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We investigate the quantum regime of a high-gain free-electron laser starting from noise. In the first
part, we neglect the radiation propagation and we formulate a quantum linear theory of the N-particle free-
electron laser Hamiltonian model, quantizing both the radiation field and the electron motion. Quantum
effects such as frequency shift, line narrowing, quantum limitation for bunching and energy spread, and
minimum uncertainty states are described. Using a second-quantization formalism, we demonstrate
quantum entanglement between the recoiling electrons and the radiation field. In the second part, we
describe the field classically but we include propagation effects (i.e. slippage) and we demonstrate the
novel regime of quantum SASE with high temporal coherence and discrete spectrum. Furthermore, we
describe ‘‘quantum purification’’ of SASE: the classical chaotic spiking behavior disappears and the
spectrum becomes a series of discrete very narrow lines which correspond to transitions between discrete
momentum eigenstates (which originate high temporal coherence).
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I. INTRODUCTION

The quantum dynamics of an free-electron laser (FEL) is
determined by a ‘‘quantum FEL parameter,’’ �� [1,2], de-
fined in terms of the classical � parameter, introduced by
Bonifacio, Pellegrini, and Narducci [3] as

 �� � �
mc�R
@k

; (1)

which represents the ratio between the classical momen-
tum spread and the one-photon recoil momentum. The
classical limit is recovered only when this parameter is
much larger than 1. In this classical limit, the FEL dynam-
ics are independent of �� and the FEL equations can be
universally scaled with no free parameters. On the con-
trary, when �� � 1, one has strong quantum effects and the
FEL dynamics depend explicitly on ��.

Previous quantum treatments [1,2] of the high-gain ex-
ponential regime of FELs have been presented in the past
years. However, the analysis used in these quantum models
defines noncommuting particle collective operators with-
out the necessary symmetrization. As a consequence, the
results produced using these models are incorrect.

In the first part of the paper, both the electron motion and
the radiation field are quantized, using a multiparticle
Hamiltonian approach. We show the existence of a general
uncertainty principle relating momentum spread and
bunching, which implies that the maximum bunching is
limited by energy spread. We define a minimum uncer-
tainty state, which, for small fluctuations, reduces to a
Gaussian packet. Finally, the multiparticle approach is
compared with a second-quantization approach in terms
of momentum states occupation operators. Photon statis-
tics and quantum entanglement in an FEL, starting from

vacuum fluctuations, are derived and discussed in the
steady-state linear regime.

In the second part, we describe classically the field and
we include propagation/slippage effects using a self-
consistent system of Schrödinger-Maxwell equations.
This allows us to provide a quantum description of self-
amplified superradiant emission (SASE). The SASE mode
for a FEL is made up of three basic ingredients: high-gain,
propagation or ‘‘slippage’’ effects, and start-up from noise
[4]. The classical steady-state high-gain regime of FELs,
with universal scaling and the introduction of the � pa-
rameter, was analyzed in [3], where the possibility of
operating an FEL in the SASE regime was suggested.
Other treatments assume that SASE is just steady-state
instability starting from noise [5,6]. This approach does
not give the correct temporal structure and spectrum of
SASE radiation as described in [4]. As a matter of fact, in
Refs. [7–9] it has been shown that, due to propagation,
there exists not only the steady-state instability of [3], but
also a superradiant instability, with peak intensity propor-
tional to n2, where n is the electron density. This super-
radiant instability, entirely due to slippage, is the heart of
SASE, so that all the treatments which claim to describe
SASE without this propagation induced instability are
incomplete.

As shown in [4], a SASE FEL radiates a random series of
superradiant spikes because, roughly speaking, at short
wavelength, the electron bunch contains many cooperation
lengths which radiate randomly and independently from
one another. The number of spikes in the high-gain regime
corresponds approximately to the number of cooperation
lengths in the electron bunch (precisely Lb=2�Lc). The
final result is an almost chaotic temporal pulse structure

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 9, 090701 (2006)

1098-4402=06=9(9)=090701(9) 090701-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.9.090701


with a broad spectral width, unless Lb � 2�Lc [4]. Hence,
classical SASE has one drawback with regard to its appli-
cation as a useful source of short-wavelength coherent
light: when Lb � 2�Lc its temporal coherence is very
poor due to the noisy spectrum.

