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Abstract. We study the evolution of a two-state system that is monitored

continuously but with interactions with the detector tuned so as to avoid the Zeno

affect. The system is allowed to interact with a sequence of prepared probes. The

post-interaction probe states are measured and this leads to a stochastic evolution

of the system’s state vector, which can be described by a single angle variable. The

system’s effective evolution consists of a deterministic drift and a stochastic resetting

to a fixed state at a rate that depends on the instantaneous state vector. The detector

readout is a counting process. We obtain analytic results for the distribution of number

of detector events and the time-evolution of the probability distribution. Earlier work

on this model found transitions in the form of the steady state on increasing the

measurement rate. Here we study transitions seen in the dynamics. As a spin-off

we obtain, for a general stochastic resetting process with diffusion, drift and position

dependent jump rates, an exact and general solution for the evolution of the probability

distribution.

1. Introduction

The problem of repeated measurements on quantum systems is of great interest in the

context of monitoring and controlling its time evolution and in the context of answering

questions such as that of the time of arrival. Of particular interest is the situation

where a system is coupled to a probe and repeated measurements are performed on

the probe. An obviously interesting question is as to what these measurements on the

probe can tell us about the system. A number of recent experiments have looked at

the trajectories of quantum systems subjected to repeated measurements [1, 2, 3, 4].

General discussions of measurements and quantum trajectory theory can be found in

Refs. [5, 6, 7, 8, 9, 10, 11, 12].

A quantum system that is continuously monitored via direct measurements remains

frozen in its state. This is the well known quantum Zeno effect [13, 14, 15, 16]. The Zeno

freezing can be avoided under the scheme of indirect measurements where the system is

allowed to interact for a period τ with a probe, with an interaction strength that scales as
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τ−1/2, and then the state of the probe is measured projectively [17]. Depending upon the

result of this measurement, one obtains partial information about the state of the object

system. If this process is repeated with identically prepared probes, then the Zeno efect

is avoided and system evolves stochastically. It can be shown [5, 6, 7, 8, 9, 10, 11, 18]

that, for a two-state object system interacting with a sequence of identically prepared

probes (which are also two-state systems), the state of the object system evolves via a

stochastic Schrödinger equation with jumps. Furthermore, when the interaction strength

between the object system and the probes scales as τ−1/2, the reduced density matrix

of the system evolves via a Lindblad equation. Any given stochastic trajectory of the

wavefunction corresponds to the system’s evolution for a particular outcome of the

measurement sequence. Averaging over these outcomes corresponds to the case of blind

measurements and the entire information of the system’s evolution is contained in the

reduced density matrix.

The basis of the current work is the model described in Ref. [19]. In this work, the

authors have considered a measurement problem on a two-state system similar to the

one described in the last paragraph. The principal conclusion is that upon variation

of the relative strength λ (defined below, see Eq.(18)) of measurement, the system

exhibits transitions which mark various stages in the onset of the quantum Zeno effect.

Note that usual Zeno effect refers to the phenomena whereby a system’s dynamics gets

frozen as a result of continuous measurements on it. This Zeno effect is avoided with

the choice of interaction strength scaling as τ−1/2. But what Ref. [19] finds for their

model is that in the limit of infinite measurement strength there is again a freezing of

the dynamics. Interestingly, signatures of this freezing appear even at large but finite

mesaurement strengths, with parts of the Hilbert space becoming inaccessible — this is

referred to as Zeno effect appearing in stages.

Following [19], we model the detector readouts as a counting process and investigate

the onset of the Zeno regime in the counting statistics of the readout process. We note

that similar investigations have been carried out in [20]. However, in the model we

consider, the counting process has a stochastic intensity [21] given by the rate function αt
in Eq. (27). Our calculations reveal that for λ = 2, the mean count E[Nt] of the counting

process exhibits a topological transition as remarked in [19]. Measurement induced

entanglement transitions and topological phase transitions based on Zeno physics have

gained considerable attention, in particular we note the recent studies [22, 23, 24, 25, 26].

These transitions have been identified with presence of exceptional points [27] in

the spectrum of non-Hermitian Hamiltonian which evolves the quantum state under

continuous measurement and post-selection. In [28], the spectral approach is employed

to investigate the properties of Markov processes that are reset to a fixed state at times

picked from an exponential distribution. [29, 30] consider exceptional points of non-

Hermitian Hamiltonians as well Liouvillians governing open system dynamics.

We point out that the stochastic dynamics of our qubit can be interpreted as the

overdamped motion of a particle in a tilted periodic potential with a resetting of the

position to a particular point, at a rate that depends on the particle position. Stochastic
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resetting has been widely studied in the classical context [31, 32, 33, 34] but there are few

studies in the quantum context [35, 36, 37]. Our study provides a simple example where

stochastic resetting in a quantum system appears naturally as a result of measurements.

As our second main result, we use the renewal approach to compute the exact time-

dynamics of the probability distribution of the wavefunction.

The plan of this paper is as follows. In Sec. 2, we describe the basic setup and the

measurement protocol, discuss the emergence of the stochastic Schrödinger equation

and summarize known results from earlier work. We also discuss the Bloch sphere

representation of the qubit and the particular simplification that occurs for the system

we study. In Sec. 3 we present the calculation to obtain explicit expressions for the

generating function for the number of clicks and from it the mean number of clicks.

Sec. 4 contains the calculation for the time-evolution of the system using a renewal

approach. We then discuss a second approach based on the non perturbative formula

for the resolvent (Green’s function). In Sec. 5 we present some results on spectral

properties of the probability evolution operator and use it to write another solution for

the time evolution. We conclude in Sec. 6.

2. Basic setup and summary of earlier work

2.1. Definition of the model and dynamics

Consider a 2−level system S whose Hilbert space HS is spanned by the vectors

|ψ0〉 =

[
1

0

]
, |ψ1〉 =

[
0

1

]
. (1)

The system evolves with the Hamiltonian

HS =

[
0 γ0
γ0 0

]
= γ0σx (2)

where γ0 is a positive frequency. σx, σy, σz represent the Pauli matrices. At any instance

t, the state of S is given by the normalized vector

|ψ(t)〉 = a(t)|ψ0〉+ b(t)|ψ1〉 =

[
a(t)

b(t)

]
. (3)

At this instance, S is allowed to interact with another 2−level system D for a short time

interval τ . The Hilbert space HD is spanned by {χ0, χ1} defined similarly as in Eq. (1).

At the start of the interaction, D is assumed to be in the state χ0. The combined state

of the system S and the detector D is the uncorrelated vector

|Ψ(t)〉 = |ψ(t)〉 ⊗ |χ0〉 (4)

in the tensor product space H = HS ⊗ HD. We adopt the convention that for states

or operators in H, the first factor corresponds to S and the second factor to D in all

summands. The state Ψ(t) evolves in the interval τ by the Hamiltonian

H = HS ⊗ I +

√
γ

τ
π1 ⊗ σy, (5)
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where we note that the interaction part of the Hamiltonian is scaled as 1/
√
τ and γ is

a non-negative coupling frequency. In Eq. (5), the projector π1 = |ψ1〉〈ψ1| and I is the

identity operator. It follows that the combined state after the interval τ is given by

|Ψ(t+ τ)〉 = exp [−iτH] |Ψ(t)〉

= |ψ(t)〉 ⊗ |χ0〉+ (−iτ)
[ (
HS − i

γ

2
π1

)
|ψ(t)〉

]
⊗ |χ0〉 − i

√
γτ [π1|ψ(t)]〉 ⊗ [σy|χ0〉] +O(τ

3
2 ).

Now a projective measurement in the basis |χ0〉,|χ1〉 ‡ is performed to determine the

state of the detector. If the detector is found to be in the state |χ0〉, then the un-

normalized state |ψ̃(t+ τ)〉 of the system, up to first order in τ is given by

|ψ̃(t+ τ)〉 =
[
I − iτ

(
Hs − i

γ

2
π1

)]
|ψ(t)〉 , (6)

The probability of this event, i.e, of the readout to be χ0, up to first order in τ is given

by

p0 = 1− γτ〈ψ|π1|ψ〉 = 1− γτ |b(t)|2. (7)

If the readout is χ1, then the un-normalized state and the probability of the readout are

|ψ̃(t+ τ)〉 =
√
γτπ1|ψ(t)〉 (8)

p1 = γτ〈ψ|π1|ψ〉 = γτ |b(t)|2. (9)

This completes description of one measurement cycle. Subsequently the object system

is coupled to another detector initialized in χ0 and the process is repeated sequentially.

