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We investigate quantum repeater protocols based upon atomic qubit-entanglement distribution
through optical coherent-state communication. Various measurement schemes for an optical mode
entangled with two spatially separated atomic qubits are considered in order to nonlocally prepare
conditional two-qubit entangled states. In particular, generalized measurements for unambiguous
state discrimination enable one to completely eliminate spin-flip errors in the resulting qubit states,
as they would occur in a homodyne-based scheme due to the finite overlap of the optical states in
phase space. As a result, by using weaker coherent states, high initial fidelities can still be achieved
for larger repeater spacing, at the expense of lower entanglement generation rates. In this regime,
the coherent-state-based protocols start resembling single-photon-based repeater schemes.

PACS numbers: 03.67.Lx, 42.50.Dv, 42.25.Hz

I. INTRODUCTION

In long-distance, classical communication networks,
signals that are gradually distorted during their prop-
agation through a channel are repeatedly recreated via a
chain of intermediate stations along the transmission line.
For instance, optical pulses traveling through a glass fiber
and being subject to photon loss can be reamplified at
each repeater station. Such an amplification is impos-
sible, when the signal carries quantum information. If
a quantum bit is encoded into a single photon, its un-
known quantum state cannot be copied along the line
[1, 2]; the photon must travel the entire distance with an
exponentially decreasing probability to reach the end of
the channel.

The solution to the problem of long-distance quan-
tum communication is provided by the so-called quan-
tum repeater [3, 4]. In this case, prior to the actual
quantum-state communication, a supply of standard en-
tangled states is generated and distributed among not
too distant nodes of the channel. If sufficiently many of
these imperfect entangled states are shared between the
repeater stations, a combination of entanglement purifi-
cation and entanglement swapping extends this shared
entanglement over the entire channel. Through entan-
glement swapping [5], the entanglement of neighboring
pairs is connected, gradually increasing the distance of
the shared entanglement. The entanglement purification
[6, 7] enables one to distill (through local operations) a
high-fidelity entangled pair from a larger number of low-
fidelity entangled pairs, as they would emerge after a few
rounds of entanglement swapping with imperfect entan-
gled states, or even at the very beginning after the initial,
imperfect entanglement generation and distribution.

Current implementations for quantum communication,
in particular, quantum key distribution, are limited by a
distance of about 200 km. In principle, one could go be-

yond this distance using a quantum repeater. However,
the issue of actually realizing a quantum repeater pro-
tocol is rather subtle, even for not too long distances.
In particular, the subroutines of entanglement distilla-
tion and swapping require advanced local quantum logic
including, for instance, two-qubit entangling gates; more-
over, a sufficient quantum memory is needed such that
local measurement results can be communicated between
the repeater stations [8]. Nonetheless, various proposals
exist, of which the most recent ones are based on the
nonlocal generation of atomic (spin) entangled states,
conditioned upon the detection of photons distributed
between two neighboring repeater stations. The light,
before traveling through the communication channel and
being detected, is scattered from either individual atoms,
for example, in form of solid-state single photon emitters
[9, 10], or from an atomic ensemble, i.e. a cloud of atoms
in a gas [11]. In these heralded schemes, typically, the
fidelities of the initial entanglement generation are quite
high, at the expense of rather small efficiencies. Other
complications include interferometric phase stabilization
over large distances [12, 13, 14] and the purification of
atomic ensembles. Yet some elements towards a real-
ization of the protocol in Ref. [11] have been demon-
strated already [15, 16, 17]. Further theoretical results
were presented very recently [18], improving the scheme
of Ref. [11].

In this paper, we will extend our previous results on
the so-called hybrid quantum repeater [19, 20]. This ap-
proach to long-distance quantum communication is some-
what different from those mentioned above. It relies
on atom-light entanglement which becomes manifest in
quantum correlations between a discrete spin variable
and a continuous optical phase quadrature rather than
a discrete single-photon occupation number. An opti-
cal pulse in a coherent state of about 104 photons is
subject to a controlled phase rotation (achieved through
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dispersive, CQED-type interactions), conditioned upon
the state of the atom. After propagating to the near-
est neighboring repeater station and a further interaction
with a second spin at that station, the light field is mea-
sured via homodyne detection and an imperfect entan-
gled two-qubit state is nonlocally prepared between the
two repeater stations through postselection. Finally, the
same dispersive light-matter interactions are exploited to
achieve the local quantum gates (“qubus computation”
[21, 22]) needed for entanglement purification and swap-
ping.

The two main advantages of the hybrid repeater pro-
tocol, distinct from the single-photon-based schemes, are
the high success probabilities for postselection in the en-
tanglement generation step and the intrinsic phase sta-
bilization provided through reference pulses propagating
in the same channel as the probes. However, these assets
are at the expense of rather modest initial fidelities of the
entangles states and high sensitivity to photon losses and
noise in the optical channel. In fact, distances between
repeater stations beyond 10-20 km turn out to be impos-
sible with the current proposal; the decoherence effect
(a damping of the off-diagonal terms of the two-qubit
density matrix after postselection) exponentially grows
with distance such that only smaller mean photon num-
bers lead to a sufficient degree of entanglement; however,
the less intense coherent states are less distinguishable,
hence resulting in a further decrease of fidelity through
postselection errors. A good trade-off between these com-
peting sources of errors is only possible for not too large
distances.

