. (3.13)

Applying πθ (see (2.7)) to these equations gives∑
i

πθ (pi)πθ(p
′
i) = 1,∑

i

πθ (pi)πθ(r1(p
′
i)) =

∑
i

πθ (pi)πθ(p
′
i) = −1, (3.14)

which is the desired contradiction. ✷
In order to define a Z2-action on the closure C(S2

q∞) of P(S2
q∞), note that the

flip map

τ : C(S)⊕σ C(S) → C(S)⊕σ C(S), τ (a, b) = (b, a), (3.15)

satisfies τ ◦ (π+ ⊕ π−) = (π+ ⊕ π−) ◦ r1. It is therefore natural to define the
completion of r1 to a C∗-algebra map by8

r̄1 := (π+ ⊕ π−)−1 ◦ τ ◦ (π+ ⊕ π−). (3.16)

8 We owe this idea to S. L. Woronowicz.
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PROPOSITION 3.3. The C∗-subalgebra C(S2
q∞/Z2) := {a ∈ C(S2

q∞) | r̄1(a) =
a} of Z2-invariants in C(S2

q∞) coincides with the C∗-completion of P(S2
q∞/Z2)

inside C(S2
q∞), and is isomorphic to C(Dq4).

Proof. First let us argue that the map ϕ defined in the proof of Proposition 3.2
extends to a C∗-isomorphism of C(Dq4) with the closure of P(S2

q∞/Z2) inside
C(S2

q∞). Since ϕ: P(D2
q4) → P(S2

q∞/Z2) is an isomorphism of ∗-algebras, the

∗-representations of P(D2
q4) can be turned to ∗-representations of P(S2

q∞/Z2), and
vice-versa. We have to show that ϕ determines a one-to-one correspondence be-
tween the ∗-representations used to define the norm on C(D2

q4) and C(S2
q∞) respec-

tively. As every ∗-representation of P(S2
q∞) is bounded, it yields via ϕ a bounded

∗-representation of P(D2
q4). On the other hand, every bounded ∗-representation of

P(D2
q4) gives a ∗-representation of P(S2

q∞/Z2) which can be extended to C(S2
q∞).

Indeed, let P(D2
q4)

ρ→ B(H) be such a representation. Then ρ̃ := ρ ◦ ϕ−1 is

a bounded ∗-representation of P(S2
q∞/Z2), and since B and B∗ satisfy the disc

relation (3.8), it follows from [KL93, Proposition IV.1(I)] that ||ρ̃(B∗B)|| = 1. As
a consequence, 1 − ρ̃(B∗B) � 0, and one can define ρ̃(A) = √

1 − ρ̃(B∗B). This
gives the desired extension.

To complete the proof, note first that, since r̄1 is continuous, the C∗-closure of
P(S2

q∞/Z2) is contained in C(S2
q∞/Z2). Thus it only remains to show that every

Z2-invariant in C(S2
q∞) is in the closure of P(S2

q∞/Z2). Let a ∈ C(S2
q∞/Z2). Then,

again by the continuity of r̄1 and density of P(S2
q∞) in C(S2

q∞), a = limn→∞ an

with an ∈ P(S2
q∞) and

a = 1
2 (id + r̄1)(a) = 1

2 (id + r̄1)
(

lim
n→∞ an

)
= lim

n→∞
1
2(id + r1)(an). (3.17)

As 1
2 (id + r1)(an) ∈ P(S2

q∞/Z2) for any n, a is in the closure of P(S2
q∞/Z2), as

claimed. ✷
Remark 3.4. Since all quantum disc algebras C(Dq), 0 < q < 1, are iso-

morphic as C∗-algebras to the C∗-algebra of the one-sided shift, in the above
proposition q4 can be replaced by any element of the interval (0, 1).

We extend the Z2-action to the equilateral quantum spheres by the formula

r̄c1 := χ−1
c ◦ r̄1 ◦ χc. (3.18)

It is now evident that we have the following corollary:

COROLLARY 3.5. The subalgebra C(S2
qc/Z2) := {a ∈ C(S2

qc) | r̄c1(a) = a} of
Z2-invariants of C(S2

qc), c ∈ (0,∞], is isomorphic to the C∗-algebra C(Dq4) of
the quantum disc.
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Furthermore, it is clear from (2.23), (3.16) and (3.18) that

r̄c1 = (πc
+ ⊕ πc

−)
−1 ◦ τ ◦ (πc

+ ⊕ πc
−). (3.19)

Explicitly, the above equality reads8

πc
+(a) = πc

−(r̄
c
1(a)), πc

−(a) = πc
+(r̄

c
1(a)), a ∈ C(S2

qc). (3.20)

For a = Ac, these equations are solved by the formulas

r̄c1(Ac) = fc(Ac), fc(x) =
{ λ−

λ+ x, x � 0,
λ+
λ− x, x � 0.