Every time a detector is measured to be in the state χ1 corresponds to a ’click’.

In the limit τ = dt → 0 the stochastic evolution of the normalized state is thus

given by

|ψ(t+ dt)〉 =

 |ψ(t)〉+ dt

(
−iHS −

γ

2
π1 +

1

2
αt

)
|ψ(t)〉, with prob. p0 = 1− αtdt,

|ψ1〉, with prob p1 = αtdt,

(10)

where αt ≡ γ〈ψ(t)|π1|ψ(t)〉 = γ|b(t)|2. (11)

Equivalently, we can write also the complex non linear stochastic equation

d |ψ(t)〉 =
(
−iHS −

γ

2
π1 +

αt
2

)
|ψ(t)〉 dt+

(
√
γ
π1√
αt
− I
)
|ψ(t)〉 dNt. (12)

Note that for the second outcome in Eq. (10) we should include a factor b(t)/|b(t)|.
However, rigorously, we should interpret the equation Eq. (12) (and all the others of

this articles) for the corresponding one-point projector |ψ(t)〉〈ψ(t)|. In more explicit

vectorial way

d

(
a(t)

b(t)

)
=

[(
γ
2
|b(t)|2 −iγ0
−iγ0 −γ

2
+ γ

2
|b(t)|2

)
dt+

(
−1 0

0 −1 + 1
|b(t)|

)
dNt

](
a(t)

b(t)

)
.(13)

‡ Note that the fact that the associated projectors π0, π1 are rank 1, which is natural in this

bidimensional HD, is in fact for a multidimensional HD the main hypothesis which permits to conserve

the purity of the system state and to write, as in the following, an equation for the pure state instead

of the (impure) density matrix.
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In these equations, Nt is a Poisson counting process which counts the number of

clicks in any finite interval [0, t]. For almost all realizations one may take N0 = 0. The

change dNt at the instance t be defined as the Ito-differential with the usual properties

dNt = Nt −Nt−, dNt dNt = dNt, dNt dt = 0, (14)

where Nt− = limt′→t−Nt′ (here we assume the trajectories of Nt are right continuous

with left limits) and with the expected value of the Poisson increment, conditioned upon

the fact that the state of the ket of system takes the value |ψ(t)〉, is equal to

E [dNt] = αtdt = γ|b(t)|2dt. (15)

Equations (12, 13) are sometimes called stochastic Schrödinger equations [9] or

quantum trajectory for pure state. The first appearance of this type of equation with

Poisson noise in this set-up was in [38] and in [39]. Since then, different justifications

have been given for the fact that they model quantum systems which are subject to

continuous indirect measurements. The general case of quantum trajectories is for mixed

states and includes also Gaussian white noise [8, 9, 10].

For blind measurements one considers an average over the outcomes and the density

matrix ρ(t) = 〈|ψ(t)〉〈ψ(t)|〉 evolves via

∂tρ(t) = −i[HS, ρ(t)] +
γ

2
(2π1ρ(t)π1 − {π1, ρ(t)}) . (16)

which is the form of the Lindblad equation [40, 41] with only one Krauth operator π1
which is moreover self-adjoint.

Physically, two phenomena are in competition in equations (12, 13) :

(i) Collapsing in basis |ψ0〉, |ψ1〉 thanks to continuous measurement. More precisely,

when γ0 → 0 (i.e. HS → 0), (12, 13) models the continuous measurement of π1.

As π1 is a diagonal matrix in the basis |ψ0〉, |ψ1〉, this basis is said to be of non-

demolition form with respect to the measurement [9]. This will lead at large time

to [42, 43] the collapse in the basis |ψ0〉, |ψ1〉 with the born law with respect to the

initial ket |ψ(0)〉 , i.e. :

lim
t→∞
|ψ(t)〉 =

{
|ψ0〉 with probability |〈ψ0| ψ(0)〉|2

|ψ1〉 with probability |〈ψ1| ψ(0)〉|2
. (17)

(ii) Rabi (coherent) oscillation due to unitary evolution. More precisely, when γ = 0,

then (14,15) dNt = 0 and the equation (12, 13) is the free (unitary) evolution with

Rabi Hamiltonian HS which leads to classical Rabi oscillation [44].

Note that in the general case with finite γ0 and γ, as the commutator [HS, π1] 6= 0,

the unitary evolution comes to prevent the asymptotic collapse (17). The asymptotic

behavior will then be a smooth invariant density that we will exhibit below. Note

also that the competition between continuous non demolition measurement and

thermalization (instead of free unitary evolution here) has recently been extensively

studied (see e.g Refs: [45, 46, 47]).
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2.2. No Click (deterministic) dynamics and Survival Probability : Saddle-node

bifurcation in measurement parameter

A continuous measurement of the object system corresponds to the case when τ → 0.

In this limit, the un-normalized state ψ̃(t) (Eq. (6)) evolves via a non-Hermitian

Hamiltonian when no clicks are registered. This evolution equation is

i
∂|ψ̃〉
∂t

= γ0Heff |ψ̃〉, Heff = Hs − i
γ

2γ0
π1 =

[
0 1

1 −2iλ

]
(18)

where λ = γ
4γ0

is to be regarded as a measurement parameter. The probability of no

click being registered in the interval [0, t] is [48]

S(t) = 〈ψ̃(t)|ψ̃(t)〉. (19)

Eq. (18) is solved by matrix exponentiation in Appendix A. We shown in Appendix A

that for λ = 1, Heff is not a diagonalizable operator, otherwise it is. For the initial

condition |ψ̃(0)〉 = |ψ(0)〉 = |ψ0〉, one obtains from relations Eqs(A.1,A.2) the following

expressions for survival probability for various values of the measurement parameter λ.

S(t, λ) =


e
−
γ
2
t

β2

(
sin2 (βγ0t) + sin2 (βγ0t+ φ)

)
for 0 ≤ λ < 1

e
−
γ
2
t

β′2

(
sinh2 (β′γ0t) + sinh2 (β′γ0t+ φ′)

)
for λ > 1

e−
γ
2
t
(
(γ0t)

2 + (1 + γ0t)
2
)

for λ = 1

(20)

In the above equation, one has β2 = −β′2 = 1 − λ2 , sinφ = β and sinhφ′ = β′.

Because β′ < λ, even for λ > 1 the survival probability is a decaying exponential. In all

cases [S(t, λ)]t→∞ = 0. The value λ = 1 is clearly a crossover point where the form of

the functional dependence of S(t) changes. Furthermore, for a fixed γ0 and λ 6= 1 one

has,

lim
t→∞

S(t, 1)

S(t, λ)
= 0. (21)

Thus the survival probability decays at the fastest rate for the critical value of λ = 1.

The normalized state |ψ(t)〉 follows a non linear equation when conditioned to

evolve via no clicks. Noting that |ψ(t)〉 = |ψ̃(t)〉/
√
S(t, λ), after differentiation and use

of Eq. (18), one has

i∂t|ψ〉 = γ0Heff |ψ〉 −
i

2

(
d

dt
logS(t)

)
|ψ〉.

From Eqs. (18,19) and the above, it follows that

−i
d

dt
logS(t) = γ0〈ψ|

[
H†eff −Heff

]
|ψ〉.

Combining the above two equations and Eq. (18), one has the evolution equation for

the normalized state |ψ(t)〉

i∂t|ψ〉 = γ0Heff |ψ〉+ i2λγ0|b(t)|2|ψ〉. (22)
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Figure 1. The saddle node bifurcation occurs at λ = 1 for θc = −π/2. For λ > 1, two

fixed points θ± develop.
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λ = 1/2

(a)

λ=0

λ=1/2

λ=1

λ=3/2

λ=8

1 2 3 4 5
γ0t

-π

-
π

2

π

2

π

θt(0,π)

(b)

Figure 2. No click dynamics: Figure (a) compares the oscillations of the probablity

|a(t)|2 = cos2 (θt(0, π)/2) for no measurement (λ = 0) and with measurement

(λ = 1/2). The early half of the cycle is covered faster than the later half for λ = 1/2.

(b) is the plot of θt for λ in various regimes. We chose initial condition θ0 = π but

other choices would give qualitatively the same results.

