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Despite being created through a fundamentally quantum-mechanical process, cosmological struc-
tures have not yet revealed any sign of genuine quantum correlations. Among the obstructions
to the direct detection of quantum signatures in cosmology, environmental-induced decoherence is
arguably one of the most inevitable. Yet, we discover a mechanism of quantum recoherence for the
adiabatic perturbations when they couple to an entropic sector. After a transient phase of decoher-
ence, a turning point is reached, recoherence proceeds and adiabatic perturbations exhibit a large
amount of self-coherence at late-time. This result is also understood by means of a non-Markovian
master equation, which reduces to Wilsonian effective-field theory in the unitary limit. This allows
us to critically assess the validity of open-quantum-system methods in cosmology and to highlight
that re(de)coherence from linear interactions has no flat-space analogue.

Our current understanding of cosmology traces back
the origin of structures to quantum fluctuations in
the primordial vacuum. Not only inflation, the lead-
ing scenario [1–13], but also most alternatives [14–17]
rely on this mechanism. However, whether or not one
can prove (or disprove) the quantum origin of cos-
mological inhomogeneities remains an open issue [18–
29]. Independently of the observational challenge it
may constitute, it is generally argued [30–46] that
any genuine quantum signature is likely to be erased
by the quantum decoherence [47–49] induced by en-
vironmental degrees of freedom. This is why study-
ing decoherence channels [50–61] has become of pri-
mary importance to assess the severity of this poten-
tial obstruction. Recent progresses in the cosmological
open-quantum-system program provide this line of in-
vestigation with a robust toolbox, which nonetheless
needs to be adapted and benchmarked since cosmol-
ogy tends to break some of the assumptions it oth-
erwise rests on [62–64]. In this Letter, we investi-
gate the decoherence process in arguably one of the
most generic extensions to single-field slow-roll infla-
tion [65–72]. Contrary to common wisdom, we dis-
cover that, after a transient phase of decoherence, re-
coherence takes place and the final state exhibits large
levels of self-coherence. Notably, this result has no
flat-space analogue.

Heavy fields are ubiquitous when inflation is embed-
ded in high-energy constructions, both from a model-
building perspective [70–81] and from an effective-
field-theory (EFT) approach [65–69, 82]. From a
bottom-up viewpoint, the dynamics of the fluctua-
tions in the adiabatic direction ζ and the entropic
direction F is given at linear order by [68]

L =a2ϵM2
Plζ

′2 − a2ϵM2
Pl (∂iζ)
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√
2ϵMPlζ

′F .

(1)

The Lagrangian density L is expressed in conformal

time η, primes denote derivative with respect to η and
(∂iζ)

2 ≡ δij∂iζ∂jζ. Finally, a is the scale factor, ϵ the
first slow-roll parameter and MPl the Planck mass.
The massless degree of freedom ζ is the curvature
perturbation and is directly observed in the cosmic
microwave background (CMB) [83, 84] and the large-
scale structure of the universe [85–88]. The coupling
ρ corresponds to the rate of turn in field space and
mixes the adiabatic and entropic directions. It is con-
stant at leading order in slow roll [77–80], and when
a specific model is considered, it can be related to its
microphysical parameters [65–67]. From an EFT per-
spective, ζ ′F is the only operator compatible with the
shift symmetry of the Goldstone mode and with spa-
tial homogeneity of the background [68], hence Eq. (1)
captures the leading effect in the derivative expansion
of generic multiple-field models [71].

This setting has mostly been studied from a phe-
nomenological perspective, i.e. focusing on calcula-
tions of the observable power spectrum using the in-in
formalism [77–80] or by means of single-field Wilso-
nian EFTs [65–69]. The latter approaches incorpo-
rate unitary effects only, hence they cannot describe
decoherence [89]. In this Letter, we make this possible
by treating Eq. (1) within the open-quantum-system
framework and by extracting quantum-information-
theoretic properties of the curvature perturbations.
This leads us to the phenomenon of quantum recoher-
ence. We solve the problem both exactly and using
an effective approach, allowing us to better assess the
performance of such methods in a cosmological con-
text.

Quantum recoherence. From an open-quantum-
system perspective, our goal is to describe the dy-
namics of the adiabatic sector (the system) once
the heavy entropic direction (the environment) has
been integrated out. Eq. (1) being quadratic, differ-
ent Fourier modes decouple on a homogeneous back-
ground, which allows us to focus on a given mode
k. In the asymptotic past, this mode is placed in
the Bunch-Davies vacuum state [90], described by
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FIG. 1. State purity γ as a function of the number of efolds ln(a/a∗) since Hubble exit of the scale k = a∗H, for a
few values of the coupling parameter ρ (left panel) and of the entropic mass m (right panel). After a transient phase
of decoherence, the purity reaches a minimum and increases again. This recoherence phenomenon yields high levels
of self-coherence at late-time. In practice, Eqs. (S10) and (S11) of the SM are integrated with Bunch-Davies initial
conditions from ln(a/a∗) = −15 to ln(a/a∗) = 15 and for constant H.

the Gaussian density matrix ρ̂0, and the linearity
of the dynamics preserves the Gaussianity of the
state [91–93]. Hence, the state of the system is
entirely characterised by the covariance Σij(η) ≡
1
2Tr {[ẑζ,i(η)ẑζ,j(η) + ẑζ,j(η)ẑζ,i(η)]ρ̂0} where ẑζ ≡
(v̂ζ , p̂ζ)

T contains the configuration and momentum
operators of the Mukhanov-Sasaki variable vζ ≡
−a

√
2ϵMPlζ. In the Supplemental Material (SM),

from Eq. (1) we derive an exact equation of mo-
tion for Σij(η), known as a transport equation [94–
96]. When integrated numerically, the power spectra
one obtains are well reproduced by standard EFT re-
sults [66, 79, 80] in the regime m ≫ H, as is shown
in the SM. In particular, we recover that the main
effect from the heavy field is a simple rescaling, pro-
portional to ρ2/m2, of the amplitude of the scale-
invariant power spectrum of ζ. This rescaling is how-
ever degenerate with other single-field effects such as
a reduced speed of sound [77, 97, 98], so it cannot be
used to reveal the existence of an environment.