Here we propose a novel method for producing coherent
short-wavelength radiation with SASE by adding new
features to a previous quantum treatment [10]. We show
that when ��� 1 the SASE FEL behaves classically, i.e.,
in agreement with the SASE classical model. In this limit
we demonstrate analytically the classical limit: the equa-
tion for the quantum Wigner function associated to the
Schrödinger-like equation reduces to the classical Vlasov
equation. However, when �� � 1, we obtain a quantum
regime with features completely different from those of
the classical regime and to which we shall refer as quantum
SASE. A surprising feature of this regime is the phenome-
non of ‘‘quantum purification,’’ in which the chaotic spec-
trum of classical SASE is replaced by a completely
different coherent spectrum, as if the system would be
driven by a coherent seed. More specifically, in the quan-
tum regime one has a set of discrete narrow lines equally
spaced due to transition between discrete momentum
states. Increasing ��, the distance between the lines de-
creases and their width increases. The classical continuous
noisy spectrum is recovered when, for �� > 0:4, the lines
overlap.

II. HAMILTONIAN MODEL

We start from the FEL Hamiltonian for N electrons
interacting with a single mode of radiation [1]:

 H �
XN
j�1

�p2
j

2 ��
� ig�aye�i�j � aei�j�

�
� �aya; (2)

where �j � �k� kw�z� cktj � ��z and pj � mc��j �
�0�=@�k� kw� are position and momentum operators of
the jth electron, with ��i; pj	 � i�ij, a is the annihilation

operator of the radiation field, with �a; ay	 � 1, g �����������
��=N

p
, �z � z=Lg, Lg � �w=4�� is the gain length, � �

��r � �0�=��0 is the detuning, � � �1=�r�


�aw!p=4ckw�
2=3 is the classical FEL parameter, !p ��������������������

e2n=m�0

p
is the plasma frequency, �r ��������������������������������

k�1� a2
w�=2kw

p
is the resonant energy (in mc2 units),

and aw is the undulator parameter. We observe that the
dynamics depends on the single quantum FEL parameter ��
defined in (1). From the Hamiltonian (2), we derive the
following Heisenberg evolution equations:

 

d�j
d �z
�
pj
��

(3)

 

dpj
d �z
� �g�aei�j � aye�i�j� (4)

 

da
d �z
� g

XN
j�1

e�i�j � i�a: (5)

A constant of motion, which represents the total momen-
tum in dimensionless units, is given by

 

XN
j�1

pj � aya � const: (6)

Let us introduce the following electron collective opera-
tors:

 B �
1����
N
p

XN
j�1

e�i�j (7)

 P �
1����
N
p

XN
j�1

�pje�i�j � e�i�jpj
2

�
; (8)

where B is the bunching and P is the symmetrized mo-
mentum bunching. This symmetrization is fundamental
whenever one is dealing with products of noncommuting
operators, i.e., �e�i�j ; pk	 � �jke

�i�j .
We consider a, pj, and

P
je
�i�j as fluctuation operators,

i.e., the initial states for the electrons and the field is
such that hai0 � hpji0 �

P
jhe
�i�ji0 � 0. Writing the

Heisenberg equations of motion and neglecting the high-
order quantities

 

1����
N
p

X
j

�pje
�i�jpj�; ay

1

N

X
j

e�2i�j ; (9)

we obtain the following equations for the linear regime:

 

dB
d�z
� �

i
��
P (10)

 

dP
d�z
� �

i
4 ��
B�

����
��

p
a (11)

 

da
d�z
�

����
��

p
B� i�a: (12)

The quantum correction to the classical description [3] is
given by the term �iB=4 �� in the equation for P. Looking
for solutions of the linear system (10)–(12) of the form
B��z� � B0 exp�i��z�, we obtain the cubic characteristic
equation

 ��� ��
�
�2 �

1

4 ��2

�
� 1 � 0: (13)

Notice that this dispersion relation coincides with that of a
classical FEL with an initial energy spread with a square
distribution and width 1=2 ��, i.e., this extra term represents
the intrinsic quantum momentum spread which, in dimen-
sional units, becomes @k=2. In [1,2] the linear approxima-
tion has been carried out without properly symmetrizing

BONIFACIO, PIOVELLA, ROBB, AND SCHIAVI Phys. Rev. ST Accel. Beams 9, 090701 (2006)

