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Quantum retrodiction in open systems

David T. Peggf]
School of Science, Griffith University, Nathan, Brisbane 4111, Australia

Stephen M. Barnettf| and John Jeffersf]
Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 ONG, Scotland
(Dated: February 1, 2008)

Quantum retrodiction involves finding the probabilities for various preparation events given a
measurement event. This theory has been studied for some time but mainly as an interesting concept
associated with time asymmetry in quantum mechanics. Recent interest in quantum communications
and cryptography, however, has provided retrodiction with a potential practical application. For
this purpose quantum retrodiction in open systems should be more relevant than in closed systems
isolated from the environment. In this paper we study retrodiction in open systems and develop a
general master equation for the backward time evolution of the measured state, which can be used
for calculating preparation probabilities. We solve the master equation, by way of example, for the
driven two-level atom coupled to the electromagnetic field.

PACS numbers: 03.67.Hk, 03.65.W}j,42.50.-p

I. INTRODUCTION

The usual formulation of quantum mechanics is pre-
dictive. It is well suited for calculating probabilities for
particular outcomes of measurements from given prepa-
ration information. The preparation information is nor-
mally incorporated into a density operator representing
the state of the prepared system, which evolves until the
time of measurement. With sufficient knowledge we can
assign a density operator in the form of a pure state
projector to the system. This contains the maximum
amount of information that nature allows us for predic-
tion. The probability of the measurement outcome also
depends on the operation of the measurement device. For
a von Neumann measurement [ﬂ] a particular measure-
ment outcome is associated with a pure state projector;
for a more general measurement the outcome is associ-
ated with an element of a probability operator measure
(POM) [[]. The latter are non-negative definite opera-
tors that sum to the unit operator on the state space of
the system being measured. The retrodictive formalism
of quantum mechanics is used far less often than the pre-
dictive formalism. Originally introduced by Aharonov et
al. [ in investigating the origin of the arrow of time,
the retrodictive formalism involves assigning a state to
the system based on knowledge of the measurement out-
come. This state is assigned to the system just prior to
the measurement and evolves backwards in time to the
preparation event. The probability of a particular prepa-
ration outcome can be calculated from a knowledge of the
backwards evolved state and the operation of the prepa-
ration device. While the results obtained are fully con-
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sistent with predictive quantum mechanics plus inference
based on Bayes’ theorem [E], the retrodictive approach is
much more direct and provides a different insight into
quantum mechanics.

Most applications of retrodiction involve closed sys-
tems, where the time evolution is essentially unitary
[, fl. An important emerging area in which retrodic-
tive quantum mechanics will become increasingly impor-
tant is in quantum communication [H}, including quan-
tum cryptography [ﬂ] Here a sender transmits a sys-
tem to a recipient after preparing it in a particular state.
The general communication problem is for the recipient
to retrodict the prepared state from the outcome of a
measurement and a knowledge of the operation of the
preparation device. For closed systems, the evolution be-
tween preparation and measurement is unitary and the
intrinsic time symmetry significantly simplifies the prob-
lem of calculating the retrodictive evolution. In practice,
however, realistic systems will interact with an environ-
ment into which information is irretrievably lost. This
introduces extra uncertainty in addition to the intrin-
sic quantum uncertainty associated with the preparation
and measurement and removes the simple time symme-
try associated with unitary evolution in a closed system.
In open systems with a large environment the predictive
evolution can often be described by a master equation.
This describes information loss as the system propagates
forward in time and becomes more entangled with an
environment that is never measured. In this paper we
investigate the derivation of a retrodictive master equa-
tion [ that describes irreversible loss of information as
the system propagates backwards in time. As will be
seen, this is not a simple time inverse of the predictive
master equation.
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II. PREPARATION AND MEASUREMENT
WITHOUT TIME DELAY