(3.21)

Note that this piecewise linear function fc can be replaced by any continuous
function having the same values as fc at the points λ±q2k. For c ∈ (0,∞), among
these functions there is no polynomial, as they cannot be differentiable at 0. This
shows that r̄c1 does not leave P(S2

qc) invariant. Furthermore, considering the im-
age of B∗

c under πc+ ⊕ πc−, one finds the polar decomposition B∗
c = Vc|B∗

c | with
Vc = (πc+ ⊕ πc−)−1(σ, σ ):

πc
±(Vc)ek = ek+1, πc

±(|B∗
c |)ek = c±(k + 1)1/2ek, k ∈ N. (3.22)

It follows from (3.19) that r̄c1(Vc) = Vc. Recall that the spectrum of (πc+ ⊕πc−)(Ac)

and (πc+ ⊕ πc−)(|B∗
c |) is

{0} ∪ {λ±q2k | k ∈ N} and {√c} ∪ {√c±(k + 1) | k ∈ N},
respectively. On the other hand,

πc
±(r̄

c
1(|B∗

c |))ek = c∓(k + 1)1/2ek, k ∈ N.

One can directly check that

r̄c1(|B∗
c |) = gc(Ac),

gc(t) :=


ηc

(
λ−
λ+

q2t

)
, 0 � t � λ+,

ηc

(
λ+
λ−

q2t

)
, λ− � t < 0,

ηc(t) =
√
t − t2 + c. (3.23)

Clearly, gc can be replaced by any continuous function having at the points λ±q2k

values c∓(k + 1)1/2, for any k. Note that we used Ac instead of |B∗
c | to obtain

r̄c1(|B∗
c |) as a continuous function of a generator because the assignment√

c+(k + 1) �→ √
c−(k + 1) does not give a function, as k1 �= k2 implies c−(k1) �=

c−(k2), whereas it might happen that c+(k1) = c+(k2) for k1 �= k2. Indeed, let k1,
k2 be any two different positive natural numbers. Then the equation

√
c+(k1) =√

c+(k2) is equivalent to the equation q2k1 + q2k2 = λ−1
+ . Since λ−1

+ ∈ (0, 1), there
exists q ∈ (0, 1) solving this equality.

8 We are grateful to S. L. Woronowicz for suggesting the reasoning below.
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Remark 3.6. The formulas for fc, Fc, gc,Gc are consistent with one another
by construction. Nevertheless, it is entertaining to verify this consistency in a di-
rect manner. Taking into account Proposition 2.2 and formula (3.21), we obtain a
sequence of equivalent equalities

r̄c1(Ac) = (χ−1
c ◦ r̄1 ◦ χc)(Ac),

fc(Ac) = (χ−1
c ◦ r̄1)(Fc(A)),

fc(Ac) = χ−1
c (Fc(−A)),

πc
±(fc(Ac)) = π±(Fc(−A)),

fc(π
c
±(Ac)) = Fc(−π±(A)),

fc(π
c
±(Ac))ek = Fc(π∓(A))ek.

Recalling (2.8) and (2.10) one can see that the last equality is true. Similarly, taking
advantage of the polar decomposition B∗

c = Vc|B∗
c |, r̄c1(Vc) = Vc and (3.23), we

get

r̄c1(B
∗
c ) = (χ−1

c ◦ r̄1 ◦ χc)(B∗
c ),

r̄c1(Vc|B∗
c |) = (χ−1

c ◦ r̄1)(χc(B
∗
c )),

r̄c1(Vc)r̄
c
1(|B∗

c |) = (χ−1
c ◦ r̄1)(B

∗Gc(A)),

Vcgc(Ac) = χ−1
c (B∗Gc(−A)),

πc
±(Vcgc(Ac)) = π±(B∗Gc(−A)),

πc
±(Vc)gc(π

c
±(Ac))ek = π±(B∗)Gc(π∓(A))ek.

Remembering formulas (2.8), (2.10), (3.22), (3.23), (2.25), the last equality is
evident.

