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We explore the connection between two recently introduced notions of non-Markovian quantum dynamics

and the validity of the so-called quantum regression theorem. While non-Markovianity of a quantum dynamics

has been defined looking at the behavior in time of the statistical operator, which determines the evolution

of mean values, the quantum regression theorem makes statements about the behavior of system correlation

functions of order two and higher. The comparison relies on an estimate of the validity of the quantum regression

hypothesis, which can be obtained exactly evaluating two-point correlation functions. To this aim we consider

a qubit undergoing dephasing due to interaction with a bosonic bath, comparing the exact evaluation of the

non-Markovianity measures with the violation of the quantum regression theorem for a class of spectral densities.

We further study a photonic dephasing model, recently exploited for the experimental measurement of non-

Markovianity. It appears that while a non-Markovian dynamics according to either definition brings with itself

violation of the regression hypothesis, even Markovian dynamics can lead to a failure of the regression relation.

DOI: 10.1103/PhysRevA.90.022110 PACS number(s): 03.65.Yz, 42.50.Lc, 03.67.−a

I. INTRODUCTION

In recent times there has been a revival in the study

of the characterization of non-Markovianity for an open

quantum system dynamics. While the subject was naturally

born together with the introduction of the first milestones in

the description of the time evolution of a quantum system

interacting with an environment [1,2], the difficulty inherent

in the treatment led to very few general results, and the very

definition of a convenient notion of Markovian open quantum

dynamics was not agreed upon. The focus initially was on

finding the closest quantum counterpart of the classical notion

of Markovianity for a stochastic process, so that reference

was made to correlation functions of all order for the process.

Recent work was rather focused on proposals of a notion of

Markovian quantum dynamics based on an analysis of the

behavior of the statistical operator describing the system of

interest only, thus concentrating on features of the dynamical

evolution map, which only determines mean values. Different

properties of the time evolution map have been considered in

this respect [3–12]. In particular two viewpoints [4,6] appear

to have captured important aspects in the characterization of

a dynamics which can be termed non-Markovian in the sense

that it relates to memory effects.

The aim of our work is to analyze the relationship

between these approaches and the validity of the so-called

quantum regression theorem [13,14], according to which the

behavior in time of higher order correlation functions can be

predicted building on the knowledge of the dynamics of the

mean values for a generic observable. The analysis can be

performed introducing a suitable quantifier for the violation

of the quantum regression hypothesis, which in turn requires

knowledge of the exact two-time correlation functions. We

therefore consider a two-level system coupled to a bosonic

bath through a decoherence interaction, exactly estimating

for a general class of spectral densities the predictions of

different criteria for non-Markovianity of a dynamics and the

violation of the regression theorem. We further apply this

analysis to a dephasing model, whose realization has been

recently exploited to experimentally observe quantum non-

Markovianity [15]. In both cases we show that the quantum

regression theorem can be violated even in the presence of

a quantum dynamics which, according to either criteria, is

considered Markovian.

The paper is organized as follows. In Sec. II we recall two

recently introduced notions of Markovianity for a quantum

dynamics and the associated measures, while in Sec. III we

address the formulation of the quantum regression theorem

and introduce a simple estimator for its violation. We apply this

formalism to the pure dephasing spin boson model in Sec. IV

discussing the relationship between the two approaches, and

extend the analysis to a photonic dephasing model in Sec. V.

We finally comment on our results in Sec. VI.

II. NON-MARKOVIANITY DEFINITIONS AND MEASURES

Let us start by briefly recalling the main features of the

notion of non-Markovian quantum dynamics which will be

exploited in the following analysis. In the classical theory of

stochastic processes, the definition of Markov process involves

the entire hierarchy of n-point joint probability distributions

associated with the process. Since such a definition cannot be

directly transposed to the quantum realm [16,17], different

and nonequivalent notions of quantum Markovianity have

been introduced [3–11], along with different measures to

quantify the degree of non-Markovianity of a given dynamics

(see [18,19] for a very recent comparison). These definitions

all convey the idea that the occurrence of memory effects is

the proper attribute of non-Markovian dynamics, relying on

different properties of the dynamical maps which describe the

evolution of the open quantum system. In the absence of initial

correlations between the open system and its environment, i.e.,

ρSE(0) = ρS(0) ⊗ ρE(0) (1)
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with ρE(0) assumed to be fixed, the evolution of an open

quantum system is characterized by a one-parameter family

of completely positive and trace preserving (CPT) maps

{�(t)}t�0, such that [13]

ρS(t) = �(t)ρS, (2)

where ρS ≡ ρS(0) is the state of the open system at the

initial time t0 = 0. A relevant class of open quantum system

dynamics is provided by the semigroup ones, which are

characterized by the composition law

�(t)�(s) = �(t + s) ∀t,s � 0. (3)

The generator of a semigroup of CPT maps is fixed by

the Gorini-Kossakowski-Sudarshan-Lindblad theorem [1,20],

which implies that the dynamics of the system is given by the

Lindblad equation

d

dt
ρS(t) = −i[H,ρS(t)]

+
∑

k

γk

(

LkρS(t)L
†
k −

1

2
{L†

kLk,ρS(t)}
)

(4)

with γk � 0. The semigroups of CPT maps are identified with

the Markovian time-homogeneous dynamics according to all

the previously mentioned definitions of Markovianity, so that

the differences between them actually concern the notion of

time-inhomogeneous Markovian dynamics.

In the following, we will take into account two definitions

of Markovianity and the corresponding measures of non-

Markovianity. One definition [4] is related with the contrac-

tivity of the trace distance under the action of the dynamical

maps, while the other [6] relies on a divisibility property of the

dynamical maps, which reduces to the semigroup composition

law in the time-homogeneous case.