The analysis here will provide a possible solution to
the distance limitation. This is particularly important,
as the typical repeater spacing in existing classical com-
munication networks is of the order of 50-100 km and thus
incompatible with the current hybrid repeater protocol.
The distance limit can be overcome by completely elim-
inating one source of errors, namely that which stems
from the finite overlaps of the phase-rotated coherent
states. This is achieved through a different detection
scheme, where the coherent states are unambiguously
discriminated. Such an unambiguous state discrimina-
tion (USD) is error-free; so for nonorthogonal states, it
must include inconclusive measurement results. These
will lead to lower efficiencies of the entanglement gener-
ation, in particular, when smaller photon numbers are
used in order to suppress the decoherence effect through
photon losses. The corresponding trade-off between suc-
cess probability and fidelity means there are ultimate
quantum mechanical bounds on the accessible regimes.
We will discuss these bounds and propose suboptimal,
but practical, linear optical implementations.

The emphasis here is on possible measurement schemes
for the initial entanglement generation. Further, we in-
vestigate the hybrid entangled atom-light states before
the measurements and potential variations of the entan-
glement distillation and swapping steps. The latter could
be performed already on the atom-light level (“hybrid en-

tanglement distillation and swapping”) rather than solely
on the atomic level after the conditional state prepara-
tion. We do not consider issues related with the CQED
part (for this, see [20]); neither are we concerned about
architecture-related issues on how to combine the en-
tanglement purification and swapping steps in an opti-
mal way (for this, see [23]). Such considerations will be
needed for comparing the overall efficiencies between the
hybrid approach and the single-photon-based schemes.

The plan of the paper is as follows. First, in Sec. II,
we will examine the hybrid entangled states between one
atomic spin and an optical mode (Sec. II A), the entan-
gled states of two spins and an optical mode (Sec. II B),
and the measurements for conditional entangled-state
preparation (Sec. II C). Secondly, in Sec. III, we will dis-
cuss the notions of hybrid entanglement distillation and
swapping and their potential realizations.

II. ENTANGLEMENT GENERATION

In the hybrid quantum repeater, the mechanism
for entanglement distribution is based on dispersive
light-matter interactions, obtainable from the Jaynes-
Cummings interaction Hamiltonian ~g(σ̂−â† + σ̂+â) in

FIG. 1: a) Three steps for the generation of spin-entanglement
between two qubits at neighboring repeater stations: the first
interaction results in an entangled state between the atomic
qubit 1 and the optical qubus; after transmission, the qubus
interacts with the atomic qubit 2, leading to a tripartite
entangled state between the two qubits and the qubus; fi-
nally, a measurement on the qubus mode conditionally creates
the two-qubit entanglement. b) Example of a possible mea-
surement scheme for discriminating between the conditionally
phase-rotated coherent probe beams in the hybrid quantum
repeater; the LO pulse is a sufficiently strong local oscillator
used for homodyne detection [19].
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the limit of large detuning [24],

Ĥint = ~χσ̂z â
†â . (1)

Here, â (â†) is the annihilation (creation) operator of the
electromagnetic field mode and σ̂z = |0〉〈0|− |1〉〈1| is the
corresponding qubit Pauli operator for a two-level atom.
The parameter χ = g2/∆ describes the strength of the
atom-light coupling; 2g is the vacuum Rabi splitting for
the dipole transition and ∆ is the detuning between the
dipole transition and the light field. The Hamiltonian in
Eq. (1) leads to a conditional phase-rotation of the field
mode,

Ûint = exp(iθσ̂z â
†â) . (2)

Here, χt ≡ θ is an effective interaction time. The only re-
quirement for a dispersive interaction resulting in a high-
fidelity conditional rotation is a sufficiently large coop-
erativity parameter in a weak or intermediate coupling
regime; strong coupling is not needed [20]. For simplic-
ity, let us now write the effect of a controlled rotation on
a coherent state and a qubit superposition state (corre-
sponding to Eq. (2) up to an uncontrolled phase rotation)
as

Ûint [(|0〉+ |1〉) |α〉] /
√
2 =

(

|0〉|α〉 + |1〉|αeiθ〉
)

/
√
2 . (3)

In the following, we will investigate the entangled states
that emerge from this interaction. According to the ini-
tial entanglement distribution procedure for the hybrid
quantum repeater, as a first step, one atomic qubit in-
teracts with the optical qubus mode (see Fig. 1a), result-
ing in a “hybrid entangled state” between qubit 1 and
the qubus, as described by Eq. (3). During the trans-
mission of the qubus through the (lossy) channel, the
hybrid entangled state is subject to decoherence and be-
comes mixed. Then the qubus interacts with qubit 2;
at this stage, the two qubits and the qubus are in a tri-
partite (mixed) entangled state. Finally, a measurement
on the qubus mode conditionally prepares a two-qubit
(mixed) entangled state. An example of a possible mea-
surement scheme to (approximately) achieve this final
step is through homodyne detection (see Fig. 1b). Let us
now closely examine the elements of this protocol with
respect to possible improvements.