The state being Gaussian, the covariance Σ(η) not
only contains all observables of the adiabatic sector
but also fully specifies its quantum state, i.e. the re-
duced density matrix ρ̂red ≡ TrF (ρ̂) where the en-
tropic degrees of freedom are traced over. This al-
lows us to study quantum properties of ρ̂red, in par-
ticular the transition from a pure quantum state into
a statistical mixture due to the interaction with an
environment [47–49]. This transition is assessed by
the so-called purity parameter [99, 100] γ ≡ Tr

(
ρ̂2red

)
,

which equals one if the state is pure and is smaller
than one otherwise. The system is said to have de-
cohered when γ ≪ 1, with γ = 0 corresponding to
a maximally mixed state. The link between the nu-
merical value of γ and the erasure of explicit quan-
tum signatures (such as Bell inequality violations) has
been investigated in Ref. [101] for the class of states
considered in this work. Note that γ remains in-
variant under reparametrisation of the canonical vari-

ables [102], and for a Gaussian state one simply has

γ(η) = 1
4 det [Σ(η)]

−1
[103, 104].

In Fig. 1, we display the purity parameter γ as a
function of the number of efolds ln(a/a∗) since Hub-
ble exit of the scale k = a∗H under consideration,
where at leading order in slow rollH is constant. After
a transient phase of decoherence, a turning point oc-
curs and recoherence (i.e. growing γ) takes place, with
large levels of self-coherence at late time. For heavy
masses m ≫ H, the turning point occurs in the sub-
Hubble regime, when the scale k crosses the Comp-
ton wavelength of the entropic field 1/m, as shown in
Fig. 2. The departure from a pure state increases with
ρ and decreases with m, in agreement with the EFT
intuition that heavier environments leave a smaller im-
print on light degrees of freedom. At late time, one can
expand the transport equations in the super-Hubble
limit and in the SM we find that, at leading order in
ρ2,

γ = γ∞ − ρ2

m2

k

am
. (2)

This confirms that the purity does increase at late
time for all super-Hubble scales, at a rate controlled
by the ratio between the Compton wavelength and
the mode wavelength. Thus it quickly reaches the
asymptotic value γ∞ < 1, since for the scales probed
in the CMB, k/(am) is typically of order e−50H/m.

The occurrence of recoherence might seem surpris-
ing in the light of previous works on decoherence in
this model [37, 105] and in other cosmological scenar-
ios [37, 50, 53–61, 64]. One may indeed expect that,
once information about the system has “leaked” into
the environment, it cannot “come back”. Yet we ar-
gue that there is no contradiction with the existing
literature. This is due to the small effective size of
the environment here: the system couples to a single
Fourier mode of the environment. This implies that,
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FIG. 2. Turning point for the purity: value of the scale
factor at at which the purity starts increasing, as a func-
tion of m and for a few values of ρ. When m ≫ H,
at ≃ 2.3k/m, which corresponds to the Compton wave-
length of the entropic field.

contrary to the open quantum systems usually consid-
ered, the environment does not behave as a thermal
bath [89].

To gain further insight into the finite-environment
effects to be expected in this model, one may consider
its analogue in Minkowski spacetime. When the back-
ground is static, linear interactions can only induce
mixing between the light and heavy sectors so that
the purity exhibits oscillations at frequencies given
by the characteristic timescales of the system and the
environment, as checked explicitly in the SM. If the
coupling is quenched off, oscillations stop and the pu-
rity freezes at the time of the quench. In de-Sitter
spacetime, this is precisely what happens, since the
non-trivial background dynamics makes the coupling
effectively time dependent.

This can be seen in Fig. 3 where small entropic
masses are used to better highlight the following
stages in the evolution of purity. When k ≫ am,
the mode functions of both fields oscillate at the
same frequency k/a, in their vacuum state. Then
am ≫ k ≫ aH and the two frequencies differ: the sys-
tem oscillates at frequency k/a while the environment
oscillates at frequencym, hence the purity oscillates as
in flat space. Finally, when k ≪ aH, two behaviours
can be observed, depending on m/H. If m > 3

2H,
entropic perturbations are heavy hence they oscillate
and quickly decay [66]. Since ζ ′ also decays as 1/a2

on super-Hubble scales [106] (this is the so-called “de-
caying mode”), the coupling between adiabatic and
entropic perturbations is effectively turned off. This
is why the value of the purity freezes (see the cases
m = 1.5H and m = 2H in Fig. 3). When the environ-
ment is lighter, F acquires a growing mode that keeps
the interaction term ζ ′F active in spite of the decay
of ζ ′. This leads to decoherence (see the case m = H
in Fig. 3), driven by the dynamics of the expansion.
This is similar to the setup studied in Ref. [37], where
an additional ζF interaction term is considered that
is not suppressed by the decaying mode ζ ′ on large
scales, and to the cosmological two-field model inves-
tigated in Ref. [64]. In all these cases, the system is
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FIG. 3. Same as in Fig. 1 for lighter environments. At
late time, one either observes recoherence (m > 3H/2),
purity freezing (m ≃ 3H/2, with an asymptotic value that
strongly depends on ρ) or decoherence (m < 3H/2).

driven into a mixed state by the dynamical generation
of entangled pairs of quanta between ζ and F , which
explains why decoherence takes place in spite of the
environment being effectively made of one single de-
gree of freedom.

In the present setting, the entropic direction is typ-
ically expected to be heavy, but it is interesting to
see that, formally, by varying m, one interpolates be-
tween these three possible outcomes: recoherence, pu-
rity freezing and decoherence. Note that the inter-
mediate mass m ≃ 3

2H is also of phenomenological
interest in the context of quasi-single field inflation
[68, 77–80], and that the fate of the purity in that
case is particularly sensitive to ρ, see Fig. 3.

A master-equation treatment. The model (1) be-
ing linear, it can be solved exactly but this is in general
not possible. This is why open quantum systems are
usually approached with effective methods known as
master equations. We now apply such methods to the
present setup, in order to check their validity, and to
shed additional light on the imprint left by F on ζ.