A. Trace-distance measure

The basic idea behind the definition of non-Markovianity

introduced by Breuer, Laine, and Piilo (BLP) [4] is that a

change in the distinguishability between the reduced states

can be read in terms of an information flow between the open

system and the environment. The distinguishability between

quantum states is quantified through the trace distance [21],

which is the metric on the space of states induced by the trace

norm:

D(ρ1,ρ2) =
1

2
‖ρ1 − ρ2‖1 =

1

2

∑

k

|xk|, (5)

where the xk are the eigenvalues of the traceless Hermitian

operator ρ1 − ρ2. The trace distance takes values between

0 and 1 and, most importantly, it is a contraction under the

action of CPT maps. By investigating the evolution of the

trace distance between two states of the open system coupled

to the same environment but evolved from different initial

conditions,

D
(

t,ρ
1,2
S

)

≡ D
(

ρ1
S(t),ρ2

S(t)
)

, ρk
S(t) = �(t)ρk

S, (6)

one can thus describe the exchange of information between

the open system and the environment. A decrease of the

trace distance D(t,ρ
1,2
S ) means a lower ability to discriminate

between the two initial conditions ρ1
S and ρ2

S , which can be

expressed by saying that some information has flown out of

the open system. On the same ground, an increase of the

trace distance can be ascribed to a backflow of information

to the open system and then represents a memory effect in

its evolution. Non-Markovian quantum dynamics can be thus

defined as those dynamics which present a nonmonotonic

behavior of the trace distance, i.e., such that there are time

intervals �+ in which

σ
(

t,ρ
1,2
S

)

=
d

dt
D

(

t,ρ
1,2
S

)

> 0. (7)

Consequently, the non-Markovianity of an open quantum

system’s dynamics {�(t)}t�0 is quantified by the measure

N = max
ρ

1,2
S

∫

�+

σ
(

t,ρ
1,2
S

)

dt. (8)

The maximization involved in the definition of this measure

can be greatly simplified since the optimal states must be

orthogonal [22] and, even more, one can determine N by

means of a local maximization over one state only [23].

This measure of non-Markovianity has been also investigated

experimentally in all-optical settings [15,24,25].

B. Divisibility measure

The definition given by Rivas, Huelga, and Plenio (RHP) [6]

identifies Markovian dynamics with those dynamics which

are described by a CP-divisible family of quantum dynamical

maps {�(t)}t�0 (CP standing for completely positive), i.e.,

such that

�(t2) = �(t2,t1)�(t1) ∀ t2 � t1 � 0, (9)

�(t2,t1) being itself a completely positive map. Indeed,

if �(t2,t1) = �(t2 − t1) the composition law in Eq. (9) is

equivalent to the semigroup composition law. An important

property of this definition is that, provided that the evolution

of the reduced state can be formulated by a time-local master

equation

d

dt
ρS(t) = K(t)[ρS(t)] = −i[H (t),ρS(t)]

+
∑

k

γk(t)
(

Lk(t)ρS(t)L
†
k(t)

−
1

2
{L†

k(t)Lk(t),ρS(t)}
)

, (10)

the positivity of the coefficients, γk(t) � 0 for any t � 0,

is equivalent to the CP divisibility of the corresponding

dynamics. This can be shown by taking into account the family

of propagators �(t2,t1) associated with Eq. (10),

�(t2,t1) = T← exp

(∫ t2

t1

K(s)ds

)

, (11)

where T← denotes the time ordering and �(t,0) ≡ �(t). By

construction, the propagators �(t2,t1) satisfy Eq. (9), but, in

general, they are not CP maps. One can show [26,27] that the

propagators are actually CP if and only if the coefficients γk(t)

are positive functions of time.
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The corresponding measure of non-Markovianity is given

by

I =
∫

R+
dt g(t) (12)

with

g(t) = lim
ǫ→0+

1
N

‖�Choi(t,t + ǫ)‖1 − 1

ǫ
, (13)

where �Choi is the Choi matrix associated with �. Given a

maximally entangled state between the system and an ancilla,

|ψ〉 = 1√
N

∑N
k=1 |uk〉 ⊗ |uk〉, one has [28]

�Choi = N (� ⊗ 1N )(|ψ〉〈ψ |). (14)

The positivity of the Choi matrix corresponds to the complete

positivity of the map � and it is equivalent to the condition

‖�Choi‖1 = N , so that the quantity g(t) is different from zero

if and only if the CP divisibility of the dynamics is broken.

Finally, since the trace distance is contractive under CPT

maps, if a dynamics is Markovian according to the RHP

definition, then it is so also according to the BLP definition,

i.e.,

I = 0 =⇒ N = 0, (15)

while the opposite implication does not hold [26,29,30].

III. THE QUANTUM REGRESSION THEOREM

As recalled in the Introduction, the quantum regression

theorem provides a benchmark structure in order to study the

multitime correlation functions of an open quantum system.

For the sake of simplicity, we focus on the two-time correlation

functions only. Given two open system operators, A ⊗ 1E and

B ⊗ 1E , where 1E denotes the identity on the Hilbert space

associated with the environment, their two-time correlation

function is defined as

〈A(t2)B(t1)〉 ≡ Tr[U †(t2)A ⊗ 1EU (t2)

×U †(t1)(B ⊗ 1E)U (t1)ρSE(0)], (16)

where U (t) is the overall unitary evolution operator and we

set t2 � t1 � 0. In the following, we assume an initial state

as in Eq. (1), as well as a time-independent total Hamiltonian

HT = HS ⊗ 1E + 1S ⊗ HE + HI , so that U (t) = e−iHT t .