The probabilistic interpretation of quantum mechanics
is usually expressed in terms of the theory of measure-
ment. Retrodiction, however, relies on preparation being
probabilistic so, in this section, we give a brief overview
of the less familiar quantum theory of preparation and
measurement. To dispense with time evolution at this
stage, we consider an experiment in which one person,
the preparer, prepares a quantum system and then an-
other person, the measurer, immediately measures it.
We assume that there are readout mechanisms on the
preparation and measurement devices that indicate the
preparation event and the measurement event that oc-
cur. The preparer chooses which preparation event will
occur and the measurer chooses whether or not to record
the subsequent measurement event depending on what
this measurement event is. If the measurement event j
is recorded, then so too is the corresponding preparation
event 7. These events are recorded as a combined event
(i, j). The experiment is repeated many times with the
preparer choosing various states and a list of recorded
combined events is made. The probability associated
with a particular combined event on the list is defined in
the usual way as the suitably normalized occurrence fre-
quency. Both preparer and measurer have some control
over the statistics, which contain elements of preselection
and postselection.

The connection with quantum mechanics can be in-
corporated in the basic symmetric expression B] for the
probability that a combined event chosen at random on
the list is (4, j):

Te(A,T))

AT (- - o\t g
P (’Lv]) ([A\f’)

(1)

where

F=) 1 (2)

J

and
A=Y A 3)

Here A; and f‘j are non-negative definite operators as-
sociated with the preparation and measurement events
i and j respectively. They indicate the state in which
the system is prepared or measured as well as any bias
in preparation or in recording the events [E] The sums
in (E) and (E) are over respectively the measurement and
preparation events that can be recorded. We say that the
set of preparation device operators A; describes mathe-
matically the operation of the preparation device and the
set of measurement device operators I'; describes the op-
eration of the measurement device. Later, in equation

we shall see that A; is PA(i)pP"? where pP™9 is
(E)7 7 Py Pi

the density operator for the prepared state and P(i)
is the a priori probability for this state to be prepared,
which reflects any bias in the preparer’s choice. Thus A
is a density operator representing the best description we
can give of the state in which the system is prepared if
we know the operation of the preparation device but have
no knowledge of the preparation or measurement events.
Likewise I" is a density operator representing the best
description we can give of the state in which the system
is measured if we know the operation of the measure-
ment device but have no knowledge of the preparation or
measurement events.

A. Preparation and measurement probabilities

The basic relation g) allows us to find expressions for
various probabilities [ in terms of preparation and mea-
surement device operators A; and f‘j. We use super-
scripts A and I' to denote if the probabilities are based
on knowledge of the operations of the preparation and
measurement devices respectively. Where a probability
is based on knowledge of a particular preparation event 4
or measurement event j, this is shown in the argument of
the probability in the usual way by a vertical stroke pre-
ceding ¢ or j respectively. This stroke essentially means
‘if’. A comma separating events means ‘and’. Thus, for
example, PAT(j]i) is the probability that measurement
event j is recorded if preparation event i is recorded,
based on knowledge of the operations of the preparation
and measurement devices.

From the basic relation (), with () and (), we can
calculate the following probabilities:

PAT (i) = ;PWH>—%% @
zﬂmiﬁg 5)
Pron =T - TR ©
PAT (i) i%? ™)

Expression () is the probability that, if an experiment
chosen at random has a recorded combined event, this
event includes preparation event i. Likewise ([]) is the
probability that the recorded combined event includes
the measurement event j. Expression (E) is the probabil-
ity that, if the recorded combined event includes event
i, then it also includes event j. Expression () can be
obtained by limiting the sample space to those events



containing 7 and is essentially Bayes’ formula []E] Like-
wise (f]) is the probability that the preparation event in a
recorded combined event was 1 if the measurement event
is J.

It is clear that we can multiply all the A; by a con-
stant value without changing the above probabilities and
similarly for I';. We make use of this flexibility to set

TrA =1 (8)
and
Tl =1 (9)

thus giving these operators the same normalization as
density operators.

