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Quantum realization of the bilinear 
interpolation method for NEQR
Ri-Gui Zhou1, Wenwen Hu2, Ping Fan2 & Hou Ian3

In recent years, quantum image processing is one of the most active fields in quantum computation 
and quantum information. Image scaling as a kind of image geometric transformation has been widely 

studied and applied in the classical image processing, however, the quantum version of which does not 

exist. This paper is concerned with the feasibility of the classical bilinear interpolation based on novel 

enhanced quantum image representation (NEQR). Firstly, the feasibility of the bilinear interpolation 

for NEQR is proven. Then the concrete quantum circuits of the bilinear interpolation including scaling 

up and scaling down for NEQR are given by using the multiply Control-Not operation, special adding 

one operation, the reverse parallel adder, parallel subtractor, multiplier and division operations. Finally, 

the complexity analysis of the quantum network circuit based on the basic quantum gates is deduced. 

Simulation result shows that the scaled-up image using bilinear interpolation is clearer and less 

distorted than nearest interpolation.

Image is an important medium for visual information transmission. Image processing is very popular because of 
the need to extract visual information from the natural world. With the rapid development of quantum compu-
tation and quantum information in past several decades, quantum computer has demonstrated a bright prospect 
over the classic computer, such as Feynman’s computation model1, Deutsch’s quantum parallelism assertion2, 
Shor’s integer factoring algorithm3, and Grover’s database searching algorithm4.

Quantum image processing (QIMP), a new sub-discipline of information and image processing, which is 
devoted to utilizing the quantum computing technologies to capture, manipulate, and recover quantum images 
in di�erent formats and for di�erent purposes. �e investigation of QIMP begins with how to store and retrieve 
quantum images in quantum computers. Venegas-Andraca and Bose �rstly proposed the quantum image rep-
resentation of qubit lattice using one qubit to hold one pixel5. �en Latorre presented real ket representation 
using quantum superposition state to store image information6. Le et al.7 next proposed a �exible representation 
of quantum image (FRQI) using quantum superposition state to store the colors and the corresponding positions 
of an image. Further, more quantum image representations were proposed. For instance, a novel enhance quan-
tum representation (NEQR)8 used q qubits encoding the gray-scale value from 0 to 2q − 1, which could perform 
the complex and elaborate color operations conveniently. Quantum log-polar image9 was proposed as a novel 
quantum image representation storing images sampled in log-polar coordinates. Color image representation uti-
lized two sets of quantum states to store M colors and N coordinates, respectively10. A normal arbitrary quantum 
superposition state was used to represent a multi-dimensional image11. A�er that, a simple quantum representa-
tion of infrared images was proposed12.

In addition, some geometric transformation algorithms of quantum images were designed such as two-point 
swapping, �ip, orthogonal rotations, entire translation, cyclic translation, global and local translation13–15. �en, 
the quantum image scaling algorithms16–18 were proposed. In paper16, Sang J et al. realized quantum image scaling 
for FRQI and NEQR using nearest-neighbor interpolation method. Jiang N et al. designed quantum circuits of 
quantum image scaling17. Furthermore, Jiang N et al. proposed the generalized quantum image representation 
(GQIR) and quantum image scaling up based on GQIR and nearest-neighbor interpolation with integer scaling 
ratio18.

In the aspects of quantum protection, some algorithms have appeared recently such as quantum image scram-
bling19–21, quantum watermarking schemes22–25, LSB steganography algorithms based on NEQR26, 27.
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Preliminaries
The novel enhanced quantum representation (NEQR). �e NEQR8 is described as follows:

Supposing the range of the gray-scale value is from 0 to 2q − 1, the gray-scale value CYX of the pixel coordinate 
(Y, X) can be expressed by Eq. (1).
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Hence, NEQR for a 2n × 2n quantum image can be written as
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Figure 1 shows an example of a 2 × 2 image, and the corresponding NEQR of which is on the right.

Classical bilinear interpolation method. Bilinear interpolation method plays an important role in classi-
cal image scaling. In this paper, we mainly study the quantum realization of bilinear interpolation method. �us, 
the classical bilinear interpolation method is reviewed.

For a W × H(width and height) image, the size of the corresponding interpolated image is W′ × H′, which can 
be described in two steps.