The condition of an initial product state with a fixed

environmental state guarantees the existence of a reduced

dynamics; see Eqs. (1) and (2). This means that all the

one-time probabilities associated with the observables of the

open systems and, as a consequence, their mean values can be

evaluated by means of the family of reduced dynamical maps

only, without need for any further reference to the overall

unitary dynamics. An analogous result holds for the two-time

correlation functions, if one can apply the so-called quantum

regression theorem. The latter essentially states that under

proper conditions the dynamics of the two-time correlation

functions can be reconstructed from the dynamics of the mean

values, or, equivalently, of the statistical operator. Indeed, if

the quantum regression theorem cannot be applied, one needs

to come back to the full unitary dynamics in order to determine

the evolution of the two-time correlation functions. We will not

repeat here the detailed derivation of the quantum regression

theorem, which can be found in [13,14,31]. Nevertheless, let

us recall the basic ideas. First, by introducing the operator

χ (t2,t1) = e−iHT (t2−t1)B ⊗ 1EρSE(t1)eiHT (t2−t1), (17)

the two-time correlation function in Eq. (16) can be rewritten

as

〈A(t2)B(t1)〉 = TrS A TrE χ (t2,t1). (18)

Now, suppose that we can describe the evolution of χ (t2,t1)

with respect to t2 with the same dynamical maps which fix the

evolution of the statistical operator, i.e.,

χ (t2,t1) = �(t2,t1)[χ (t1,t1)], (19)

where �(t2,t1) is the propagator introduced in Eq. (11). Then,

Eq. (18) directly provides

〈A(t2)B(t1)〉qrt = TrS A�(t2,t1)[BρS(t1)]. (20)

The two-time correlation functions can be fully determined by

the dynamical maps which fix the evolution of the statistical

operator: the validity of Eq. (20) can be identified with the

validity of the quantum regression theorem and we will use

the subscript qrt to denote the two-time correlation functions

evaluated through Eq. (20). Indeed, all the procedure relies on

Eq. (19), which requires that the same assumptions made in

order to derive the dynamics of ρS(t) can be made also to get

the evolution of χ (t2,t1) with respect to t2 [14]. Especially, the

hypothesis of an initial total product state in Eq. (1) turns into

the hypothesis of a product state at any intermediate time t1,

ρSE(t1) = ρS(t1) ⊗ ρE . (21)

The physical idea is that the quantum regression theorem

holds when the system-environment correlations due to the

interaction can be neglected [32]. Note that this condition

will never be strictly satisfied, as long as the system and the

environment mutually interact, but it should be understood as

a guideline to detect the regimes in which Eq. (20) provides a

satisfying description of the evolution of the two-time correla-

tion functions. More precisely, Dümcke [33] demonstrated that

the exact expression of the two-time (multitime) correlation

functions, see Eq. (16), converges to the expression in Eq. (20)

in the weak coupling limit and in the singular coupling limit. As

is well known, in these limits the reduced dynamics converges

to a semigroup dynamics [34,35]. Nevertheless, the correctness

of a semigroup description of the reduced dynamics is not

always enough to guarantee the accuracy of the quantum

regression theorem [36,37]. More in general, the precise link

between a sharply defined notion of Markovianity of quantum

dynamics and the quantum regression theorem has still to be

investigated.

The quantum regression theorem provided by Eq. (20)

can be equivalently formulated in terms of the differential

equations satisfied by mean values and two-time correlation

functions, as was originally done in [38]. For the sake of

simplicity, let us restrict ourselves to the finite-dimensional

case, i.e., the Hilbert space associated with the open system is

C
N . Consider a reduced dynamics fixed by the family of maps

{�(t)}t�0 and a basis {Ei}1,...,N2 of linear operators on C
N ,

such that the corresponding mean values fulfill the coupled
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linear equations of motion [31]

d

dt
〈Ei(t)〉 =

∑

j

Gij (t)〈Ej (t)〉, (22)

with the initial condition 〈Ei(t)〉|t=0 = 〈Ei(0)〉. In this case,

the quantum regression theorem is said to hold if the two-time

correlation functions satisfy [13,14]

d

dt2
〈Ei(t2)Ek(t1)〉qrt =

∑

j

Gij (t2)〈Ej (t2)Ek(t1)〉qrt , (23)

with the initial condition

〈Ei(t2)Ek(t1)〉|t2=t1 = 〈Ei(t1)Ek(t1)〉.

In the following, we will compare the evolution of the exact

two-time correlation functions obtained from the full unitary

evolution 〈Ei(t2)Ek(t1)〉, see Eq. (16), with those predicted by

the quantum regression theorem 〈Ei(t2)Ek(t1)〉qrt . To quantify

the error made by using the latter, we exploit the relative error;

i.e., we use the following figure of merit:

Z ≡
∣

∣

∣

∣

1 −
〈A(t2)B(t1)〉qrt

〈A(t2)B(t1)〉

∣

∣

∣

∣

, (24)

which depends on the chosen couple of open system operators.

Hence, in general, one should consider different estimators,

one for each couple of operators in the basis {Ei}1,...,N2 , and

a maximization over them could be taken. Nevertheless, in

the following analysis it will be enough to deal with a single

couple of system operators, which fully encloses the violations

of the quantum regression theorem for the models at hand.

IV. PURE-DEPHASING SPIN BOSON MODEL

In this section, we take into account a model whose full

unitary evolution can be exactly evaluated [13,39], so as to ob-

tain the exact expression of the two-time correlation functions,

to be compared with the expression provided by the quantum

regression theorem. This model is a pure-decoherence model,

in which the decay of the coherences occurs without a decay

of the corresponding populations. Indeed, this is due to the

fact that the free Hamiltonian of the open system HS ⊗ 1E

commutes with the total Hamiltonian HT [13].