Next, let us consider the rotational invariance with respect to the South–North
Pole axis of the above-studied Z2-actions on quantum spheres. The U(1)-action on
S2
q∞ (see (2.29)) is given on generators by δg(A) = A, δg(B) = g2B. Therefore,

one can infer from Proposition 2.4 that the U(1)-action on S2
qc (c ∈ (0,∞]) and

the reflection r̄c1 are compatible:

δg ◦ r̄c1 = r̄c1 ◦ δg. (3.24)

Remark 3.7. It follows already from (3.24) that δ ◦ r̄c1 = (r̄c1 ⊗ id) ◦ δ. Let us,
however, provide also a direct proof. Since Ac and B∗

c generate C(S2
qc) in the C∗-

algebraic sense, and both r̄c1 and δ are continuous, it suffices to check the desired
equality on Ac and B∗

c . Taking advantage of (3.21) and using the fact that δ is a
C∗-homomorphism, we obtain

(δ ◦ r̄c1)(Ac) = δ(fc(A)) = fc(δ(Ac)) = fc(Ac)⊗ 1

= r̄c1(Ac)⊗ 1 = ((r̄c1 ⊗ id) ◦ δ)(Ac). (3.25)
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To handle B∗
c it is useful to consider its polar decomposition B∗

c = Vc|B∗
c | (see

(3.22)). Now, δ(B∗
c ) = B∗

c ⊗ u∗2 entails

δ(BcB
∗
c ) = BcB

∗
c ⊗ u2u∗2 = |B∗

c |2 ⊗ 1,

whence, by the continuity of the square root function, δ(|B∗
c |) = |B∗

c | ⊗ 1. Conse-
quently,

δ(Vc)(|B∗
c | ⊗ 1) = δ(B∗

c ) = B∗
c ⊗ u∗2 = (V ⊗ u∗2

)(|B∗
c | ⊗ 1). (3.26)

Thus, due to the invertibility of |B∗
c |⊗ 1, we have δ(Vc) = Vc ⊗u∗2. (We chose B∗

c

rather than Bc because, unlike |Bc|, |B∗
c | is invertible.) On the other hand, r̄c1(Vc) =

Vc (see above) and r̄c1(|B∗
c |) = gc(Ac) (see (3.23)). To complete the proof, one can

reason in the same way as for the generator Ac.

We end this section by recalling K-facts for the quantum disc. Since C(D2
q) is

isomorphic to the Toeplitz algebra, the ‘standard’ exact sequence [B-B86, p. 78]
(cf. (1.2), (2.32), (4.32)) is equivalent to:

0 −→ K −→ C(D2
q) −→ C(S1) −→ 0, (3.27)

from which it follows that

K0(C(D
2
q))

∼= Z, K1(C(D
2
q))

∼= 0 ([W-NE93, p. 123]). (3.28)

4. Quantum Real Projective Space

Our first aim is to define on the equator quantum sphere S2
q∞ a Z2-action mimicking

the antipodal action of Z2 on S2. The geometrical meaning of generators (see 2.20)
hints at the formulas r2(A) = −A, r2(B) = −B. Owing to the even nature of
algebraic relations in P(S2

q∞), these equalities indeed define the desired action
on P(S2

q∞). (Note that this recipe would not work for P(S2
qc), c ∈ [0,∞).) The

∗-algebra of quantum real projective 2-space can now be defined by

DEFINITION 4.1 ([H-PM96]). P(RP 2
q ) = {a ∈ P(S2

q∞) | r2(a) = a}.

Remark 4.2. Recall that ,R ◦ r2 = (r2 ⊗ id) ◦ ,R (see above Section 6 in
[P-P87]), where ,R is the restriction to P(S2

q∞) of the coproduct , in P(SUq(2)).
(Since both r2 and,R are algebra homomorphisms, it suffices to check this formula
on generators, where it is true due to (2.15) and ,D1ij = ∑3

k=1 D1ik ⊗ D1kj .)
Thus the antipodal action and the SUq(2)-action on the equator quantum sphere
are compatible. Consequently, just as quantum spheres themselves, RP 2

q is an (em-
beddable) quantum homogeneous space of SUq(2), i.e., ,(P (RP 2

q )) ⊆ P(RP 2
q )⊗

P(SUq(2)).
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Unlike the quantum disc, RP 2
q is a Z2-Galois quotient of the equator quantum

sphere, i.e., S2
q∞ → RP 2

q is an (algebraic) quantum principal bundle [H-PM96,
Proposition 2.10]. As mentioned in the proof of Proposition 3.2, the elements
AkBl , AmB∗n, n > 0, form a basis of P(S2

q∞). Taking this into account, it is
straightforward that P(RP 2

q ) is the ∗-subalgebra of P(S2
q∞) generated by A2, B2

and AB. We put

P = A2, R = B2, T = AB, (4.1)

and find immediately the following relations:

P = P ∗, T 2 = q2PR, RT ∗ = q2T (−q4P + 1), R∗T = q−2T ∗(−P + 1), (4.2)

RR∗ = q12P 2 − q4(1 + q4)P + 1, R∗R = q−4P 2 − (1 + q−4)P + 1, (4.3)

