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Quantum reservoir processing
Sanjib Ghosh 1, Andrzej Opala2, Michał Matuszewski2, Tomasz Paterek1,3 and Timothy C. H. Liew1,3

The concurrent rise of artificial intelligence and quantum information poses an opportunity for creating interdisciplinary
technologies like quantum neural networks. Quantum reservoir processing, introduced here, is a platform for quantum information
processing developed on the principle of reservoir computing that is a form of an artificial neural network. A quantum reservoir
processor can perform qualitative tasks like recognizing quantum states that are entangled as well as quantitative tasks like
estimating a nonlinear function of an input quantum state (e.g., entropy, purity, or logarithmic negativity). In this way, experimental
schemes that require measurements of multiple observables can be simplified to measurement of one observable on a trained
quantum reservoir processor.
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INTRODUCTION

Quantum neural networks are emerging technologies that
combine the features of artificial neural networks and quantum
information technologies.1–3 While neural networks are biologi-
cally inspired computing systems that learn from example to
perform complex tasks in the area of “big data” and machine
learning,4–7 quantum information technologies exploit quantum
effects for practical applications like quantum computation,
quantum cryptography, and long-distance quantum communica-
tions. The interaction between these two promising fields led to
many advances. For instance, quantum effects in neural net-
works8,9 enhance learning efficiency10,11 and speed up solving
many classical tasks.12–14 Conversely, neural networks are used for
solving complex quantum problems,15,16 the control, and design
of quantum experiments,17–19 and considered as architectures,
given a universal quantum computer20,21 or quantum annealer.22

Among the forms of neural networks, recurrent neural networks
emerged as particularly suited for solving complex temporal
machine-learning tasks. They achieve this by using feedback
connections not present in more traditional feedforward neural
networks to generate an internal temporal dynamic behavior.
However, the training of recurrent neural networks is typically
inefficient and computationally expensive.
In reservoir computing, a randomly connected network, called

the reservoir, is used as a dynamical processing unit into which an
input signal is fed. The training in reservoir computing takes place
only at the readout weights that linearly map the readout of the
reservoir state to the desired output. The training is conceptually
simple and computationally inexpensive.23 Furthermore, they are
very suitable for hardware implementation in a wide variety of
systems.24–30 Despite these advantages, reservoir computing is
mostly used for tasks in the classical domain, like time-series
prediction and speech recognition,26,27,30,31 predicting the evolu-
tion of nonlinear dynamics32 and features of chaotic systems,33

while quantum speedup of many of these classical tasks was also
considered.34

The idea of reservoir computing is based on the empirical
observation that when the nonlinear expansion of the input data
is performed randomly, but into a space with a very high
dimensionality, one can find good linear cuts for virtually any
classification problem. Here, we present a quantum reservoir
processing platform designed on the same intuition, but
operating on quantum information in a quantum Hilbert space.
Our architecture does not require the pre-existence of a quantum
computer and is nevertheless capable of performing quantum
tasks on a quantum input. Specifically, we consider a 2D fermionic
lattice with random intersite coupling excited by an incident
quantum state in the form of an optical field, as illustrated in
Fig. 1. The architecture is versatile and can perform both
qualitative and quantitative tasks. Recognition of quantum
entanglement of the input state is an example of a qualitative
task. We find that the quantum reservoir processor (QRP) not only
recognizes the entanglement of the same class of states as the
training set, but is also able to make predictions on states beyond
the training class, including bipartite bound entangled states. Our
examples of quantitative tasks include estimation of logarithmic
negativity, von Neumann entropy, purity, and the trace of any
power of an input quantum state. Here, quantum coherence
between reservoir nodes and nonlinearity are essential resources
behind successful operation of QRP. We discuss the consequences
of these findings to simplification of generic quantum experi-
ments. In particular, we argue that measurements of multiple
quantum observables can be replaced with a single measurement
using QRP that has been suitably trained.