A. The model

Let us consider a two-level system linearly interacting with

a bath of harmonic oscillators, so that the total Hamiltonian is

HT =
ωs

2
σz ⊗ 1E + 1S ⊗

∑

k

ωkb
†
kbk

+
∑

k

σz ⊗ (gkb
†
k + g∗

kbk). (25)

The unitary evolution operator of the overall system in the

interaction picture is given by [13]

U (t) = ei�(t)V (t), (26)

where the first factor is an irrelevant global phase and the

second factor is the unitary operator

V (t) = exp

[

1

2
σz ⊗

∑

k

(αk(t)b
†
k − α∗

k (t)bk)

]

, (27)

with

αk(t) = 2gk

1 − eiωk t

ωk

. (28)

The reduced dynamics is readily calculated to give

ρS(t) =

(

ρ00 ρ01γ (t)e−iωs t

ρ10γ
∗(t)eiωs t ρ11

)

, (29)

where the function γ (t) is given by

γ (t) = TrE ρE

∏

k

exp[αk(t)b
†
k − α∗

k (t)bk]

= TrE ρE

∏

k

(αk(t)), (30)

(α) being the displacement operator of argument α [40]. The

associated master equation reads

d

dt
ρS(t) = −i

ǫ(t)

2
[σz,ρS(t)] +

D(t)

2
[σzρS(t)σz − ρS(t)],

(31)

where

ǫ(t) = ωs − Im

[

dγ (t)/dt

γ (t)

]

(32)

and the so-called dephasing function D(t) is

D(t) = −Re

[

dγ (t)/dt

γ (t)

]

= −
d

dt
ln |γ (t)|. (33)

In the following, we will focus on the case of an initial

thermal state of the bath, ρE = exp(−βHE)/Z with Z =
TrE exp(−βHE) and β = (kBT )−1 the inverse temperature.

We also consider the continuum limit: given a frequency

distribution f (ω) of the bath modes, we introduce the spectral

density J (ω) = 4f (ω)|g(ω)|2, so that one has [13]

γ (t) = exp

[

−
∫ ∞

0

dω J (ω) coth

(

βω

2

)

1 − cos(ωt)

ω2

]

,

(34)

and hence ǫ(t) = ωs and

D(t) =
∫ ∞

0

dω J (ω) coth

(

βω

2

)

sin(ωt)

ω
. (35)

B. Measures of non-Markovianity

1. General expressions

For this specific model, the two definitions of Markovianity

are actually equivalent [41]; i.e., not only Eq. (15) holds, but

also the opposite does so. This is due to the fact that there

is only one operator contribution in the time-local master

equation (31), corresponding to the dephasing interaction.

Nevertheless, the numerical values of the two measures of non-

Markovianity are in general different and, more importantly,

they depend in a different way on the parameters of the model.
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Let us start by evaluating the BLP measure; see Sec. II A.

The trace distance between two reduced states evolved through

Eq. (29) is given by

D
(

t,ρ
1,2
S

)

=
√

δ2
p + |δc|2|γ (t)|2, (36)

where δp = ρ1
00 − ρ2

00 and δc = ρ1
01 − ρ2

01 are the differences

between, respectively, the populations and the coherences of

the two initial conditions ρ1
S and ρ2

S . The couple of initial

states that maximizes the growth of the trace distance is given

by the pure orthogonal states ρ
1,2
S = |ψ±〉〈ψ±|, where |ψ±〉 =

1√
2
(|0〉 ± |1〉), and the corresponding trace distance at time t

is simply |γ (t)|. The BLP measure therefore reads

N =
∑

m

[|γ (bm)| − |γ (am)|], (37)

where �+ =
⋃

m(am,bm) is the union of the time intervals in

which |γ (t)| increases. The BLP measure is different from zero

if and only if d|γ (t)|/dt > 0 for some interval of time, which is

equivalent to the requirement that the dephasing function D(t)

in Eq. (31) is not a positive function of time, i.e., that the CP

divisibility of the dynamics is broken; Sec. II B. As anticipated,

for this model N > 0 ⇐⇒ I > 0. Furthermore, given a pure

dephasing master equation as in Eq. (31), one has [6] g(t) = 0

ifD(t) � 0 and g(t) = −D(t) ifD(t) < 0, so that, see Eq. (33),

I =
∑

m

[ln |γ (bm)| − ln |γ (am)|], (38)

where the am and bm are defined as for the BLP measure.

2. Zero-temperature environment

In order to evaluate explicitly the non-Markovianity mea-

sures, we need to specify the spectral density J (ω). In the

following, we assume a spectral density of the form

J (ω) = λ
ωs

�s−1
e− ω

� , (39)

where λ is the coupling strength, the parameter s fixes the

low-frequency behavior, and � is a cutoff frequency. The non-

Markovianity for the pure dephasing spin model with a spectral

density as in Eq. (39) has been considered in [18,42] for the

case λ = 1. We are now interested in the comparison between

non-Markovianity and violations of the quantum regression

theorem, so that, as will become clear in the next section, the

dependence on λ plays a crucial role. In particular, we consider

the case of low temperature, i.e., β ≫ 1, so that coth(
βω

2
) ≈ 1.

The dephasing function in this case reads, see Eq. (35),

Ds(t) =
λ�Ŵ(s)

[1 + (�t)2]
s
2

sin[s arctan(�t)], (40)

with Ŵ(s) the Euler gamma function, which can be expressed

in the equivalent but more compact form, see the Appendix,

Ds(t) = λ�Ŵ(s)
Im[(1 + i�t)s]

[1 + (�t)2]s
. (41)

Correspondingly, the decoherence function can be written as

γs(t) = exp

[

− λŴ(s − 1)

(

1 −
Re[(1 + i�t)s−1]

[1 + (�t)2]s−1

)]

. (42)

As before, let �+ be the union of the time intervals for which

D(t) < 0, i.e., equivalently, |γ (t)| increases. The number of

solutions of the equation D(t) = 0 grows with the parameter s:

for s = 1,2 the dephasing function is always strictly positive,

while for s = 3 and s = 4 there is one zero at t∗3 =
√

3
�

and

t∗4 = 1
�

, respectively. Indeed, if the number of zeros is odd,

D(t) is negative from its last zero to infinity, while if the number

of zeros is even, it approaches zero asymptotically from above.