Expression (ff) can be used for prediction. We can cal-
culate the required probability if we know the preparation
device operator (PDO) A; associated with the prepara-
tion event 7 and if we know the mathematical description
of the operation of the measuring device, that is, every
measurement device operator (MDO) I';. Similarly we

can use (1) for retrodiction from our knowledge of T'; and

all the A; of the preparation device.

In the situation where no measurement is made on the
system, there is only one possible measurement outcome
and we can speak in terms of an effective measurement
device whose operation is represented by a single ‘no-
information’ MDO that is proportional to the unit oper-
ator [[]. Substituting this MDO for I'; in () yields the
retrodictive probability PA!(i|5), which we write in this
case as P (i), where

PA(i) = TrA,. (10)

Expression (@), which depends only on the operation of
the preparation device, is what we would normally call
the a priori probability for the preparation event to be
i, that is, the probability in the absence of knowledge of
the preparation outcome, the measurement outcome and
the operation of the measurement device.

B. Biased devices

Consider the special case where the operation of a
measurement device is such that the probability PAT(4)
that a recorded preparation event is ¢ in the absence of
knowledge of the preparation or measurement outcomes
is equal to the a priori probability P*(i) for i. Then,

from () and ([L0),

M = TrA,;. (11)
Tr(AT")

If this is true for all possible preparation devices, that is
for all A; and A, then from (E) I' must be proportional
to the unit operator acting on the space of the system.
We say that such measurement devices, which faithfully

preserve the a priori probabilities of preparation events
in the record, have an unbiased operation. Thus for an
unbiased measuring device operation we can write

I=Gi (12)

where G is a positive constant and 1 is the unit operator.
We then define

I, =1;/G (13)
which allows us to write () as
PAT(jli) = Te(pf™11;) (14)
where
Pt = Ay TeA,. (15)

This is just the usual, that is predictive, density oper-
ator that we assign to the prepared state on the basis
of knowledge of the preparation event. We note from
([d) and (ﬁ) that II; are also non-negative definite and
sum to the unit operator. Thus f[j form the elements
of a probability operator measure (POM) [B]. Expression
(@)7 which applies to unbiased measurement devices, is
sometimes regarded as the fundamental postulate for the
probabilistic interpretation of quantum mechanics [E] As
we shall see later, even when the operation of the mea-
surement device is biased, it is still convenient sometimes
to use ﬁfmd as defined by ([[5) and in this case the predic-
tive probability () becomes (27) instead of ([[4). Equa-
tions ([1J) and ([Ld) give an expression for A; in terms of
the predictive density operator associated with prepara-
tion event ¢ and the a priori probability that this state
is prepared:

Ai = PR i) pfre. (16)

This allows us to interpret A in (E) as just the predictive
density operator that we would assign to the prepared
state if we knew the operation of the preparation de-
vice but had no knowledge of the measurement or of the
preparation outcome.

Likewise, in the situation where we know only the sys-
tem state space and are totally ignorant of the prepara-
tion we are able to represent the operation of the prepa-
ration device by a single ‘no-information’ PDO that is
proportional to the unit operator. Substituting this PDO
for A; in (f]) yields

P"(j) = Tof. (17)

We shall call expression (E), which depends only on the
operation of the measurement device, the a priori prob-
ability for the measurement event to be j, that is, the
probability in the absence of knowledge of the measure-
ment outcome and any preparation information.