A. Qubit-qubus entanglement

Let us assume the qubus mode is entangled with qubit
1 after the first interaction, as expressed by Eq. (3). Pho-
ton losses in the qubus channel are now described via a
simple beam splitter which reflects, on average, 1−η pho-
tons into an environment mode, initially in the vacuum
state |0〉E,

|0〉A|
√
ηα〉B|

√

1− ηα〉E/
√
2

+|1〉A|
√
ηαeiθ〉B|

√

1− ηαeiθ〉E/
√
2 . (4)

The subscripts “A” and “B” denote the state of the
atomic qubit and the qubus mode, respectively. We may
now rewrite each of the two pairs of pure, nonorthogo-
nal states of the qubus mode and the loss mode in an
orthogonal, two-dimensional basis, {|u〉, |v〉},

|√ηα〉B = µB|u〉B + νB|v〉B,
|√ηαeiθ〉B = (µB|u〉B − νB|v〉B) eiηξ,

|
√

1− ηα〉E = µE|u〉E + νE|v〉E, (5)

|
√

1− ηαeiθ〉E = (µE|u〉E − νE|v〉E) ei(1−η)ξ ,

where νB =
√

1− µ2
B and νE =

√

1− µ2
E with

µB =
[

1 + e−ηα2(1−cos θ)
]1/2

/
√
2, (6)

µE =
[

1 + e−(1−η)α2(1−cos θ)
]1/2

/
√
2 , (7)

and ξ ≡ α2 sin θ. Here and in the following, we assume α
to be real. Now tracing over the loss mode and using the
“A” basis, {(|0〉A ± eiξ|1〉A)/

√
2}, as new computational

basis, we can express the “two-qubit” density matrix of
“A” and “B” in a very compact way as

µ2
E|Φ+(µB)〉〈Φ+(µB)|+ (1− µ2

E)|Ψ+(µB)〉〈Ψ+(µB)| . (8)

The resulting density matrix is a mixture of two nonmax-
imally entangled states,

|Φ+(µB)〉 = µB|0〉A|u〉B +
√

1− µ2
B|1〉A|v〉B, (9)

|Ψ+(µB)〉 = µB|1〉A|u〉B +
√

1− µ2
B|0〉A|v〉B . (10)

The phase-rotated coherent states are now contained in
the orthogonal basis of the corresponding qubus-mode
subspace,

|u〉B =
1

2µB

(

|√ηα〉B + e−iηξ|√ηαeiθ〉B
)

, (11)

|v〉B =
1

2
√

1− µ2
B

(

|√ηα〉B − e−iηξ|√ηαeiθ〉B
)

.

In the form of Eq. (8), one can easily observe the trade-
off of the presence of entanglement for different photon
numbers α2, assuming imperfect transmission, η < 1,
and reasonable phase shifts, θ ∼ 10−2, 10−3. Choos-
ing α small means the density matrix in Eq. (8) ap-
proaches a pure state, according to Eq. (7); however,
this pure state is nearly unentangled for too small α,
according to Eqs. (6),(9). Conversely, for large α, we
have µ2

E → 1/2, leading to an almost equal mixture of
the states of Eqs. (9),(10) in Eq. (8); however, this time,
the individual states of Eqs. (9),(10) are nearly maxi-
mally entangled Bell states. In other words, the quality
of the entanglement is affected either by the decoherence
effect of the channel (for large α, when many photons
transfer which-path information into the environment)
or by the nonmaximal entanglement of the pure states
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FIG. 2: The entanglement of formation of the qubit1-qubus
states as a function of the qubus amplitude α (square root
of qubus photon number) for different channel transmissions,
i.e., different distances of qubus propagation; photon loss is
assumed to be 0.18 dB per km. The phase θ is always 0.01.

in Eqs. (9),(10) (for small α, when the phase-rotated co-
herent states are nearly indistinguishable and the initial
atom-light entanglement is weak).
Another interesting feature of the state in Eq. (8) is

that we may consider a purification of some copies of
it through local operations on the qubits and the qubus
modes, hence distilling a higher degree of entanglement
into a smaller number of copies. This “prepurification”
(prior to the qubus interaction with qubit 2) or “hybrid
entanglement distillation” will be discussed in Sec. III A.
As the density matrix in Eq. (8) effectively describes

a two-qubit state, we can evaluate its entanglement of
formation using the concurrence [25]. Figure 2 shows the
entanglement of formation as a function of the qubus am-
plitude α (square root of qubus photon number) for dif-
ferent channel transmissions. Note that this is the max-
imum initial entanglement (prior to any entanglement
distillation procedures) available in the repeater proto-
col. All the remaining steps of the initial entanglement
generation, including the interaction between qubus and
qubit 2 and the measurement of the qubus mode, are lo-
cal; hence they can only reduce the amount of entangle-
ment. The optimal value of the product αθ, maximizing
the entanglement, is always of the order of αθ ∼ 1. This
is similar to the result obtained for the two-qubit singlet
fidelity after the interaction with qubit 2 and homodyne
measurement of the qubus mode, reflecting the optimal
trade-off between distinguishability and decoherence [19].
Let us now consider the interaction of the qubus mode
with qubit 2 and look at the resulting tripartite mixed
entangled state.

B. Qubit-qubus-qubit entanglement

In the hybrid quantum repeater protocol, the entan-
gled state of Eq. (8) is subject to a second interaction,

this time between the qubus mode and qubit 2 (which
initially is in an equal superposition state). This inter-
action results in a controlled rotation of the qubus by an
angle of −θ, as described by Eq. (3) with θ → −θ. The
controlled rotation transforms the two orthogonal qubus
basis states of Eq. (11) together with the qubit state as

|u〉B ⊗ (|0〉C + |1〉C)/
√
2 → (12)

1

2
√
2

[

|√ηα〉B(|0〉C + e−iηξ|1〉C)

+e−iηξ|√ηαeiθ〉B|0〉C
+|√ηαe−iθ〉B|1〉C

]

/µB,

and, similarly,

|v〉B ⊗ (|0〉C + |1〉C)/
√
2 → (13)

1

2
√
2

[

|√ηα〉B(|0〉C − e−iηξ|1〉C)

−e−iηξ|√ηαeiθ〉B|0〉C
+|√ηαe−iθ〉B|1〉C

]

/
√

1− µ2
B.

