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We report the observation of quantum reflection from a narrow attractive potential using bright solitary matter
waves formed from a 85Rb Bose-Einstein condensate. We create the attractive potential using a tightly focused,
red-detuned laser beam, and observe reflection of up to 25% of the atoms, along with the confinement of atoms at
the position of the beam. We show that the observed reflected fraction is much larger than theoretical predictions
for a simple Gaussian potential well. A more detailed model of bright soliton propagation, accounting for the
generic presence of small subsidiary intensity maxima in the red-detuned beam, suggests that these small intensity
maxima are the cause of this enhanced reflection.

DOI: 10.1103/PhysRevA.93.021604

Solitons are nondispersive and self-localized waves that
arise when nonlinear interactions are sufficient to balance
dispersion. Since the first observations in shallow water [1],
extensive studies of such solitary wave solutions have been
carried out in a diverse range of fields, including nonlinear
optics and optical fibers [2–4], plasma physics [5], and
magnetism [6]. In the context of quantum gases, quasi-one-
dimensional (1D) Bose-Einstein condensates (BECs) may
be well described by the homogeneous 1D Gross-Pitaevskii
equation (GPE), a nonlinear Schrödinger equation that man-
ifests exact soliton solutions [7]. Experimentally, a quasi-1D
limit is typically approached by confining the condensate in a
highly elongated trap with tight radial confinement and weak
axial confinement. While this precludes mathematically exact
soliton solutions, the resulting solitary wave solutions retain
many characteristics of the ideal soliton [8–10], such as prop-
agation without dispersion and stability in collisions. For the
more typical case of repulsive interatomic interactions, dark
solitary waves are observed [11,12]. However, for attractive
interatomic interactions one observes bright solitary waves;
nondispersive BEC wave packets that are free to propagate
over macroscopic distances. Previous experimental work has
realized both single and multiple bright solitary matter waves
using 7Li atoms [13–15] and 85Rb atoms [16–18], stimu-
lating intense theoretical interest (see [10], and references
therein).

Scattering of bright solitary matter waves from narrow
repulsive potential barriers has been extensively studied
theoretically [19–24]. The nature of the scattering depends
crucially on the center-of-mass kinetic energy of the solitary
wave relative to the modulus of its ground state energy
[25]. For high kinetic energies the barrier can act as a
beam splitter; the outcome of recombining the two resulting
solitary waves depends strongly on their relative phase [26]
(as recently experimentally demonstrated [27]), potentially
allowing one to realize a matter-wave interferometer [19].
For low kinetic energies, the scattering can produce quantum
superposition states [25,28,29]. Previous theoretical studies
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have also addressed the scattering of bright solitary waves from
narrow attractive potential wells, where the possibility exists
for the bright solitary wave to undergo quantum reflection.
Significant quantum reflection has been predicted for low
energy solitons [30], along with significant resonant trapping
when the attractive potential supports bound states [31].
Quantum reflection of atoms and molecules has previously
been observed from solid surfaces [32,33], reflection gratings
[34], and liquid helium [35]. However, quantum reflection of
matter waves from an attractive optical potential allows one
to also observe transmission and, potentially, trapping of the
matter waves.

In this Rapid Communication, we report the observation
of splitting and quantum reflection of a bright solitary matter
wave from a narrow attractive potential formed from a tightly
focused, red-detuned laser beam. We investigate how the
fraction of atoms reflected varies with the depth of the attractive
potential, and observe atoms confined at the position of the
well. Surprisingly, we measure much greater reflected fractions
than can be explained by theoretical predictions for a Gaussian
potential well. We address this discrepancy via extensive
theoretical modeling using the GPE, providing strong evidence
that the presence of small subsidiary diffraction maxima in the
red-detuned beam, creating a multiple-well structure, is the
main source of the enhanced reflection. While small subsidiary
diffraction maxima are generically expected and commonly
observed in tightly focused beams, our experiment is unusual
in that they cause qualitative changes in behavior. Our
results suggest that carefully engineered attractive multiwell
potentials may make robust beam splitters for solitary wave
interferometry.