090701-2



the momentum bunching operator, defined in (8). In fact, in
[1] the authors define the momentum bunching as P1 �

�1=
����
N
p
�
P
j exp��i�j�pj and neglect in the linear approxi-

mation the high-order term
P
j exp��i�j�p

2
j , leading to the

equation dP1=d�z � �a and to the classical cubic equation
�2��� �� � 1 � 0 [3], which can be obtained from
Eq. (13) in the limit ��� 1. In [2], the authors define the
momentum bunching as P2 � �1=

����
N
p
�
P
jpj exp��i�j�

without symmetrizing. Neglecting the high-order termP
jp

2
j exp��i�j�, they obtain the following cubic equation

[see Eq. (27) in [2]]:

 �3 � ��� q��2 � ��q� q2=4��� 1� �q2=4 � 0;

(14)

where q � 1= ��. However, defining �0 � �� q=2 and
�0 � �� q=2, Eq. (14) becomes formally identical to the
usual classical cubic �02��0 � �0� � 1 � 0, just redefining
the detuning parameter. As a consequence, the analysis of
the quantum corrections discussed in [2], in which the
resonance is assumed for � � 0, instead of � � q=2 �
1=2 ��, is not correct. As a matter of fact the cubic equation
which describes correctly the quantum behavior is not
given by Eq. (14), but by Eq. (13), which has been obtained
using the correct symmetrization of the collective operator,
as given by Eq. (8). The features of the solution of the cubic
equation (13) are shown in Fig. 1. When �� � 1
[Figs. 1(b)–1(f)], the resonance occurs at � � 1=�2 ���,
with full width equal to 4

����
��
p

and peak value Im� �
����
��
p

.
Note that the field and the bunching grow exponentially
as exp�

����
��
p

�z� � exp�z=L0g�, where L0g � Lg=
����
��
p
�

�w=�4��
����
��
p
� is the quantum gain length.

Hence, in the quantum regime �� < 1, the resonance
condition is mc��r � �0� � @k=2 (i.e. � � 1=2 �� our di-
mensionless variables), the gain length increases and the
gain bandwidth narrows as the square root of the quantum
FEL parameter ��. On the contrary, if one uses the cubic

(14) of [2], one would obtain Fig. 1(a) with the correct shift
of the resonance to the right but with all the other proper-
ties of the quantum solution missing.

III. UNCERTAINTY RELATIONS

We now derive, from first principles, very general limi-
tations for bunching and energy spread. The phase operator
�, defined in the �0; 2�	 space, and the canonically con-
jugate momentum p � �i@=@�, satisfy the commutation
rule ��; p	 � i. These two variables can be interpreted also
as azimuthal angle about the z axis and z-component of the
orbital momentum Lz � p, so that the momentum p (in
units of @k) has discrete eigenvalues n � 0;�1; . . . and
normalized eigenfunctions �1=

�������
2�
p

� exp�in��. As it is well
known [11], assuming these discrete eigenstates, one can-
not conclude that the commutation rule implies the uncer-
tainty relation ���p � 1=2. However, other uncertainty
relations can be obtained using the periodic operators cos�
and sin�, with commutation rules with p given by
�sin�; p	 � i cos� and �cos�; p	 � �i sin�. Therefore,
from the general uncertainty relations, one can deduce
the following inequalities [11]:

 �p� sin� � �1=2�jhcos�ij (15)

 �p� cos� � �1=2�jhsin�ij (16)

which can be combined in the single symmetrical relation:

 ��p�2��� cos��2 � �� sin��2	 � 1
4�hcos�i2 � hsin�i2�:

(17)

Defining the bunching b � hexp��i��i � hcos�i �
ihsin�i, Eq. (17) provides the following uncertainty rela-
tion between the momentum spread �p (in units of @k) and
the bunching:

 �p �
jbj

2
�����������������
1� jbj2

p (18)

which can be written also as

 jbj �
�p�����������������������

�p2 � 1=4
p : (19)

The inequalities (18) and (19) are intrinsically quantum
mechanical relations between bunching and energy spread
and their validity is independent of the FEL dynamics.