T T ∗ = −q4P 2 + P, T ∗T = q−4(P − P 2), (4.4)

RP = q8PR, RT = q4TR, PT = q−4T P. (4.5)

PROPOSITION 4.3. Let Iq be the ∗-ideal in the free ∗-algebra C〈P,R, T 〉 gener-
ated by the relations (4.2)–(4.5). Then the ∗-algebra C〈P,R, T 〉/Iq is isomorphic
to P(RP 2

q ).
Proof. There exists a ∗-algebra epimorphism f : C〈P,R, T 〉/Iq → P(RP 2

q )

given on generators by f (P ) = A2, f (R) = B2, f (T ) = AB. On the other
hand, we can define a linear map g: P(RP 2

q ) → C〈P,R, T 〉/Iq by its values
on the elements of a basis of P(RP 2

q ): g(A
2kB2l) = P kRl, g(A2k+1B2l+1) =

P kT Rl, g(A2mB∗2(n+1)) = PmR∗n+1, g(A2m+1B∗2n+1) = q2PmT ∗R∗n. Evidently,
f ◦ g = id. Consequently g is injective and the above elements of C〈P,R, T 〉/Iq
are linearly independent. To obtain the reverse equality g ◦ f = id, it suffices
to show that these elements span C〈P,R, T 〉/Iq . Assume inductively that every
monomial in P,R, T ,R∗, T ∗ of length at most n is in the span. This is clearly
true for n = 1. Take now an arbitrary monomial Mn+1 of length n + 1. It can
always be written as MnW , where Mn is a monomial of length n and W is one
of the elements P,R, T ,R∗, T ∗. By assumption, Mn is a linear combination of
P kRl, P kT Rl, PmR∗l+1, PmT ∗R∗l . Using the commutation relations (4.2)–(4.5)
among generators, it can be directly verified that each of the monomials MnW is
again in the span. ✷

In order to extend the antipodal Z2-action to C(S2
q∞), note first that (2.29)

entails

r2(A) = (r̄1 ◦ δ√−1)(A), r2(B) = (r̄1 ◦ δ√−1)(B). (4.6)

Therefore, we can define the completion of r2 by

r̄2 := r̄1 ◦ δ√−1: C(S2
q∞) −→ C(S2

q∞). (4.7)
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Observe that we need to put g = √−1 rather than g = −1 because this U(1)-
action comes from SU(2) which is the double-cover of SO(3). Therefore, to rotate
the quantum sphere by the angle π (antipodal action is such a rotation composed
with reflection), we take g = eiπ/2 rather than g = eiπ . Since both r̄1 and δ√−1 are
C∗-homomorphisms, we can define the C∗-algebra of RP 2

q as

DEFINITION 4.4. C(RP 2
q ) := {a ∈ C(S2

q∞) | r̄2(a) = a}.

Arguing as in Proposition 3.3 (second part of the proof), we get that the com-
pletion of P(RP 2

q ) with respect to the norm on C(S2
q∞) coincides with the thus

defined C(RP 2
q ). To study the structure of this C∗-algebra, let us prove:

THEOREM 4.5. There are no unbounded ∗-representations of the ∗-algebra
P(RP 2

q ). Up to the unitary equivalence, all irreducible (bounded) ∗-representations
of this algebra are the following:

(i) A family of one-dimensional representations ρθ : P(RP 2
q ) → C parameterized

by θ ∈ [0, 2π), which are given by

ρθ(P ) = ρθ(T ) = 0, ρθ (R) = eiθ . (4.8)

(ii) An infinite-dimensional representation ρ (in a Hilbert space H with an ortho-
normal basis {ek}k∈N) given by

ρ(P )ek = q4kek, (4.9)

ρ(T )ek =
{

0, k = 0,

q2(k−1)(1 − q4k)1/2ek−1, k > 1,
(4.10)

ρ(T ∗)ek = q2k(1 − q4(k+1))1/2ek+1, k � 0, (4.11)

ρ(R)ek =
{

0, k = 0, 1,

(1 − q4k)1/2(1 − q4(k−1))1/2ek−2, k > 1,
(4.12)

ρ(R∗)ek = (1 − q4(k+1))1/2(1 − q4(k+2))1/2ek+2, k � 0. (4.13)

Proof. Suppose that ρ is an unbounded ∗-representation ([S-K90, Definition
8.1.9]) of P(RP 2

q ). The relations T ∗T = q−4(P − P 2), P = P ∗ and the formula
Sp(f (X)) = f (Sp(X)) for a polynomial function f and the spectrum of a closed
(not necessarily bounded) operator X whose spectrum is a proper subset of C