RESULTS

The model
Our considered quantum reservoir is a set of fermions (e.g.,
quantum dots) arranged in a 2D lattice with random nearest-
neighbor hopping. The reservoir is defined by the Fermi–Hubbard
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Hamiltonian:

ĤR ¼
X

ij

Jij b̂
y
i b̂j þ b̂

y
j b̂i

� �
(1)

where b̂i is the fermionic field operator of the site i and Jij are the
random hopping amplitudes uniformly distributed in the interval
[−1, +1] and normalized, such that the spectral radius (largest
modulus of the eigenvalues) of the Hamiltonian is ~J. Here, we
considered nearest-neighbor coupling in the choice of Jij. A
comparison to the case of all-to-all coupling is included in the
Supplementary Material (section VIII). Each site in the lattice is
driven by an incoherent excitation (e.g., a nonresonant optical
field) with the strength P.35 In our scheme, an input bipartite state,
in bosonic (e.g., optical) modes â1 and â2, is represented by the
density matrix ρin. It is incident on the reservoir, interacting for a
short time with all fermions. We consider that the two modes of
the input state are coupled to the reservoir one at a time. This is to
model the physical process, where wave packets are sequentially
incident on the reservoir one after the other. The couplings of the
input modes to the reservoir are realized via the “cascaded
formalism”

35–37 which eliminates any feedback from the reservoir
to the input modes. Due to this coupling, the input state merges
to the reservoir. The incident state thus influences the evolution of
the reservoir. As readout, we measure the occupation number of
each fermionic site of the reservoir. This model can be practically
realized in a variety of platforms, including arrays of semiconduct-
ing quantum dots or superconducting qubits.38 We note that
precise and deterministic quantum dots, which are typically a key
challenge,39 are unnecessary for our scheme, where random
positioning and coupling are actually useful.
The whole phenomenon can be described by the combined

density matrix ρ which includes the quantum reservoir and the
incident modes. It follows the quantum master equation:

i�h _ρ¼ ½ĤR; ρ� þ
iγ
2

P
j

Lðb̂jÞ þ
iP
2

P
j

Lðb̂yj Þ

þ i
P
k;j

fkðtÞW
in
j ½âkρ; b̂

y
j � þ ½b̂j; ρâ
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þ iη
2γ

P
k

fkðtÞLðâkÞ

(2)

Here, the Lindblad operator Lðx̂Þ ¼ 2x̂ρx̂y � x̂yx̂ρ� ρx̂yx̂ for a
field operator x̂. On the right side of Eq. (2), the first term
represents the coherent Hamiltonian evolution of the reservoir;
the second term represents decay of the reservoir modes with a
rate γ/ℏ; the third term represents the gain from a nonresonant
optical field with strength P and the rest represents the cascade

between the input modes âk and the reservoir modes b̂j .
35,36 Here,

the second line in Eq. (2) describes quantum excitation of the
reservoir (target) by a source ðâkÞ, while the last line in Eq. (2)
describes the necessary loss of particles from the source due to
the same process. This formalism is appropriate where the source
corresponds to incident flying qubits or chiral optics is used to
ensure unidirectional coupling.35 Win is an input weight vector
with random components uniformly distributed in the interval [0,
W] and η ¼

P
j ðW

in
j Þ

2 is set to remove source photons that have
excited the reservoir. The functions fk(t) (for k= 1, 2) indicate that
the input modes âk are sequentially coupled to the reservoir for
brief periods of time at different instances. We consider f1(t)= 1
for t1 < t < t1+ τ when the first mode â1 is connected to the
reservoir, whereas f2(t)= 1 for t1+ τ < t < t1+ 2τ, when the second
mode is connected to the reservoir; both f1,2(t)= 0 at any other
time. We express all energies and times using γ and ℏ/γ, which are
natural scales for the respective quantities of our
driven–dissipative reservoir. For our numerical simulations, we
consider P/γ= 0.1 for the nonresonant optical field, ~J=γ ¼ 1 for
the random hopping amplitudes, W/γ= 1 for the random input
weight matrixWin, and τ= 1.5ℏ/γ. While the performance of a QRP
weakly depends on P, the appropriate choice of other parameters
is important (see Supplementary Material).
In our scheme, we start with an empty reservoir at time t= 0

and turn on the nonresonant optical field P. With P turned on, the
reservoir reaches a steady state at time t= t1. Then the input
modes âk are coupled in a temporal sequence into the reservoir,
driving it out of its steady state. In this transient at time t= t1+ 2τ,
the occupation numbers nj ¼ hb̂yj b̂ji of the reservoir fermionic
sites provide a readout. Our desired output can then be defined as
Yout
i ¼

P
j

Wout
ij nj , that is, a linear combination of the readout

occupation numbers. Due to the fermionic nature of our
considered reservoir, the occupation numbers nj are nonlinear
functions of the input state. We thus expect to recognize and
estimate the nonlinear properties of the input state by linearly
processing the readout nj. The output weight matrix Wout is
optimized using a training dataset, such that the Yout is best fitted
with known training data, corresponding to a particular task. We
will now describe exemplary nonclassical tasks.