We create stable 85Rb condensates using the method
described in [36]. Our setup uses a levitated crossed optical
dipole trap [37] providing independent control of the trapping
frequencies (dominated by the optical confinement) and the
magnetic bias field used to tune the scattering length. In
order to avoid the large negative background scattering length
and the associated collapse instability [38–40], we use the
broad Feshbach resonance at 155 G between atoms in the
F = 2, mF = −2 state to tune the scattering length to positive
values. Close to the resonance the s-wave scattering length
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FIG. 1. (a) Experimental setup. Atoms are cooled in a crossed
optical dipole trap (not shown), and then transferred into an optical
waveguide. Additional axial confinement is provided by magnetic
quadrupole and bias fields. The narrow attractive potential is formed
using a high numerical aperture (NA) lens to produce a light sheet,
tightly focused in the x direction. (b) Absorption images of solitary
wave propagation in the optical waveguide. (c) Schematic showing
the position of the narrow attractive potential, relative to the trap
center and the initial position of the solitary wave.

takes the form

as = abg

(
1 − �

B − Bpeak

)
, (1)

where abg = −443(3)a0, � = 10.71(2) G, and Bpeak =
155.041(18) G [41]. This allows us to tune the scattering
length with a sensitivity ∼40 a0 G−1 close to the zero crossing
at 165.75 G. Experimentally the magnetic field is calibrated
by driving rf transitions between neighboring mF states. We
produce nearly pure condensates of up to 4 × 104 atoms
at a scattering length of as ≈ 200a0 in an almost spherical
trapping geometry with ωx,y,z = 2π [30(1),30(1),42(2)] Hz.
The condensate number is reduced to ∼6000 atoms by further
evaporation to facilitate solitary wave production.

In each run of the experiment we create a single solitary
wave [17] by releasing the BEC from the crossed dipole
trap [37,42] into an optical waveguide [see Fig. 1(a)] and
simultaneously tuning to a negative scattering length using
the Feshbach resonance [41]. The optical waveguide provides
radial confinement, but leaves the solitary wave free to
propagate in the axial direction. We find that a scattering
length of as = −7a0 (where a0 is the Bohr radius) minimizes
the dispersion of the condensate as it travels along the
waveguide [see Fig. 1(b)] while also avoiding the collapse
instability [38–40]. Motion in the axial direction is due to a
weak harmonic potential that results from the combination
of the magnetic bias field, Bz, used to access the Feshbach
resonance and the magnetic gradient, B ′

z, used to levitate
the atoms. This is given by ωx = 1/2

√
μB ′2

z /mBz, where
μ is the magnetic moment of the atoms, and m their mass
[42]. This magnetic potential dominates the weak (< 0.1 Hz)
optical potential of the waveguide in the axial direction. The
overall trapping frequencies in the waveguide are ωx,y,z =
2π [1.15(5),18.2(5),18.2(5)] Hz.

Crucially the position of the magnetic potential minimum
with respect to the position of the crossed dipole trap can be
precisely controlled, thereby offering control of the motion of
the solitary wave in the waveguide. The maximum velocity of
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FIG. 2. Splitting of the solitary wave. Absorption images showing
the low velocity propagation of the solitary wave (a) without and
(b) with the attractive well present at 1, 250, and 500 ms. (c) In
the absence of the well (blue triangles) the atoms oscillate in the
waveguide. With the well present the solitary wave splits, with atoms
being both transmitted (red circles) and reflected (black squares).
Lines indicate classical trajectories for free propagation (solid) and
elastic reflection (dashed).

the wave packet is given simply by vmax = Aωx where ωx is the
trapping frequency and A is the amplitude of the motion, i.e.,
the distance between the crossed dipole trap and the minimum
of the magnetic potential. We introduce a narrow attractive
potential well using λ = 852 nm light, focused to form a
light sheet with beam waists of wx = 1.9(2) μm and wy =
570(40) μm (determined by parametric heating of thermal
atoms trapped at the focus of the beam). At full power we
obtain a maximum well depth of 1 μK × kB. We position the
potential well ∼22 μm from the minimum of the axial waveg-
uide potential and release the solitary wave from the crossed
dipole trap situated ∼160 μm away from the well [as shown
in Fig. 1(c)], giving an incident velocity of ∼1 mm s−1 [43].