Coordinate map. �e coordinate (Y′, X′) of the interpolated image is restored from the positions (Y, X), (Y + 1, 
X), (Y, X + 1) and (Y + 1, X + 1) in the original image. �e corresponding relationship is shown in Fig. 2.
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Calculating pixel value. As shown in Fig. 3, the value of the destination pixel (x, c) can be obtained by Eq. (4)
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where (x0, c0) and (x1, c1) are two known pixels. �at is to say,
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An interpolation can be described in Eq. (5)

Figure 1. An example of 2 × 2 image and its NEQR.

Figure 2. Coordinate map relationship.
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where S is the scaling function, I is the original image, I′ is the interpolated image, ry is the scaling ratio in vertical, 
and rx is the scaling ratio in horizontal. �us, the pixel value in position (Y′, X′) of the interpolated image shown 
in Fig. 2 can be calculated according to Eq. (6)
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Quantum circuit realization. In this section, we design a series of quantum circuit modules to realize some 
special functions.

Basic reversible quantum gates. �ere are a number of existing 3 × 3 reversible gates such as Fredkin 
gate28, To�oli gate29, Peres gate30 and �apliyal Ranganathan gate31. �e quantum cost32, 33 of a reversible gate is 
the number of 1 × 1 and 2 × 2 reversible gates required in its design. �e cost of all the 1 × 1 reversible gates is 
assumed to be zero such as NOT gate, and the cost of all 2 × 2 reversible gates is taken as unity. Any reversible 
gate can be realized using 1 × 1 NOT gates and 2 × 2 reversible gates such as Controlled-V, Controlled-V+ and 
Controlled NOT (CNOT) gates. �us, in simple terms, the quantum cost of a reversible gate is regarded as the 
number of NOT, Controlled-V, Controlled-V+ and CNOT gates required in its implementation circuit. Here, we 
brie�y introduce some basic quantum gates �rst.

�e NOT Gate (X gate) and Hadamard Gate (H gate). �e symbolic representation and matrix representation of 
X gate and H gate are shown in Fig. 4.

�e function of X gate and H gate is as follows:
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�e Controlled-V and Controlled-V+ Gates. �e Controlled-V and Controlled-V+ gates are shown in Fig. 5. If 
the control signal A = 0, then the qubit B will pass through the controlled part unchangeably, i.e., Q = B. When 

Figure 3. Bilinear interpolation method.

Figure 4. X gate and H gate.
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A = 1, then the unitary operation is applied to the input B, i.e., Q = V (B) or V+ (B). Where V is a square-root of X 

gate and = −

−

+ ( )V i
i

1
1

i 1

2
.

�e V and V+ quantum gates have the following properties:

× = × =

× = × =

+ +
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where =







I 1 0

0 1
 is an identity matrix. More details of the V and V+ gates refer to the literature32, 34.

�e CNOT gate. �e CNOT gate shown in Fig. 6 has the mapping (A, B) to (P = A, Q = A ⊕ B), where A, B are 
the inputs and P, Q are the outputs, respectively.

�e To�oli gate (TG). �e TG and its quantum circuit realization are shown in Fig. 7. �e quantum cost of TG 
is 5, which can be seen from Fig. 7(b).

�e Peres gate (PG). �e PG is shown in Fig. 8(a). �e quantum circuit of PG is shown in Fig. 8(b), then, we can 
get that the quantum cost of PG is 4.

Figure 5. �e Controlled-V and Controlled-V+ gates.

Figure 6. �e CNOT gate.

Figure 7. �e TG and its quantum circuit.

Figure 8. PG and its quantum circuit.

Figure 9. TR gate and its quantum circuit.



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 2511  | DOI:10.1038/s41598-017-02575-6

�e �apliyal Ranganathan gate (TR). TR gate and its quantum circuit are shown in Fig. 9. �e quantum cost 
of TR gate is also 4.

Special adding one operation. �e special adding one operation U1 (n) module is shown in Fig. 10, where 
the label • and ◦ represent the control qubit value 1  and 0 , respectively. When U1 (n) works on the quantum 
state 

− −

a a a an n1 2 1 0 , then the result is
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where n is a positive natural number, n ≥ 2, a0, a1, …, an−1 ∈ {0, 1}.