Recognition of quantum entanglement
We first train the QRP with a set of bipartite squeezed–thermal
states that are randomly distributed between separable and
entangled states. The two-mode squeezing operator ŜðαÞ ¼
expðαây1â

y
2 � α�â1â2Þ is applied on bipartite thermal states ρth,

with an average occupation number per mode n, to obtain the
squeezed–thermal input:

ρin ¼ bSðαÞρthbSyðαÞ (3)

where the squeezing parameter α = |α|eiθ, and |α| and θ are
chosen randomly, such that on average, 50% of states are
entangled while others are separable (see Supplementary
Material). The task is to find the states that are entangled.
For the considered supervised training, the input states must be

unambiguously classified into entangled and separable. The
squeezed–thermal states are bipartite Gaussian states, and can
thus be unambiguously characterized by the logarithmic negativ-
ity.40 We train the processor using a set of these states by
assigning Yout

= (1, 0) if a state is entangled and Yout
= (0, 1)

otherwise. The training determines the optimum output weights
Wout by minimizing the prediction error using ridge regression.
For a performance test, we again prepare a set of random input

states ρin which are then fed to the quantum reservoir processor.
For each input ρin, the processor then provides an output Yout,
which is a 2D vector. If the first element of the vector is larger than
the other element, then we assign the input state as entangled
and otherwise as separable. In order to test the prediction

Fig. 1 Schematic representation of a quantum reservoir processor. A
quantum state in the form of an optical field excites a fermionic
lattice with random couplings Jij in an effective Fermi–Hubbard
model. The occupation numbers of the fermionic sites are extracted
and combined to give a final output. This generic architecture can
perform various tasks, such as identifying separability of a quantum
state and simultaneously estimating its various properties
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efficiency, we calculate the logarithmic negativity N(ρin) (retaining
the negative values, see Supplementary Material) to indepen-
dently verify whether ρin is entangled. In an ideal situation, the
processor predicts ρin as entangled whenever N(ρin) > 0. In Fig. 2,
we represent the input states in a polar plot, where the radius
gives the minimum symplectic eigenvalue ~νmin related to the log-
negativity of the state NðρinÞ ¼ �logð2~νminÞ and the angle gives
the squeezing angle θ. The prediction of the reservoir processor is
presented by the color of each point. The predicted entangled
states are the magenta points and the predicted separable states
are the blue points. We can see that the entangled states are
clustered inside the circle ~νmin < 0:5 indicating that the predicted
entangled states are of positive log-negativity.
It turns out that the separability criterion recognized by the QRP

is applicable to a wider class of input states beyond the training
states. We consider frequently used non-Gaussian states (see the
Methods section for detailed expressions): two-mode squeezed
states with a photon added or subtracted (the mean photon
number comparable to that in the training set), state c0|00〉+ c1|11〉,
and bound entangled states introduced in ref. 41. We emphasize
that QRP is trained only with the squeezed–thermal states.
Surprisingly, it recognizes the non-Gaussian entangled states very
efficiently. This suggests that the processor has truly identified the
entanglement pattern from the considered Gaussian input states
and has used that pattern to recognize the non-Gaussian entangled
states, see Fig. 3.
We show in the Supplementary Material that successful

entanglement classification requires quantum coherence between
reservoir nodes, confirming that QRP processed quantum rather
than classical information.