In our initial experiment we set the potential well depth to its
maximum value, release a solitary wave into the waveguide,
and track its position by imaging multiple instances of the
same experimental sequence at different times after release
(see Fig. 2). All images of the atomic clouds are taken using
destructive absorption imaging with a resonant probe beam
propagating along the y axis [44]. Once the solitary wave
reaches the well, we observe a splitting of the wave packet and
identify three distinct resulting fragments: atoms transmitted,
reflected, and confined at the potential well. We are able to
track the center-of-mass positions of both the transmitted and
reflected atomic clouds, as shown in Fig. 2(c). The majority
of atoms in the solitary wave are transmitted (red circles),
following the same trajectory as in the freely propagating
case (blue triangles), undergoing harmonic motion in the
waveguide (solid line). Up to 10% of the atoms appear to
be confined close to the well. The remainder of the atoms

021604-2



RAPID COMMUNICATIONS

QUANTUM REFLECTION OF BRIGHT SOLITARY MATTER . . . PHYSICAL REVIEW A 93, 021604(R) (2016)

(a)

(b) (c)

T
C

100μm

R

0.1 1 10 100 1000
-5

0

5

10

C
on

fin
em

en
t (

%
)

kB (nK)
0.1 1 10 100 1000

60

80

100

120

Tr
an

sm
is

si
on

 (%
)

kB (nK)

0.1 1 10 100 1000

-5

0

5

10

15

20

25

R
ef

le
ct

io
n 

(%
)

kB (nK)(Well depth) /

(Well depth) / (Well depth) /

FIG. 3. The percentage (a) reflection (R), (b) transmission (T),
and (c) confinement (C), of atoms as a function of well depth for an
incident solitary wave with a velocity of 1 mm s−1. These percentages
are determined using regions defined in the inset of (a) (see text for
details).

(∼25%) reflect from the narrow potential well and propagate
in the opposite direction to the transmitted component. The
turning point of the reflected atoms occurs ∼50 ms later than
for the transmitted atoms due to the offset of the well position
from the trap center. This turning point is ∼20 μm short of
the release position, suggesting some energy is lost during the
splitting process. It is likely that this is in fact transferred into
radial excitations and/or heating of the resultant clouds [45]
(cf. [22]). For comparison, the trajectory of an elastic collision
is shown by the dashed line in Fig. 2(c).

To explore the effect of the potential well depth relative
to the kinetic energy of the incoming solitary wave we vary
the power of the 852 nm beam, while keeping all other
parameters constant. The solitary wave is split and the resulting
fragments allowed to spatially separate before they are imaged,
475 ms after release. To calculate the reflection probability,
we define three fixed regions of the absorption images:
transmitted (T), confined (C), and reflected (R), as shown
in the inset of Fig. 3(a). Taking the sum of the pixel values
in each of these regions we define the reflection probability
as R/(R + C + T) × 100%. Values for the transmitted and
confined parts are calculated similarly. We find there is no
observable reflection from the narrow potential well for trap
depths <100 nK. Above this threshold, the probability of
reflection increases sharply [see Fig. 3(a)], and the number
of atoms transmitted drops correspondingly [Fig. 3(b)]. For a
trap depth of 1 μK × kB, we observe a reflection of ∼25%.

The number of atoms confined at the position of the well also
increases with increasing well depth, as shown in Fig. 3(c).

In the splitting experiments reported we observe the width
of the transmitted and reflected clouds to be larger than the
original solitary wave. However, due to the low amplitude of
the atomic motion (138 μm) and weak (1 Hz) confinement
along the waveguide beam it is difficult to spatially separate
the atomic clouds following their interaction with the well.
This fact, coupled with limited resolution of the imaging
system, means we are unable to reliably fit a Gaussian line
shape to the images, and are thus unable to report a quantitative
figure for the increase in width. Qualitatively, however, we
see an increase in the size of the transmitted and reflected
components which is significantly greater than the expected
change for a ground state soliton where, in the mean-field
description, the width scales inversely with the atom number
[7]. This raises the question as to whether the solitary waves
survive the interaction with the potential well. We also note
that the atoms which appear to be confined at the position of the
well have a larger radial size than the reflected and transmitted
clouds. This spreading is reminiscent of the expansion of
thermal atoms along a tightly focused dipole trapping beam
[at full power, the well has ωx,y,z � 2π (1500,25,120) Hz].
Considering the relative trapping frequencies of the waveguide
and light sheet, it is plausible that the strong compression of
the cloud of atoms confined in the light sheet increases the
temperature to the point where the atoms may overcome the
radial confinement of the waveguide (∼600 nK) leading to
the observed vertical spreading in the images. This conversion
of energy from kinetic to thermal could potentially explain the
reduced amplitude of the reflected atoms observed in Fig. 2.