Applying these transformations to the density matrix in
Eq. (8), a local Hadamard gate to the spin system “A”,
and a local rotation eiηξ(1−σ̂z)/2 upon system “C”, leads
to the following tripartite density operator,

µ2
E|Φ+〉〈Φ+|+ (1− µ2

E)|Φ−〉〈Φ−| , (14)

where

|Φ+〉 =
1√
2
|√ηα〉B|φ+〉AC +

1

2
e−iηξ|√ηαeiθ〉B|10〉AC

+
1

2
eiηξ|√ηαe−iθ〉B|01〉AC,

|Φ−〉 =
1√
2
|√ηα〉B|φ−〉AC − 1

2
e−iηξ|√ηαeiθ〉B|10〉AC

+
1

2
eiηξ|√ηαe−iθ〉B|01〉AC,

with the maximally entangled Bell states |φ±〉 = (|00〉 ±
|11〉)/

√
2. The state in Eq. (14) with Eqs. (15) again

illustrates the two competing sources of errors in the en-
tanglement generation step. Bit-flip errors are caused
by the indistinguishability of the phase-rotated coherent
states (if homodyne detection is used for state discrimina-
tion); these can be reduced via sufficiently large photon
numbers. Phase-flip errors occur for any imperfect trans-
mission; this decoherence effect is suppressed for smaller
photon numbers.
In the following, we will consider unambiguous state

discrimination (USD) [26, 27, 28] of the corresponding
phase-rotated coherent states in Eq. (14). This enables
us to completely eliminate bit-flip errors, at the expense
of a reduced efficiency coming from inconclusive measure-
ment results. The relevant, quantum mechanical USD
problem provides ultimate performance bounds. These
shall be approached using practical linear-optics solutions
for the required generalized measurements.
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FIG. 3: Phase-rotated coherent states to be discriminated for
entangled-state preparation; the unrotated state belongs to
the preferred qubit subspace (even parity); the two rotated
states are correlated with the odd subspace of the two qubits.

C. Conditional state preparation

As illustrated in Fig. 1a, after the interaction of the
qubus with qubit 2, the final step is to prepare condition-
ally an entangled two-qubit state through measurements
on the qubus mode including postselection. The post-
selection procedure may either filter out approximate,
mixed entangled two-qubit states, still containing some
errors from the finite overlap of the phase-rotated co-
herent states [19]; or it may, at a lower succcess rate,
perfectly rule out those contributions belonging to the
“wrong” coherent states (see Fig. 3) and project onto
an entangled two-qubit state whose imperfection origi-
nates solely from the losses in the communication chan-
nel. The latter scenario can be achieved via a scheme
based on USD measurements, providing the ultimate,
distance-dependent limits on the quality of the initially
generated entangled states. At the same time, it yields an
alternative approach to feasible implementations of the
entanglement generation step. Let us first briefly recall
the homodyne-based entanglement generation scheme.

1. Homodyne-based state preparation

A very efficient and practical way to discriminate the
phase-rotated coherent states in Fig. 3 is through homo-
dyne detection [19]. While an x measurement could, in
principle, project onto both the even and the odd qubit
subspace, a p measurement only leads to an entangled
state in the even subspace and those results consistent
with either the |10〉 or the |01〉 state must be discarded.
Nonetheless, for the quantum repeater protocol, the p
measurement is preferred to the x measurement, as the
errors in the former scale as αθ and those of the latter as
αθ2, resulting in fast decoherence for small θ and α suf-
ficiently large. Let us now discuss the ultimate bounds

on the performance of the entanglement generation step
using an error-free, USD-based measurement scheme.

2. Ultimate bounds

In order to derive some bounds on the attainable
entangled-state fidelities at a certain rate for a given
distance, let us consider the binary USD problem of
discriminating the state |√ηα〉 versus the set of states

{|√ηαeiθ〉, |√ηαe−iθ〉}. We may rephrase this problem
as the USD of the two density operators

ρ̂1 = |√ηα〉〈√ηα| , (15)

ρ̂2 =
1

2

(

|√ηαeiθ〉〈√ηαeiθ|+ |√ηαe−iθ〉〈√ηαe−iθ|
)

.

Any measurement scheme which is intended to filter out
unambiguously an entangled Bell state from the two indi-
vidual states in Eqs. (15) of the mixture in Eq. (14) must
be a solution to the above USD problem; thus, the best
possible entanglement generation scheme cannot outper-
form the optimal USD scheme. However, note that the
converse is not true. A generalized measurement, even
for optimal USD, does not necessarily result in an entan-
gled state. In particular, unambiguously identifying the
state ρ̂2 in Eq. (15) may also mean that the sign of the
phase rotation is determined. In this case, the two qubits
end up in a separable state, according to Eq. (14) with
Eqs. (15). In fact, in order to coherently project onto the
odd qubit subspace (as it could be done erroneously via x
homodyne detection, see Fig. 3) through USD, the mea-
surement scheme becomes less practical involving photon
number resolving detectors [29].
The USD of mixed quantum states is a much more

subtle issue than that of pure states [30, 31, 32, 33].
Nonetheless, for equal a priori probabilities (which is the