Master equations are commonly employed in cos-
mology to model the effect of additional degrees of
freedom, treated as an environment, onto a given sys-
tem [40, 46, 53, 58, 61–64, 107–118]. One of their
appealing advantages is their ability to re-sum late-
time secular effects [64, 113, 114, 119–123], hence to
go beyond standard perturbation theory and imple-
ment non-perturbative resummations in cosmology.
Note that the recoherence phenomenon being a man-
ifestly non-Markovian feature, it cannot be modelled
by an irreversible dynamical-map such as the Lind-
blad equation [124]. It requires the use of more so-
phisticated non-Markovian master equations such as
the time-convolutionless (TCL) master equation dis-
cussed in Refs. [64, 89, 125–127],

dρ̂red
dη

= −i
[
ĤS

0 (η) + Ĥ(LS)(η), ρ̂red(η)
]

(3)

+Dij(η)

[
ẑζ,iρ̂red(η)ẑζ,j −

1

2
{ẑζ,j ẑζ,i, ρ̂red(η)}

]
.
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FIG. 4. Same as in Fig. 1, where the solution of the master
equation (3) is also shown (green line), together with its
perturbative limit (orange line). The agreement is excel-
lent, and becomes even better when decreasing ρ or when
increasing m. At late time, the full master equation does
not perform better than the perturbative theory, and even
leads to slight violations of the positivity of the dynamical
map (see the inset where γ > 1).

Here, ĤS
0 is the free Hamiltonian of the system, and

the effect of the environment is encoded into the
“Lamb-shift” Hamiltonian Ĥ(LS) and the dissipator
matrix D. These objects are constructed out of the
two-point functions of the environment and formally
rely on convolutions from initial time to final time of
the free mode functions of the system and the environ-
ment. Their detailed expression is obtained following
the procedure of Ref. [64] in the SM, where the mas-
ter equation (3) is derived explicitly. The Lamb-shift
term captures the renormalisation of the free Hamil-
tonian due to the interactions with the environment.
At late-time where k ≪ aH, it yields an effective
speed of sound c2

S
= 1− ρ2/m2 +O[k/(aH), H4/m4],

which rescales the kinetic term by p̂2ζ → c2
S
p̂2ζ . This ef-

fect is also found in Wilsonian EFT treatments of the
model [65–67, 78, 80]. Although non-perturbative, it
only leads to a slight rescaling of the power spectra
as mentioned above. This correction is however uni-
tary, hence it cannot account for de(re)coherence [89],
which is instead driven by the second line of Eq. (3).

From Eq. (3), one can derive effective transport
equations for Σ(η) [64], given in the SM. This leads
to the purity shown in Fig. 4, where “resum” stands
for the full solution of Eq. (3), in which partial re-
summation is supposed to take place; and “pert” cor-
responds to the solution at leading order in ρ2 [since
D = O(ρ2) this amounts to evaluating ρ̂red in the free
theory in the second line of Eq. (3)]. In Ref. [64],
this was shown to coincide with the result of the in-in
formalism [128–131]. In practice, in the SM it also
allows us to unambiguously identify and remove the
so-called “spurious terms”, which cancel out at lead-
ing order but otherwise spoil the resummation [64]. In
Fig. 4 one can see that the master equation provides
an excellent fit to the full result, both in its pertur-
bative limit and when solved entirely. In particular,
it accurately captures the turning point of the purity.

This is remarkable, since the highly non-Markovian
nature of the recoherence phenomenon may have cast
some doubts on the existence of an effective single-
field description that would be under control.

One also notices that the non-perturbative resum-
mation performed by the master equation does not
significantly improve the perturbative treatment. The
reason is that, as stressed above, the coupling be-
tween the adiabatic and entropic sector is effectively
switched off at late time. There is therefore no secu-
lar effects to be resummed, and the perturbative and
non-perturbative results only differ by overall constant
factors in the power spectra, as checked explicitly in
the SM. Therefore, the only non-perturbative effect is
unitary. It consists in the rescaling of c

S
mentioned

above, which only advances horizon crossing. This
contrasts with the situation studied in Ref. [64], where
an effective mass is generated for the light degree of
freedom. This dresses the anomalous dimension of
the light field, generating a secular growth at the per-
turbative level which is then resummed by the mas-
ter equation (or other methods such as the dynamical
renormalisation group [132–134]).

Finally, let us note that the master equation leads to
a tiny violation of positivity at late time, see the inset
in Fig. 4 where the purity slightly overshoots one, im-
plying that det[Σ(η)] < 1/4 (hence violating Heisen-
berg inequality [89]). This signals a small breakdown
of the effective theory, and determining under which
conditions this class of non-Markovian Gaussian dy-
namical maps remains completely positive and trace
preserving (CPTP) would deserve further investiga-
tions [63, 135–138].

Conclusions. In this Letter, we have shown that
heavy entropic degrees of freedom do not lead to quan-
tum decoherence of adiabatic fluctuations in the early
universe, at least through their dominant interaction
term. More precisely, we found that after a tran-
sient phase of decoherence, the adiabatic fluctuations
recohere once the mode under consideration crosses
out the Compton wavelength of the entropic field.
This is because, at late time, the interaction is effec-
tively quenched off as a result of spacetime expansion.
This makes the state purity freeze to a value close to
unity. Therefore, heavy entropic fields leave a small
imprint not only on cosmological observables, but also
on quantum-information properties of the quantum
state.

We also found that an effective master equation de-
rived from open-quantum-system methods performs
remarkably well when compared to the full theory.
Wilsonian EFTs have also been used to describe the
model, but they do not capture non-unitary effects,
hence they cannot describe decoherence. The mas-
ter equation treatment has allowed us to check that
non-unitary effects are negligible in the observables of
the system (hence Wilsonian EFTs can safely be used
in that respect), although they are crucial as far as
decoherence is concerned. Let us stress that, since re-
coherence is inherently a non-Markovian process, the
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master equation needs to be kept non-Markovian too,
i.e. beyond the Lindblad limit. We noted that, due
to the effective decoupling between adiabatic and en-
tropic modes at late time, there is no secular growth
that the master equation would otherwise resum. This
even leads to a slight violation of positivity by the ef-
fective dynamical map, which questions its ability to
account for non-perturbative effects in the absence of
secular divergences (when secular terms are present,
non-perturbative resummation was found to be suc-
cessful in Ref. [64]).