Intriguingly, the observed reflection [Fig. 3(a)] is too large
to be explained by quantum reflection from a simple Gaussian
potential well of the form

VG(x) = −V0 exp(−2x2/�2), (2)

where V0 > 0 and � = 1.9 μm. A simple approximate ar-
gument for this comes from the analytic formula for the
single-particle reflection coefficient for the similar potential
V (x) = −V0/ cosh2(x/d) (choosing d ≈ �/1.6) [46],

R = cos2(π
√

1/4 + 2mV0d2/�2)

sinh2(πkd) + cos2(π
√

1/4 + 2mV0d2/�2)
, (3)

where k is the wave vector of the incoming plane wave. Since
cos2(x) � 1 for all real arguments x, this approximation shows
that for � = 1.9 μm a small incoming velocity (small k) is
necessary to observe any reflection, regardless of the well depth
V0. For velocities v ≈ 1 mm s−1, as realized in the experiment,
this approximation predicts negligible reflection (∼0.006%).
Indeed, for this velocity a well with a depth of 1 μK × kB

would require � = 0.44 μm to realize the 25% reflection seen
in the experiment.

The lack of substantial reflection predicted by the analytic
single-particle expression [Eq. (2)] is confirmed by detailed
numerical simulations of a quasi-one-dimensional GPE

i�
∂ψ(x,t)

∂t
=

[−�
2

2m

∂2

∂x2
+ V (x) + U (x,t) − g1D|ψ(x,t)|2

]
×ψ(x,t), (4)
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FIG. 4. Extreme variation in predicted reflection for small
changes in spatial structure of the potential. Main panels show
calculated reflection coefficients as a function of potential depth for
(a) noninteracting wave packets (as = 0) and (b) bright solitary waves
(as = −7a0) in a 1D GPE model. Results are shown for both Gaussian
[VG(x)], and truncated diffraction-pattern [V (trunc)

J (x)] potentials. The
inset to (a) shows the large-scale similarity between these potentials.
The inset to (b) shows the subsidiary potential wells [zoom of gray
area in inset to (a)]; these have �2% the depth of the main well, but
strongly influence the reflectivity.

where U (x,t) represents the time-dependent background
trapping potential. We model this potential as

U (x,t) = 1
2m[ωx1 (t)2(x − x1)2 + ωx2 (t)2(x − x2)2], (5)

where x1 = −160 μm (x2 = −22 μm) represents the location
of the minimum of the dipole (waveguide) potential in x [see
Fig. 1(c)]. The trap frequencies for these potentials are ramped
linearly over the first τ = 250 ms: ωx1 (t) = max{2πν1(τ −
t)/τ,0} and ωx2 (t) = min{2πν2t/τ,2πν2}, for ν1 = 30 Hz and
ν2 = 1.15 Hz. The (static) potential well V (x) is centered
on x = 0 in these coordinates, and the atoms move towards
positive x. The nonlinearity g1D = 4πN |as|�ν⊥, where we
take N = 6000 and ν⊥ = 18.2 Hz. We work with ψ(x,t)
normalized to unity, and initialize the simulation with ψ(x,t)
in the ground state of the system for potential U (x,t = 0).

In agreement with the approximate formula [Eq. (3)],
these simulations confirm that only very weak reflection
(�4%) is expected from the Gaussian potential, both for
noninteracting wave packets [Fig. 4(a)], and for bright solitary
waves [Fig. 4(b)]. We have confirmed that these results are not
significantly changed by the use of a three-dimensional (3D)
GPE model, either with or without the inclusion of additional
noise in the initial wave packet.