[DS88, p. 604], e.g., for the self-adjoint operator ρ(P ), entail that 0 � ρ(P ) � 1,
so that ρ(P ) is bounded. It follows then from the relations (4.3) and (4.4) that also
ρ(R) and ρ(T ) are bounded. Therefore, unlike P(D2

q4), the ∗-algebra P(RP 2
q ) has

no unbounded representations.
Now, let ρ be an irreducible bounded ∗-representation in a Hilbert space H . As

before, we have 0 � ρ(P ) � 1. Let ρ(P ) = 0. Then T ∗T = q−4(P −P 2) implies
that also ρ(T ) = 0. Hence, the only remaining relation is ρ(R∗R) = 1 = ρ(RR∗),
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and we can see that the image of ρ is commutative. Since the only irreducible
representations of a commutative algebra are one-dimensional, we arrive at (i).

Let us now assume ρ(P ) �= 0. It is immediate from RP = q8PR and PT =
q−4T P that Kerρ(P ) is ρ-invariant. Due to the irreducibility and the boundedness
of ρ, either Kerρ(P ) = H or Kerρ(P ) = 0. Since the first case is excluded by
the assumption ρ(P ) �= 0, we have Kerρ(P ) = 0. Using the characterization
of elements of the spectrum by approximate eigenvectors and taking advantage of
the relation PT = q−4T P we will show that the spectrum of ρ(P ) consists of
the eigenvalues q4k, k ∈ N, and their limiting point 0. We already know that the
spectrum of ρ(P ) lies in the interval [0, 1]. Next, note that 0 cannot be an isolated
element of the spectrum (eigenvalue) because this would contradict Ker(ρ(P )) =
0. If 1 would be the only element of the spectrum, we would have ρ(P ) = 1, and
consequently, due to PT = q−4T P , ρ(T ) would vanish. This would contradict
ρ(T T ∗) = 1 − q4 resulting from the relation T T ∗ = −q4P 2 + P . Thus 1 cannot
be the only element in the spectrum. Summing up, we have shown that there exists
λ ∈ Sp(ρ(P )) ∩ (0, 1).

By [KR97, Lemma 3.2.13], there exists a sequence (ξn)n∈N of unit vectors in
the representation space H such that

lim
n→∞ ‖ρ(P )ξn − λξn‖ = 0. (4.14)

We will now show that there exist N ∈ N and C > 0 such that ‖ρ(T )ξn‖ � C for
n � N . To estimate ‖ρ(T )ξn‖, we use T ∗T = q−4(P − P 2). Now, the right-hand
side of this equality we want to put in a form allowing us to apply (4.14). Adding
and subtracting λ2 − λ gives:

(P − P 2) = (P − λ)+ (λ2 − P 2)− (λ2 − λ)

= (1 − λ− P)(P − λ)+ λ(1 − λ). (4.15)

Therefore, using the triangle inequality and ‖a‖‖η‖ � ‖aη‖, we obtain

‖(ρ(P )− ρ(P 2))ξn‖
� |λ(1 − λ)| − ‖1 − λ− ρ(P )‖‖(ρ(P ) − λ))ξn‖. (4.16)

On the other hand,

‖ρ(T ∗)‖‖ρ(T )ξn‖ � ‖ρ(T ∗T )ξn‖ = q−4‖(ρ(P )− ρ(P 2))ξn‖. (4.17)

Combining (4.16) with (4.17) and remembering that ‖ρ(T )∗‖ = ‖ρ(T )‖ �= 0
(ρ(T ) = 0 would contradict (4.4) and ρ(P ) �= 0), we get

‖ρ(T )ξn‖ � |λ(1 − λ)|
q4‖ρ(T ∗)‖ − ‖(ρ(P )− λ)ξn‖‖1 − λ− ρ(P )‖

q4‖ρ(T ∗)‖ . (4.18)

Since (|λ(1 − λ)|)/(q4‖ρ(T ∗)‖) is positive, the existence of the desired N and C

follows from (4.14). Hence we conclude that

ηn := ρ(T )ξn

‖ρ(T )ξn‖ (4.19)
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are well-defined unit vectors for n � N . Our goal now is to show

lim
n→∞ ‖ρ(P )ηn − q−4ληn‖ = 0, (4.20)

which is tantamount to q−4λ ∈ Sp(ρ(P )). Assume n � N . Then ‖ρ(T )ξn‖ � C.
Using PT = q−4T P , we have

‖ρ(P )ηn − q−4ληn‖ = ‖ρ(T )ρ(P )ξn − λρ(T )ξn‖
q4‖ρ(T )ξn‖

� ‖ρ(T )‖
q4C

‖ρ(P )ξn − λξn‖. (4.21)