These results do not preclude other decoherence
channels (such as higher-order coupling between adi-
abatic and entropic fluctuations, single-field gravi-
tational decoherence [46], etc.) to effectively de-
cohere cosmological perturbations, but it suggests
that decoherence in the early universe may not be
as ubiquitous as common wisdom suggests. This is
crucial to determine whether or not genuine quan-
tum signals can be detected in cosmological struc-
tures [18, 22, 25, 43, 44, 101, 139, 140]. Natu-
ral prospects of our work include the investigation
of models with sharp turns [66, 96], the impact of
multiple entropic directions [71] on the emergence
of Markovianity [138], as well as non-linear interac-
tions [72, 141, 142]. In this latter case, mode coupling
is expected to enlarge the size of the effective environ-

ment, but also to induce non-Gaussianities [42], which
are tightly constrained [143–146]. One may also study
how our results vary when changing the initial quan-
tum state [147–151].

Let us end by stressing that, when the system is
coupled to a single mode as in the present setting
(and as in the two-field model of Ref. [64]), deco-
herence or recoherence are possible only because we
work in a dynamical background. In flat spacetime in-
deed, as explained above finite-size environments and
time-independent Hamiltonians can only lead to oscil-
lations in the purity. This is a consequence of Poincaré
recurrence-time theorem [152], which relies on volume
conservation. In cosmology however, the large-scale
dynamics either amplifies or extinguishes the effec-
tive coupling, which yields decoherence or recoher-
ence respectively. Those phenomena have therefore
no flat-space analogue. Since most open-quantum-
system methods are developed in the context of labo-
ratory experiments, hence in flat spacetimes, their use
in cosmology requires a critical analysis of their appli-
cability, to which this work hopefully contributes.
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SUPPLEMENTAL MATERIAL

“Quantum recoherence in the early universe”

Thomas Colas, Julien Grain, and Vincent Vennin

This supplemental material contains some technical details of the calculations presented in the main text. In
Sec. I, we derive the transport equations whose solutions are given in the main text. In Sec. II, we show that
purity exhibits oscillation when our setting is considered in flat spacetime. In Sec. III, we derive and solve the
master equation associated to our problem, closely following Ref. [64].

I. EXACT SOLUTION

A. Hamiltonian formulation

Starting from the Lagrangian density

L = a2ϵM2
Plζ

′2 − a2ϵM2
Pl (∂iζ)

2
+

1

2
a2F ′2 − 1

2
a2 (∂iF)

2 − 1

2
m2a4F2 − ρa3

√
2ϵMPlζ

′F , (S1)

we first introduce the rescaled Mukhanov-Sasaki like variables vζ(η,x) ≡ −a(η)
√
2ϵMPlζ(η,x) and vF (η,x) ≡

a(η)F(η,x). One can then Fourier transform the fields

vα(η,k) ≡
∫

R3

d3x

(2π)3/2
vα(η,x)e

−ik.x, (S2)

for α = ζ,F . The conjugate momenta are obtained from Eq. (1) and read

pζ = v′ζ −
a′

a
vζ + ρavF and pF = v′F − a′

a
vF . (S3)

A Legendre transform gives the Hamiltonian

H =

∫

R3+

d3kz†H(η)z , (S4)

where the phase-space variables have been arranged into the vector z ≡ (vζ , pζ , vF , pF )T and H is a four-by-four
matrix given by

H(η) =

(
H(S) V
V T H(E)

)
, (S5)

with

H(S)(η) =

(
k2 a′

a
a′

a 1

)
, H(E)(η) =

(
k2 +

(
m2 + ρ2

)
a2 a′

a
a′

a 1

)
, V (η) ≡

(
0 0

−ρa 0

)
. (S6)

Note that, since ζ and F are real fields, one has the constrain z∗(η,k) = z(η,−k). This explains why, in order
to avoid double counting, the integral in Eq. (S4) is performed over R3+ ≡ R2 × R+. Remarkably, the linear
mixing ρ enters the definition of the entropic mass m2+ ρ2 when the problem is described in terms of canonical
variables. From now on, we thus redefine m2 → m2 + ρ2.

Following the canonical quantisation prescription, field variables are promoted to quantum operators. In
order to work with hermitian operators, we split the fields into real and imaginary components, that is

ẑ =
1√
2

(
ẑR + iẑI

)
, (S7)

such that ẑs is Hermitian for s = R, I. These variables are canonical since [v̂sα(k), p̂
s′
α′(q)] = iδ3(k− q)δα,α′δs,s′.

In this basis, the Hamiltonian takes the same form as in Eq. (S4), i.e.

Ĥ(η) =
1

2

∑

s=R,I

∫

R3+

d3k (ẑs)
T
H(η)ẑs . (S8)
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Being separable, there is no mode coupling nor interactions between the R and I sectors and the state is
factorisable in this decomposition. Hence, from now on, we focus on a given wavenumber k and a given
s-sector, and to make notations lighter we leave the k and s dependence implicit.

B. Transport equations

The transport equations for the full system-plus-environment setup can be obtained by differentiating

Σ
(S+E)
ij (η) ≡ 1

2
Tr {[ẑi(η)ẑj(η) + ẑj(η)ẑi(η)]ρ̂0} (S9)

with respect to time in the Heisenberg picture, and using the Heisenberg equations to evaluate dẑ/dη. The
density matrix ρ̂0 specifies the initial Bunch-Davies vacuum in which the adiabatic and entropic directions both
start. The Hamiltonian (S8) being quadratic, one finds

dΣ(S+E)

dη
= ΩHΣ(S+E) −Σ(S+E)HΩ, (S10)

where H was defined in Eq. (S5) and Ω is a four-by-four block-diagonal matrix where each 2× 2 block on the

diagonal is the symplectic matrix ω =

(
0 1
−1 0

)
. Once Eq. (S10) is known, one can derive an exact equation

for detΣ

d detΣ

dη
= Σ

(S+E)
11

dΣ
(S+E)
22

dη
+Σ

(S+E)
22

dΣ
(S+E)
11

dη
− 2Σ

(S+E)
12

dΣ
(S+E)
12

dη
(S11)