Relation (19) set an upper limit to the maximum bunch-
ing obtainable in FELs, and states that jbj can be near unity
only when �p� 1=2, i.e., when the momentum spread is
much larger than @k=2. In the case in which one can
assume ��
 1, one has jbj2 � 1� ����2 and the rela-
tion (18) reduces to the usual Heisenberg uncertainty prin-
ciple ���p � 1=2.

We now introduce a minimum uncertainty state. It has
been demonstrated [12] that there is no state that allows the
symmetrical uncertainty relation Eq. (17) to reach its mini-
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FIG. 1. Imaginary part of the complex root of the cubic
Eq. (13) vs � for 1=2 �� equal to 0 (a), 0:5 (b), 3 (c), 5 (d), 7
(e), and 10 (f).
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mum value. However, there exist states that minimize one
of the two uncertainty relations (15) and (16). These mini-
mum uncertainty states are solutions of the equation
[11,12]

 

�
@
@�
� � sin�

�
 ���� � i� ����; (20)

which have the form

  ���� � Ge�2�sin2��=2��i��: (21)

Because  ���� must be a single valued function, then � �
m � hpi, hsin�i � 0, and the normalization constant G is
given by G�2 �

R
2�
0 d�e2� cos� � 2�I0�2��, where In is

the modified Bessel function of order n. States (21) mini-
mize the first uncertainty relation (15) and describe states
with a nonzero energy spread. In fact, they reduce, for � �
0, to the eigenstates �1=

�������
2�
p

� exp�im�� of p, whereas for
large values of �,  m � ��=��1=4 exp����2=2� im��,
i.e. the minimum uncertainty state becomes a Gaussian
wave packet with �� � 1=

������
2�
p

and �p �
���������
�=2

p
,

such that ���p � 1=2. In general, �p ���������������������������������������������
��=2��I1�2��=I0�2��	

p
[11]. These states, originally intro-

duced by Jackiw [12] to describe the phase of the photon
could be useful to describe the energy spread in the quan-
tum description of FELs.

IV. QUANTUM FIELD DESCRIPTION

An alternative description to the N-particle Hamiltonian
model can be formulated in the second-quantization for-
malism, treating the electrons as noninteracting bosons
[13,14]. In this formulation, the N particles are described
by a matter-field operator �̂��; �z� obeying the bosonic
equal-time commutation relation

 ��̂���; �̂���y	 � ���� �0� (22)

and the normalization condition

 

Z 2�

0
�̂���y�̂��� � N̂: (23)

In this formulation, the second-quantized Hamiltonian is

 Ĥ �
Z 2�

0
�̂���yH

�
�;�i

@
@�
; a; ay

�
�̂���; (24)

where H is the single-particle Hamiltonian defined in (2).
The Heisenberg equation for �̂��; �z� and a are

 i
@�̂

@�z
� ��̂; Ĥ	 � �

1

2 ��
@2�̂

@�2 � ig�a
ye�i� � aei���̂;

(25)

 

da
d�z
� �i�a; Ĥ	 � g

Z 2�

0
d��̂���ye�i��̂��� � i�a:

(26)

Then, expanding the matter-wave field in the momentum
basis,

 �̂��� �
X�1

n��1

cnun���; (27)

where un � �1=
�������
2�
p

� exp�im�� are the eigenfunctions of p
with eigenvalue n and cn are the annihilation operators for
the state with eigenvalue n, with �cn; c

y
m	 � �n;m. Then,

using (27), Eqs. (25) and (26) become

 

dcn
d�z
� �i

n2

2 ��
cn � g�aycn�1 � acn�1� (28)

 

da
d�z
� g

X�1
n��1

cyn�1cn � i�a: (29)

The quantum expression for the bunching parameter ap-
pearing in the right-hand side of Eq. (29),

 b �
1

N

X�1
n��1

cyn�1cn (30)