PAT(5) is the probability that a recorded event is j
if the operations of the preparation and measurement



devices are known but the actual preparation event is
not known. From (f]) and ([L3) this will be equal to the
a priori probability for j if

>

w =TrT;. (18)

Tr(AT")
If this is true for all possible measurement devices, that is
for allI'; and I' , then A must be proportional to the unit
operator acting on the space of the system. We say that
such preparation devices, which faithfully preserve the a
priori probabilities of measurement events in the record,
have an unbiased operation. The retrodictive probability
(ﬁ) reduces for an unbiased preparation device operation
to

P (ilj) = Te(5 2. (19)

where Z; sum to the unit operator and are the prepara-
tion POM elements, which are proportional to A;, and

[);_etr = fj/Trfj. (20)

The symmetry between retrodictive and predictive ex-
pressions is evident. It is worth remarking, however, that
the usual experimental situation is asymmetric. This
arises not from any intrinsic asymmetry in quantum me-
chanics but from the asymmetry in the operations of nor-
mal preparation and measurement devices. The opera-
tion of the latter can usually be described by a POM and
SO (@) is applicable; the former is usually not described
by a POM so we must use the more general formula (f)
and not (E) This also results in an asymmetry between
the forms of PAT (i) and PAY(5) in that PAT(7) is just the
a priori probability PA(i) in ([[]), which is independent
of the operation of the measurement device, but PAT (5)
does depend on the operation of the preparation device.
It is convenient, therefore, to express PAT'(j) in terms of
PA(4) . The expression for this is

PY(j) = ZPAF(J'IZ')PA(Z')- (21)

Thus when the operation of the measuring device is un-
biased, Bayes’ theorem [@], for example, can be written
in terms of the a priori probability P*(i) as
AT ( 1\ DA (;
PAF (Z|.7) — P (]lZ)P (7’) . (22)
S, PAT (i) PAGT)

The concept of an unbiased operation of a preparation
or measurement device is of particular relevance for prac-
tical cases. For an unbiased operation of a measurement
device, the occurrence frequency of the preparation event
7 in the list of combined events is proportional to the a
priori probability for 7. An unbiased measuring device
allows the preparer to control the relative occurrence fre-
quency of a preparation event. Likewise, an unbiased
operation of a preparation device allows the occurrence

frequency of the measurement event j to be proportional
to the a priori probability for j, where this probability is
based on knowledge of the operation of the measurement
device but no knowledge of the actual measurement out-
come or of the operation of the preparation device. An
unbiased preparation device allows the measurer to con-
trol the occurrence frequency of the measurement event.
In practice the operations of many, but not all, measuring
devices are unbiased but preparation devices generally
have biased operations. This corresponds to preselection
without postselection. For such cases, as outlined above,
we can write the predictive probability for measurement
outcome j given preparation event ¢ in terms of a predic-
tive density operator and an element of a probability op-
erator measure (POM) for the measuring device as given
by ([[4). That is, for a measuring device with an unbiased
operation, the preparation device operator Ai converts to
a density operator and the measurement device operator
I'; converts to a POM element. We cannot in general,
however, write the corresponding retrodictive probability
as the inverse expression involving an element of a prob-
ability operator measure for the preparation device and a
retrodictive density operator. To do this we would need
the operation of the preparation device to be unbiased, as
occurs in some situations such as the Bennett-Brassard
protocol for quantum key distribution @7 ﬂ, @]

IIT. TIME EVOLUTION IN CLOSED SYSTEMS

So far we have considered the preparation time ¢, to
be the same as the measurement time t,, and in ([[[) we

have used Ai, the preparation device operator at ¢,. To
allow now for time evolution in a closed system between
t, and t,, we replace A; and A in the probability () by
Ai(t) and A(t,,) where

ANi(tm) = Ultom, tp) AU (t, 1) (23)

and a corresponding expression for A(t,,). Here U(t,,, t,)
is the unitary time-shift operator. We might interpret
this replacement as a modification of the original opera-
tion of our preparation device to include an evolutionary
period so that the new preparation device operators are
A;(ty). The resulting probability expressions obtained
from ([]) will be modified accordingly. Thus the predic-
tive expression (ff) becomes

P (i) = —— — - 24

I R oty A ]
and the retrodictive expression ([]) becomes
Te[U (tm, tp) MUty t)T

PAF(Z|j) _ I‘[U( ) P) U ( ’ ;D) J] (25)