where Σ is the system’s covariance. Eqs. (S10) and (S11) provide a set of eleven coupled ordinary differential
equations that we numerically integrate from log(−kηini) = 15 to log(−kηfin) = −15. Note that Eq. (S11) is
redundant with Eqs. (S10), but since it arises from cancellations between quantities that diverge at late time, to
compute the purity it is numerically more efficient to treat it as independent. Initial conditions are computed in

the Bunch-Davies vacuum where Σ
(S+E)
11 = Σ

(S+E)
33 = 1/(2k), Σ

(S+E)
22 = Σ

(S+E)
44 = k/2 and all other correlations

initially vanish. The entries of Σ are shown in Fig. S1 where we observe that, at late-time, the effect of the
heavy environment is to simply rescale the amplitude of the power spectra by approximately ρ2/(2m2), in
agreement with the results derived in the past literature with effective methods, see e.g. Refs. [79, 80] for the
in-in treatment and Refs. [65, 66] for the Wilsonian EFT approach.

C. Mode functions

In the interaction picture, operators evolve according to the free Hamiltonian Ĥ0(η) = ĤS
0 (η)⊗ ĤE

0 (η) where

ĤS
0 (η) =

1

2

(
p̂ζ p̂ζ + k2v̂ζ v̂ζ +

a′

a
{v̂ζ , p̂ζ}

)
(S12)

ĤE
0 (η) =

1

2

[
p̂F p̂F +

(
k2 +m2a2

)
v̂F v̂F +

a′

a
{v̂F , p̂F}

]
(S13)

with {A,B} = AB + BA the anticommutator, while states and density matrices evolve according to the
interaction Hamiltonian

Ĥint(η) = −ρa(η)p̂ζ v̂F (S14)

where we used the fact that the ζ and F sectors commute. In this picture, the field operators admit a simple
mode-function decomposition

ṽα(η) = vα(η)âα + v∗α(η)â
†
α (S15)

where âα and â†α are the creation and annihilation operators of the uncoupled fields. From now on, tildas denote
operators in the interaction picture. Heisenberg’s equations yield the classical equations of motion for the mode
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0.00125
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FIG. S1. Relative correction to the free configuration-configuration power spectrum |Σ11 −Σ
(0)
11 |/Σ(0)

11 , as a function of
time labeled by the number of e-folds ln(a/a∗) since Hubble crossing, for m = 10H and ρ = 0.5H. The blue curve is
obtained from integrating the exact transport equations (S10) between ln(a/a∗) = −15 to ln(a/a∗) = 15. The green
curve corresponds to the master transport equation (S64), and the orange curve to its perturbative limit (S66). The
grey curve stands for the late-time result from Wilsonian EFT [65, 66], which reduces to the in-in formalism [79, 80] in
the perturbative limit. The slight deviation from the orange curve is due to the additional expansion in H/m usually
performed in WEFT. Similar behaviours are observed for the other two power spectra, namely Σ12 and Σ22.

functions, i.e.

v′′ζ +

(
k2 − 2

η2

)
vζ = 0 and v′′F +

(
k2 − ν2F − 1

4

η2

)
vF = 0 . (S16)

In these expressions, νF = 3
2

√
1− 4

9
m2

H2 ≡ iµF if m2 > 9
4H

2, which we will assume to be the case in the

following, except explicitly stated otherwise. By normalising the mode functions to the Bunch-Davies vacuum
in the asymptotic, sub-Hubble past, one obtains

vζ(η) = −1

2

√
πz

k
H

(1)
3/2(z) =

(
1 +

i

z

)
eiz√
2k

, (S17)

vF (η) =
1

2

√
πz

k
e−

π
2 µF+iπ

4 H
(1)
iµF

(z) . (S18)

In these expressions, z ≡ −kη and H
(1)
ν is the Hankel function of the first kind and of order ν. The mode

functions of the momentum operators read

pζ(η) =
1

2

√
kπzH

(1)
1/2(z) = −i

√
k

2
eiz, (S19)

pF (η) = −1

2

√
kπ

z
e−

π
2 µF+iπ

4

[(
iµF +

3

2

)
H

(1)
iµF

(z)− zH
(1)
iµF+1(z)

]
, (S20)

where one can check that the mode functions are normalised in a way that the field operators obey their
canonical commutation relations.
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FIG. S2. Purity in flat spacetime, as a function of time, for a few values of the ratio between the Compton wavelength
and the physical wavelength k/m. Oscillations take place at frequencies 2ωS , 2ωE , ωS + ωE and ωS − ωE ; where ωS ≡ k
and ωE ≡

√
k2 +m2. In the sub-Compton regime, k/m > 1, the slowest frequency is ωE − ωS , which decreases with

k/m (this is why oscillations are more rapid for smaller values of k/m in the figure). One can see that the amplitude
of the oscillations also decreases as k/m becomes smaller, in agreement with the fact that heavier environments yield
weaker perturbations of the system. Different initial states specified by

∣∣�0〉S ⊗
∣∣�0〉E (solid curves) and |2MSS⟩S ⊗

∣∣�0〉E
(dash-dotted curve) show that initial conditions also affect the system-environment entanglement but do not alter the
recurrence phenomenon (i.e. the fact that purity goes back to one, periodically), which is unavoidable.

II. PURITY OSCILLATIONS IN MINKOWSKI SPACETIME

The flat-space analogue of the model studied in this work is obtained by taking the limit where a = 1 and
a′ = 0 in Eq. (S6). This leads to Fig. S2 where we consider two sets of initial conditions. The first set consists
in a vacuum state

∣∣�0
〉
S ⊗

∣∣�0
〉
E . For the initial covariance matrix, it gives the same prescription as above,

Σ
(S+E)
11 = Σ

(S+E)
33 = 1/(2k), Σ

(S+E)
22 = Σ

(S+E)
44 = k/2 where all other correlations initially vanish. The second

set consists in a Gaussian state |2MSS⟩S ⊗
∣∣�0
〉
E with |2MSS⟩S being a two-mode squeezed state chosen so that

the initial occupation number of the system is

〈
N̂
〉
S
≡ S⟨2MSS|â†ζ âζ |2MSS⟩S = 10. (S21)