Quantitative estimations and multiprocessing
QRP can also perform accurate quantitative estimations of
nontrivial physical quantities. Furthermore, the method allows
simultaneous estimation of many parameters and observables.
Suppose we want to estimate M quantities of interest given an
input state ρin. For this, we take Yout as an M-dimensional vector.
In the training phase, each element of the output vector, Yout

i , is
taken as an estimate of the ith parameter. Once the optimum
output weight matrixWout is obtained from the training states, the
QRP can predict the values of all M parameters at once. Notice that
estimating one parameter at a time requires to repeat M times the
same process of sending ρin to the reservoir and measuring nj.
As an example, consider the following set of six parameters: log-

negativity M0= N(ρin), von Neumann entropy M1= S(ρin), and
Mn ¼ TrðρninÞ for n= 2…5. Clearly, any parameter with series
expansion

P
n cnρ

n
� �

can be estimated similarly. We again used
the squeezed–thermal states as a training set in order to obtain
the weight matrix Wout. Figure 4 shows the excellent capability of
the QRP for predicting accurate and precise values of all
parameters in one go. We find that increasing the size of the
quantum reservoir improves estimation up to a limited amount
(see Supplementary Material).
In this way, QRP provides a platform for simplification of

quantum experiments. In a typical experiment, a good estimation
of a nonlinear function of ρin requires measurements of multiple
quantum observables. In the worst case, one has to perform full
quantum state tomography. This is a consequence of the fact that
the probability of the measurement result r is a linear function of
ρin, i.e., pr= Tr(ρinΠr), where Πr is the corresponding POVM
element. The advantage of QRP is that only one measurement is
conducted (on the reservoir) and then different parameters are
obtained by post-processing of the results. This comes at the
expense of additional resources needed to train the processor. As
seen in our example, the quality of prediction depends on the
number of fermionic sites in the reservoir. If the required precision
is obtained with a QRP small enough to be simulated on a classical
computer, the training can be done by supplying density matrices
likely to be produced in an experiment (or random mixed states in
the case of no prior knowledge of the experiment). For a large
QRP, the training requires supplying well-characterized physical
input states, for which the parameters of interest can be
calculated/measured independently and efficiently. Note that this
needs to be done only once.

Fig. 2 Quantum reservoir processor trained to recognize entangled
squeezed–thermal states. A quantum reservoir processor of four
fermions was trained with 200 squeezed–thermal states and tested
with another set of squeezed–thermal states with squeezing
parameters |α|eiθ. Each point in the radial plot shows an input state
ρin with radius being the minimum symplectic eigenvalue ~νmin
related to the logarithmic negativity NðρinÞ ¼ �logð2~νminÞ and angle
being the squeezing angle θ. The solid black line represents the
circle ~νmin ¼ 0:5. Clearly, the predicted entangled states are largely
concentrated inside the circle ~νmin < 0:5ð Þ and the separable states
are largely on and outside the circle ~νmin � 0:5ð Þ. The overall
prediction error is (3.7 ± 0.7)%

Fig. 3 Quantum reservoir processor recognizes other classes of
entangled states. In this simulation, the QRP consists of four
fermions. The heights of the bars give the percentage of sampled
states with correctly identified separability properties. The processor
is trained with 200 examples of only squeezed–thermal states. The
data are averaged over 10 different configurations of the random
couplings Jij between the fermions and input weights Win, and the
error bars are indicating the corresponding standard deviations
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DISCUSSION

We have presented a quantum reservoir processing platform for
recognition of quantum entanglement and estimation of non-
linear functions of the input state. This architecture can be used
both as a programmable quantum hardware device that can be
programmed by training according to the need, or as a software
architecture for quantum machine learning that can work for
quantum tasks which are otherwise hard. For instance, a software
implementation could be to use a quantum reservoir processing
platform for identifying bound entangled states.
For hardware implementation, our considered reservoir, that is a

2D fermionic lattice, can be realized in a variety of systems, such as
semiconductor quantum dots, NV centers in diamond, and
trapped atoms. While here our considered quantum reservoir is
a fermionic system, we have found that strongly interacting
bosonic systems can also be used for quantum reservoir
processing (see Supplementary Material). For instance, the model
of our reservoir could be equivalently realized with an array of
photonic crystal cavities42 or exciton–polaritons in semiconductor
microcavities, which are now approaching the polariton blockade
regime43–46 and were shown to receive the entanglement of
external optical fields.47

Although we considered systems in which the source is cascade
coupled into the reservoir without feedback, quantum reservoir
processing should not be seen as model specific. Considering a
system where the source and reservoir are coherently coupled (with
feedback) we obtain similar results (see Supplementary Material).
Also, our presented quantum-processing tasks are performed by a
QRP of four fermions. While considering larger QRPs (if required) for
processing quantum information, the sparsity of the reservoir
parameters can be important (see Supplementary Material).