As a consequence, the two measures of non-Markovianity are

equal to zero for s = 1,2 and, to give an example, one has for

s = 3

N3(λ) = lim
t→∞

|γ (t)| − |γ (t∗3 )| = e−λ − e− 9
8
λ,

(43)

I3(λ) = lim
t→∞

ln |γ (t)| − ln |γ (t∗3 )| =
λ

8
,

and, analogously, for s = 4

N4(λ) = e−2λ − e− 5
2
λ, I4(λ) =

λ

2
. (44)

In Figs. 1(a) and 1(b), we report, respectively, the BLP and

the RHP measures of non-Markovianity as a function of λ, for

different values of s.

The behavior of the two measures is clearly different. The

RHP measure is a monotonically increasing function of both

FIG. 1. (Color online) (a) BLP measure of non-Markovianity

Ns(λ), see Eq. (37), and (b) RHP measure of non-Markovianity

Is(λ), see Eq. (38), as a function of the coupling strength λ for

increasing values of the parameter s. In both panels the curves are

evaluated for s = 3 (black thick solid line), s = 3.5 (blue solid line),

s = 4 (magenta dashed line), s = 4.5 (green dashed thick line), s = 5

(red dot-dashed line), and s = 5.5 (orange dotted line).
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FIG. 2. (Color online) (a) BLP measure of non-Markovianity

Ns(λ), see Eq. (37), as a function of the parameter s, for λ = 1.

(b) and (c) Decoherence function γs(t) as a function of rescaled for

λ = 0.5 and different values of s (b), and for s = 4 and different

values of λ (c).

λ and s: the increase is linear with respect to the former

parameter and exponential with respect to the latter. On the

other hand, for every fixed s, there is a critical value of

the coupling strength λ∗(s), which is smaller for increasing

s, that separates two different regimes of the BLP measure:

for λ < λ∗(s), the non-Markovianity measure increases with

the increase of the system-environment coupling, while for

λ > λ∗(s) it decreases with the increase of the coupling.

Analogously, there is a threshold value s∗(λ) of the parameter

s, which is higher for smaller values of λ, such that the BLP

measure increases for s < s∗(λ) and decreases for s > s∗(λ);

see also Fig. 2(a). Incidentally, the maximum value as a

function of λ, maxλ Ns(λ), is a monotonically increasing

function of the parameter s. Indeed, the different behavior of

the non-Markovianity measures traces back to their different

functional dependence of the decoherence function γs(t),

which is plotted in Figs. 2(b) and 2(c) for different values

of s and λ. One can see how γs(t) takes on smaller values

within [0,1] for growing values of λ, while its global minimum

decreases with increasing s. Now, while the BLP measure is

fixed by the difference between the values of γs(t) at the edges

of the time intervals [am,bm] in which γs(t) increases, see

Eq. (37), the RHP measure is fixed by the ratio between the

same values, see Eq. (38). Hence, as the coupling strength

grows over the threshold λ∗(s) or the parameter s overcomes

the threshold s∗(λ), the difference between bm and am is

increasingly smaller, and therefore Ns(λ) is so. However,

the ratio between bm and am always increases with λ and

s, as witnessed by the corresponding monotonic increase

of Is(λ).

C. Validity of regression hypothesis

1. Exact expression versus quantum regression theorem

The exact unitary evolution, Eq. (26), directly provides us

with the average values, as well as the two-time correlation

functions of the observables of the system. In view of

the comparison with the description given by the quantum

regression theorem, see Sec. III, let us focus on the basis of

linear operators on C
2, orthonormal with respect to the Hilbert-

Schmidt scalar product, given by {1/
√

2,σ−,σ+,σz/
√

2}.
Indeed, the first and the last elements of the basis are constant

of motion, see Eq. (29), while the mean values of σ− and σ+
evolve according to, respectively,

〈σ−(t)〉 = γ (t)e−iωs t 〈σ−(0)〉 (45)

and the complex conjugate relation. In a similar way, all

the two-time correlation functions involving 1/
√

2 or σz/
√

2

satisfy the condition of the quantum regression theorem in

a trivial way, as at most one operator within the two-time

correlation function actually evolves. The only nontrivial

expressions are thus the following:

〈σ−(t2)σ+(t1)〉 = e−iωs (t2−t1)γ (t2,t1)eiφ(t2,t1)〈(σ−σ+)(t1)〉,
(46)

〈σ+(t2)σ−(t1)〉 = eiωs (t2−t1)γ ∗(t2,t1)eiφ(t2,t1)〈(σ+σ−)(t1)〉,

where

γ (t2,t1) = TrE ρE

∏

k

(αk(t2) − αk(t1)) (47)

and

φ(t2,t1) =
∑

k

Im[α∗
k (t2)αk(t1)]. (48)

Here, to derive (46) we used the properties of the displacement

operator [40]

(α)(β) = (α + β)eiIm(αβ∗), †(α) = (−α),

and the equality 〈(σ+σ−)(t)〉 = 〈σ+σ−〉.
We can now obtain the corresponding two-time correlation

functions as predicted by the quantum regression theorem. By

Eq. (45), one has

d

dt
〈σ−(t)〉 =

(

dγ (t)/dt

γ (t)
− iωs

)

〈σ−(t)〉 (49)

and the complex conjugate relation for 〈σ+(t)〉. The specific

choice of the operator basis has lead us to a diagonal matrix G
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in Eq. (22). Hence, one has immediately

〈σ−(t2)σ+(t1)〉qrt = e−iωs (t2−t1) γ (t2)

γ (t1)
〈σ−(t1)σ+(t1)〉,

(50)

〈σ+(t2)σ−(t1)〉qrt = eiωs (t2−t1) γ
∗(t2)

γ ∗(t1)
〈σ+(t1)σ−(t1)〉.