From ([LH), noting that TrA,; is unchanged by a unitary
transformation, we see (23)) is equivalent to the usual



time development expression
P () = ULt P (¢ VU (b, t 26
p; (tm) = Ultm:tp)p;  (tp)U" (tm, tp) (26)

where pPrd
operator for the prepared state at ¢,

rewrite (P4) as

(tp) is the usual, that is predictive, density
. Using (1) we can

TP (t)T]

K3

PAY(jli) = L
B DT

(27)

A natural interpretation of (P7) is in terms of the system
being prepared in the state pf’red (tp) at t, and then evolv-

ing forwards in time to become ﬁfer
ment time.

At first sight, it may appear that the evolution has
destroyed the symmetry between (ff) and ([) which have
now become (P4) and (£5). However by using the cyclic
property of the trace we rewrite both @) and (ﬁ,) in

terms of T';(t,) where

(tm) at the measure-

L';(t)

with ¢, <t < t,,. Then, for example, the retrodictive
formula (R5) becomes

= Ul (b, )T U (£, ), (28)

Tr[AL (t,)]

AT (- -
P = TR (20)

Expressions (@) and (@) can be interpreted in terms of
a new operation of the measurement device which incor-
porates a prior time delay as part of the measurement

process. This operation is described by the set of mea-
surement device operators I';(t,).

We can use (@) and @ to write @

Tr[Aipe" ()]

AT
P = SR,

(30)

where

P (tp) = UM (b t) 05 (t)U (b 1) (31)
Expressions (BJ) and (1)) can be interpreted as the sys-
tem being assigned a retrodictive state p5°**(t,,,) at time
t,, on the basis of the recorded measurement outcome
and evolving backwards in time to the preparation time
tp.

" Any of the above four interpretations of the process of
preparation and measurement can be applied to both the
predictive and retrodictive probabilities (24) and (R5). It
is not necessary, for example, to use the predictive den-
sity operator for prediction, nor the retrodictive density
operator for retrodiction. Use of the forward-evolved pre-
dictive density operator is convenient, however, when we
know the outcome of a particular preparation and wish
to retain flexibility in calculating probabilities for a range
of possible measurement events with different measuring

devices. Likewise, if we know the measurement outcome
and wish to have flexibility in calculating probabilities
for a range of possible preparation events with differ-
ent preparation devices, it is convenient to calculate the
backward-evolved retrodictive density operator. This is
the purpose of this paper, except instead of finding the
unitary evolution for a closed system, we wish to study
the non-unitary evolution of a more realistic open system.

IV. OPEN SYSTEMS

In a preliminary paper [E] we outlined the derivation
of an open system retrodictive master equation for the
particular case where the operation of the measurement
device can be described by a POM. In this section we
examine in detail the more general case where the set of
(renormalized) measurement device operators may not
necessarily form a POM and also give a proof of the non-
negativity of the retrodictive density operator at all times
between measurement and preparation. Later we solve
the master equation for a driven two-level atom.

We are interested in a quantum system S interacting
with an environment F. The initial state of the environ-
ment at time ¢, is known but the state of the environment
subsequent to this is never measured. Before examining
the retrodictive problem we outline first the usual pre-
dictive problem. In the predictive problem, in addition
to the initial state of E, we also know the initial state of
S and wish to predict the probabilities for the outcomes
j of possible later measurements of S. For this we can
use expressions (P7) and (P6) where P (t,) is now the
predictive density operator for the combined system of
E and S, which will be the product of the initial density
operators for E and S:

~ d A d A~ d
Py (tp) = P @ pLs” (32)

This initial state will evolve to a state which is in general
entangled in accord with (§) where the unitary operator
will now involve the Hamiltonian of the combined system.
Each measurement device operator will be a product an
operator I'; ¢ acting on S and an operator acting on the
environment. As discussed earlier, the measurement de-
vice operator for a non-measurement is proportional to
the unit operator as this is effectively an unbiased mea-
surement with only one possible outcome [H] Thus the
predictive probability (@) becomes for this case