Alternatively, this equation results also directly by taking dNt = 0 in Eqs. (12, 13).

Bloch sphere representation: The pure state of a qubit can be represented by

a point on the surface of the Bloch sphere whose northpole is the state |ψ0〉 and the

southpole is |ψ1〉. It is shown in Appendix B that, for the particular choice of HS and

the starting initial conditions, |ψ(t = 0)〉 = |ψ0〉, |ψ(t = 0)〉 = |ψ1〉 or point on the yz

plane, the qubit state remains in a fixed plane for all times and we can use the following

representation:

|ψ(t)〉 =

[
cos (θt/2)

i sin (θt/2)

]
, (23)

where θ ∈ (−π, π] with π and −π are identified. Substituting this form of ψ(t) in Eq(22)

gives the evolution equation for θt under no click dynamics

θ̇ = Ω(θ) = −2γ0 [1 + λ sin θ] . (24)
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This corresponds to the overdamped dynamics of a particle in a periodic tilted potential.

For λ < 1 there are no fixed points and the particle keeps going round. At λ = 1, there

is a saddle-node bifurcation (Figure 1) and two fixed points develop, one of which is

stable (θ+) and the other unstable (θ−) and given by:

θ+ = − sin−1(1/λ), θ− = −π − θ+. (25)

All this is confirmed by explicit integration of the above, see Appendix C. In the

following, we use the flow notation θt(s, θ
′) to indicate the solution θt of the no-click

dynamics dθt = Ω(θt) dt such that at the instance s, θs = θ′. For 0 < λ < 1, the

probability |a(t)|2 = cos2 (θt(0, π)/2) shows oscillations similar to Rabi oscillations,

which happen for λ = 0. The frequency of these oscillations is proportional to β,

whose form is given in Eq. (C.1). Figure 2(a) compares the cases λ = 0 and λ = 1/2.

Figure 2(b) shows the evolution of θt(0, π) obtained from the integration of Eq. (24) for

various values of λ. We observe that the oscillatory behaviour stops exactly at λ = 1

and increasing values of λ � 1 (collapsing regime of the previous section) cause rapid

decay to θ+ ≈ 0 which is consistent with the collapse Eq. (17) but conditioned on no

click.

2.3. Stochastic dynamics

The continuous evolution of θ in accordance with Eq. (24) is interrupted whenever a

click occurs. In accordance with Eq. (8), the system collapses to ψ1 and hence the value

of θ jumps to π (we note that the azimuthal angle as defined in Appendix B is undefined

for this state).

The full dynamics of θt consists of continuous evolution with occasional reset to

θ = π whenever there is a click. This stochastic dynamics is described by

dθt = Ω (θt) dt+
(
π − θt−

)
dNt, (26)

where the rate function αt of Nt depends on θt in accordance with (15)

E [dNt] = α(θt) dt = γ sin2 θt
2
dt. (27)

Equivalently, we can write the dynamics in Eq. 26 as

θt+dt =

{
θt + Ω(θt) dt with prob. 1− α(θt)dt

π with prob. α(θt)dt
. (28)

In Fig. (3) we show typical stochastic trajectories obtained by evolving with this

equation for different values of the strength, λ, of the resetting rate.

Let P (θ, t) represent the probability density for θ at time t. It satisfies the following

master equation [19]

∂P (θ, t)

∂t
= − ∂

∂θ
[Ω(θ)P (θ, t)]−γ sin2

(
θ

2

)
P (θ, t)+γδ(θ−π)

∫ 2π

0

sin2

(
θ′

2

)
P (θ′, t) dθ′. (29)

The steady state solution of the above equation and some properties of the linear

evolution operator were obtained in Ref. [19]. It was noted that the onset of



Quantum resetting in continuous measurement induced dynamics of a qubit 9

-2
-1
0
1
2
3

θ t

λ=0.5

-1
0
1
2
3

θ t λ=1.0

0
1
2
3
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λ=1.5
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t

0

1
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3

θ t

λ=4.0

Figure 3. Typical realizations of stochastic trajectories, θt, obtained by solving

Eq. (28) for the intial condition θ0 = 0 and four different values of λ. We can see

deterministic drifts and the stochastic resets to θ = π. For trajectories starting from

θ0 = 0, the whole interval [−π, π] is accessible for λ = 1/2, while for λ = 3/2 (more

generally for all λ ≥ 1), only the interval [θ+, π] is accessible. For the definition of θ+,

see Eq. (25).

Zeno dynamics occurs in several stages which are marked by specific values of the

measurement parameter λ ∈ {1, 2√
3
, 2}. In Eq. (21), one already notices that the

transition value λ = 1 makes itself apparent in the rate of decay of the survival

probability. In the following, we wish to investigate how these values of λ appear in

the counting statistics of the process Nt. We also provide a complete solution of the

time-evolution of P (θ, t) and a more detailed characterization of the spectrum.

3. Counting Statistics

A stochastic process is in general described in terms of its finite dimensional probability

densities. Given an initial state ψ(0) of the object system, for the counting process Nt
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these densities (exclusive probability densities, EPD) are [49, 50]

P t
0[0|||ψ(0)〉], pt0[t1, . . . , tn|||ψ(0)〉]. (30)

P t
0[0|||ψ(0)〉] is the probability of obtaining no clicks in the interval (0, t].

pt0 [t1, . . . , tn|||ψ(0)〉] is the probability density (in times t1, . . . , tn) of exactly n counts

at instances 0 < t1 < . . . < tn ≤ t where n ranges over positive integers.

One has for the non-autonomous counting process Nt [51]

P t
0[0||ψ(0)] = exp

[
−
∫ t

0

α(θs(0, θ0)) ds
]
. (31)

For the 2−state system under consideration, |ψ(0)〉 = |ψ0〉 which corresponds to θ0 = 0

and P t
0[0|||ψ(0)〉] is then nothing but the survival probability in Eq. (20).

From Eqs. (24, 27) we obtain∫ t

0

α(θs(0, θ0)) ds =
γt

2
+ log

∣∣∣∣1 + λ sin θt(0, θ0)

1 + λ sin θ0

∣∣∣∣ . (32)

The survival probability can now be compactly written in the form

P t
0[0||θ0] =

Ω(θ0)

Ω(θt(0, θ0))
e−

γt
2 . (33)

Using results from Appendix C and Eq. (33), one recovers, in the case θ0 = 0, all the

expressions in Eq. (20).

Now consider the probability density in time pt0[t1||θ0 = 0] of exactly one click at

the instance t1 ∈ (0, t]. For this, there should be no click in (0, t1], a click in the interval

(t1, t1 + ∆t1] and no click from (t1 + ∆t1, t]. Then, in the limit ∆t→ 0 one has

pt0[t1||θ0 = 0] = e−
γt
2

Ω(0)

Ω(θt1−(0, 0))
× α(θt1−(0, 0))× Ω(π)

Ω(θt(t1, π))
. (34)

Since θ0 = 0 in all further considerations, denote densities such as pt0[t1||θ0 = 0] simply

as pt0[t1] etc. For all n ≥ 1, the densities pt0[t1, . . . , tn] can be obtained in a similar

manner. For different values of λ, one may note the form of pt0[t1, . . . , tn]

pt0[t1, . . . , tn] =



e
−
γt
2

β2

(
γ
β2

)n
sin2 (βγ0 ∆t0)

∏n
k=1 sin2 (βγ0 ∆tk − φ)

sin2(θt(tn, π)/2)
0 ≤ λ < 1

e
−
γt
2

β′2

(
γ
β′2

)n
sinh2 (β′γ0 ∆t0)

∏n
k=1 sinh2 (βγ0 ∆tk − φ′)

sin2(θt(tn, π)/2)
λ > 1

e−
γt
2 γn(γ0 ∆t0)

2

∏n
k=1(1− γ0 ∆tk)

2

sin2(θt(tn, π)/2)
λ = 1

(35)

In the above equation, we have ∆tk = tk+1−tk with t0 = 0 and tn+1 = t. The expressions

for sin2(θt(tn, π)/2) in the respective cases can be obtained from Eqs. (C.2, C.6, C.4).