The quantum regression theorem will be generally violated

within this model; compare Eq. (46) and (50). We quantify

such a violation by means of the figure of merit introduced in

Eq. (24), which for the couple of operators σ− and σ+ reads

Z =
∣

∣

∣

∣

1 −
〈σ−(t2)σ+(t1)〉qrt

〈σ−(t2)σ+(t1)〉

∣

∣

∣

∣

=
∣

∣

∣

∣

1 −
γ (t2)

γ (t1)γ (t2,t1)eiφ(t2,t1)

∣

∣

∣

∣

. (51)

2. Quantitative analysis of the violations of the quantum

regression theorem

The expressions of the previous paragraph hold for generic

initial state of the bath and spectral density. Now, we come back

to the specific choice of an initial thermal bath. The results in

Eq. (50) are in this case in agreement with those found in [43],

where the two-time correlation functions have been evaluated

focusing on a spectral density as in Eq. (39) with s = 1, while

keeping a generic temperature of the bath. Instead, we will

focus on the case T = 0 and maintain a generic value of s

in order to compare the behavior of the two-time correlation

functions with the measures of non-Markovianity.

First, note that by using the definition of the displacement

operator as well as Eq. (28), one can show the general

identity

(αk(t2) − αk(t1)) = (αk(t2 − t1)eiωk t1 ). (52)

But then, since for a thermal state TrE (α)ρE is a function of

|α| only [13], Eq. (52) implies

γ (t2,t1) = γ (t2 − t1); (53)

see Eqs. (47) and (30). In addition we have in the continuum

limit, see Eq. (48),

φ(t2,t1) =
∫

dω
J (ω)

ω2
{sin(ωt2) − sin(ωt1) − sin[ω(t2 − t1)]},

so that, for J (ω) as in Eq. (39) and using Eq. (35) in the

zero-temperature limit, we get

φs(t2,t1) = [Ds−1(t2) − Ds−1(t1) − Ds−1(t2 − t1)]/�. (54)

The identities in Eqs. (41) and (42), along with Eqs. (53)

and (54), finally provide us with the explicit expression of the

estimator for the violations of the quantum regression theorem,

see Eq. (51),

Zs(λ) = |1 − exp (λŴ(s − 1){1 − [1 + i�(t2 − t1)]1−s

− (1 + i�t1)1−s + (1 + i�t2)1−s})|, (55)

whose behavior as a function of λ and s is shown in Figs. 3(a)

and 3(b). The violation of the quantum regression theorem

monotonically increases with increasing values of both the

coupling strength λ and the parameter s. This behavior is

FIG. 3. (Color online) (a) Zs(λ) as a function of the parameter s

and of the coupling strength λ, see Eq. (55), for �t1 = 1 and �t2 = 2.

(b) Section of (a) for s = 2,3,4.

clearly in agreement with that of the RHP measure of non-

Markovianity; see Sec. IV B 2 and in particular Fig. 1. From a

quantitative point of view there is, however, some difference as

the estimator Zs(λ), at variance with the RHP measure, grows

linearly with λ only for small values of s, while it growths

faster for s > 3; compare with Fig. 1(b). In any case, the RHP

measure appears to be more directly related with the strength of

the violation to the quantum regression theorem, as compared

with the BLP measure. This can be traced back to the different

influence of the system-environment correlations on the two

measures. As we recalled in Sec. III, the hypothesis that the

state of the total system at any time t is well approximated

by the product state between the state of the open system

and the initial state of the environment, see Eq. (21), lies at

the basis of the quantum regression theorem. This hypothesis

is expected to hold in the weak coupling regime, while for

an increasing value of λ, the interaction will build stronger

system-environment correlations, leading to a strong violation

of the quantum regression theorem. The establishment of

correlations between the system and the environment due to

the interaction plays a significant role also in the subsequent

presence of memory effects in the dynamics of the open

system [44–46]. Indeed, different signatures of the memory

effects can be affected by system-environment correlations

in different ways. In particular, the CP divisibility of the

dynamical maps appears to be a more fragile property than

the contractivity of the trace distance and therefore it is more

sensitive to the violations of the quantum regression theorem.

Furthermore, it is worth noting that the estimator Zs(λ) steadily

increases with the coupling strength λ even for values of s
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such that the corresponding reduced dynamics is Markovian

according to either definitions. The validity of the quantum

regression theorem calls therefore for stricter conditions than

the Markovianity of quantum dynamics. In the case of the

trace distance criterion for non-Markovianity, which is directly

based on an observable quantity such as the distance in time

between different system states, it is also important to stress

the different dependence on λ in quantifying non-Markovianity

or violation of the quantum regression theorem, respectively.

The monotonic dependence on the coupling strength in Zs(λ)

is indeed not reflected in N (λ).

V. PHOTONIC REALIZATION OF DEPHASING

INTERACTION

In the pure dephasing spin-boson model, there is no

regime in which the quantum regression theorem is strictly

satisfied, apart from the trivial case λ = 0. In addition, we have

shown that the strength of the violations of this theorem has

the same qualitative behavior of the RHP non-Markovianity

measure, as they increase with both λ and the parameter

s. In this section, we take into account a different pure

dephasing model, which allows us to deepen our analysis

on the relationship between the quantum regression theorem

and the Markovianity of the reduced-system dynamics. In

particular, we show that in general these two notions should be

considered as different since the quantum regression theorem

may be strongly violated, even if the open system’s dynamics

is Markovian, irrespective of the exploited definition.

A. The model

Let us deal with the pure-dephasing interaction considered

in Ref. [15]. The open system here is represented by the

polarization degrees of freedom of a photon generated by spon-

taneous parametric down conversion, while the environment

consists in the corresponding frequency degrees of freedom.