To qualitatively explain the surprisingly large observed
reflection we consider the effects of subsidiary diffraction
maxima in the optical intensity. These occur generically
in focusing optical configurations [47] but, since they are
generally much less intense than the primary maximum, they
are typically ignored when modeling optical potentials in
BEC experiments. However, in the context of our experiment,
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FIG. 5. Comparison of 1D GPE predictions for the reflection
between potentials V

(trunc)
J (x) and VJ (x) (see text) for (a) noninteract-

ing wave packets (as = 0) and (b) bright solitary waves (as = −7a0).
Also shown in (b) are results of a 3D GPE simulation with equivalent
parameters.

the narrow nature of the subsidiary maxima is potentially
significant; at least when considered in isolation, they are able
to produce larger reflection than the primary maximum [Eq. (3)
predicts ∼0.06% reflection for the first subsidiary maximum
alone]. Crucially, the presence of multiple potential wells can
significantly enhance reflection; this is seen, for example, in
Bragg reflection of BECs from a multiple-well lattice [48].

While the exact structure of the subsidiary diffraction
maxima in the red-detuned beam is not precisely known in
our experiment, as a generic model we consider the first pair
of subsidiary potential minima due to the intensity pattern
of Fraunhofer diffraction from an aperture [47], giving the
potential

V
(trunc)
J (x) =

{
VJ (x), |2√

2x/�| < α2

0, |2√
2x/�| � α2,

(6)

where

VJ (x) = −V0

[
�√
2x

J1

(
2
√

2x

�

)]2

, (7)

and α2 is the second positive zero of the Bessel function
J1(x). As shown in Fig. 4 (inset) this potential has the same
form as VG(x) when viewed at large scales, but also a pair
of subsidiary minima. The results of 1D GPE simulations
for both noninteracting wave packets [Fig. 4(a)] and for
bright solitary waves [Fig. 4(b)] show that the reflection is
greatly enhanced for this potential compared to VG(x) over
the range of well depths used in the experiment. The presence
of subsidiary diffraction maxima in the beam producing the
potential well thus provides a plausible explanation for the
substantial reflection probabilities observed in the experiment.
We obtain very similar results for the potential VJ (x) [see
Fig. 5(a)], indicating that the high-amplitude and oscillatory
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structure of the reflection coefficient can be considered as a
transmission resonance effect attributable to the three central
potential wells. We have also confirmed that these results
are not significantly changed by the use of a cylindrically
symmetric 3D GPE model as shown in Fig. 5(b).

Unsurprisingly, there are quantitative differences between
the experimental data [Fig. 3(a)] and our generic model; in
particular, the model exhibits negligible (<1%) confinement,
and an oscillatory structure not seen in the experiment. Our
simulations have excluded small shot-to-shot changes in the
incoming soliton velocity due to small (∼±5 μm) shifts in the
alignment of the experimental potentials as an explanation for
the latter. We therefore suspect that the quantitative differences
arise from two main effects: first, the exact structure of
the potential well is unlikely to be captured precisely by
our generic model. Secondly, the previously noted vertical
spreading of the confined fraction observed in the experiment
suggests that the compression of the atomic cloud as it passes
through the potential well may cause significant heating; this
would likely lead to incoherent, finite-temperature dynamics
not captured by our GPE model.

In summary, we have observed quantum reflection of a
bright solitary matter wave from a narrow attractive potential,
formed by a tightly focused laser beam. Reflection probabil-
ities of up to 25% are measured, with the remaining atoms
either transmitted or confined at the position of the potential
well. Modeling of the system suggests that the exact spatial
form of the potential well is crucial in determining the amount
of reflection observed, with the presence of multiple optical
diffraction maxima, rather than a single Gaussian maximum,
playing an essential role. These results indicate that carefully
engineered attractive multiwell potentials, readily generated

using spatial light modulators [49], could be developed as
robust beam splitters for use in solitary wave interferometry.
Here the narrow, self-trapped nature of the solitary waves
makes them ideal for measuring the transmitted and reflected
fractions of a wave packet incident on a beam splitter
[19,20,23,24]. To further explore the splitting process we
plan to modify our apparatus to allow the 1 Hz curvature
along the waveguide to be removed, or even reversed, giving
greater control over the spatial separation of the resultant
wave packets. This will allow quantitative measurements of
the cloud size after splitting to be made, giving a definitive
answer as to whether the solitary waves persist following their
interaction with the potential well. This is of key importance
for interferometry applications. In future work we plan to
replace the focused laser beam with a room-temperature
superpolished glass prism (shown in Fig. 1), allowing us to
explore quantum reflection due to the attractive Casimir-Polder
potential [50].