Consequently, (4.20) follows from (4.14). Thus we have shown that

λ ∈ Sp(ρ(P )) ∩ (0, 1) ⇒ q−4λ ∈ Sp(ρ(P )). (4.22)

Therefore, there exists k such that q−4kλ = 1, for otherwise we would get an un-
bounded sequence λ, q−4λ, q−8λ, . . . , q−4kλ, . . . ∈ Sp(ρ(P )) contradicting
Sp(ρ(P )) ⊆ [0, 1]. Hence Sp(ρ(P )) ⊆ {q4k | k ∈ N} ∪ {0}. It also follows that
1 ∈ Sp(ρ(P )). Thus 1 is isolated in Sp(ρ(P )), so that it is an eigenvalue, and there
exists a vector ξ such that ρ(P )ξ = ξ , ‖ξ‖ = 1. (Notice that now we evidently
have ‖ρ(P )‖ = 1.)

It follows from the relation T ∗P = q−4PT ∗ that ρ(T ∗k)ξ are eigenvectors of
ρ(P ) corresponding to the eigenvalue q4k . Let us prove inductively that all these
eigenvectors are different from zero. For n = 0, the statement ρ(T ∗n)ξ �= 0 is
automatically true. Assume now that ρ(T ∗n)ξ �= 0 for some n ∈ N. Then, using
T T ∗ = −q4P 2 + P and T ∗P = q−4PT ∗, one obtains

T T ∗n+1 = T ∗n(q4nP − q8n+4P 2). (4.23)

Therefore, ρ(T )ρ(T ∗n+1)ξ = (q4n − q8n+4)ρ(T ∗n)ξ �= 0 and consequently
ρ(T ∗n+1)ξ �= 0. Hence, by induction, ρ(T ∗n)ξ �= 0, ∀n ∈ N. This proves that
Sp(ρ(P )) = {q4k | k ∈ N} ∪ {0}. Since ρ(P ) is self-adjoint and ρ(T ∗k)ξ are
eigenvectors of different eigenvalues of ρ(P ), they are mutually orthogonal. Thus,
the vectors

ek := ρ(T ∗k)ξ
‖ρ(T ∗k)ξ‖ , k ∈ N, (4.24)

form an orthonormal system. Let us now show that the span of the ek’s is closed
under the action of the entire algebra. We already know that

ρ(P )ek = q4kek. (4.25)

On the other hand, the formula (4.23) entails

‖ρ(T ∗k+1
)ξ‖ = 〈ρ(T )ρ(T ∗k+1

)ξ, ρ(T ∗k)ξ 〉1/2

= 〈ρ(T ∗k)(q4k − q8k+4)ξ, ρ(T ∗k)ξ 〉1/2

= q2k(1 − q4(k+1))1/2‖ρ(T ∗k)ξ‖. (4.26)
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Hence, from the definition (4.24) we have

ρ(T ∗)ek = q2k(1 − q4(k+1))1/2ek+1. (4.27)

The relation T ∗T = q−4(P − P 2) implies that ρ(T )e0 has zero length:

‖ρ(T )e0‖2 = 〈e0, ρ(T
∗)ρ(T )e0〉 = 0. (4.28)

Thus ρ(T )e0 = 0. Similarly, R∗R = q−4P 2 − (1 + q−4)P + 1 and PT ∗ = q4T ∗P
entail that ρ(R)e0 = ρ(R)e1 = 0. Using the equality T T ∗ = −q4P 2 + P , one
obtains

ρ(T )ek = q2(k−1)(1 − q4k)1/2ek−1, k > 0. (4.29)

Furthermore, a straightforward computation taking advantage of relations among
generators gives

ρ(R)ek = (1 − q4k)1/2(1 − q4(k−1))1/2ek−2, k � 2. (4.30)

Similarly, remembering appropriate relations (in particular T 2 = q2PR), we com-
pute:

ρ(R∗)ek = ρ(R∗T ∗k)ξ‖T ∗kξ‖−1

= q−4kρ(T ∗kR∗)ξ‖T ∗kξ‖−1

= q−4k−2ρ(T ∗kq2R∗P)ξ‖T ∗kξ‖−1

= q−4k−2ρ(T ∗(k+2))ξ‖T ∗kξ‖−1

= (1 − q4(k+1))1/2(1 − q4(k+2))1/2rk+2, k � 0. (4.31)

Therefore the Hilbert space He := span{ek} is a closed invariant subspace of H ,
and we have He = H by the irreducibility of the bounded representation ρ. Any
other irreducible representation ρ ′ with ρ ′(P ) �= 0 generates an orthonormal basis
in the same way, so it has to be unitarily equivalent to ρ. ✷