(where N � hN̂i), shows that electron bunching involves a
coherent superposition of different momentum states. The
semiclassical regime of Eqs. (28) and (29), in which a and
cn are treated as classical functions, has been investigated
in [15]. A fully quantum treatment of the linear regime of
Eqs. (28) and (29) has been given in [14], considering the
equilibrium state with no photons and all the electrons in
the state with n � 0 (i.e. hai0 � 0 and hcy0c0i0 � N). Then,
considering c1, c�1, and a as fluctuation operators, we
obtain the same quantum linear equations (10)–(12), in
which the bunching and the momentum bunching opera-
tors are defined asB � c1 � c

y
�1 and P � c1 � c

y
�1. In this

description the electrons have initially a definite value of
momentum (i.e. p � 0), so that they are delocalized in
position. The dynamics of the system is that of three para-
metric coupled harmonic oscillators, a1 � c�1, a2 � c1,
and a3 � a, which obey commutation rules �ai; aj	 � 0

and �ai; a
y
j 	 � �ij for i; j � 1; 2; 3. Starting from the vac-

uum state of the three modes, it has been demonstrated [14]
that the state at �z is
 

j���z�i �
1������������������

1� hn1i
p X1

m;n�0

�m1 ��z��
n
2��z�

�������������������
�m� n�!
m!n!

s


 jm� n; n;mi; (31)

where j�1;2j
2 � hn3;2i=�1� hn1i�, and hnii � ha

y
i aii (i �

1; 2; 3) are the average occupation numbers. The state n1

refers to electrons with negative recoil (decelerating), n2

with positive recoil (accelerating), and n3 is the photon
number. Note that the occupation number of the mode 1 is
given by the sum of the other two, as a consequence of the
constant of motion C � n1 � n2 � n3, with hCi � 0 when
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the system starts from vacuum. For the state (31), the
number variance is 	2

i � hnii�1� hnii� [1,14], i.e., the
statistics is that of a thermal state. The state (31) is three-
mode entangled, i.e., the recoiling electrons and the emit-
ted photons are entangled.

It can be seen that for �� � 1 the electrons, initially in the
momentum state n � 0, can populate only the lower mo-
mentum state n � �1, recoiling backward by @k when a
photon is emitted [16]. In this quantum regime the system
behaves as a two-level system [10], described by the two
operators c0 and c�1. In the linear regime, the average
number of photons grows exponentially as hn3i � hn1i �
�1=4� exp�

����
��
p

�z� at resonance [i.e. for � � 1=�2 ���] and the
maximum number of emitted photons is N. In the quantum
limit �� � 1, the state (31) reduces to the pure bipartite state
with hn2i � 0:

 j�� �z�i �
1������������������

1� hn1i
p X1

m�0

�m1 ��z�jm; 0; mi; (32)

where j�1j
2 � hn1i=�1� hn1i�. The state (32) is maximally

entangled, since the photon and the recoiling electron are
generated in pairs.

Finally, we comment on the implication of the uncer-
tainty relations (18) and (19) in the quantum limit �� � 1,
in which the Hilbert space is spanned by only the two
eigenstates of the discrete momentum, separated by @k.
Assuming for simplicity the semiclassical approximation,
in which cn are treated as classical functions, and calling
P1 � jc0j

2=N and P2 � jc�1j
2=N the probabilities of an

electron occupying the state with n � 0 or n � �1 (with
P1 � P2 � 1), it is easy to show that the momentum spread
in units of @k is �p �

������������������������
P1�1� P1�

p
. Hence, the maximum

spread is �pmax � 1=2 and it occurs for P1 � P2 � 1=2.
The inequality (19) states that, for �p � 1=2, jbj<
1=

���
2
p
� 0:71. However, in the two-state approximation,

using Eq. (30), the bunching is jbj � jc��1c0j=N ������������
P1P2

p
� �p, so that the maximum bunching is also

1=2, which is consistent with the limitation given by (19).

V. QUANTUM PROPAGATION MODEL

In this section we extend a previous quantum model [13]
to include the effects of propagation or slippage [17],
which are fundamental to SASE, by using a multiple
scaling method already adopted in classical FEL theory
[18]. This allows us to take into account the existence of
two different spatial length scales: the variation of the
electron distribution on the scale of the radiation wave-
length (describing the bunching on the variable �) and the
variation of the field envelope on the much longer scale
of the cooperation length, described by z1 � 2�� � �z�
vrt�=
rLc, i.e., the electron coordinate along the bunch, in
units of the cooperation length, Lc �

�
4�� [4,7]. We ap-

proximate the field operator �̂ by a classical wave function
and describe the electromagnetic field classically. In the

approach of Ref. [13], the field operator �̂ is approximated
by a classical wave function � � h�̂i=

����
N
p

and the elec-
tromagnetic field is described classically by the dimen-
sionless radiation amplitude, A � a=