The probability of registering exactly n counts in the interval (0, t] is given by

P t
0[n] =

∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1 p
t
0[t1, . . . , tn]. (36)
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Eq. (36) allows for writing the moment generating function of Nt. Explicitly

E[e−sNt ] =
∑
n≥0

e−nsP t
0[n]. (37)

In Appendix D, it is shown that the Laplace transform with respect to time t of

the moment generating function is

(LE[e−sNt ])(σ, s) =
µ2 − γ

2
µ+ 4γ20

µ (µ2 + 4β2γ20)− γe−s
(
µ2 − γ

2
µ+ 2γ20

) , (38)

where µ = σ+ γ/2. The denominator in the above is a third order polynomial in σ and

has in general three (possibly complex) zeros σ1, σ2, σ3 which depend on s, γ, γ0. When

these are distinct, then the moment generating function has the form

E[e−sNt ] =
f(σ1)e

σ1t

(σ1 − σ2)(σ1 − σ3)
+

f(σ2)e
σ2t

(σ2 − σ3)(σ2 − σ1)
+

f(σ3)e
σ3t

(σ3 − σ1)(σ3 − σ2)
, (39)

where f(σi) is the numerator in Eq. (38) evaluated at the zero σi. In order to study the

zeros, notice that the denominator factors when s = 0 as

(µ− 2λγ0)(µ
2 − 2λγ0µ+ 4γ20). (40)

The zeros of the denominator in Eq. (38) evaluated at s = 0 are therefore

σ1(0) = 0, σ2(0) = γ0

[
−λ+

√
λ2 − 4

]
, σ3(0) = γ0

[
−λ−

√
λ2 − 4

]
.(41)

The zeros are all real for λ > 2. For λ < 2, σ2(0) and σ3(0) are complex conjugate while

for λ = 2, there is a double root. When the expression in (40) is differentiated w.r.t. s

and equated to 0, then the following are obtained

dσ1
ds

∣∣∣
s=0

= −γ
2
,
dσ2
ds

∣∣∣
s=0

=
λ√

λ2 − 4
σ3(0),

dσ3
ds

∣∣∣
s=0

= − λ√
λ2 − 4

σ2(0).(42)

For E[Nt] one has

E[Nt] = − d

ds
E[e−sNt ]

∣∣∣
s=0

. (43)

A calculation using Eqs. (39, 41, 42 43) then gives

E[Nt] =


2λγ0t+ λ2

[
−1 + e−λγ0t

sin(ωt+ ϕ)

sinϕ

]
0 ≤ λ < 2,

2λγ0t+ λ2
[
−1 + e−λγ0t

sinh(ω′t+ ϕ′)

sinhϕ′

]
λ > 2,

4
(
−1 + γ0t+ e−2γ0t(1 + γ0t)

)
λ = 2,

(44)

where ω2 = −ω′2 = γ20 (4− λ2), tanϕ = λ
√
4−λ2

λ2−2 and tanhϕ′ = λ
√
λ2−4

λ2−2 . Here again

one notices that λ = 2 is a crossover point where the form of functional dependence

of E[Nt] changes. Furthermore, for the value of λ =
√

2, the oscillatory function

sin(ωt + ϕ)/ sin(ϕ) is of minimum amplitude. In [19], it has been pointed that there

exists a transition for λ = 2/
√

3 characterised by a divergence in the steady state
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probability density P∞(θ)(= limt→∞ P (θ, t)). Moreover, the mean value of the transition

rate α given by

αt =
d

dt
E[Nt] = γ

[
1

2
− γ0
ω

e−λγ0t
(

eiωt

ω/γ0 + iλ
+

e−iωt

ω/γ0 − iλ

)]
(45)

has the signature of λ = 2 transition only.

It is important to note the limiting behaviour of expressions for S(t, λ) in Eq. (20)

and E[Nt] in Eq. (44). As defined, λ = γ
4γ0

and two possible ways for λ → ∞ are that

γ0 → 0 for fixed γ, and that γ →∞ for fixed γ0. In either case, it is easy to see that

lim
λ→∞

S(t, λ) = 1. (46)

As expected in the Zeno effect, for most trajectories the experimenter would detect no

clicks in a finite time under strong measurement. For E[Nt], the behaviour is quite

different, as we see in the following limits.

lim
λ→∞
γ fixed

E[Nt] = 0, lim
λ→∞
γ0 fixed

E[Nt] = 2γ20t
2. (47)

The second limit above is the more interesting one. For large γ (with γ0 fixed), the

transition rate α (Eq.27) is of the order γ for θ ≈ π. Immediately after the first click,

θ = π and with a high click rate, the experimenter is likely to observe a large number

of subsequent clicks. This is also evident in the numerical simulation as can be seen

in the last panel in Fig. (3). Thus for large γ, durations of no clicks (darkeness) are

punctuated by durations of a rapid increase in the number of clicks (brightness)[52]. In

the limit of large γ, the second limit in Eq. (47) is achievable despite Eq. (46). This

can be related to the phenomenon studied in the context of spiking and collapse in the

large noise limit of stochastic differential equations driven by Wiener processes [53]. We

contend that the spikes have signature in the noise statistics of the Poisson signal in the

model we consider.

4. Exact time-dependent solution for P (θ, t)

4.1. Formal solution from renewal approach

For the resetting process, one could write a solution to Eq. (29) directly with the aid of

the EPDs mentioned in (30). A given value of θ can be attained at time t after no reset,

after exactly 1 reset, after exactly 2 resets and so on. These are all mutually exclusive

events. Summing their contributions, one has

P (θ, t) = P t
0[0]δ(θ − θt(0, 0)) +

∑
n≥1

∫ t

0

. . .

∫ t2

0

pt0[t1, . . . , tn]δ(θ − θt(0, 0))
n∏
k=1

dtk.

In the nth summand, suppose the last reset occurred at tn = t − τ . Then from the
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property in Eq. (34), one has

pt0[t1, . . . , tn]δ(θ − θt(0, 0)) = pt−τ0 [t1, . . . , tn−1] γ sin2
(
θ(t−τ)−(0,0)

2

)
P t
t−τ [0||π] δ(θ − θt(t− τ, π))

= pt−τ0 [t1, . . . , tn−1] γ sin2
(
θ(t−τ)−(0,0)

2

)
︸ ︷︷ ︸

αt−τ

P τ
0 [0||π] δ(θ − θτ (0, π)). (48)

After substitution, one arrives at the formal solution which is in the form of a renewal

equation §:

P (θ, t) = P t
0[0]δ(θ − θt(0, 0)) +

∫ t

0

αt−τP
τ
0 [0||π] δ(θ − θτ (0, π)) dτ, (49)

where αt−τ is the mean transition rate that has already been obtained in Eq. (45).

Alternatively, with the definition

αt =

∫ 2π

0

γ sin2

(
θ

2

)
P (θ, t) dθ, (50)

when Eq. (49) is multiplied throughout by sin2 θ/2, integrated w.r.t. θ and the Laplace

transform is taken, one obtains

[Lα](σ) =
γ

β2

ĝ0
1− γ

β2 ĝφ
. (51)

in the notation of Eq. (D.2). Upon inversion, we recover Eq. (45). One can now obtain

the explicit form for P (θ, t) from Eqs. (45,49) in the various regimes of λ.

4.2. Steady state

The evaluation of the steady state density P∞(θ) = limt→∞ P (θ, t) is particularly simple.

Since the time-dependent part of αt as well as the P t
0[0]δ(θ − θt(0, 0)) contribution to

P (θ, t) are exponentially suppressed, one has

P∞(θ) =
γ

2

∫ ∞
0

P τ
0 [0||π] δ(θ − θτ (0, π)) dτ. (52)

Consider the case λ < 1. For θ0 = π, the no-click evolution happens via

tan
θτ (0, π)

2
= −sin(βγ0τ − φ)

sin(βγ0τ)
, P τ

0 [0||π] =
e−

γτ
2

1 + λ sin θτ (0, π)
. (53)

The same value of θτ (0, π) = θ modulo 2π can be attained at the times {τn}n≥0 where

τn = τ0 + nπ
βγ0

. The value of τ0 can be worked out to be

γτ0(θ)

2
=

2λ√
1− λ2

[π
2
− tan−1

(
λ+ tan θ

2√
1− λ2

)]
.

§ We note that these type of renewal equations have been discussed in the context of stochastic resetting

in Refs. [33, 54]
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In this case one also has

δ(θ − θτ (0, π)) =
∑
n≥0

δ(τ − τn)

|Ω(θτn(0, π))|
=

1

2γ0(1 + λ sin θ)

∑
n≥0

δ(τ − τn).