Trps 6 (tn)T)s @ 18]
TYES[Apmd( tm)Ts ® 15

P (jli) = (33)
where 1z is the unit operator on the space of the the
environment and I's is the sum of I'; 5. The trace is over

the environment and the system S states. By defining a
reduced predictive density operator for the system S at

the time ¢ as

~pred ~pred
prs (1) )P}

ig (t) = TYE[U(tvtp PE ﬁfrgdUT(t tp)] (34)



we can write the predictive probability in terms of oper-
ators acting on the state space of S. Substituting ),

(BF) and (B4) with t = t,, into (B3) gives
Trs[pfs (tm)T S]
Trs []'5" (tm)Ts]

which is of the same form as the closed system formula
(@) Thus in order to find the predictive probability

T'(j]i) we need only calculate the evolution of the re-
duced predictive density operator rather than the evo-
lution of the combined system plus environment. If the
environment F has a large number of degrees of freedom
and is little changed by the coupling to S, then if the
environment is not measured we can make use of the ap-
proximation that, for any time ¢t between preparation and
measurement ,

PA(jli) = (35)

Ut ) o @ gL UT (k1) = i @ gl (). (36)

The Markov approximation [[L3] then leads to a general
Markovian master equation for pAerCd( ) that, in standard
Lindblad form, is given by [[i4]

- pred I TP pre
Pis (t) = —ih 1[H57P?sd(t)]
* SRS 4] - A AT
- ﬁ?,?d(tvi;fiq] (37)

where Hyg is the Hamiltonian for the system S without the
environment and A, is a system operator. This general
form of equation incorporates the Markovian requirement
and conserves both the non-negative definiteness and the
trace of the reduced density operator [[L4].

The expression for the retrodictive probability (B) is

Tres[Ais ® Ppredr (tp)]
Tres[As @ 5T (t,)]

PM(il) = (38)

where the backward-evolved measurement device opera-
tor T';(t) is given by (R), Ag is the sum of A; s and we
have set the proportionality constant between the envi-
ronmental preparation device operator and ppre to unity
because this is the a priori probability that the environ-
ment is prepared in this state. For our case, where the
environment is not measured, the measurement device
operator F will be proportlonal to FJ s®@1p. AsT ()
evolves backwards in time towards t,, it changes from
being factorizable at t,, to become in general more en-
tangled.

We seek to express PAT(i5) in terms of a reduced retro-
dictive density operator so that it has a form similar to
(Bd), just as PAT(ji) in (B5) is similar to (B7). The sim-
plest way to do this is first to define a reduced backward
evolved measurement device operator and then to nor-
malize this so that the trace is unity. From (BY) we see

that we need a reduced backward-evolved measurement
device operator in the form

[j.s(t) o Trp[p% Ut (tm, )15 @ 15U (tm, t)].  (39)

We can now define a reduced retrodictive density opera-
tor for the system S at the time ¢ as

P () = (10)

Then by substituting (d) and (B9) into (BY) we can write
the retrodictive probability in terms of operators acting
on the state space of S:

Trs[A; SO ()]
Trs[Aspid ()]

P (ilj) = (41)

Thus, if we know the reduced retrodictive density oper-
ator and the operation of the preparation device, we can
calculate the retrodictive preparation probabilities by a
formula of the same form (@) as for a closed system.
For this, we wish to find an appropriate master equation
governing the evolution backwards in time. We should
note that the reduced predictive and retrodictive den-
sity operators in (B4) and (f() are not simply related
to each other and thus the master equation for the re-
duced retrodictive density operator is not immediately
derivable from (@), for example simply by reversing the
sign of the time. This, of course, is not due to some in-
trinsic time asymmetry in quantum mechanics; it arises
from the asymmetry in the environmental boundary con-
ditions. For both the predictive and retrodictive cases we
are assuming that the environment is prepared in some
particular state but not measured. To obtain symmetry
we would have to assume in the retrodictive case that the
environment is measured to be in some state and that we
have no information about its preparation.