FIG. 4: The optimal failure probability for unambiguous state
discrimination of the two density operators in Eq. (15) as
a function of the fidelity of the desired entangled two-qubit
state in Eq. (14). The regions below each curve are quantum
mechanically inaccessible. Note that for a transmission η =
1/2 (17 km), the functional dependence is linear.
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case we are interested in), the failure probability (the
probability for obtaining an inconclusive measurement
outcome) is bounded from below by the square root of
the fidelity of the two density operators [32]. For the
USD problem of Eq. (15), this means

P? ≥
√

〈√ηα|ρ̂2|
√
ηα〉 . (16)

Using Eq. (15), this leads to the optimal (minimal) failure
probability

P opt
? = e−ηα2(1−cos θ) . (17)

This bound can be inserted into the fidelity (this time for
the qubit states) µ2

E ≡ F of the desired |Φ+〉 state in the
mixture of Eq. (14). Using Eq. (7), we obtain

P opt
? (F ) = (2F − 1)η/(1−η) . (18)

The optimal failure probability as a function of the fi-
delity is shown in Fig. 4 for different distances.
The larger the distances, the larger the failure proba-

bilities become at a given fidelity. Reasonably high fideli-
ties are only achievable at the expense of small success
probabilities. However, the bound for the USD prob-
lem does allow for fidelities much greater than 1/2 at
distances of 50 km and more. We will now investigate
whether there are practical implementations of the cor-
responding USD measurement which approach the quan-
tum mechanical bounds and hence are no longer limited
by distances of 20 km and below.

3. Unambiguous state preparation

Apart from an initial entanglement generation over po-
tentially larger distances, there are other advantages of
using USD for the conditional entangled-state prepara-
tion. In particular, the resulting imperfect entangled
states will be mixtures of just two Bell states (rank two
mixtures), in the form of Eq. (14) after ruling out the odd
parity terms in Eqs. (15). For some copies of this type of
mixed-entangled states, entanglement distillation is more
efficient [34] and the so-called entanglement pumping is
no longer bounded by some fidelity threshold below unity
(as for higher rank Bell-diagonal mixtures) [4]; entangle-
ment pumping means that spatial resources in the re-
peater protocol can be turned into temporal resources by
distilling always the same entangled pair with the help
of freshly prepared elementary pairs.
A scheme for unambiguously discriminating the phase-

rotated coherent states in Fig. 3 and hence realizing USD
of the density matrices in Eq. (15), based upon linear op-
tics and photon detection, is shown in Fig. 5. The qubus
mode is sent through a linear three-port device, together
with two ancilla vacuum modes, and subsequently, the
three output modes are displaced in phase space before

being detected. The three-port device acts upon a coher-
ent state |β〉 as

|β, 0, 0〉 → |λβ, λβ,
√

1− 2λ2β〉 , (19)

choosing λ real. The subsequent phase-space displace-
ments are

D̂
(

−λ√ηαeiθ
)

⊗ D̂
(

−λ√ηαe−iθ
)

⊗D̂
(

−
√

1− 2λ2
√
ηα

)

. (20)

Via the three-port device and the displacements, the
three different qubus input states to be discriminated are
transformed as

|√ηα, 0, 0〉 → |λ√ηα(1− eiθ), λ
√
ηα(1 − e−iθ), 0〉,

|√ηαeiθ, 0, 0〉 →
|0, λ√ηα2i sin θ),

√

1− 2λ2
√
ηα(eiθ − 1)〉,

|√ηαe−iθ, 0, 0〉 →
| − λ

√
ηα2i sin θ), 0,

√

1− 2λ2
√
ηα(e−iθ − 1)〉.

(21)

There are now six out of eight possible detection pat-
terns, considering detectors which do not resolve photon
numbers (going either “click” or “no click”). These pat-
terns unambiguously identify the corresponding coherent
states of the input,

|click, click, no click〉 → |√ηα〉 ,
|no click, no click, click〉 → |√ηαe±iθ〉 ,
|no click, click, click〉 → |√ηαeiθ〉 ,
|click, no click, click〉 → |√ηαe−iθ〉 ,
|no click, click, no click〉 → |√ηα〉 or |√ηαeiθ〉 ,
|click, no click, no click〉 → |√ηα〉 or |√ηαe−iθ〉 .

(22)

The pattern |no click, no click, no click〉 is inconclusive
(corresponding to the vacuum contributions from all
three modes), whereas the pattern |click, click, click〉 does
not occur at all.
Among the remaining six detection patterns,

there are two patterns which are inconclusive, in

FIG. 5: Unambiguous state discrimination of a zero-phase co-
herent state from two phase-rotated coherent states via linear
optics, phase-space displacements, and photon detection.
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addition to the vacuum-based, inconclusive pat-
tern |no click, no click, no click〉. The extra incon-
clusive patterns are |no click, click, no click〉 and
|click, no click, no click〉 (the last two patterns of
Eq. (22)). As they rule out only |√ηαe−iθ〉 and

|√ηαeiθ〉, respectively, they are conclusive results
neither for the USD problem nor for the entanglement
generation in the repeater protocol. However, the
conditional states that emerge after the detection of
these patterns (i.e., after obtaining just one click in
either the first or the second mode) are, in principle,
still usable for both USD and entanglement generation.
Here we will not consider such conditional dynamics.

Focusing on the remaining four patterns, we observe
the following. Any one of the first four patterns of
Eq. (22) conclusively identifies the quantum state in
the USD problem of Eq. (15). Among these four, only
the first pattern, |click, click, no click〉, identifies the state
|√ηα〉. The other three patterns are only consistent with
the state ρ̂2 in Eq. (15), ruling out ρ̂1.