The overall unitary evolution, which is realized via a quartz

plate that couples the polarization and frequency degrees of

freedom, can be described as

U (t)|j,ω〉 = einj ωt |j,ω〉 j = 0,1, (56)

where |0〉 ≡ |H 〉 and |1〉 ≡ |V 〉 are the two polarization states

(horizontal and vertical), with refractive indexes, respectively,

n0 ≡ nH and n1 ≡ nV , while |ω〉 is the environmental state

with frequency ω. If we consider an initial product state,

see Eq. (1), with a pure environmental state ρE = |�E〉〈�E |,
where

|�E〉 =
∫

dω f (ω)|ω〉, (57)

we readily obtain that the reduced dynamics is given by

Eq. (29). Again, we are in the presence of a pure dephasing

dynamics, the only difference being the decoherence function,

which now reads

γ (t) =
∫

dω |f (ω)|2einωt , (58)

with n ≡ n1 − n0. For the rest, the results of Secs. IV A

and IV B directly apply also to this model: the master equation

is given by Eq. (31), with ǫ(t) and D(t) as in, respectively,

Eq. (32) (for ωs = 0) and Eq. (33), while the non-Markovianity

measures are as in Eq. (37) and Eq. (38). Analogously, the

two-time correlation functions are given by Eq. (46) with

γ (t2,t1) = γ (t2 − t1) φ(t2,t1) = 0, (59)

while the application of the quantum regression theorem leads

to the expressions in Eq. (50) (with ωs = 0). Hence, the

violations of the quantum regression theorem can be quantified

by

Z =
∣

∣

∣

∣

1 −
〈σ−(t2)σ+(t1)〉qrt

〈σ−(t2)σ+(t1)〉

∣

∣

∣

∣

=
∣

∣

∣

∣

1 −
γ (t2)

γ (t1)γ (t2 − t1)

∣

∣

∣

∣

. (60)

B. Lorentzian frequency distributions

1. Semigroup dynamics

Despite its great simplicity, this model allows us to

describe the transition between Markovian and non-Markovian

dynamics in concrete experimental settings [15,24]. Different

dynamics are obtained for different choices of the initial

environmental state, see Eq. (1) and the related discussion,

i.e., for different initial frequency distributions, see Eq. (57).

The latter can be experimentally set, e.g., by properly rotating

a Fabry-Pérot cavity, through which a beam of photons gener-

ated by spontaneous parametric down conversion passes [15].

A natural benchmark is represented by the Lorentzian distri-

bution

|f (ω)|2 =
δω

π [(ω − ω0)2 + (δω)2]
, (61)

where δω is the width of the distribution and ω0 its central fre-

quency, as this provides a reduced semigroup dynamics [46].

The decoherence function, which is given by the Fourier

transform of the frequency distribution, see Eq. (58), is in

fact

γ (t) = e−n(δω−iω0)t . (62)

Thus, replacing this expression in Eqs. (32) and (33),

one obtains a Lindblad equation, given by Eq. (31) with

ǫ(t) = −nω0 and D(t) = n δω. In addition, γ (t2 − t1) =
γ (t2)/γ (t1) and hence, as one can immediately see by Eq. (60),

Z = 0. For this model, as long as the reduced dynamics is

determined by a completely positive semigroup, the quantum

regression theorem is strictly valid. Let us emphasize that this

is the case even if the total state is not a product state at any

time t . For example if the initial state of the open system is

the pure state |ψS〉 = α|H 〉 + β|V 〉, with |α|2 + |β|2 = 1, the

total state at time t is

|ψSE(t)〉 =
∫

dωf (ω)(αeinH ωt |H,ω〉 + βeinV ωt |V,ω〉). (63)

This is an entangled state, of course unless α = 0 or β = 0;

nevertheless, the quantum regression theorem does hold. This

clearly shows that for the quantum regression theorem, as

for the semigroup description of the dynamics [45–47], the

approximation encoded in Eq. (21) should be considered as

an effective description of the total state, which can be very

different from its actual form, even when the theorem is valid.
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2. Time-inhomogeneous Markovian and non-Markovian

dynamics

Now, we consider a more general class of frequency

distributions; namely, the linear combination of two Lorentzian

distributions,

|f (ω)|2 =
∑

j=1,2

Ajδωj

π [(ω − ω0,j )2 + (δωj )2]
, (64)

with A1 + A2 = 1. The decoherence function (58) is in this

case

γ (t) =
e−n(δω1−iω0,1)t + re−n(δω2−iω0,2)t

1 + r
, (65)

with r ≡ A2

A1
, while the estimator of the violations of the

quantum regression theorem, see Eq. (60), can be written as

a function of the difference between the central frequencies,

ω = ω0,1 − ω0,2, as well as of the difference between the

corresponding widths, δω = δω1 − δω2. If we assume that

the two central frequencies are equal, ω0,1 = ω0,2 = ω0, the

evolution of the two-level statistical operator is fixed by a

time-local master equation as in Eq. (31), with ǫ(t) = −nω0

and

D(t) = n
δω1e

−nδω1t + r δω2e
−nδω2t

e−nδω1t + r e−nδω2t
. (66)

The latter is a positive function of time: the reduced dynamics

is CP divisible, see Sec. II B, and hence it is Markovian

with respect to both the BLP and RHP definitions. Indeed,

now we are in the presence of a time-inhomogeneous Marko-

vian dynamics. Nevertheless, as γ (t2 − t1) �= γ (t2)/γ (t1) the

quantum regression theorem is violated; see Eq. (60). This is

explicitly shown in Fig. 4(a), where Z is plotted as a function of

δω = δω1 − δω2 and nτ , with τ = t2 − t1. With growing

difference between the two widths, as well as the length of

the time interval, the deviations from the quantum regression

theorem are increasingly strong, up to a saturation value of

the estimator Z. Contrary to the semigroup case, here, even if

the dynamics is Markovian according to both definitions, the

actual behavior of the two-time correlation functions cannot

be reconstructed by the evolution of the mean values.