Integrating Eq. (52) with the above information one obtains for measurement parameter

λ < 1

P∞(θ) =
λ

(1 + λ sin θ)2
e−

γτ0
2

1− e
− 2πλ√

1−λ2
. (54)

The case λ ≥ 1, can be handled similarly. The main difference from λ < 1 case is that

there exists only 1 instance τ0 when a given value θ can be attained as long as θ does

not lie in the no-go region. For λ = 1, one has

γτ0(θ)

2
=

2

1 + tan θ
2

, P∞(θ) =
e−

γτ0
2

(1 + sin θ)2
1(−π

2
,π](θ). (55)

For λ > 1, one has

e−
γτ0(θ)

2 =

(
tan θ

2
− tan θ+

2

tan θ
2
− tan θ−

2

) λ√
λ2−1

, tan
θ±
2

= −λ±
√
λ2 − 1.

P∞(θ) =
λe−

γτ0
2

(1 + λ sin θ)2
1(θ+,π](θ).

(56)

The results contained in Eqs. (54,55,56) agree with those obtained in Ref. [19] by directly

finding the steady state solution of Eq. (29). With the resetting approach and through

use of the renewal equation, we are now able to obtain the explicit time dependence of

P (θ, t) in all cases. We remark that in the Zeno limit of strong measurement λ � 1

(coming from γ finite and γ0 → 0), θ+ → 0 and we expect the steady state to converge

towards a singular density concentrated near 0 and π.

4.3. Time evolution

The following equations note the result of integration of Eq. (49) for finite time. The

integration can be carried out by use of Eqs. (33,45) and the flow equations in Appendix

C for the respective cases of λ.

For λ < 1, the formula is somewhat complicated because the indicator function

1(θt(0,π),π] has to wrap properly with the number of possible visits to θ in time t starting

from θ0 = π. For γ0t ≤ π/β, there is only one possible visit and the expression is

simpler. We give this expression:

P (θ, t) = P t
0[0]δ(θ − θt(0, 0)) +

λe−
γτ0
2

(1 + λ sin θ)2
1(θt(0,π),π](θ)

− 4λ√
4− λ2

1(θt(0,π),π](θ)

(1 + λ sin θ)2
Re

[
e(−λ+i

√
4−λ2)γ0t e

−(λ+i
√
4−λ2)γ0τ0

ω/γ0 + iλ

]
.

(57)
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Figure 4. Time evolution of P (θ, t)

is shown for (a) for λ = 1/2, (b) for

λ = 1 and (c) for λ = 3/2. The

black solid lines are from the analytic

solution from Eq. (57) in (a), Eq. (58)

in (b) and Eq. 59 in (c). The points

were generated from simulations of 105

trajectories. The dashed black lines

are the analytic results for the steady

state P∞(θ) from Eqs. (54,55,56). The

spikes correspond to the δ function

propagating with the no-click dynamics

and the height of the peaks equals the

probability mass on the δ function.

For λ = 1, we get for all times t > 0:

P (θ, t) = P t
0[0]δ(θ − θt(0, 0))

+

[
1− 2e−γ0(t−τ0)√

3
sin
(√

3γ0(t− τ0) +
π

3

)] e−
γτ0
2

(1 + sin θ)2
1(θt(0,π),π](θ),

(58)

while for λ > 1, we get (for all times t > 0):

P (θ, t) = P t
0[0]δ(θ − θt(0, 0))

+

[
1− 2e−λγ0(t−τ0)√

4− λ2
sin

(
ω(t− τ0) + arctan

√
4

λ2
− 1

)]
λe−

γτ0
2

(1 + λ sin θ)2
1(θt(0,π),π](θ).

(59)

The three graphs in Figure 4 show good agreement between simulation and the analytic

forms in Eqs. (57,58 & 59).

4.4. General formulation and explicit time Laplace transform solution for the

transition probability

We consider here a more general set-up where the transition probability Pt(θ|θ′), that

the process pass from θ′ at time 0 to θ at time t, solves the Kolomogorov equation

∂tPt(θ|θ′) = L (θ)Pt(θ|θ′)− γ(θ)Pt(θ|θ′) + µ(θ)

(∫ 2π

0

dθ′′γ(θ′′)Pt(θ
′′|θ′)

)
.
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(60)

Here, L (θ) is a second (resp. first) order differential operator in θ, markov generator,

coming from a diffusion (resp. deterministic) process and we are considering that

resetting is not to a particular point but to a point θ chosen from the probability

distribution µ(θ) and the positive function γ(θ) is the jump rate for escape from state

θ. The associated master equation for the probability density P (θ, t) is then

∂tP (θ, t) = L (θ)P (θ, t)− γ(θ)P (θ, t) + µ(θ)

(∫ 2π

0

dθ′′γ(θ′′)P (θ′′, t)

)
. (61)

Let us define the operators

L0 [f ] (θ) ≡ L (θ) [f ] (θ)− 〈µ, 1〉 γ(θ)f(θ), (62)

L1 [f ] (θ) ≡ µ(θ) 〈γ, f〉 , (63)

for any function f on [0, 2π] and where have used the following inner product definition:

〈f, g〉 =

∫ 2π

0

dθf(θ)g(θ).

The master equation (29), and more generally the set-up of the previous section, is a

particular case of this general theory when L (θ) [f ] = −∂θ[Ω (θ) f(θ)], γ (θ) = γ sin2
(
θ
2

)
and µ (θ) = δ (θ − π) . With these definitions, we have the formal solution of the

Kolmogorov equation Pt = exp (t (L0 + L1)) and the time Laplace transform is the

resolvent

(LPt) (s) ≡
∫ ∞
0

dt exp (−st) exp (t (L0 + L1)) = (s− L0 − L1)
−1 (64)

= (s− L0)
−1 + (s− L0)

−1 L1 (s− L0 − L1)
−1 . (65)

We thus find the auto-consistency relation

(LPt) (s) =
(
LP

(0)
t

)
(s) +

(
LP

(0)
t

)
(s)L1 (LPt) (s),

where P
(0)
t = exp (tL0). By plugging in this relation the expression for L1 (63) we obtain

(LPt) (s)(θ|θ′) =
(
LP

(0)
t

)
(s)(θ|θ′) +

〈(
LP

(0)
t

)
(s) (θ|.) , µ(.)

〉
〈γ(.), (LPt) (s)(.|θ′)〉 ,

(66)

where . indicates the inner product integration variable. Multiplying with γ(θ) and

integrating over θ solves for the unknown last term in the above equation

〈γ(.), (LPt) (s)(.|θ′)〉 =
〈γ(.), (LP 0

t ) (s)(.|θ′)〉

1−
〈
γ(..),

〈(
LP

(0)
t

)
(s) (..|.) , µ(.)

〉〉 . (67)

Equations (68) and (67) provide a complete solution of the time evolution in the Laplace

domain. We have finally the exact relation

(LPt) (s)(θ|θ′) =
(
LP

(0)
t

)
(s)(θ|θ′) +

〈(
LP

(0)
t

)
(s) (θ|.) , µ(.)

〉
〈γ(.), (LP 0

t ) (s)(.|θ′)〉

1−
〈
γ(..),

〈(
LP

(0)
t

)
(s) (..|.) , µ(.)

〉〉 ,

(68)
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which expresses (LPt) (s) in terms of
(
LP

(0)
t

)
(s). So, in the case where the second is

explicit, so is the first. It is instructive to write this equation in the time domain. To

this end, we denote by γ̄(t) the inverse Laplace transform of the l.h.s of Eq. 67, which

is simply

γ̄t(θ
′) =

∫ 2π

0

dθ′′ γ(θ′′)Pt(θ
′′|θ′), (69)

which is just the average of transition rate γ(θt) conditioned by the initial condition

θ0 = θ′. Then Eq. 68 in the time domain is given by

Pt(θ|θ′) = P 0
t (θ|θ′) +

∫ t

0

dτ〈P 0
τ (θ|.), µ(.)〉γ̄t−τ (θ′), (70)

which we see has the same structure as the renewal equation in Eq. (49). The Eq. (67)

gives the Laplace transform of γ̄t, and is then Eq. (51), and for our specific example

we were able to compute γ̄t ≡ ᾱt explicitly (from the inverse Laplace and also using a

renewal approach). In general, we would have an explicit solution for Pt from Eq. (68),

provided we are able to evaluate γ̄t explicitly from Eq. (67).