The multiply Control-Not operation. �e quantum circuit of the multiply Control-Not operation is 
shown in Fig. 11(a) and its simpli�ed graph is shown in Fig. 11(b). It utilizes n Control-Not gates to copy the 
n-qubit information of =

− −
Y Y Y YYn n1 2 1 0  into the n ancillary qubits ⊗0 n, where ⋅ ⋅ ⋅

− −
Y Y Y, , ,n n1 2 1  

and |Y0〉 are the control qubits and the n ancillary qubits ⊗0 n are the target qubits. �at is, the input ⊗
⊗Y 0 n 

is changed into the output ⊗Y Y  by using the multiply Control-Not operation.

The reversible parallel full-adder circuit. Islam M S et al.35 proposed the reversible full-adder based on 
the PG. Here, the introduction of the design of half-adder, full-adder and parallel-adder are given.

Reversible half adder (RHA). Figure 12 shows the PG working as a half-adder and its quantum circuit, where 
R = A ⊕ B represents the sum of A + B and Q = AB represents the carry, respectively.

Reversible full adder (RFA). Using two PG gates, the full-adder can be designed shown in Fig. 13(a), where 
R = A ⊕ B ⊕ C represents the sum of (A + B + C) and S = (A ⊕ B)C ⊕ AB represents the carry, respectively.

�e quantum circuit of RFA is shown in Fig. 13(b), and its simpli�ed graph is shown in Fig. 13(c).

Reversible parallel adder (PA). �e parallel adder adding an n-qubit Y to an n-qubit X is designed by one RHA 
and n-1 reversible full-adders as shown in Fig. 14. Here, the sequence 

−

S S S Sn n 1 1 0 represents the sum of X + Y. 

Figure 10. Quantum circuit of U1 (n) module and its simpli�ed graph.

Figure 11. Multiple Control-Not operation and its simpli�ed graph.
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Other unremarked qubits are the garbage outputs and the input qubit 0 is the ancillary constant input. For con-
venience, the block diagram of PA omits the ancillary inputs and the garbage outputs.

The reversible parallel subtractor circuit. �apliyal H. et al.31 designed subtractor using the reversible 
TR gate and further realized optimization in terms of quantum cost and delay36. Here, the concrete parallel sub-
tractor circuit is given.

Figure 12. �e half-adder and its quantum circuit.

Figure 13. �e full-adder and its quantum circuit.

Figure 14. �e reversible parallel adder and its block diagram.
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Reversible half subtractor (RHS). As shown in Fig.15, the inputs of A and B are 1-bit binary number, and the TR 
gate can work as a half subtractor performing A-B operation, where the output R = A ⊕ B produces the di�erence 
between A and B and the output =Q A B generates the corresponding borrow bit. �e quantum circuit of RHS is 
shown in Fig. 15(b), and its simpli�ed graph is shown in Fig. 15(c).

Reversible full subtractor (RFS). �e RFS as shown in Fig. 16 is utilized to realize the operation Y = A − B − C, 
where Q = A ⊕ B ⊕ C represents the di�erence of A − B − C, = ⊕ ⊕S C A B A B( )  represents the borrow bit. �e 
quantum circuit of RFS is shown in Fig. 16(b), and its simpli�ed graph is shown in Fig. 16(c).

Reversible parallel subtractor (PS). �e PS is used to compute the di�erence of two n-bit numbers X and Y, 
where = …

−
X x xn 1 0 and = …

−

Y y y
n 1 0

. �e PS subtracting an n-qubit Y from a n-qubit X is designed by one 
RHS and n-1 reversible full subtractors as shown in Fig. 17, where …

−

d d d dn n 1 1 0 is the result of X-Y, and the 
ancillary constant input is 0. For convenience, the block diagram of PS omits the garbage outputs.

The reversible parallel multiplier (PM). Kotiyal S et al.37 proposed the PM based on the binary tree which 
optimized the ancillary and garbage bits. �e block diagram of PM is shown in Fig. 18, where PM consists of 
multiple reversible parallel adders. �e PM can implement the multiplication X × Y, where =

−
X x x xn 1 1 0 and 

=
−

Y y y y
n 1 1 0

 are the two inputs. An example of 4 × 4 PM is shown in Fig. 19.