METHODS

Squeezed–thermal states
A bipartite thermal state can be represented by the density matrix: ρth ¼P

n1 ;n2
ρn1n2 jn1; n2ihn1; n2j with the Fock space elements:

ρn1n2 ¼
1

1þ n

� �2
n

1þ n

� �n1þn2

(4)

and n being the average occupation number per mode. The
squeezed–thermal states are then obtained as ρsq�th ¼ ŜðαÞρthŜ

yðαÞ

where the squeezing operator ŜðαÞ ¼ expðαây1â
y
2 � α�â1â2Þ. We write the

squeezing parameter as α= |α|eiθ and further |α|= s sinϕ and the average
thermal occupation number n ¼ s2cos2ϕ. Thus, the parameters θ, s, and ϕ
are the parameters characterizing the states ρsq-th. We take θ, s, and ϕ as
random numbers uniformly distributed in the intervals [0, 2π], [0.8, 0.95],
and 0.5 ± π/10, respectively. We have chosen the intervals for all the
parameters such that 50% of the states are Gaussian entangled.

Photon-added squeezed states

The photon-added squeezed states are written as ρsq�add ¼

Aadd â
y
1â

y
2ŜðαÞj00ih00j Ŝ

yðαÞâ2â1 where we have considered α= |α|eiθ with
|α| and θ uniformly distributed in [0.1, 0.25] and [0, 2π], respectively, and
Aadd is the normalization constant. The separability of these states is not
always easy to recognize. For example, the Simon criterion does not
detect the entanglement of these states for |α| < 0.378.48,49 We have
chosen the parameter α in such a way that the prepared states have an
average occupation number close to that of the training
squeezed–thermal states.

Photon-subtracted squeezed states
The photon-subtracted squeezed states are experimentally relevant.50

These states are expressed as ρsq�sub ¼ Asub â1â2ŜðαÞj00ih00j Ŝ
yðαÞây2â

y
1

where we have considered α= |α|eiθ with |α| and θ uniformly distributed in
[0.8, 0.95] and [0, 2π], respectively, and Asub is the normalization constant.
We have chosen the parameter α in such a way that the prepared states
have an average occupation number close to that of the training states
(squeezed–thermal).

The states c0|00〉+ c1|11〉
For these states, we have considered the parameterization c0= sinθ and c1
= cosθeiϕ, and we have sampled these states uniformly on a Bloch sphere.

Bound entangled states
We considered a family of bound entangled states defined by41

ρbn ¼
1

Ab
jΨihΨj þ

X1

n¼1

X1

m>n

jΨmnihΨmnj

 !

(5)

Fig. 4 Quantitative predictions for nonlinear functions of an input quantum state. Here, we demonstrate simultaneous estimation of six
parameters. In each panel, we plot the true values versus the predicted values with reservoirs of two fermions (blue) and four fermions
(orange). The solid black line corresponds to the ideal predictions. The predicted values became more precise and accurate when the number
of fermionic sites in the reservoir is increased from 2 to 4. Panel a is for logarithmic negativity (where we retain negative values), panel b for
von Neumann entropy, and the remaining panels for trace of higher powers of the input state. The processor is trained with 200 examples of
squeezed–thermal states and the test states are also from this class
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where Ab is the normalization constant, jΨi ¼
P1

n¼1 a
njn; ni, and |Ψmn〉=

cman|n,m〉+ amc−m|m, n〉. The two parameters a and c satisfy the condition
0 < a < c < 1 to impose finite Ab. c and a/c are chosen randomly in ranges
[0.3, 0.6] and [0+, 0.1], respectively. These states are bound entangled in
the infinite dimensional continuous variable limit as well as in finite
dimensions.41 We achieve the continuous variable limit with a small a/c <
0.1 in a truncated Fock space.
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