If we now look at the entanglement generation
step of the repeater protocol, then even the patterns
|no click, click, click〉 and |click, no click, click〉 must count
as failure, because conclusively identifying either the
state |√ηαeiθ〉 or the state |√ηαe−iθ〉means that the two
atomic spins will end up in a separable state, according
to Eq. (14) with Eqs. (15).

Eventually, only the two patterns |click, click, no click〉
and |no click, no click, click〉 are useful for the entangle-
ment generation. The former one, conclusively identi-
fying the state |√ηα〉, projects the two qubits onto the
even parity subspace. The latter one, ruling out |√ηα〉
and being consistent with both |√ηαeiθ〉 and |√ηαe−iθ〉,
leads to the odd subspace. However, in this case, just ob-
taining a click for mode 3 is not enough to project the two
qubits onto a maximally entangled state, not even in the
ideal case without losses (see Eq. (14)). Such a measure-
ment would result in a superposition of the two “odd”
Bell states |ψ±〉 = (|10〉± |01〉)/

√
2 with an even number

(without the vacuum) and an odd number coherent-state
superposition, ≈ |αiθ〉±|−αiθ〉, respectively. Thus, only
through detection of the photon number parity, a maxi-
mally entangled Bell state of the two qubits can emerge.
This could be achieved via photon number resolving de-
tectors [29].

As a result, we obtain a highly practical solution for
entanglement generation, based upon two detectors fir-
ing at the same time, |click, click, no click〉. We denote
the success probability for this event to occur as P even.
Similarly, the probability for projecting onto the odd sub-
space shall be P odd,USD and P odd,ent, where P odd,USD in-
cludes those patterns which may or may not resolve the
two states |√ηαeiθ〉 and |√ηαe−iθ〉 and hence are only
partly useful for entanglement generation (but still en-
tirely for USD). The probability P odd,ent only includes
the pattern |no click, no click, click〉, which, using photon
number resolving detectors, leads to an entangled state.

FIG. 6: Failure probabilities as functions of the final two-qubit
maximally entangled-state fidelities for different distances.
The regions below “USD bound” are quantum mechani-
cally inaccessible. The curves “USD” correspond to those
linear-optics implementations in which all conclusive patterns
for both even and odd subspaces are combined (choosing a
beam splitter parameter λ = 0.4). The plots for “even”
(λ = 0.7) and “odd” (λ = 0.01) describe those measure-
ment schemes where only a single detection pattern is used
in order to project onto the respective two-qubit subspaces
(|click, click,no click〉 for “even” and |no click, no click, click〉
for “odd”).

For these probabilities, we obtain,

P even =
1

2

(

1− e−λ2ηα2 2(1−cos θ)
)2

, (23)

P odd,USD =
1

2

(

1− e−(1−2λ2)ηα2 2(1−cos θ)
)

,

P odd,ent = P odd,USD × e−λ2ηα2 4 sin2 θ .

(24)

Finally, we use P total,USD = P even + P odd,USD and
P total,ent = P even + P odd,ent to describe the correspond-
ing total success probabilities.
Compared to the ultimate bounds derived in

Sec. II C 2, we may now consider three different scenar-
ios. First, the most practical scheme for entanglement
generation, namely, by unambiguously identifying the
state |√ηα〉, projecting the two qubits onto a mixture
of even-parity entangled Bell states. This scheme works
with a probability of P even (which is always smaller than
1/2), and does not require photon number resolving de-
tectors. Secondly, we consider the odd qubit subspace
for entanglement generation, resulting in a slightly less
practical scheme with a need for photon number resolv-
ing detectors; the probability here is P odd,ent. Finally, we
add those patterns which resolve the states |√ηαeiθ〉 and
|√ηαe−iθ〉 to consider the total probability for a reason-

ably practical USD scheme, P total,USD. This comparison
is shown in Fig. 6, where the success probabilities are re-
placed by failure probabilities, as functions of the fidelity
µ2
E ≡ F in Eq. (14). The linear-optics parameter λ can

be used to tune between the even and the odd subspaces.
In Fig. 6, again the regions below “USD bound”
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are quantum mechanically inaccessible. The curves
“USD” correspond to those linear-optics implementa-
tions in which all conclusive patterns for both even and
odd subspaces are combined (choosing a beam split-
ter parameter λ = 0.4); the failure probabilities shown
correspond to 1 − P total,USD. The plots for “even”
(λ = 0.7) and “odd” (λ = 0.01) describe those mea-
surement schemes where only a single detection pat-
tern is used in order to project onto the respective
two-qubit subspaces (|click, click, no click〉 for “even” and
|no click, no click, click〉 for “odd”); the failure probabil-
ities shown correspond to 1 − P even and 1 − P odd,ent,
respectively.
Here, “even” is less efficient, but more practical than

“odd”, as it does not require photon number resolving
detectors. Note that for entanglement generation, tun-
ing the beam splitter parameter λ in order to project
onto both even and odd subspaces at the same time (as
for “USD” with λ = 0.4) does not lead to better perfor-
mances. For larger distances, also for the case of “USD”,
beam splitter tuning no longer helps; either projecting
onto the even (λ = 0.7) or the odd (λ = 0.01) subspace
is optimal in this case as well. Therefore, “USD” per-
forms worse than “odd” for 30 km and beyond.
Note that the three patterns of Eq. (22) with clicks in

every mode except one unambiguously identify each in-
dividual state of the set {|√ηα〉, |√ηαeiθ〉, |√ηαe−iθ〉}.
In other words, for different λ, one obtains a family
of solutions to the corresponding trinary USD problem.
As the three coherent states here are not symmetri-
cally distributed (exp(iθâ†â)|√ηαeiθ〉 6= |√ηαe−iθ〉 for
θ 6= 2π/3), the success probability of the quantum me-
chanically optimal USD is actually not known. For real-
izing optimal USD of N symmetrically distributed coher-
ent states, protocols have been proposed by van Enk [35],
similar to the scheme here, approximately implementing
the optimal N -state USD.