Observe that the irreducible representations of the above theorem are restric-
tions of representations of C(S2

q∞). More precisely, we have that ρ2θ is the re-
striction of πθ , and ρ is the restriction of π+. Thus all irreducible representations
of C(RP 2

q ) extend to representations of C(S2
q∞). Consequently, so does their di-

rect sum which, by [KR97, Corollary 10.2.4], is faithful. Since the norm in any
representation is always less or equal to the norm in a faithful representation and
there exists a faithful representation C(RP 2

q ) extending to C(S2
q∞), the norm of the

universal C∗-algebra of P(RP 2
q ) coincides with the norm inherited from C(S2

q∞).
To see it more directly, note first8 that ρ is a restriction of both π+ and Uπ−U−1,
where U is the unitary defined by Uek = (−1)kek . Hence the faithfulness of ρ
follows from the faithfulness of π+⊕π−. Again, we can conclude that the universal
and inherited norms coincide. Summarizing we have established:

8 We owe this observation to P. Podleś.
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COROLLARY 4.6. The C∗-algebra C(RP 2
q ) is the universal C∗-algebra of

P(RP 2
q ).

Remark 4.7. Similarly to the case of the reflection action r̄c1 , we want the dia-
gram

C(S2
qc)

r̄c2

πc+⊕πc−
C∗(S) ⊕σ C

∗(S) C(S2
q∞)

r̄2

π+⊕π−

C(S2
qc) πc+⊕πc−

C∗(S) ⊕σ C
∗(S) C(S2

q∞)π+⊕π−

to be commutative. To this end, we define the antipodal Z2-actions on the equi-
lateral spheres by r̄c2 := χ−1

c ◦ r̄2 ◦ χc. It is clear that {a ∈ C(S2
qc) | r̄c2(a) = a} ∼=

C(RP 2
q ). Furthermore, it follows directly from definitions, Proposition 2.4 and

(3.24) that r̄c2 = r̄c1 ◦ δ√−1 = δ√−1 ◦ r̄c1 . Remembering also that U(1) is Abelian, we
have that the antipodal actions are compatible with the U(1)-actions on quantum
spheres: δg ◦ r̄c2 = r̄c2 ◦ δg .

Let us turn now to the computation of K-groups of C(RP 2
q ). Just as in the

classical case (e.g., see [K-M78, Corollary IV.6.47]), we have the following theo-
rem:

THEOREM 4.8. The topological K-groups of the quantum real projective space
RP 2

q are as follows: K0(C(RP
2
q ))

∼= Z ⊕ Z2, K1(C(RP
2
q ))

∼= 0.
Proof. First we need to find an exact sequence analogous to (1.3). Let J be

the closed two-sided ∗-ideal of C(RP 2
q ) generated by P , and let p: C(RP 2

q ) →
C(RP 2

q )/J be the natural surjection. Arguing as in the proof of Theorem 4.5, we
see that in the quotient all relations (see (4.2)–(4.5)) reduce to p(RR∗) = 1 =
p(R∗R). Consequently p(R) is unitary, and we have C(RP 2

q )/J
∼= C∗(p(R)) ∼=

C(S1).

LEMMA 4.9. The ideal J is isomorphic (via the faithful representation ρ) to the
C∗-algebra K of compact operators on a separable Hilbert space.

Proof. The operator ρ(P ) is evidently compact (see Theorem 4.5 for an explicit
formula), whence ρ(J ) ⊆ K . On the other hand, as ρ(P ) is a diagonal operator
with eigenvalues of multiplicity one, all the one-dimensional projections Pk onto
the vectors ek are elements of ρ(J ). (One can apply the continuous functional
calculus to ρ(P ) to generate any Pk.) Furthermore, since also ρ(T ) belongs to
ρ(J ) (see (4.4)) and it is a weighted shift with nonvanishing coefficients, all matrix
units Eij belong to ρ(J ). (They can be obtained from the Pk and ρ(T ).) Therefore,
K ⊆ ρ(J ), and consequently K = ρ(J ). The claim of the lemma follows from
the faithfulness of ρ. ✷
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Denote by i the inverse of the appropriate restriction of ρ, and again by p the
canonical surjection p composed with the isomorphism C(RP 2

q )/J
∼= C(S1). With

the help of Lemma 4.9, we obtain the desired exact sequence:

0 −→ K
i−→ C(RP 2

q )
p−→ C(S1) −→ 0. (4.32)

Since K1(K) ∼= 0, K1(C(S
1)) ∼= Z ∼= K0(K), the 6-term exact sequence of

K-theory yields

0 −→ K1(C(RP
2
q )) −→ Z

∂−→ Z
i∗−→ K0(C(RP

2
q ))

p∗−→ Z −→ 0, (4.33)

where ∂: Z ∼= K1(C(S
1)) → K0(K) ∼= Z is the index map. Due to the exact-

ness of the above sequence, to compute the K-groups it suffices to determine the
index map ∂ . We know from the preceding discussion that p(R) is the unitary
generator of C(S1). Hence [p(R)] generates K1(C(S