Finally, let us consider a frequency distribution as in

Eq. (64), but now with δω1 = δω2 = δω and ω0,1 �= ω0,2. This

frequency distribution has two peaks and the resulting reduced

dynamics is non-Markovian [15,46]. In this case the BLP

non-Markovianity measure (8) increases with the increasing

of the distance between the two peaks, while the estimator Z

grows for small values of the distance and then it exhibits an

oscillating behavior, see Fig. 4(b). Indeed, for ω = 0 one

recovers the semigroup dynamics previously described and,

accordingly, Z goes to zero. Summarizing, by varying the

distance between the two peaks, one obtains a transition from

a Markovian (semigroup) dynamics to a non-Markovian one

and, correspondingly, the quantum regression theorem ceases

to be satisfied and is even strongly violated. Nevertheless,

the qualitative behavior of, respectively, the non-Markovianity

of the reduced dynamics and the violation of the quantum

regression theorem appear to be different.

FIG. 4. (Color online) Violation of the quantum regression the-

orem, as quantified by the estimator Z in Eq. (60) (a) in the time-

inhomogeneous Markovian case, ω0,1 = ω0,2 = ω0, as a function of

δω = δω1 − δω2 and ω0τ = ω0(t2 − t1), for ω0t1 = 1 and r = 1;

(b) in the non-Markovian case, δω1 = δω2 = δω, as a function of

ω0 = ω0,1 − ω0,2 and δω τ , for δω t1 = 1 and r = 2. In both panels

n = 1.

VI. CONCLUSIONS

We have explored the relationship between two criteria

for Markovianity of a quantum dynamics, namely the CP

divisibility of the quantum dynamical map and the behavior

in time of the trace distance between two distinct initial

states, and the validity of the quantum regression theorem,

which is a statement relating the behavior in time of the

mean values and of the two-time correlation functions of

system operators. The first open system considered is a

two-level system affected by a bosonic environment through

a dephasing interaction. For a class of spectral densities with

exponential cutoff and power-law behavior at low frequencies

we have studied the onset of non-Markovianity as a function

of the coupling strength and of the power determining the

low-frequency behavior, further giving an exact expression for

the corresponding non-Markovianity measures. The deviation

from the quantum regression theorem has been estimated

evaluating the relative error made in replacing the exact

two-time correlation function for the system operators with the

expression reconstructed by the evolution of the corresponding

mean values. It appears that the validity of the quantum

regression theorem represents a stronger requirement than
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Markovianity, according to either criteria, which in this case

coincide but quantify non-Markovianity in a different way and

exhibit distinct performances in their dependence on strength

of the coupling and low-frequency behavior. We have further

considered an all-optical realization of a dephasing interaction,

as recently exploited for the experimental investigation of

non-Markovianity, obtaining also in this case, for different

choices of the frequency distribution, significant violations

to the quantum regression theorem even in the presence of

a Markovian dynamics. This can be understood in terms of

the different relevance of the quantum correlations between

system and environment in the development of the joint

dynamics. While these correlations may not be strong enough

to induce a non-Markovian time development of the reduced

statistical operator, obtained by directly taking the partial

trace, they can still importantly affect the time development of

the correlation functions, in which the partial trace is taken

only after considering the product of different Heisenberg

operators.

These results suggest that indeed the recently introduced

new definitions of quantum non-Markovianity provide a

weaker requirement with respect to the classical notion of

Markovian classical process. In this respect, further and

more stringent notions of Markovian quantum dynamics can

therefore be introduced, e.g., relying on validity of the quantum

regression theorem [17]. Our analysis however also shows that

the non-Markovianity of the quantum dynamics, as assessed

according to the trace distance criterion, appears to behave

differently with respect to violation of the quantum regression

theorem in the dependence of relevant model parameters such

as the coupling strength in the pure dephasing model. Despite

its simplicity, this model suggests that the features of being

Markovian and of obeying the quantum regression theorem

actually witness different aspects of the quantum dynamics.

To better grasp this point further models should be considered

and analyzed in detail.

This fact further suggests critically discussing what should

be the meaning and relevance of a notion of non-Markovian

quantum dynamics. Especially in view of the fact that a simple

and relevant hierarchy of non-Markovian quantum processes,

analogous to the characterization of classical processes,

appears unfeasible due to the intrinsic structure of quantum

mechanics, major emphasis should be put on the connection

between different indicators and observable properties. In this

respect the quantum regression theorem refers to quantities,

namely correlation functions, whose physical relevance is

well established; think, e.g., of the connection between power

spectra and autocorrelation functions. Among the newly in-

troduced signatures of non-Markovian quantum dynamics, the

notion of Markovianity based on trace distance, without asking

for an explicit exact knowledge of the dynamical equations,

allows for a direct experimental check, and has been most

recently shown to be able to detect relevant modification in the

system-environment dynamics, such as a phase transition [48].

The analysis and comparison of utterly different quantities and

concepts which can be related to the notion of memory in a

quantum dynamics, such as those considered in the present

paper, will help in identifying their possible relevance in

unveiling physical interesting phenomena.
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APPENDIX: ALTERNATIVE EXPRESSION OF THE

DEPHASING FUNCTION

Starting from Eq. (40), namely

Ds(t) =
λ�Ŵ(s)

[1 + (�t)2]
sin[s arctan(�t)], (A1)

and exploiting the identities

sin[arctan(x)] =
x

√
1 + x2

, cos[arctan(x)] =
1

√
1 + x2

(A2)

together with

sin(sx) =
∑

k=0

(

s

k

)

[cos(x)]k[sin(x)]s−k sin

[

π

2
(s − k)

]

,

(A3)

we can come to the compact expression (41)

Ds(t) =
λ�Ŵ(s)

2i[1 + (�t)2]s

[

∑

k=0

(

s

k

)

(�t)s−k[is−k − (−i)s−k]

]

=
λ�Ŵ(s)

2i[1 + (�t)2]s
[(1 + i�t)s − (1 − i�t)s]

= λ�Ŵ(s)
Im[(1 + i�t)s]

[1 + (�t)2]s
. (A4)
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