The reversible divider (ND). Khosropour A et al.38 realized quantum division circuit based on restoring 
division algorithm as shown in Fig. 20.

Here, = ⋅ ⋅ ⋅
−

P P P Pn2 1 2 1 , = ⋅ ⋅ ⋅
−

D D D Dn 1 2 1 , = ⋅ ⋅ ⋅
−

Q Q Q Qn 1 2 1  are the input registers. Multiply 
P  by 2 can be obtained by the le� shi� (LSH)39 module. For realizing subtracting D  from the highest n qubits of 

P2 , we �rst act quantum Fourier transform (QFT)22 on the highest n qubits of P2  and apply a set of conditional 
rotation operations on the n qubits of D . Secondly, we perform inverse QFT (QFT−1) and check if −P D(2 )  is 
either positive or negative. If it is positive, the qubit Qn  need to be initialized into state |0〉, otherwise, keep Qn  
unchanged, which can be realized using a CNOT gate. If −P D(2 )  is diagnosed to be negative, it should be set 
back to the previous state P2  by simply adding D  to the highest n qubits of −P D2 . Because Qn  contains the 
inverse of the most signi�cant qubits in −P D2 . Hence, the addition should be conditioned on Qn . �is struc-
ture should be repeated n times to ful�ll the division operation. Eventually, Q  is the quotient and the highest n 
qubits of |P〉 is the remainder. Note that we have used only n ancillary qubits for LSH operation.

Figure 15. �e RHS and its quantum circuit.

Figure 16. �e RFS and its quantum circuit.
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For convenience, Fig. 21 is a simpli�ed graph of the quantum division circuit in Fig. 20, where ancillary inputs 
and garbage outputs are omitted, and Q is the quotient.

Feasibility and rationality of bilinear interpolation method. In this paper, the quantum circuit of 
the image scaling based on bilinear interpolation method for NEQR is designed. �erefore, the �rst problem is to 
prove the practicality. �e key idea of the proposed circuits is mathematically explained in Eq. (7)

Figure 17. �e PS and its block diagram.

Figure 18. �e block diagram of PM.
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From Eq. (7), in order to prepare the color information 
′ ′CY X,  in position (Y′, X′) of the resulting image, the 

color information 
+ +

C C C, ,Y X Y X Y X, 1, , 1  and 
+ +

CY X1, 1  in positions (Y, X), (Y + 1, X), (Y, X + 1) and (Y + 1, 
X + 1) of the original image need to be prepared �rst. �e bilinear interpolation method utilizes these four di�er-
ent positions of the original image to map into one position (Y′, X′) of the resulting image as shown in Fig. 2. �e 
dimension of a given original image is known and all the pixels should have �xed color values. At the same time, 
the dimension of the resulting image is known under a certain scaling ratio. �erefore, (Y′, X′) can be considered 

Figure 19. An example of 4 × 4 PM, where PS0 and PS1 represent the partial sums of P0, P1, P2, P3.

Figure 20. Quantum divider circuit based on restoring division algorithm.

Figure 21. �e simpli�ed graph of the quantum division circuit.
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as the input state when designing quantum circuits. Under the guidance of this key idea, the quali�cation process 
is as follows.

�eorem �e bilinear interpolation method generated by Eq. (7) is rational for a quantum image based on 
NEQR.

Proof Assume that the size of an original quantum image I  is 2n × 2n, and the gray range of which is [0, 
2q − 1], the NEQR of the image is expressed by Eq. (8).

∑ ∑ ∑= = ⊗ ⊗
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n n n2

Also suppose image scaling ratio in the horizontal and vertical dimensions is 2m, than is ry = rx = 2m, then the 
size of the resulting image ′I  is 2n+m × 2n+m. �e concrete feasibility of the bilinear interpolation is proven 
through the following analysis.

Problem 1 How to build the interpolation mapping relationship between the pixel of the resulting image and 
the original image?

�e position (Y′, X′) of the resulting image has the mapping relationship with the positions (Y, X), (Y + 1, X), 
(Y, X + 1) and (Y + 1, X + 1) of the original image as shown in Fig. 2.