The data presented in this paper are freely available to
download [51].
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Emergent Nonlinear Phenomena in Bose-Einstein Condensates
(Springer, New York, 2008).

[8] L. D. Carr and Y. Castin, Phys. Rev. A 66, 063602 (2002).
[9] T. P. Billam, S. A. Wrathmall, and S. A. Gardiner, Phys. Rev. A

85, 013627 (2012).
[10] T. P. Billam, A. L. Marchant, S. L. Cornish, S. A. Gardiner, and

N. G. Parker, in Spontaneous Symmetry Breaking, Self-Trapping,
and Josephson Oscillations, edited by B. A. Malomed, Progress

in Optical Science and Photonics Vol. 1 (Springer, New York,
2013), p. 403.

[11] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A.
Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev.
Lett. 83, 5198 (1999).

[12] J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark, L. A.
Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson, W.
P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D. Phillips,
Science 287, 97 (2000).

[13] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles,
L. D. Carr, Y. Castin, and C. Salomon, Science 296, 1290 (2002).

[14] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet,
Nature (London) 417, 150 (2002).

[15] P. Medley, M. A. Minar, N. C. Cizek, D. Berryrieser, and M. A.
Kasevich, Phys. Rev. Lett. 112, 060401 (2014).

[16] S. L. Cornish, S. T. Thompson, and C. E. Wieman, Phys. Rev.
Lett. 96, 170401 (2006).

[17] A. L. Marchant, T. P. Billam, T. P. Wiles, M. M. H. Yu,
S. A. Gardiner, and S. L. Cornish, Nat. Commun. 4, 1865
(2013).

[18] G. D. McDonald, C. C. N. Kuhn, K. S. Hardman, S. Bennetts, P.
J. Everitt, P. A. Altin, J. E. Debs, J. D. Close, and N. P. Robins,
Phys. Rev. Lett. 113, 013002 (2014).

[19] J. L. Helm, T. P. Billam, and S. A. Gardiner, Phys. Rev. A 85,
053621 (2012).