5. Spectral Analysis

The Fokker-Planck operator corresponding to Eq. (29) has interesting spectral properties

which were pointed out in [19]. We wish to extend those studies and in particular, for

the case 0 < λ ≤ 1, we report some new results and some subtle features. One seeks

solutions to Eq. (29) in the form P (θ, t) = exp(2γ0 ν t) fν(θ). This leads to the following

eigenvalue problem for the operator L:

Lfν = (1+λ sin θ)∂θfν+λ (2 cos θ − 1) fν+2λδ(θ−π)

∫ 2π

0

sin2(θ′/2)fν(θ
′) dθ′ = ν fν . (71)

Noting that π and−π are identified, we integrate the above equation over a small interval

across π. Assuming that fν(θ) has no divergence at π this then gives a discontinuity of

fν across π and we are led to the following equivalent set of equations:

Lfν = (1 + λ sin θ)∂θfν + λ (2 cos θ − 1) fν = ν fν , (72)

fν(π − 0)− fν(π + 0) = 2λ

∫ π

−π
sin2 (θ/2) fν(θ) dθ. (73)

We also define an operator L0 which satisfies Eq. (72) but with boundary conditions

satisfying f(π − 0) = f(π + 0). The adjoint operator L†0 acts on square integrable

functions g(θ) as

L†0g = − (1 + λ sin θ) ∂θg − 2λ sin2 (θ/2) g, g(π − 0) = g(π + 0). (74)

Since L0L†0 6= L
†
0L0, L0 is not a normal operator and it’s eigenfunctions do not form an

orthonormal basis for the Hilbert space L2[−π, π]. The same holds for the operator pair

L, L†. Because of the integral boundary condition in Eq. (73), one has

L†h = − (1 + λ sin θ) ∂θh−2λ sin2 (θ/2) (h−h(π)), h(π−0) = h(π+0). (75)

We see below that the eigenfunctions of L0 and L†0 together form a bi-orthonormal basis.
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5.1. Measurement parameter 0 ≤ λ < 1

If f̄ν is an eigenfunction of L0 with eigenvalue ν then it is easily seen that

f̄ν(θ) =
Cν

(1 + λ sin θ)2
exp

[
ν + λ√
1− λ2

ϕ(θ, λ)

]
, ϕ(θ, λ) = 2 arctan

(
λ+ tan θ

2√
1− λ2

)
, (76)

where Cν is a normalization constant chosen so that
∫ π
−π f̄ν(θ), dθ = 1. The value

of ϕ(θ, λ) are defined at the boundary by ϕ(±π, λ) = limθ→±π∓ ϕ(θ, λ) = ±π. On

imposing the boundary condition f̄νm(π) = f̄νm(−π+), the eigenvalues are obtained to

be νm = −λ+ im
√

1− λ2 where m ranges over the set of integers. Similar calculations

for the operator L†0 gives its spectrum. The following equation gives a complete bi-

orthonormal system, of eigenfunctions and eigenvalues, for the pair L0, L†0 with the

property 〈gνm , f̄νn〉 = δmn.

f̄νm(θ) =
(

1−λ2
4π2

)1
4 exp[imϕ(θ, λ)]

(1 + λ sin θ)2
, νm = −λ+ im

√
1− λ2,m ∈ Z for L0,

gνm =
(

1−λ2
4π2

)1
4

(1 + λ sin θ) exp[imϕ(θ, λ)], ν−m = −λ− im
√

1− λ2,m ∈ Z for L†0.

(77)

One can write a canonical expansion for any function f ∈ L2[−π, π] in terms of the

basis fνm .

f =
∑
m∈Z

αm fνm , αm = 〈gµm , f〉 =

∫ π

−π
g∗µmf dθ. (78)

For the eigenvalue problem in Eq. (72), the functions in Eq. (76) still satisfy the

formal equation but the boundary condition in Eq. (73) leads to the condition

ν(ν2 + λν + 1)

(ν + λ)(ν2 + 2νλ+ 1)
sinh

[ ν + λ√
1− λ2

π
]

= 0. (79)

From above, we infer that the eigenvalues of L are {0, ν+, ν−, νm} for m ∈ Z \ {−1, 0, 1}
where

ν± = [−λ± i
√

4− λ2]/2. (80)

The sinh function vanishes for ν = νm, ∀m ∈ Z, however the denominator itself is

(ν − ν0)(ν − ν1)(ν − ν−1). The limiting value of the ratio for these three choices of

ν is non-zero and therfore L does not have ν0, ν−1 and ν1 as eigenvalues. When the

eigenvalue problem for adjoint L† in Eq. (75) is solved, one obtains the same contraint

in Eq. (79). Thus the operators L and L† have the same set of eigenvalues just like the

operators L0 and L†0. We further note that the integral boundary condition in Eq. (73)

displaces only three eigenvalues in spectrum of the L0, L†0 system — i.e fνm = f̄νm
for m 6= 0,±1, while for these three eigenvalues {0, ν+, ν−} we obtain three different

eigenstates:

f0(θ) =
λ

2 sinh
[

π(λ)√
1−λ2

] exp
[

λ√
1−λ2ϕ(θ, λ)

]
(1 + λ sin θ)2

, fν±(θ) =
ν∓

2 sinh
[

πν∓√
1−λ2

] exp
[
− ν∓√

1−λ2ϕ(θ, λ)
]

(1 + λ sin θ)2
. (81)
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We note that the ν = 0 eigenvector f0(θ) corresponds to the steady state solution P∞(θ).

For the eigenvalue problem in Eq.(75), with the convention L†hν∗ = νhν∗ , where ν∗

denotes the complex conjugation, the differential equation can be rewritten as

∂

∂θ

[
hν∗(θ)− hν∗(π)

1 + λ sin θ
exp

[
λ+ ν√
1− λ2

ϕ(θ, λ)

]]
= − ν hν∗(π)

(1 + λ sin θ)2
exp

[
λ+ ν√
1− λ2

ϕ(θ, λ)

]
.

Integrating the above from π to θ, one obtains, after changing the integration variable

on the r.h.s θ → ϕ

hν∗(θ)− hν∗(π)

1 + λ sin θ
exp

[
λ+ ν√
1− λ2

ϕ(θ, λ)

]
= (82)

− νhν∗(π)

(1− λ2)3/2

∫ ϕ(θ)

π

dϕ exp

[
λ+ ν√
1− λ2

ϕ

](
1− λ

2
ν−1e

iϕ − λ

2
ν1e
−iϕ
)
.

After performing the integration and applying the boundary condition in Eq. (75), we

obtain the eigenfunctions {h0, hν+ , hν− , hνm} (m ∈ Z \ {−1, 0, 1}) for L†. They are

indexed such that L†hν = ν∗hν . The bi-orthonormality condition 〈ha, fb〉 = δab can be

verified from their explicit form:

h0 = 1, hν±(θ) = ∓i
λ[ cos θ − ν∓ sin θ]√

4− λ2
,

hνm(θ) = gνm(θ) +
(−1)mλ2

B−m

∑
k∈{−1,0,1}

m(m2 − 1)

(m− k)(k2 + 1)

gµk(θ)

Bk

,
(83)

where gµm is defined in Eq. (77). The coefficients B appearing in the above expressions

are

Bm = νm(νm − ν−)(νm − ν+).

In this bi-orthonormal system, one can now expand

δ(θ) = f0 + hν−(0) fν+ + hν+(0) fν− +
∑

m∈Z\{−1,0,1}

hν−m(0) fνm .