According to Eq. (3), we derive the Eq. (9) 
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where ′ = ′ ′ … ′ ′
+ − + −Y Y Y YY n m n m1 2 1 0 and ′ = ′ ′ … ′ ′

+ − + −X X X XX n m n1 m 2 1 0.
To build the mapping relationship described in Fig. 2, the multiply Control-Not operations and special adding 

one operation U (n)1  are chosen as the unitary operators. �e function of the multiply Control-Not operators is to 
utilize n Control-Not gates to copy the n qubits ′ ′ ′

+ − + −Y YYn m n m m1 2  into the n ancillary qubits ⊗0 n. �e unitary 
operator U1(n) is used to get the nearest-neighbor position of the current position. �rough these two unitary 
operators, the interpolation mapping relationship between the position of original image and the interpolated 
image has been established. �e details are described in Figs 22 and 23.

Problem 2 How to calculate the color values of the resulting image?
�e color information 

′ ′CY X,  of the position (Y′, X′) in the interpolated image is calculated by the four pixels 
value in position (Y, X), (Y + 1, X), (Y, X + 1) and (Y + 1, X + 1) of the original image. �e gray range 

′ ′CY X,  of 
the interpolated imageis [0, 2q − 1], therefore, q qubits are needed to store the pixels value of 

′ ′CY X, .

Figure 22. �e scaling-up circuit of bilinear interpolation method for NEQR.
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Firstly, four quantum oracle operators ΩY,X, ΩY+1,X, ΩY,X+1 and ΩY+1,X+1 are used to compute the original pixel 
values of 

+ +
C C C, ,Y X Y X Y X, 1, , 1  and 

+ +
CY X1, 1 , respectively. A quantum oracle operator ΩY,X can realize the 

aim of assigning color information CY X,  to the ancillary qubits ⊗0 q8, which can be expressed by Eq. (10) 

Ω = ⊗ Ω = ⊗ ⊕ = ⊗ =
⊗

=

−

=

−

=

−

C C C0 ( 0 ) 0
(10)Y X

q

i
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i
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q
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Y X
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Y X,
0

1

,
0

1

,
0

1

, ,

where Ω = .. −i q, 0, , 1Y X
i

,  can be described as the following.
If =C 1Y X

i
, , ΩY X

i
,  is a 2n-Control-Not qubit gate. Otherwise, it is a quantum identity gate. �at is to say, every 

oracle operator Ω = .. −i q, 0, , 1Y X
i

,  is at most a 2n-Control-Not qubit gate. For other three oracle operators 
ΩY+1,X, ΩY,X+1, ΩY+1,X+1, the principle is also same as ΩY,X

8.
�erefore, we can calculate each pixel value in position (Y′, X′) of the resulting image using the pixel values of 

the four corresponding positions in the original image. From Eq. (3), Eq. (6) and Eq. (9), we can calculate the 
interpolated pixel value 

′ ′CY ,X  described by the Eq. (11).

Figure 23. �e scaling-down circuit of bilinear interpolation method for NEQR.
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We need implement some arithmetic operations to calculate the pixel value 
′ ′CY X, . According to Eq. (9), 

Y′ − Y × 2m and X′ − X × 2m are the remainder of =
′

− −
y y y

Y

m m2 1 2 0m  and =
′

− − x x x
X

m m2 1 2 0m . �e m Control-Not 

operations are used to copy the remainder into the m qubits ⊗0 m. Other arithmetic operations such as subtrac-
tion, multiplication, addition and division are implemented by corresponding arithmetic circuits mentioned in 
the preceding chapter. Hence, the pixel value of 

′ ′CY X,  can be derived through the analysis above, the concrete 
circuit is shown in Figs 22 and 23.

Quantum realization of the bilinear interpolation method. In the previous section, the theoretical 
feasibility of the bilinear interpolation method for NEQR is discussed using the multiply Control-Not operation, 
special adding one operation and a series of quantum circuit modules. �is section gives the concrete quantum 
realization circuit of the bilinear interpolation method for NEQR, including scaling up and scaling down.

Quantum image scaling up circuit of the bilinear interpolation for NEQR. Assume that a 2n × 2n 
quantum image I  is scaled up to a 2n+m × 2n+m quantum image ′I  based on the bilinear interpolation. �e scale 
ratio in the vertical and horizontal level is both 2m, that is to say, ry = rx = 2m.