�������
��N
p

. Then, the
propagation effects for a quantum free-electron laser
(QFEL) are described by the following equations:
 

i
@���; z1; �z�

@�z
� �

1

2 ��
@2

@�2 ���; z1; �z�

� i ���A�z1; �z�ei� � c:c:	���; z1; �z� (33)

 

@A�z1; �z�
@ �z

�
@A�z1; �z�
@z1

�
Z 2�

0
d�j���; z1; �z�j2e�i�

� i�A�z1; �z�: (34)

The dimensionless field amplitude A is defined so that
��j �Aj2 is the ratio between the photon density and the
electron density. From Eqs. (33) and (34), one can show
that the dimensionless density profile

 I0�z1� �
Z 2�

0
j�j2d� (35)

is independent of �z. This means that the spatial distribution
of the particles does not change appreciably on the slow
scale z1 during the interaction with the radiation field. The
QFEL equations (33) and (34) depend only on the quantum
FEL parameter, ��.

The classical limit of QFEL can be explicitly shown as
follows. Extending the domain of � to ��1;�1� and
defining the Wigner function associated to the wave func-
tion � [19]
 

W��; �p; z1; �z� �
��

2�

Z �1
�1

d�0e�i ���0 �p�
�
��

�0

2
; z1; �z

�
�


�
�
��

�0

2
; z1; �z

�
; (36)

it is possible to show that Eqs. (33) and (34) are equivalent
to the following equations [16,17]:
 

@W��; �p; z1; �z�
@ �z

� �p
@W��; �p; z1; �z�

@�
� ���Aei� � A�e�i��




�
W
�
�; �p�

1

2 ��
; z1; �z

�
�W

�
�; �p�

1

2 ��
; z1; �z

��
� 0

(37)

 

@A
@�z
�
@A
@z1
�
Z �1
�1

d �p
Z �1
�1

d�W��; �p; z1; �z�e�i� � i�A;

(38)

where �p � mc��� �0�=@k ��. The Wigner function W is a
quasiprobability distribution, defined such that its marginal
distributions are
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 Z �1
�1

d �pW��; �p; z1; �z� � j���; z1; �z�j2

Z �1
�1

d�W��; �p; z1; �z� � j ~�� �p; z1; �z�j2;

where ~�� �p; z1; �z� is the Fourier transform on � of the wave
function ���; z1; �z�. Note that the quantum momentum
shift of the Wigner function, 1=�2 ���, in dimensional units,
would be @k=2. In Eq. (37), the difference between the
Wigner functions becomes @W

@ �p in the limit ��! 1. Hence,
for large values of ��, Eq. (37), which is equivalent to
Eq. (33), reduces to the classical Vlasov equation:
 

@W��; �p; z1; �z�
@ �z

� �p
@W��; �p; z1; �z�

@�

� �Aei� � A�e�i��
@W��; �p; z1; �z�

@ �p
� 0: (39)

Equations (37) and (38) provide a description of the QFEL
model in terms of the Wigner function, whereas Eqs. (38)
and (39) are equivalent to the classical FEL model. Note
that Eqs. (38) and (39) do not depend explicitly on ��, as
must be the case in the classical model with universal
scaling [3]. We briefly mention that Eq. (37) for the
Wigner function has a broader validity than the
Schrödinger equation (33), because it can also describe a
statistical mixture of states which cannot be represented by
a wave function but rather by a density operator.

Equations (33) and (34) are conveniently solved in the
momentum representation. Assuming that ���; z1; �z� is a
periodic function of �, it can be written as a Fourier series
of momentum eigenstates ein� as in (27):

 ���; z1; �z� �
1�������
2�
p

X1
n��1

cn�z1; �z�ein�����z�: (40)

where now jcn��z; z1�j
2 is the local probability to have an

electron with momentum p � n�@k� at �z and z1. So insert-
ing Eq. (40) into Eqs. (33) and (34) and defining A �
�Aei��z, we obtain [10,17]

 

@cn
@ �z
� �iEncn � ��� �Acn�1 � �A�cn�1� (41)

 

@ �A
@ �z
�
@ �A
@z1
�

X1
n��1

cnc
�
n�1; (42)

where En �
n2

2 ��� n�. Equations (41) and (42) are the
discrete QFEL model. They are our working equations
and their numerical analysis will be discussed in the fol-
lowing section.