III. ENTANGLEMENT PURIFICATION AND

SWAPPING

In the original hybrid quantum repeater proposal [19],
the first step is to distribute two-qubit entanglement be-
tween nearest-neighbor stations at a high rate, but with
rather modest fidelities. In order to achieve high-fidelity
quantum communication over the entire repeater chan-
nel, the imperfectly entangled qubit states must be pu-
rified; the resulting high-fidelity pairs can be used to
connect the segments of the channel through entangle-
ment swapping. Further rounds of entanglement purifica-
tion and swapping will eventually produce a high-fidelity
entangled pair between the remote ends of the channel
[3, 4].
Instead of using standard entanglement distillation

and swapping procedures on the level of the qubits
[4, 5, 6, 7, 9], we may also consider a purification of
the imperfectly entangled, light-matter hybrid pairs, as

FIG. 7: Purifying two copies of a light-matter hybrid entan-
gled pair into one copy with higher fidelity (purity) through
local operations on the qubits and the light modes.

FIG. 8: Hybrid entanglement swapping through unambiguous
Bell-state measurements on the joint systems of qubit and
light mode.

described by Eq. (8). In this case, local operations would
partly act upon the qubits and partly on the light field
(see Fig. 7). This potentially reduces the number of qubit
resources and, moreover, only high-fidelity entanglement
would be transferred from the light modes to the qubits.
Similarly, we could employ a hybrid version of entangle-
ment swapping, where the Bell-state measurements are
performed on the light-matter hybrid systems (Fig. 8).

A. Hybrid entanglement distillation

Entanglement purification of optical, non-hybrid, en-
tangled coherent states has been considered in Ref. [36].
Provided the initial copies of mixed entangled states are
of a specific form (rank two mixtures of a certain pair
of entangled coherent, quasi-Bell states), simple linear
optics and photon detectors suffice to enhance the fi-
delity of the entangled states. However, for realistic, dis-
sipative environments, the decohered states would not
end up in the desired form; additional local Hadamard-
type gates (transforming Gaussian coherent states into
non-Gaussian superpositions of coherent states) would
be needed in order to accomplish the entanglement pu-
rification protocol.
The situation turns out to be similar for the present

hybrid protocol. As can be inferred from Eq. (8) with
Eqs. (9),(10), the local Hadamard gates in an entangle-
ment purification scheme must act upon the qubit states
of system “A” and the coherent-state superposition basis
states of the qubus system “B”, Eq. (11). Even though
there are recent proposals to achieve such logical gates for
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coherent-state superpositions (“coherent-state quantum
computing” [37, 38]), using off-line prepared coherent-
state superpositions, the need for extra non-Gaussian,
optical resources (or, possibly, extra CQED-based, op-
tical resources) may be just as expensive as using addi-
tional cavity-based qubit resources. Therefore we con-
clude that hybrid entanglement distillation does not ap-
pear to be a more practical alternative to the standard
distillation procedures solely on the level of the two-qubit
states.

B. Hybrid entanglement swapping

In a hybrid version of entanglement swapping, the Bell-
state measurements are performed on the light-matter
hybrid systems (Fig. 8). For this hybrid Bell measure-
ment, we can just use the same CQED interactions as
for the initial entanglement distribution, described by
Eq. (3); that interaction provides the entangling gate
needed for a projection onto the hybrid “Bell basis”. A
subsequent Hadamard gate can be applied to the qubit
system before measuring both the qubit and the optical
qubus in the “computational basis”.
More precisely, the following “Bell states” are to be

discriminated,

(

|0〉|α〉 ± |1〉|αeiθ〉
)

/
√
2 ,

(

|0〉|αeiθ〉 ± |1〉|α〉
)

/
√
2 . (25)

In order to distinguish these states, an interaction gate
similar to Eq. (3) is applied, where |0〉|α〉 → |0〉|α〉 and
|1〉|α〉 → |1〉|αe−iθ〉. The first pair of Bell states in

Eq. (25) is transformed into (|0〉 ± |1〉) |α〉/
√
2; in this

case, measuring in the Hadamard-rotated qubit basis re-
veals the phase of the initial Bell state. In order to ad-
ditionally identify the second pair in Eq. (25), which will

be transformed into
(

|0〉|αeiθ〉 ± |1〉|αe−iθ〉
)