The concrete scaling-up circuit for NEQR. Figure 22 provides the quantum image scaling-up circuit that 
implements the bilinear interpolation for NEQR. �e concrete steps can be described as follows.

Step 1 Firstly, obtain the =
′

Y
Y

2m  using n Control-Not gates on the coordinate ⋅ ⋅ ⋅
+ − + −

Y YYn m n m m1 2 . 

Correspondingly, obtain the =
′

X
X

2m  through n Control-Not gates on the coordinate 
+ − + −

X XXn m n m m1 2 . 

�en, obtain the positions (Y + 1, X), (Y, X + 1) and (Y + 1, X + 1) using 6n Control-Not gates and two special 
adding one operators. �erefore, the coordinate mapping has been built between the position (Y′, X′) in resulting 
image and the positions (Y, X), (Y + 1, X), (Y, X + 1) and (Y + 1, X + 1) in original image. In addition, 4 
(m + 1)-ancillary constant qubits ⊗1 0 m and 8 m Control-Not gates are needed to copy the qubits 

−

Y Ym 1 0  and 
qubits 

−

X Xm 1 0  to 8 m ancillary qubits ⊗0 m.
Step 2 Employ four oracle operators ΩY,X, ΩY+1,X, ΩY,X+1 and ΩY+1,X+1 to generate the corresponding color 

information 
+ +

C C C, ,Y X Y X Y X, 1, , 1  and 
+ +

CY X1, 1 .
Step 3 Calculate the pixel value 

′ ′CY X,  of the interpolated image through the four pixel values 

+ +
C C C, ,Y X Y X Y X, 1, , 1  and 

+ +
CY X1, 1  as described in Eq. (10). �e realization circuit is shown in Fig. 22.

Circuit complexity. �e circuit network complexity depends on the number of the elementary gate in QIMP. 
�e complexity of the basic quantum gate is considered to be 1 including NOT gate, Control-Not gate and any 
2 × 2 unitary operator40. In addition, when designing the quantum circuit, introducing ancillary qubit 0  or 1  is 
a commonly used method. �e complexity of Fig. 22 is analyzed as follows.

In step 1, it needs 8(n + m) Control-Not gates and two U1(n) operators. As shown in Fig. 10, each unitary 
operator U1(n) has n − 1 Not gates, n + 1 Control-Not gates, and n − 1 multi-Control-Not gates of 
σ σ σΛ ⋅ ⋅ ⋅ Λ Λ

−
( ), , ( ), ( )x n x n x2 1  and one (n − 1)-Control-Not gate, where σx is the NOT gate. According to Lemma 

6.1 and Lemma 7.1 in ref. 40, for any 2 × 2 unitary matrix U and any n ≥ 3, a Λn−1(U) gate can be simulated by n 
qubits circuit consisting of (2n−1 − 1)Λ1(V) gates, a Λ1(V+) gate and (2n−1 − 2)Λ1(σx) gates, where V represents the 
unitary operator, V+ is the hermitian conjugate of V. We can deduce that the network complexity of single quan-
tum operator U1(n) is Ο(2n+2). �us, the total quantum cost in this step is Ο(2n+3 + 8n + 8m).

In step 2, it includes four oracle operators of ΩY,X, ΩY+1, X, ΩY,X+1 and ΩY+1,X+1. �e complexity of oracle oper-
ator is Ο(q ⋅ 2n)8, therefore, the total quantum cost in this step is Ο(q ⋅ 8n).

In step 3, it includes 4 parallel subtractors, 8 parallel multipliers, 3 parallel adders, 2 reversible dividers.
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�e network complexity of PS. �e PS realizes the subtraction between two m + 1 qubits. It needs 1 RHS and m 
reversible full subtractors. �e quantum cost of RHS (see Fig. 15) is 6, and the quantum cost of RFS (see Fig. 16) 
is 7. So the quantum cost of single PS is 7 m + 6.