A. Linear analysis

We now perform a stability analysis of Eqs. (41) and
(42) when the electrons initially occupy an arbitrary mo-
mentum eigenstate with momentum n�@k�. As in sec. II, we

assume that the system is in an equilibrium state with no
field, A � 0, and all the electrons in the state n, with cn �
1 and cm � 0 for all m � n. Looking for solutions of the
linearized equations proportional to ei���z� �!z1� (where �! �
�Lc=c��!

0 �!� � �!0 �!�=�2�!� is the frequency shift
of the radiation field with respect to the carrier frequency
!), one obtains the quantum dispersion relation

 ����n�

�
�2 �

1

4 ��2

�
� 1 � 0; (43)

where �n � �� �n= ��� � �!. Note that the dispersion re-
lation in Eq. (43) reduces to that in Eq. (13) when n � 0
and �! � 0. The behavior of the imaginary part of � as a
function of �n is the same as that shown in Fig. 1, with �n
instead of �. We recall that, when �� < 1, the resonance
moves from �n � 0 to �n � 1=�2 ���, with a width of 4

����
��
p

in units of �n. This corresponds, in the momentum space,
to a shift of @k=2 with a width 4 ��3=2�@k�. Let us now
consider a fixed value of �� and plot Im��� for � � 0 as a
function of frequency shift �!, as shown in Fig. 2. It can be
seen that the regions of the spectrum corresponding to gain
(Im���> 0) appear as a series of discrete lines correspond-
ing to different values of n. Each of these lines is centered
on �! � �2n� 1�=�2 ���, equally separated by a distance
1= ��, and has a width of 4

����
��
p

. The transition to the classical
limit of a broad, continuous gain spectrum can be seen
from Fig. 2 to occur when the line separation becomes

FIG. 2. Imaginary part of the unstable root of the cubic
Eq. (43) vs �! � �!0 �!�=�2�!� for � � 0, (a) �� � 0:1, (b)
�� � 0:2, and (c) �� � 0:4. Each line is centered around �! �
�2n� 1�=�2 ��� and has a width 4

����
��
p

. For �� > 0:4, the lines
overlap and the spectrum becomes continuous.
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smaller than the linewidth, i.e. 4 ��3=2 > 1 or �� >
�1=2�4=3 � 0:4.

The physical reason for these discrete frequencies is that
in the quantum regime the electron recoils by @k, so that
electrons undergo a transition from an energy En / p2 /
n2, to the state with energy En�1 / �n� 1�2. Hence, the
transition frequency varies as 1� 2n, as shown above. As
discussed in [15], for ��� 1 the electrons have almost the
same probability of transition from the momentum state n
to the momentum states n� 1 (i.e. jcn�1j

2 � jcn�1j
2),

absorbing or emitting a photon. On the contrary, in the
case �� < 1, jcn�1j

2 
 jcn�1j
2, i.e., the particles can only

emit a photon with transition n! n� 1, behaving ap-
proximately as a two- level system [10] described by the
Maxwell-Bloch equations [20].

B. Numerical results

We now show that the discrete gain spectrum of the
quantum regime shown in Fig. 2, can give rise to ‘‘quantum
purification’’ of the SASE spectrum. Figure 3 shows a

numerical simulation of the QFEL model Eqs. (41) and
(42) for Lb � 30Lc and � � 0. The simulation assumes all
electrons are initially in the momentum state n � 0. The
initial conditions for all the simulations are therefore
A�z1; �z � 0� � 0, c�1�z1; �z � 0� � b0e

i��z1�, and

c0�z1; �z � 0� �
��������������
1� b2

0

q
, where b0 � 0:01 and ��z1� is a

randomly fluctuating phase with values in the range
�0; 2��. Figures 3(a) and 3(b) show the field intensity as
a function of z1 at �z � 30 for the classical regime and �z �
150 for the quantum regime, respectively. Figures 3(c) and
3(d) show the corresponding classical and quantum power
spectra of the radiated field versus �! � !0�!