It amounts to picking a set of squeezing parameters [93] (r, φ) such that cosh r = 2
〈
N̂
〉
S
+1 and φ is arbitrary,

e.g. taken to zero, which fixes the initial correlations at

Σ
(S+E)
11 =

1

2k
(cosh 2r + sinh 2r cos 2φ) (S22)

Σ
(S+E)
22 =

k

2
(cosh 2r − sinh 2r cos 2φ) (S23)

Σ
(S+E)
12 =

1

2
sinh 2r sin 2φ (S24)

while keeping Σ
(S+E)
33 = 1/(2k), Σ

(S+E)
44 = k/2 and all other correlations vanish. The evolution of the purity

for both types of initial conditions in shown in Fig. S2, where we observe a recurrence phenomenon [152] at a
frequency depending on the ratio between the Compton wavelength and the physical wavelength, k/m. Having
a larger occupation number at initial time increases and fastens the system-environment entanglement but
recurrence invariably occurs.
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III. MASTER EQUATION

In this section we review the approach developed in Ref. [64] and perform its direct application to the model
considered in this work.

A. Second-order master equation for a generic linear two-field systems

Let us consider two scalar fields ζ (the “system”) and F (the “environment”), linearly coupled in a homo-
geneous and isotropic background. The coupling is assumed to be weak, which allows us to work within the
Born-approximation regime. When expanding the dynamics of the system in powers of the coupling, at sec-
ond order one obtains the time-convolutionless2 (TCL2) master equation for the reduced density matrix of the
system ρ̃red, which in the interaction picture reads

dρ̃red
dη

= −
∫ η

η0

dη′TrE
[
H̃int(η),

[
H̃int(η

′), ρ̃red(η)⊗ ρ̃E
]]

. (S25)

Here, the quadratic interaction Hamiltonian can be expressed as

H̃int(η) = z̃T
ζ (η)V (η)z̃F (η). (S26)

V (η) is an arbitrary 2 × 2 matrix containing the linear couplings between the two fields and z̃α = (ṽα, p̃α)
T
,

α = ζ,F gathers the configuration and momentum operators of the system and the environment. In order
to write Eq. (S25) in the Schrödinger picture, we need to recast it in terms of local-in-time operators for the

system. We use the fact that in the interaction picture, operators evolve with the free Hamiltonian Ĥ0(η) so
that

z̃ζ(η
′) =T̄ exp

[
i

∫ η′

η

Ĥ0(η
′′)dη′′

]
z̃ζ(η)T exp

[
−i

∫ η′

η

Ĥ0(η
′′)dη′′

]
(S27)

=G(S)(η′, η)z̃ζ(η) (S28)

where G(S)(η′, η) ≡ Tr
{[

ẑT
ζ (η

′), z̃ζ(η)
]
ρ̂S

}
is the Green’s matrix of the free system, with ρ̂S the initial state

of the system. Developing Eq. (S25) and expressing it in terms of equal-time operators using Eq. (S28), one
finds

dρ̃red
dη

=−
∫ η

η0

dη′
{
[z̃ζ,i(η)z̃ζ,j(η)ρ̃red(η)− z̃ζ,j(η)ρ̃red(η)z̃ζ,i(η)]D>

ij(η, η
′)

− [z̃ζ,i(η)ρ̃red(η)z̃ζ,j(η)− ρ̃red(η)z̃ζ,j(η)z̃ζ,i(η)]D>∗
ij (η, η′)

}
, (S29)

where implicit summation over repeated indices apply. The memory kernel D>(η, η′) is defined by

D>(η, η′) ≡ V (η)K>(η, η′)V T(η′)G(S)(η′, η) (S30)

where K>(η, η′) ≡ Tr
[
ẑT
F (η)z̃F (η

′)ρ̂E
]
is the Wightman function of the free environment with ρ̃E the initial

state of the environment. One can finally decompose the memory kernel in real and imaginary parts D>(η, η′) ≡
DRe(η, η′) + iDIm(η, η′). After some straightforward manipulations, one obtains the TCL2 master equation in
the Schrödinger picture

dρ̂red
dη

= −i
[
Ĥ(S)(η) + Ĥ(LS)(η), ρ̂red(η)

]
+ [Dij(η)− i∆−(η)ωij ]

[
ẑζ,iρ̂red(η)ẑζ,j −

1

2
{ẑζ,j ẑζ,i, ρ̂red(η)}

]
.

(S31)

The Lamb-shift Hamiltonian is a quadratic form Ĥ(LS)(η) = 1
2 ẑ

T
ζ ∆(η)ẑζ where

∆ij(η) = 2

∫ η

η0

dη′DIm
(ij)(η, η

′). (S32)
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The noise and dissipation kernels are respectively defined as

Dij(η) = 2

∫ η

η0

dη′DRe
(ij)(η, η

′) (S33)

∆−(η) = 2

∫ η

η0

dη′DIm
− (η, η′) (S34)

where we used the symmetric and antisymmetric decomposition of 2× 2 matrices Aij = A(ij) + A−ωij where
A(ji) = A(ij). For the specific model discussed in this article, the definition of V (η) is given in Eq. (S6).

B. Cosmological master equation

Using the mode-function decomposition of the fields obtained in Sec. I C, we derive the Wightman function
of the environment

K>(η, η′) =

(
vF (η)v∗F (η

′) pF (η)v∗F (η
′)

vF (η)p∗F (η
′) pF (η)p∗F (η

′)

)
, (S35)

and the Green’s matrix of the system

G(S)(η′, η) = 2



−ℑm

[
pζ(η)v

∗
ζ (η

′)
]

ℑm
[
vζ(η)v

∗
ζ (η

′)
]

−ℑm
[
pζ(η)p

∗
ζ(η

′)
]

ℑm
[
vζ(η)p

∗
ζ(η

′)
]


 , (S36)

where we used the Bunch-Davies initial vacuum prescription. Inserting Eqs. (S35) and (S36) into the expression
of the memory kernel given in Eq. (S30), we obtain the master equation presented in the main text which we
rewrite here for convenience

dρ̂red
dη

= −i
[
ĤS

0 (η) + Ĥ(LS)(η), ρ̂red(η)
]
+Dij(η)