�e quantum cost of PA. As we know, the pixel value is represented by q qubits, the resulting pixel value can 
be calculated by implementing ND modules twice. �us, the three parallel adders perform the operation of 
q + 2m + 2 qubits plus q + 2m + 2 qubits, it needs 1 RHA and (q + 2 m + 1) reversible full adders. �e quantum 
cost of RHA (see Fig. 12) is 4, and the quantum cost of RFA (see Fig. 13) is 8. �erefore, the quantum cost of single 
PA is 8q + 16 m + 20.

�e network complexity of PM. As shown Fig. 22, it is easy to �nd there are 4 parallel multipliers, each of which 
performs m + 1 qubits multiply by m + 1 qubits. We can see form Fig. 19 that each PA can add two m + 1 qubits at 
most. �us, the number of PA required in PM is + + +

+1 2
m 1

2
.

In another case, the other 4 parallel multipliers perform 2 m + 2 qubits multiply by q qubits respectively (sup-
pose q ≥ 2m + 2). We can see form Fig. 19 that each PA can add two 2(m + 1) qubits at most. �us, the number of 

PA required in PM is + + +
+1 2

m2 2

2
.

�us, we can calculate that the network complexity of PM is

×
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�e network complexity of ND. According to paper38, the quantum cost of q-qubit ND is 3q3 + 6q2 + q.
Consequently, the complexity of the proposed scaling-up circuit shown in Fig. 22 is calculated by Eq. (12).
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Quantum image scaling-down circuit of the bilinear interpolation for NEQR. Assume that a 
2n+m × 2n+m quantum image I  is scaled down to a 2n × 2n quantum image ′I  based on bilinear interpolation. �e 
scale ratio is 1

2m
 whether in the vertical or horizontal level, that is to say = = =

−r r 2y x
m 1

2m .

Concrete circuit for NEQR. Fig. 23 shows the quantum image scaling-up circuit that implements the bilin-
ear interpolation for NEQR. �e concrete steps are described as follows.

Step 1 First of all, obtain the positions of (Y + 1, X), (Y, X + 1) and (Y + 1, X + 1) using 6(n + m) Control-Not 
gates and two special adding one U1(n + m) operators. �en, obtain the =

′
Y

Y

2m  acting n Control-Not gates on the 

coordinate 
+ − + −

Y YYn m n m m1 2 . Correspondingly, obtain the =
′

X
X

2m  through n Control-Not gates on the coor-

dinate 
+ − + −

X XXn m n m m1 2 . �erefore, the coordinates mapping relationship has been built between the posi-
tion (Y′, X′) of the resulting image and the positions in (Y, X), (Y + 1, X), (Y, X + 1) and (Y + 1, X + 1) of the 
original image.

Step 2 Employ four oracle operators ΩY,X, ΩY+1,X, ΩY,X+1 and ΩY+1,X+1 to generate the color information 

+ +
C C C, ,Y X Y X Y X, 1, , 1  and 

+ +
CY X1, 1 .

Step 3 Calculate pixel value 
′ ′CY X,  of the interpolated image through the four pixel values of 

+ +
C C C, ,Y X Y X Y X, 1, , 1  and 

+ +
CY X1, 1  described in Eq. (10). The concrete realization circuit is shown in 

Fig. 23.

Circuit complexity. In step 1, it needs 8n + 14 m Control-Not gates and 2 U1(n + m) operators. Based on 
the analysis above, the complexity of a single quantum operator U1(n + m) is Ο(2n+m+2). �us, the total network 
complexity in this step is Ο(2n+m+3 + 8n + 14m).

In step 2, it includes four oracle operators of ΩY,X, ΩY+1,X, ΩY,X+1 and ΩY+1,X+1. �en, the total network com-
plexity in this step is Ο ⋅ +q n m( 8( )).

In step 3, it includes 4 parallel subtractors, 8 parallel multipliers, 3 parallel adders and 2 reversible dividers.
Consequently, the network complexity of the proposed scaling-up circuit shown in Fig. 23 is
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Simulation experiments and analysis. In this section, the simulation experiments are performed to 
show the interpolation results. All experiments are simulated by MATLAB sofeware.

Simulation results of interpolation for NEQR. Fig. 24 gives a concrete procedure of quantum bilinear 
interpolation. Firstly, we need to transform a classic image into a quantum image I  expressed by NEQR. �en, 
the quantum image I  acts as the input image. �e resulting image (the interpolated image) ′I  can be derived 
using the proposed quantum bilinear interpolation method. Finally, we can retrieve the interpolated classic image 
by quantum measurement.