021604-5

http://dx.doi.org/10.1103/PhysRevLett.45.1095
http://dx.doi.org/10.1103/PhysRevLett.45.1095
http://dx.doi.org/10.1103/PhysRevLett.45.1095
http://dx.doi.org/10.1103/PhysRevLett.45.1095
http://dx.doi.org/10.1103/RevModPhys.83.247
http://dx.doi.org/10.1103/RevModPhys.83.247
http://dx.doi.org/10.1103/RevModPhys.83.247
http://dx.doi.org/10.1103/RevModPhys.83.247
http://dx.doi.org/10.1103/PhysRevLett.90.085002
http://dx.doi.org/10.1103/PhysRevLett.90.085002
http://dx.doi.org/10.1103/PhysRevLett.90.085002
http://dx.doi.org/10.1103/PhysRevLett.90.085002
http://dx.doi.org/10.1103/PhysRevLett.111.197204
http://dx.doi.org/10.1103/PhysRevLett.111.197204
http://dx.doi.org/10.1103/PhysRevLett.111.197204
http://dx.doi.org/10.1103/PhysRevLett.111.197204
http://dx.doi.org/10.1103/PhysRevA.66.063602
http://dx.doi.org/10.1103/PhysRevA.66.063602
http://dx.doi.org/10.1103/PhysRevA.66.063602
http://dx.doi.org/10.1103/PhysRevA.66.063602
http://dx.doi.org/10.1103/PhysRevA.85.013627
http://dx.doi.org/10.1103/PhysRevA.85.013627
http://dx.doi.org/10.1103/PhysRevA.85.013627
http://dx.doi.org/10.1103/PhysRevA.85.013627
http://dx.doi.org/10.1103/PhysRevLett.83.5198
http://dx.doi.org/10.1103/PhysRevLett.83.5198
http://dx.doi.org/10.1103/PhysRevLett.83.5198
http://dx.doi.org/10.1103/PhysRevLett.83.5198
http://dx.doi.org/10.1126/science.287.5450.97
http://dx.doi.org/10.1126/science.287.5450.97
http://dx.doi.org/10.1126/science.287.5450.97
http://dx.doi.org/10.1126/science.287.5450.97
http://dx.doi.org/10.1126/science.1071021
http://dx.doi.org/10.1126/science.1071021
http://dx.doi.org/10.1126/science.1071021
http://dx.doi.org/10.1126/science.1071021
http://dx.doi.org/10.1038/nature747
http://dx.doi.org/10.1038/nature747
http://dx.doi.org/10.1038/nature747
http://dx.doi.org/10.1038/nature747
http://dx.doi.org/10.1103/PhysRevLett.112.060401
http://dx.doi.org/10.1103/PhysRevLett.112.060401
http://dx.doi.org/10.1103/PhysRevLett.112.060401
http://dx.doi.org/10.1103/PhysRevLett.112.060401
http://dx.doi.org/10.1103/PhysRevLett.96.170401
http://dx.doi.org/10.1103/PhysRevLett.96.170401
http://dx.doi.org/10.1103/PhysRevLett.96.170401
http://dx.doi.org/10.1103/PhysRevLett.96.170401
http://dx.doi.org/10.1038/ncomms2893
http://dx.doi.org/10.1038/ncomms2893
http://dx.doi.org/10.1038/ncomms2893
http://dx.doi.org/10.1038/ncomms2893
http://dx.doi.org/10.1103/PhysRevLett.113.013002
http://dx.doi.org/10.1103/PhysRevLett.113.013002
http://dx.doi.org/10.1103/PhysRevLett.113.013002
http://dx.doi.org/10.1103/PhysRevLett.113.013002
http://dx.doi.org/10.1103/PhysRevA.85.053621
http://dx.doi.org/10.1103/PhysRevA.85.053621
http://dx.doi.org/10.1103/PhysRevA.85.053621
http://dx.doi.org/10.1103/PhysRevA.85.053621


RAPID COMMUNICATIONS

A. L. MARCHANT et al. PHYSICAL REVIEW A 93, 021604(R) (2016)

[20] A. D. Martin and J. Ruostekoski, New J. Phys. 14, 043040
(2012).

[21] J. Cuevas, P. G. Kevrekidis, B. A. Malomed, P. Dyke, and R. G.
Hulet, New J. Phys. 15, 063006 (2013).

[22] J. Polo and V. Ahufinger, Phys. Rev. A 88, 053628 (2013).
[23] J. L. Helm, S. J. Rooney, C. Weiss, and S. A. Gardiner, Phys.

Rev. A 89, 033610 (2014).
[24] J. L. Helm, S. L. Cornish, and S. A. Gardiner, Phys. Rev. Lett.

114, 134101 (2015).
[25] B. Gertjerenken, T. P. Billam, L. Khaykovich, and C. Weiss,

Phys. Rev. A 86, 033608 (2012).
[26] N. G. Parker, A. M. Martin, S. L. Cornish, and C. S. Adams,

J. Phys. B 41, 045303 (2008).
[27] J. H. V. Nguyen, P. Dyke, D. Luo, B. A. Malomed, and R. G.

Hulet, Nat. Phys. 10, 918 (2014).
[28] C. Weiss and Y. Castin, Phys. Rev. Lett. 102, 010403 (2009).
[29] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A

80, 043616 (2009).
[30] C. Lee and J. Brand, Europhys. Lett. 73, 321 (2006).
[31] T. Ernst and J. Brand, Phys. Rev. A 81, 033614 (2010).
[32] F. Shimizu, Phys. Rev. Lett. 86, 987 (2001).
[33] T. A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. E.

Pritchard, and W. Ketterle, Phys. Rev. Lett. 93, 223201 (2004).
[34] B. S. Zhao, G. Meijer, and W. Schöllkopf, Science 331, 892
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