[
ẑζ,iρ̂red(η)ẑζ,j −

1

2
{ẑζ,j ẑζ,i, ρ̂red(η)}

]
, (S37)

where Ĥ(LS)(η) = 1
2 ẑ

T
ζ ∆(η)ẑζ and D ≡ D(η) + i∆12(η)ω. The entries of the ∆ and D matrices are given by

the so-called master-equation coefficients defined as

∆11(η) = 0 (S38)

∆12(η) = ∆21(η) = −2ρ2a(η)

∫ η

η0

dη′a(η′)ℑm
[
pζ(η)p

∗
ζ(η

′)
]
ℑm [vF (η)v

∗
F (η

′)] (S39)

∆22(η) = 4ρ2a(η)

∫ η

η0

dη′a(η′)ℑm
[
vζ(η)p

∗
ζ(η

′)
]
ℑm [vF (η)v

∗
F (η

′)] , (S40)

and

D11(η) = 0 (S41)

D12(η) = D21(η) = −2ρ2a(η)

∫ η

η0

dη′a(η′)ℑm
[
pζ(η)p

∗
ζ(η

′)
]
ℜe [vF (η)v

∗
F (η

′)] (S42)

D22(η) = 4ρ2a(η)

∫ η

η0

dη′a(η′)ℑm
[
vζ(η)p

∗
ζ(η

′)
]
ℜe [vF (η)v

∗
F (η

′)] . (S43)

C. Master-equation coefficients

A simple manipulation of Eqs. (S39), (S40), (S42) and (S43) leads to

∆12(η) = − ρ2

H2

k

z
ℜe

[
pζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′)− pζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
(S44)

∆22(z) = 2
ρ2

H2

k

z
ℜe

[
vζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′)− vζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
, (S45)
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and

D12(η) =
ρ2

H2

k

z
ℑm

[
pζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′) + pζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
(S46)

D22(η) = −2
ρ2

H2

k

z
ℑm

[
vζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′) + vζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
, (S47)

where we defined the variable z ≡ −kη. To obtain analytical expressions for the master-equation coefficients,
we have to compute two integrals. The first one is

I1(z, z0) =

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′). (S48)

Inserting the mode function expressions given in Eqs. (S17), (S18), (S19) and (S20), we obtain

I1(z, z0) =
i

2

√
π

2
e−

π
2 µF e−iπ

4

∫ z

z0

dz′√
z′
e−iz′

H
(2)
−iµF

(z′) ≡ FI1(z)− FI1(z0) (S49)

with

FI1(z) = i

√
π

2
e−

π
2 µF e−iπ

4
√
z
[
γ∗
µF

(z)gµF (z) + δ∗µF
(z)g−µF (z)

]
(S50)

where we have introduced for later convenience the notations

γµF (z) ≡
1 + cothπµF
Γ(1 + iµF )

(z
2

)iµF
, δµF (z) ≡

−1

sinhπµF

1

Γ(1− iµF )

(z
2

)−iµF
(S51)

and

gµF (z) =
1

1− 2iµF
2F2

1
2−iµF , 12−iµF
3
2−iµF ,1−2iµF

(−2iz), (S52)

2F2 being the (2, 2) generalized hypergeometric function. Note that g∗µF
(z) = g−µF (−z). The second integral is

I2(z, z0) =

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′) (S53)

and following the same procedure, one finds

I2(z, z0) =
i

2

√
−π

2
e−

π
2 µF ei

π
4

∫ z

z0

dz′√
z′
e−iz′

H
(1)
iµF

(z′) ≡ FI2(z)− FI2(z0) (S54)

with

FI2(z) = i

√
π

2
e−

π
2 µF ei

π
4
√
z [δµF (z)gµF (z) + γµF (z)g−µF (z)] . (S55)

Inserting Eqs. (S49) and (S54) into the expression of the master equation coefficients (S44), (S45), (S46) and
(S47) and using the functions FI1(z) and FI2(z), we obtain analytic expressions for the TCL2 coefficients.

1. Spurious terms

In Ref. [64], it has been shown that some terms dubbed “spurious” appear in the master-equation coefficients,
that cancel out in the perturbative limit but ruin the resummation otherwise. More precisely, the master-
equation coefficients are expressed as integrals between η0 and η, see Eqs. (S44)-(S47), i.e.

∆12 = F∆12
(η, η)− F∆12

(η, η0) , (S56)

where F∆12
(η, ·) is the primitive of the integrand appearing in Eq. (S44), which itself depends on η, and with

similar notations for the other coefficients. The second term in Eq. (S56), the one that depends on the initial
time η0, is the “spurious” one. In the exact solution of Sec. I, there is no such initial-time dependent term in the
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dynamical equations, and indeed one can show that it cancels out at all orders in perturbation theory [64]. At
leading order in the interaction strength, the master equation reduces to standard perturbation theory, hence
again one can show that the spurious contribution vanishes [64]. At higher order however, the master equation
stops being exact, since it only performs resummation of the leading-order interaction. This is why the spurious
term alters the result. However, since we know that it should vanish at all orders, one can simply remove it by
hand, and thus restore the ability of the master equation to perform efficient resummation [64]. One may be
worried that, from Eq. (S56), the spurious terms are only defined up to an additive constant. However, since
they are known to vanish at all (and in particular at leading) orders, they can be determined without ambiguity
by comparison with the perturbative theory. In the following we thus remove spurious terms, which amounts
to discarding all FI1(z0) and FI2(z0) terms in the above expressions.