�e simulation results using di�erent interpolation method are shown in Fig. 25. Figure 25(a) is a 64 × 64 
original image named Lena. Figs 25(b,c) are the corresponding 128 × 128 scaling-up NEQR images using 
nearest-neighbor interpolation and bilinear interpolation, respectively. �e scaling ratio is rx = ry = 2, which 
means n = 6, m = 1 and q = 8. Figure 25(d,e) are the corresponding 256 × 256 scaling-up NEQR images using 
nearest-neighbor interpolation and bilinear interpolation, respectively. �e scaling ratio is rx = ry = 4, which 
means n = 6, m = 2 and q = 8. �e simulation results indicate that the scaled-up image using bilinear interpola-
tion is clearer than nearest-neighbor interpolation.

Quantum measurement of the interpolated image. An interpolated NEQR image can be described 
as following.

∑ ∑′ = ⊗ ′ ′
+

′=

−

′=

−

′ ′

+ +

I C Y X
1

2n m
Y X

Y X
0

2 1

0

2 1n m n m

Obviously, an interpolated NEQR image is a quantum superposition state, which can be regarded as a com-
posite quantum system composed of 2n + q qubits.

Actually, the quantum state cannot be practically observed in quantum system because a measurement will 
destroy the superposition. What is worse, it is not allowed to make copies of the state and measure each one due 
to the non-cloning theorem. Hence, it is necessary to repeat constructing the states of interpolated image n (n > 1) 
times and measure each state to summarize the measurement results, through which we can estimate the interpo-
lated image. We execute probability measurement on the interpolated image. Probability measurement converts 
the quantum information into classical information in form of probability distributions, i.e., it converts a single 
qubit state ψ α β= +0 1  into a probability classical bit M (distinguished from a qubit by drawing it as a 
double-line wire), which is 0 with probability α2 or 1 with probability β2, as shown in Fig. 26.

Next, we analyze the impact of quantum measurements on the interpolated image. �e measurement results 
of the 2n+m × 2n+m interpolated NEQR image with gray range [0, 2q−1] are some collection of basis states 

...
+ +{ }S S S, , , n m q1 2 2( ) . A�er multiple measurements, these basis states follow a probability distribution. �e 

measurement will continue until the probability of each basis state is stabilized at a �xed value. According to law 
of large numbers, there is a limit to these basis states which can be used to estimate the color information of the 
interpolated image. �e block diagram of the measurement procedure on quantum computers is shown in Fig. 27.

Conclusions
In this paper, the bilinear interpolation method for NEQR is proposed for the �rst time. �e proposed method 
constructs an interpolated image, which mainly consists of two steps: (1) position mapping (2) calculate and 
generate the new color information. In the position mapping stage, the multiply Control-Not operation and 
special adding one operation are used to build the position mapping relationship between the position (Y′, X′) in 
interpolated image and the positions (Y, X), (Y + 1, X), (Y, X + 1) and (Y + 1, X + 1) in the original image. A�er 

Figure 24. �e concrete procedure of quantum bilinear interpolation method.
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Figure 25. �e simulation results using di�erent interpolation method.

Figure 26. Quantum circuit symbol for measurement.

Figure 27. �e block diagram of the measurement procedure on quantum computers.
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that, exploit the oracle operator to prepare the original image pixel. �en, a series of quantum circuits designed in 
this paper are used to calculate the color information of the interpolated image.

�e main contributions of this paper are as follows:

 (1) �e bilinear interpolation method for NEQR is realized and the corresponding quantum realization cir-
cuits are given.

 (2) A series of unitary quantum circuit operations are designed, which can be used in future quantum 
computers.

 (3) �e quantum image scaling algorithm is developed to change the image size.

�e future works mainly include:

 (1) Give the bilinear interpolation method for FRQI and its realization circuit.
 (2) Further realize the bicubic interpolation method for other quantum image representations such as FRQI 

and NEQR.
 (3) Give simpler quantum interpolation realization circuit through the basic quantum gates and the quantita-

tive analysis about the circuit complexity.
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