/
√
2, apart

from the qubit Hadamard gate and qubit detection, a
measurement on the optical qubus mode must discrimi-
nate the unrotated coherent state from the two rotated
ones in phase space (see Fig. 3).
For a nearly complete Bell measurement (approxi-

mately identifying any one of the four hybrid Bell states),
the two rotated coherent states must not be distinguished
by the measurement. This could be achieved via x ho-
modyne detection. However, as discussed previously, the
distinguishability in phase space scales badly with dis-
tance along the x axis. Therefore, for a partial Bell mea-
surement identifying only half of the Bell states, either
p homodyne detection can be used, or, alternatively, the
USD-based scheme for unambiguously detecting the un-
rotated coherent state, as introduced in the preceding
sections. In either case, p homodyne or USD measure-
ment, the efficiency of the Bell measurement would be
limited by 1/2.
Now using the hybrid Bell measurement for entangle-

ment swapping (Fig. 8) means projecting subsystems 2

(the first qubus mode) and 3 (the second qubit) of the
initial pair of entangled qubit-qubus states,
(

|0〉|α〉12 + |1〉|αeiθ〉12
)

⊗
(

|0〉|α〉34 + |1〉|αeiθ〉34
) /

2 ,

onto the Bell basis in Eq. (25). According to the method
described in the preceding paragraph, the interaction be-
tween the qubit (system 3) and the qubus (system 2)
leads to

(

|0, α, 0, α〉+ |1, α, 1, αeiθ〉 (26)

+|0, αe−iθ, 1, αeiθ〉+ |1, αeiθ, 0, α〉
)/

2 .

When the first qubus mode (system 2) is unambiguously
determined to be in the state |α〉, a Hadamard gate on the
second qubit (system 3) plus measurement in the com-
putational basis yields one of two possible hybrid Bell
states for the first qubit (system 1) and the second qubus
mode (system 4), with the phase depending on the mea-
surement result. In order to obtain any one of the four
hybrid Bell states of Eq. (25), in addition, the first qubus
mode (system 2) must be coherently projected onto the
subspace corresponding to {|αeiθ〉, |αe−iθ〉} (for example,
via USD and photon-number resolving detectors).
In the above entanglement swapping scheme, clearly

the most practical choice is either p homodyne measure-
ment or USD measurement of the unrotated coherent
state. A success probability below 1/2 does not auto-
matically render this scheme inferior to the conventional,
deterministic entanglement swapping with the two-qubit
entangled states, because in the latter case, first the en-
tanglement needs to be distributed probabilistically with
a success probability of at most 1/2 using either p homo-
dyne or USD measurements. This probabilistic element
is now simply incorporated into the hybrid entanglement
swapping protocol. In other words, using the hybrid Bell-
state analysis, two initial entanglement distributions and
subsequent qubit entanglement swapping can be done al-
most in one go (when the final hybrid Bell state is again
converted into a two-qubit entangled state through an-
other CQED interaction and selective measurements with
probability 1/2). However, the Bell-state analysis for the
two-qubit entangled states in the conventional protocol
relies upon complicated two-qubit quantum logic gates;
realizable, for instance, using another four CQED-based
dispersive interactions [19]. The hybrid Bell-state anal-
ysis here would not require any extra dispersive inter-
actions in addition to those for the initial entanglement
distributions. However, a drawback is that we cannot ef-
ficiently purify the hybrid entangled states (as discussed
in the preceding section) in order to combine sequences
of hybrid entanglement swapping steps with hybrid en-
tanglement purification steps.

IV. CONCLUSION

In summary, we investigated the protocol for a hybrid
quantum repeater, based upon dispersive light-matter in-
teractions between electronic spins and bright coherent
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light, with respect to the different kinds of entangled
states at the intermediate steps of the protocol and with
regard to the final optical measurements for conditionally
preparing two-qubit entangled states. As an alternative
detection scheme, we propose to apply USD-based mea-
surements on the optical qubus modes.
Compared to the homodyne-based scheme, there are

various advantages of the USD-based protocol. First of
all, one source of errors can be completely eliminated
from the protocol, namely those errors arising from the
inability of perfectly discriminating phase-rotated coher-
ent states in phase space. In the USD scheme, this im-
perfection only leads to smaller efficiencies for the entan-
glement generation, but the fidelities are unaffected. As
a result, the fidelities are solely degraded through the de-
coherence effect caused by photon losses in the communi-
cation channel. By choosing weaker coherent states, the
decoherence effect can be suppressed and, in principle,
repeater spacings of far beyond 10 km are possible at the
expense of smaller entanglement distribution rates. For
example, initial fidelities of about 0.7 are achievable over
50 km and 100 km with success probabilities of about
1% and 0.01%, respectively, using simple on-off detec-
tors (discriminating between vacuum and non-vacuum
states). The final two-qubit entangled states here, being,
in principle, ideal rank two mixtures, can be purified very
efficiently. For the USD-based protocol, we also derived
ultimate, distance-dependent bounds on the performance
of the entanglement generation step in terms of success
probabilities and fidelities.
Finally, we examined the entanglement purification

and swapping steps for the hybrid repeater protocol from
a different perspective. Instead of performing these steps

solely on the level of the two-qubit entangled states, we
considered purification and swapping with the hybrid en-
tangled states of the atomic qubit and the optical qubus
mode. It turns out that entanglement purification is dif-
ficult to achieve, unless optical, non-Gaussian gates (such
as Hadamard gates acting upon coherent-state superpo-
sition states) are available. Hybrid entanglement swap-
ping, however, can be accomplished easily with exactly
the same resources as used for the initial entanglement
distribution. In fact, the probabilistic entanglement dis-
tribution steps can be incorporated into the hybrid en-
tanglement swapping step, leading to the same overall
efficiencies as for the deterministic, qubit entanglement
swapping requiring complicated, less feasible quantum
logic gates. However, a combination of hybrid entan-
glement swapping with hybrid entanglement purification
in a nested repeater protocol would again require optical,
non-Gaussian gates.
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