2. Super-Hubble limit

We now exhibit the late-time super-Hubble limit of the master equation coefficients where we perform a
systematic expansion in powers of z ≪ 1. Expanding the mode functions and various elements appearing in
Eqs. (S44), (S45), (S46) and (S47) in the super-Hubble regime, we obtain

∆12(z) =
ρ2

H2

16k2

9 + 40µ2
F + 16µ4

F

z

k
+O(z3) (S57)

∆22(z) = − ρ2

H2

1
9
4 + µ2

F
+O(z2), (S58)

and

D12(z) = − ρ2

H2

1

µF

(−6 + 8µ2
F )k

2

9 + 40µ2
F + 16µ4

F

z

k
+O(z3) (S59)

D22(z) = −3

2

ρ2

H2

1

µF

1
9
4 + µ2

F
+O(z2). (S60)

Note that, in the heavy case where µF ≃ m/H ≫ 1, Eqs. (S57) and (S58) lead to ∆12 ≪ a′/a and ∆22 →
−ρ2/m2, from which we deduce that the Lamb-shift Hamiltonian renormalises the free dynamics as

ĤS
0 (η) + Ĥ(LS)(η) ≃ 1

2

[(
1− ρ2

m2

)
p̂ζ p̂ζ + k2v̂ζ v̂ζ +

a′

a
{v̂ζ , p̂ζ}

]
. (S61)

One can thus see that ∆22 renormalises the kinetical term, generating an effective speed of sound

c2
S
= 1− ρ2

m2
+O

(
k

aH
,
H4

m4

)
(S62)

as stated in the main text.

D. Effective transport equations

1. Transport equations derivation

The covariance matrix of the system expressed in the Schrödinger picture reads

Σij(η) ≡
1

2
Tr [{ẑζ,i, ẑζ,j} ρ̂red(η)] . (S63)

By differentiating Eq. (S63) with respect to time and inserting Eq. (3) in the right-hand side, we obtain the
effective transport equations for the covariance matrix,

dΣ

dη
= ω

(
H(S) +∆

)
Σ−Σ

(
H(S) +∆

)
ω − ωDω + 2∆12Σ. (S64)
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As mentioned above, a numerically efficient way to access the late-time behaviour of the purity is to derive an
equation of motion for detΣ from the transport equation of the covariance, leading to

d detΣ

dη
= Tr (ΣD) + 4∆12 detΣ. (S65)

2. Perturbative treatment

In the main text, the numerical solution of Eqs. (S64)-(S65) (labeled “resum” in Fig. 4 of the main text) is
compared with a perturbative solution (labeled “pert”), where the solution is derived at leading order in ρ2.
Since ∆ and D are of order ρ2, this amounts to replacing Σ by its free-theory counterpart Σ(0) when multiplied
by ∆ or D in the right-hand side of Eqs. (S64)-(S65),

dΣ(2)

dη
= ωH(S)Σ(2) −Σ(2)H(S)ω + ω∆Σ(0) −Σ(0)∆ω − ωDω + 2∆12Σ

(0). (S66)

and

d det(Σ(2))

dη
= Tr

(
Σ(0)D

)
+∆12, (S67)

where the superscript indicates the order at which a given observable is computed and we used the fact that
det(Σ(0)) = 1/4. In this limit, the environmental effects just play the role of source terms. In Fig. S1, the
non-perturbative solution of Eq. (S64) and its perturbative limit (S66) are compared to the exact result. As
explained in the main text, since the interaction is effectively switched off at late time, there is no substantial
resummation in the current setting (contrary to the situation investigated in Ref. [64]). This is why the non-
perturbative solution shows no sign of improvement at late time.

3. Super-Hubble expansion

Inserting the super-Hubble expansion of the master equation coefficients obtained in Sec. III C 2 into the
transport equations (S64), and working order-by-order in z, one finds

Σ11(z) =AΣ11
−2 z−2 + f1

(
AΣ11

−2

)
+ f2

(
AΣ12

0

)
z , (S68)

Σ12(z) =− kAΣ11
−2 z−1 +AΣ12

0 + f3

(
AΣ12

0

)
z2 , (S69)

Σ22(z) =k2AΣ11
−2 − 2kAΣ12

0 z +AΣ22
2 z2 + 2kf3

(
AΣ12

0

)
z3 . (S70)

Here, AΣ11
−2 , AΣ12

0 and AΣ22
2 are three constants that cannot be determined by a mere super-Hubble expansion,

since they result from the full integrated dynamics (they can however be set by numerical matching to the full

solution). In the free theory, they are given by A
Σ

(0)
11

−2 = 1/(2k), A
Σ

(0)
12

0 = 0 and A
Σ

(0)
22

2 = 0 but otherwise receive

O
(
ρ2
)
corrections. We have also defined

f1

(
AΣ11

−2

)
≡

(
1− ρ2

H2

1
1
4 + µ2

F

)
AΣ11

−2 (S71)

f2

(
AΣ12

0

)
≡ − 2

3k

(
1− ρ2

H2

1
9
4 + µ2

F

)
AΣ12

0 +
1

2k

ρ2

H2

1

µF

1
9
4 + µ2

F
(S72)

f3

(
AΣ12

0

)
≡ 2

3

[
1− ρ2

H2

(
1

9 + 4µ2
F

+
3

1 + 4µ2
F

)]
AΣ12

0 +
ρ2

H2

4

9 + 40µ2
F + 16µ4

F
. (S73)

This shows that the presence of the environment does not change the dominant scaling in z, but simply modifies
the coefficients of the expansion by O

(
ρ2
)
-suppressed corrections. This is again evidence that no secular growth

needs to be resummed, and the main effect is perturbative.

One can also use these results to extract the super-Hubble behaviour of the purity parameter. Using
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Eqs. (S68)-(S70), and expanding in ρ2, one finds

detΣ =
1

4
+

AΣ22
2

2k
+ k

(
AΣ11

−2 − 1

2k

)
− ρ2

1 + 4µ2

︸ ︷︷ ︸
detΣ∞

+
1 + 8µF + 4µ2

F
9µF + 40µ3

F + 16µ5
F

ρ2

H2
z +O

(
ρ4, z2

)
.

(S74)

The asymptotic value detΣ∞ cannot be determined without numerical matching, since it depends on the two
ρ2-suppressed constants AΣ22

2 and AΣ11
−2 − 1/(2k). The rate at which purity grows is however fully determined

by the above relation, and recalling that γ = 1/(4 detΣ), one finds

γ = γ∞ − 1 + 8µF + 4µ2
F

9
4µF + 10µ3

F + 4µ5
F

ρ2

H2
z

≃ γ∞ − ρ2

H2

1

µ3
F
z ≃ γ∞ − ρ2

m2

H

m
z

(S75)

where in the second line we have taken the limit m ≫ H. This coincides with Eq. (2) in the main text.
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