In the original problem Eq. (29), P (θ, 0) = δ(θ). Then the time development of P (θ, t)

is given by

P (θ, t) = f0(θ) + i
λ e2ν+γ0 t√

4− λ2
fν+(θ)− i

λ e2ν−γ0 t√
4− λ2

fν−(θ) +

(
1− λ2

4π2

) 1
4 ∑
m∈Z\{−1,0,1}

(−1)mλ

Bm

fνm(θ)e2νmγ0 t

+

(
1− λ2

4π2

) 1
2 e−2λγ0 t

(1 + λ sin θ)2

∑
m∈Z\{−1,0,1}

exp
[
imΦ(θ, λ, t)

]
, (84)

where Φ(θ, λ, t) = ϕ(θ, λ)− ϕ(0, λ) + 2γ0 t
√

1− λ2. We note that the first series in the

rhs is convergent as Bm ∼ m3. We write the last summation in the above equation as

2πδ[Φ(θ, λ, t)]−
∑

m∈{−1,0,1} exp
[
imΦ(θ, λ, t)

]
. Then using the fact that Φ(θ, λ, t) = 0
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solves for θt(0, 0) (Eq. (C.1)), we obtain δ[Φ(θ, λ, t)] = δ(θ − θt(0, 0))/|Φ′(θ, λ, t)|. In

conjunction with Eq. (33), after some simplifications, we finally get

P (θ, t) = P t
0[0]δ(θ − θt(0, 0)) + Pf(θ, t), where

Pf(θ, t) = P∞(θ) + i
λ e2ν+γ0 t√

4− λ2
fν+(θ)− i

λ e2ν−γ0 t√
4− λ2

fν−(θ) +

(
1− λ2

4π2

) 1
4 ∑
m∈Z\{−1,0,1}

(−1)mλ

Bm

fνm(θ)e2νmγ0 t

−
(

1− λ2

4π2

) 1
2 e−2λγ0 t

(1 + λ sin θ)2
sin [3Φ(θ, λ, t)/2]

sin [Φ(θ, λ, t)/2]
.

(85)

Here Pf represents the finite part of the density which was also obtained in Eq. (57).

We have numerically verified the agreement between Eq. (85) and Eq. (57). In Pf(θ, t),

the smallest decay rate is for the terms corresponding to fν+ and fν− . Therefore the

approach to P∞(θ) (the steady state) happens as

i
λ e2ν+γ0 t√

4− λ2
fν+(θ)−i

λ e2ν−γ0 t√
4− λ2

fν−(θ) = i
λe−λγ0 t√

4− λ2
(
fν+(θ)eiγ0 t

√
4−λ2 − fν−(θ)e−iγ0 t

√
4−λ2

)
, (86)

which has the form of a damped oscillator of natural frequency 2γ0. Note that the

spectral solution for P (θ, t) provides an easier result for the long time form than that

obtained from the renewal solution.

5.2. Measurement parameter λ = 1

For the operators L0 and L†0 defined in Eq. (74), the corresponding eigenfunctions and

eigenvalues are ‖

fνk =
1√
2π

exp

[
ik −2

1+tan
θ
2

]
(1 + sin θ)2

, νk = −1 + ik, k ∈ R for L0,

gµk =
1√
2π

(1 + sin θ) exp

[
ik

−2

1 + tan θ
2

]
, µk = −1− ik, k ∈ R for L†0.

(87)

One notices that the eigenvalues are no more discrete and therefore the bi-orthonormality

condition becomes 〈gµk , fνk′ 〉 = δ(k − k′) , which is easily verified. While the functions

fνk satisfy the condition fνk(−π) = fνk(π), they do not belong to L2[−π, π]. With the

substitution x = −2/(1 + tan θ
2
), one has∫ π

−π
2 sin2 θ

2
fνk dθ =

1

2
√

2π

∫ ∞
−∞

(x+ 2)2 eikx dx = 2
√

2π [δ(k)− iδ′(k)− δ′′(k)/4] . (88)

We shall develop the solution P (θ, t) in the complete system of Eqs.(87). For θ0 6= −π/2,

consider the integral∫ ∞
−∞

gµk(θ0)
∗ fνk(θ) dk =

1 + sin θ0
(1 + sin θ)2

1

2π

∫ ∞
−∞

exp

[
ik

(
2

1 + tan θ0
2

− 2

1 + tan θ
2

)]
dk

‖ We note that fνk in Eq. (87) satisfies the condition fνk(π) = fνk(−π+) for any complex k. Our

choice of νk for k ∈ R is based on the fact that this set is the limit of the set {νm}m∈Z (see Eq. (77))

as λ→ 1−.
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=

(
1 + sin θ0
1 + sin θ

)2

δ(θ − θ0).

Since the factor of δ(θ − θ0) is continuous at θ0, one has the following representations

δ(θ) =
1√
2π

∫ ∞
−∞

ei2k fνk dk, δ(θ − π) =
1√
2π

∫ ∞
−∞

fνk dk. (89)

The general function P (θ, t) can be expanded in the bi-orthonormal system of Eq. (87)

as

P (θ, t) =

∫ ∞
−∞

ck(t) e2νkγ0t fνk dk, (90)

where the time development of ck can be ascertained after substituting the above in

Eq. (29). Doing so, using the Eqs.(88,89) and the fact that L0fνk = νkfνk , one has

ċk = ċ0 e−i k2γ0t, ċ0 = 4γ0

[(
(1− γ0t) +

i

2

∂

∂k

)2

ck

]
k=0

, ck(0) =
e2ik√

2π
. (91)

This is a self consistent system which can be readily solved using Laplace transform.

We note the explicit solution

ck(t) =
1√
2π

[
ei2k + i

exp[−i2γ0t(k + i)]− 1

k + i
+
ν−√

3

exp[−i2γ0t(k − iν−)]− 1

k − iν−

− ν+√
3

exp[−i2γ0t(k − iν+)]− 1

k − iν+

]
, (92)

where ν± are as defined in Eq. (80) for λ = 1. Substituting for ck in Eq. (90) and

carrying out contour integration, P (θ, t) is obtained in the form of Eq. (58).

The point spectrum of L consists of the eigenvalues {0, ν+, ν−} with eigenfunctions

f0(θ) =
exp

[
− 2

1+tan(θ/2)

]
(1 + sin θ)2

1[−π/2,π](θ), fν±(θ) = −ν∓
exp

[
2ν∓

1+tan(θ/2)

]
(1 + sin θ)2

1[−π/2,π](θ). (93)

These functions properly belong to L2[−π, π] and satisfy the integral boundary condition

in Eq. (73). The continuous spectrum of L consists of improper eigenvalues νk with

corresponding improper eigenfunction fνk as defined in Eq. (87) for k ∈ R \ {0}. These

functions satisfy the boundary condition only upto principal value as is evident from

Eq. (88).

Now consider the operator L† defined in Eq. (75) for the case λ = 1. An integration

of the eigenvalue equation for eigenfunction hν∗ of eigenvalue ν leads to the expression

hν∗(θ)− hν∗(π)

1 + sin θ
exp

[
−(ν + 1)

2

1 + tan θ
2

]
=
νhν∗(π)

(ν + 1)3

[
1 + ν + ν2

−(2 + 2ν + ν2 + (1 + ν) cos θ + sin θ)

1 + sin θ
exp

[
−(ν + 1)

2

1 + tan θ
2

]]
.

In case of ν = −1, the rhs of the above should by evaluated as a limit. This limit is

−hν∗(π)
2 sec2 (θ/2) (−3 sin θ + cos θ − 5)

3 (tan (θ/2) + 1)3
.
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Imposing the boundary condition, one obtains the discrete part of the spectrum to be

{0, ν+, ν−} (same as for L) with corresponding eigenfunctions given by {h0, hν− , hν+}
of the same form as in Eq. (83). For the continuous part of the spectrum, we take

νk as given in Eq. (87). The following gives the explicit form of hνk which are proper

eigenfunctions of L† with eigenvalues −1− ik, k ∈ R \ {0}.

hνk = gµk +
1√
2π

[
1

ν−k
− (ν−k + 1) cos θ + sin θ

ν2−k + ν−k + 1

]
, L†hνk = ν−khνk . (94)

The improper eigenfunction with improper eigenvalue −1 is give by

hν0 =
1√
2π

[
1 +

2

3

(
3 sin θ − cos θ + 5

1 + tan(θ/2)

)]
. (95)

6. Conclusion

We studied the dynamics of a qubit that is continuously monitored via measurements

on a detector qubit with which it interacts strongly so as to avoid the zeno limit. For

the special choice of system Hamiltonian and initial conditions that we considered here,

the qubit state remains confined at all times on the yz plane of the Bloch sphere so

that it can represented by a single angle variable. The state |ψ(t)〉 follows a stochastic

dynamics with drift and jump terms. We obtained various results for this dynamics.