1)). We have [p(R)] ∼= 1
via the identification of K1(C(S

1)) with Z. Thus all we need to complete the
calculation is the value of ∂ on [p(R)]. In general, if A is a unital C∗-algebra,
0 → I → A → A/I → 0 the short exact sequence inducing the 6-term
exact sequence, u a unitary element of A/I , and ν ∈ A such that νν∗ = 1 and
ν/I = u, then ∂([u]) = [1 − ν∗ν] (see [B-B86, Section 8.3.2] or [W-NE93,
Remark 8.1.4]). We need to lift the unitary p(R) to an appropriate coisometry
in C(RP 2

q ). As ρ(R) is a weighted double-shift, the desired coisometry could be
given by U(en) = en−2, Ue1 = 0 = Ue2. The operator U satisfies the polar
decomposition ρ(R) = U |ρ(R)|. Furthermore, since p(|R|) = 1 and ρ is faithful,
if there exists ν2 ∈ C(RP 2

q ) such that ρ(ν2) = U , then p(R) = p(ν2) and ν2 is
the desired coisometry. Thus we need to show that U ∈ ρ(C(RP 2

q )). Let U be an
open neighbourhood of {1, q4} such that U∩ {q4k}k=2,...,∞ = ∅, and let β: R → R

be a continuous function given on R \ U by the formula

β(x) = (1 − x)−1/2(1 − q−4x)−1/2. (4.34)

Then U = ρ(R)β(ρ(P )), whence U ∈ ρ(C(RP 2
q )), as needed. Consequently,

∂([p(R)]) = [1 − ν∗
2ν2] ∼= [diag(1, 1, 0, . . .)] ∼= 2. (4.35)

Here in the penultimate equality we identified K0(C(RP
2
q )) with K0(ρ(C(RP

2
q ))),

and in the last step K0(K) with Z. Finally, as ∂ is injective, (4.33) breaks into two
exact sequences:

0 −→ K1(C(RP
2
q )) −→ 0 (4.36)

and

0 −→ Z
2·−→ Z

i∗−→ K0(C(RP
2
q ))

p∗−→ Z −→ 0. (4.37)
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The former gives immediately K1(C(RP
2
q ))

∼= 0, and the latter splits, as Z is a free
module over itself. Therefore we conclude that K0(C(RP

2
q ))

∼= Im i∗ ⊕ Z. On the
other hand, the exactness of (4.37) implies the exactness of

0 −→ 2Z −→ Z
i∗−→ Im i∗ −→ 0. (4.38)

Hence Im i∗ ∼= Z2, and consequently K0(C(RP
2
q ))

∼= Z2 ⊕ Z. ✷
Remark 4.10. It follows from the exact sequence (4.37) that our isomorphism

identifying K0(C(RP
2
q )) with Z2 ⊕ Z maps [1] to (x, 1), x ∈ Z2. This is because

p∗([1]) = [1] ∈ K0(C(S
1)), and we identify the latter with Z via [1] �→ 1. On the

other hand, the K0-class of a minimal projection in K (viewed as 1 ∈ Z) provides
via i∗ the order 2 generator of K0(C(RP

2
q )).

It is an immediate consequence of Theorem 4.8 and (3.28) that C(RP 2
q ) is not

the standard extension of C(S1) by K:

COROLLARY 4.11. The C∗-algebras C(RP 2
q ) and C(D2

q) are not isomorphic,
i.e., C(RP 2

q ) is not the Toeplitz algebra.

Remark 4.12. The C∗-algebra C(S2
q∞) is generated by A and B. The antipodal

Z2-action sends A to −A, B to −B, and C(RP 2
q ) is the fixed-point subalgebra.

There is a conditional expectation (e.g., see [KR97, pp. 570, 571]) E: C(S2
q∞) →

C(RP 2
q ) sending even monomials to themselves and annihilating the odd ones. We

have a ‘quasi-basis’ {u1 := 1, u2 := A, u3 := B∗} for E (in the sense of [W-Y90,
p. 2]). This means that

a =
3∑

i=1

E(aui)u
∗
i =

3∑
i=1

uiE(u
∗
i a), ∀a ∈ C(S2

q∞). (4.39)

Hence

Index(E) :=
3∑

i=1

uiu
∗
i = 1 + A2 + B∗B = 2. (4.40)

We can think of S2
q∞ as a two-fold covering of RP 2

q .
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