2�! , where ! is
the carrier frequency. It can be seen that there is a dramatic
difference between the classical evolution [Figs. 3(a) and
3(c)] and the quantum evolution [Figs. 3(b) and 3(d)]. The
temporal structure in the classical limit [Fig. 3(a)] is almost
chaotic, with a broad spectrum. In contrast, the temporal
behavior in the quantum limit [Fig. 3(b)] shows a purifica-
tion of the initially noisy evolution, and the corresponding
spectrum is composed by narrow lines, the positions of

FIG. 3. Numerical solutions of Eqs. (41) and (42), for Lb � 30Lc and � � 0, in the classical regime ( �� � 5 and �z � 30) (a), (c) and
in the quantum regime ( �� � 0:1 and �z � 150) (b), (d): Graphs (a) and (b) show the scaled intensity and graphs (c) and (d) show the
corresponding scaled power spectra as a function of scaled frequency �! � !0�!

2�! , where ! is the resonance frequency. The dotted line

in (a) and (b) marks the front edge of the electron pulse. The frequency shift in (d) is in agreement with that predicted from Fig. 2(a).
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which are in agreement with that predicted by linear theory
[see Fig. 2(a)]. Note that the line separation 1= �� corre-
sponds in real units to the relativistic recoil frequency 2@k2

�rm
.

The left-hand side of Fig. 3(b) is the rapid beat between the
two frequencies of Fig. 3(d). For small values of �z only the
frequency with �! � �1=�2 ��� appears. Increasing �z addi-
tional lines downshifted by 1= �� also appear.

The transition from the quantum regime of SASE to the
classical regime is demonstrated in Fig. 4, which shows the
scaled power spectra, P� �!�, for different values of ��
calculated using Eqs. (41) and (42) for �z � 150. It can be
seen that there is a transition from discrete, narrow lines to
a quasicontinuous spectrum when �� � 0:4, in agreement
with the predictions of the linear analysis described in the
previous section.

The reason for quantum purification of the SASE spec-
trum is as follows: As remarked earlier, in Figs. 1 and 2, the
gain bandwidth decreases as

����
��
p

and the cooperation
length is longer by a factor

����
��
p

. Hence, one can understand
that in quantum SASE, ��
 1, the system radiates coher-
ently as if the start-up of the FEL interaction is initiated by
a coherent bunching or a coherent seed.

VI. CONCLUSIONS

In conclusion, we have studied two aspects of the quan-
tum regime of a free-electron laser (QFEL). First, we
revised the quantum linear theory of the N-particle free-
electron laser, introducing properly symmetrized electron
collective operators. The correct cubic characteristic equa-
tion was then obtained, showing the shift and the narrow-
ing of the FEL resonance. Our results demonstrate that the
intrinsic quantum mechanical properties of the momentum
and position operators imply a very general minimum
uncertainty relation between energy spread and bunching,
yielding a quantum limitation to the maximum bunching
which can be obtained in an FEL. A minimum uncertainty
state was properly defined so that it reduces to a Gaussian
packet in the small fluctuation limit. Using a second-
quantized treatment we have shown that, in the quantum
regime, �� < 1, the photon field and recoiling electrons are
described by an maximally entangled quantum state. This
property is well known to be quite fundamental for quan-
tum information and quantum computing.

In the second part of our study, we have demonstrated
the principle of the novel regime of quantum SASE, with

FIG. 4. The transition from quantum SASE to classical SASE: Scaled power spectra, P� �!�, as a function of scaled frequency �! �
!0�!
2�! for �z � 150, calculated from a numerical solution of Eqs. (41) and (42) for � � 0 when (a) �� � 0:1, (b) �� � 0:2, (c) �� � 0:3, and

(d) �� � 0:4.
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dynamical properties very different from the usual classi-
cal SASE. In contrast to the classical limit, where the FEL
dynamics are independent of ��, in the quantum limit where
�� � 1, one has strong quantum effects and the FEL dy-
namics depend explicitly on ��. In particular, in the quan-
tum SASE regime quantum purification of the temporal
structure and of the spectrum occurs. The spectrum be-
comes a series of discrete narrow lines, separated in mo-
mentum space by @k and with a width 4 ��3=2�@k�. The
continuous and broad spectrum observed in classical
SASE is recovered when �� increases such that the width
of each discrete line exceeds the separation between the
lines, so that they overlap. The transition from the quantum
to the classical SASE occurs for �� > 0:4.

The possibility of experimental observation of this quan-
tum regime has been envisaged in [21] using a laser
wiggler and is currently under investigation [22].
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