We summarize here our main findings:

• We point out that the stochastic wavefunction dynamics can be naturally

interpreted as a resetting process, with a resetting rate that depends on the

instantaneous state. The strength of the resetting rate λ quantifies the strength of

measurements.

• We obtain exact results on the number of resetting events, Nt, in a specified time

t. We show that the form of the time-dependence, of the mean number of events

Eqs. 44, has a transition at λ = 2.

• Using two different approaches, a renewal approach and one based on non-

perturbative resolvent (or Green’s function) approach, we obtain the exact form

of the probability distribution P (θ, t) for the system to be in the quantum state,

|θ〉 =

[
cos (θ/2)

i sin (θ/2)

]
, at time t. At long times we recover the steady state form

known from earlier studies. We show that as for the steady state, the time evolution

has three different forms for the regimes 0 ≤ λ < 1, λ = 1 and λ > 1.

• For the cases 0 ≤ λ < 1 and λ = 1 we evaluate the complete spectrum of the

Fokker-Planck operator which forms a bi-orthonormal set. This provides another

solution for the time evolution of P (θ, t), that is especially useful at long times. A

future study will explore the more difficult case λ > 1.

We note that the average density matrix of the qubit is given by ρ̂(t) =∫ 2π

0
dθP (θ, t)|θ〉〈θ|. However, this density matrix contains much less information about
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the system. For example, in the steady state we have ρ̂(t) → (1/2)Î, while the

distribution of states P∞(θ) is highly non-trivial. The mean number of detector clicks

and the complete distribution P (θ, t) is experimentally accessible using the methods

of quantum tomography and our results could be experimentally verified. Finally, we

hope that the connection between the stochastic Schrödinger equation and resetting

dynamics, pointed out in this work, will lead to further useful results and insights in

both areas.
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Appendix A. Computation of survival probability

We use the notation introduced below Eq. (20). When 0 ≤ λ < 1, then Heff admits the

orthogonal decomposition

1

2β

[
c c∗

−c∗ c

][
−(c∗)2 0

0 c2

][
c −c∗
c∗ c

]
where c = exp

[
i(2φ−π

4
)
]
. From the above and the fact that c2 + (c∗)2 = 2β, one has

e−iγ0tHeff =
1

2β

[
c c∗

−c∗ c

][
exp[iγ0t(c

∗)2] 0

0 exp[−iγ0tc
2]

][
c −c∗
c∗ c

]
.

With the initial condition ψ(0) = ψ0, from Eq. (18) one has

ψ̃(t) = e−iγ0tHeff ψ0 =
1

β

[
Re[c2 exp(iγ0t(c

∗)2)]

−i Im[exp(iγ0t(c
∗)2)]

]
. (A.1)

The formula for survival probability now follows from the definition in Eq. (19). The

calculation for λ > 1 is similar.
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For λ = 1, as noted earlier Heff is non-diagonalizable. The Jordan decomposition

of Heff is [
1 i

0 1

][
−i 0

1 −i

][
1 −i

0 1

]
.

Once again, matrix exponentiation gives

e−iγ0tHeff = e−γ0t

[
1 + γ0t −iγ0t

−iγ0t 1− γ0t

]
.

With the same initial condition as before, one obtains

ψ̃(t) = e−γt/4

[
1 + γ0t

−iγ0t

]
(A.2)

and the expression for S(t) follows.

Appendix B. Evolution of a qubit on the Bloch sphere

The standard representation of a qubit state on the Bloch sphere is given by

|ψ〉 = cos
χ

2
|ψ0〉+ eiξ sin

χ

2
|ψ1〉

for 0 ≤ χ ≤ π and 0 ≤ ξ ≤ 2π. In the spherical polar coordinate system, χ is the polar

angle and ξ the azimuthal angle. In the yz plane, ξ = π/2 for y > 0 and ξ = 3π/2 for

y < 0. ξ is undefined on the z axis. Substituting the above in Eq. (22), the following

coupled system is obtained

sin
χ

2

[
iχ̇+ 2γ0(iλ sinχ+ eiξ)

]
= 0,

cos
χ

2

[
iχ̇− 2γ0(−iλ sinχ+ e−iξ)

]
− 2ξ̇ sin

χ

2
= 0.

The trajectory of constant ξ is for cos ξ0 = 0 which corresponds to ξ0 = π/2 and

ξ0 = 3π/2. For ξ0 = π/2, χ evolves in accordance with

χ̇ = −2γ0(λ sinχ+ 1),

whereas for ξ0 = 3π/2, χ evolves in accordance with

χ̇ = −2γ0(λ sinχ− 1).

On the part of the evolution for ξ = π/2, define θ = χ and on the part of the evolution

for ξ = 3π/2, define θ = −χ. Then the entire evolution of the state vector in Eq. (23)

happens via Eq. (24).

Appendix C. Solution for the flow of Eq. (24)

Here we note the results of integration of Eq. (24) for the various cases of λ.
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• For λ < 1, θ0 = 0, the equation integrates to give

arctan
λ+ tan[θt(0, 0)/2]√

1− λ2
− arctan

λ√
1− λ2

= −βγ0t. (C.1)

If a jump occurs at t1, then θt1 = π and evolution happens via no click from t1 to

t then

arctan
λ+ tan[θt(t1, π)/2]√

1− λ2
− π

2
= −βγ0(t− t1). (C.2)

• For λ = 1 and θ(0) = 0, the equation integrates to give

tan

(
π

4
− θt(0, 0)

2

)
= 1 + 2γ0t. (C.3)

For λ = 1, if a jump occurs at t1, then θt1 = π and evolution happens via no click

from t1 to t. The equation integrates to give

tan

(
π

4
− θt(t1, π)

2

)
= −1 + 2γ0(t− t1). (C.4)

• For λ > 1 and θ(0) = 0, the equation integrates to give

tan
θt(0, 0)

2
= − sinh(β′γ0t)

sinh(β′γ0t+ φ′)
. (C.5)

If a jump occurs at t1, then θt1 = π and evolution happens via no click from t1 to

t then

tan
θt(t1, π)

2
= −sinh(β′γ0(t− t1)− φ′)

sinh(β′γ0(t− t1))
. (C.6)

Appendix D. Laplace Transform of the moment generating function

Consider the case λ < 1. Define the function

g(t, φ) = sin2(βγ0t− φ)

so that from Eqs. (35 , C.1, C.2 and 36), one has

P t
0[0] =

e−
γt
2

β2
[g(t, 0) + g(t,−φ)] ,

P t
0[n] =

γne−
γt
2

β2n+2

∫ t

0

dtn [g(t− tn, 0) + g(t− tn, φ)]

[
1∏

k=n−1

∫ tk+1

0

dtk g(tk+1 − tk, φ)

]
g(t1, 0).

(D.1)

Notice P t
0[n] has been expressed as a convolution. For the function g(t, φ), the Laplace

transform is

ĝφ(σ) =

∫ ∞
0

e−(σ+ γ
2 )tg(t, φ)dt

=
1

2

[
1

σ + γ
2

−
(σ + γ

2
) cos(2φ) + 2βγ0 sin(2φ)

(σ + γ
2
)2 + 4β2γ20

]
.

(D.2)
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From Eqs. (37, D.1) and standard properties of Laplace transform, one has

(LE[e−sNt ])(σ, s) =

∫ ∞
0

e−σt

(∑
n≥0

e−nsP t
0[n]

)
dt

=
1

β2

[
ĝ−φ + ĝ0 +

γe−s

β2

ĝ0[ĝ0 + ĝφ]

1− γe−s

β2 ĝφ

]
.

From Eq. (D.2) and the above, Eq. (38) follows after simplification. The calculations

for λ = 1 and λ > 1 are similar and lead to the same Eq. (38).

References

[1] Guerlin C, Bernu J, Deleglise S, Sayrin C, Gleyzes S, Kuhr S, Brune M, Raimond J M and Haroche

S 2007 Nature 448 889–893

[2] Murch K, Weber S, Macklin C and Siddiqi I 2013 Nature 502 211–214

[3] Roch N, Schwartz M E, Motzoi F, Macklin C, Vijay R, Eddins A W, Korotkov A N, Whaley K B,

Sarovar M and Siddiqi I 2014 Physical review letters 112 170501

[4] Minev Z K, Mundhada S O, Shankar S, Reinhold P, Gutiérrez-Jáuregui R, Schoelkopf R J,
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