The most straightforward way of finding a retrodictive

master equation for pi°¢(t) is to find an equation for

the backwards evolution of I'; 5(t) and then use ([i0) to
obtain the master equation. To do this, we use (R4), the
group property of the time-shift operator

Ultm,ty) = Ultm, )U(t, t,), (42)
where t is a time between t,, and t,, and the cyclic prop-
erty of the trace to rewrite the numerator of the right
side of (B3) as

Trgs[U(t tp) 5 @ pLs U (t, 1)U (tm, )T 5

®1EU(tm,t)]. (43)

We leave the denominator of the right side of (B3) as it is.
Clearly PAT(j]i) does not vary as we change ¢ between
t, and t,, and so the derivative of the numerator ([J)
with respect to ¢ must vanish. Using the weak-coupling



A

approximation (B) and (Bd) we can write (i) as pro-
portional to

Trs[p}'s " ()T,s(1))- (44)

The vanishing of the derivative of this with respect to ¢
yields

- pred

Trg [P (6T, ()] = —Trs[irs (D5 (45)

Substituting (B7) into ([t7) gives, after application of the
cyclic property of the trace,

s(t)] = Trs(pls () {—ih~"[Hs, T 5(t)]

— ) [2AIT; s(t)A

TrslE5 0

— AJAL;s(O1})- (46)

This is true for all p Apred (t), so the evolution equation for
the reduced measurement device operator is

fj S(t) = —Zh_l[f{S; F] S(ﬂ]
= [24]T; s(t)A,

— ijg(t)A:;Aq — A(TIAqlA“j,S(t)]. (47)

We can then find the retrodictive master equation for
P (t) by substituting () into the time derivative of
(10). This gives

.retr

jrate) = —in” s, 0]
- SRAE 04 - Y OALA,

- ATAqﬁT%r( )]
— 2055 (O Trs {8 (0) D _TAL Agl} (48)

q

as the master equation for pi°¢ (t).

It is not difficult to see that () conserves the trace of
pis (t), but (1) does not preserve the trace of T s(t).
The price of this preservation is that while ( is a lin-
ear differential equation, the master equation ({§) is more
complicated. While () can be solved directly for some
simple cases, the solution is not always obvious. In gen-
eral, however, @) is reducible to a linear equation by
substituting a variable-trace operator

(t) exp (2 / Te{p(¢') Y _[Af, Aq]}dt’> :

(49)
which gives a linear equation for B(t ( ). Then p**(¢t) can

be recovered from the solution as B(t)/TrB(t). The lin-
ear equation obtained, however, is the same as (@) SO

B( ) _ ﬁrctr

B(t) is just proportional to I'; ¢(t). It is thus more con-
venient in general to calculate retrodictive probabilities
by solving () for I'; () and then using

Trs[Ai,sTjs(tp)]
Trs[AsTj s(tp)]

which is derivable from (B9),[Bd) and (B), instead of
solving (1) for P55 (t) and using D).

To give a physical interpretation of f‘j7s(t), we first
show that this is a non-negative operator for all ¢ between
t, and t,, as follows. Consider an operator (), acting on
the state space of S, defined to obey the predictive master
equation (B7) for times ¢ between (and including) 7' and
tm where T is some time such that t, < T < ¢,,. Let 6(T")
= |u)(u| where |u) is some arbitrary pure state of S. Then
6(t) will have the form of a predictive density operator
and so G(t,,) will be non-negative definite. From (B9),
[ 5(tm) is just 1"]75, which is also non-negative definite.
Thus

P (ilj) = ; (50)

Trs[6(tm)Lj,s (tm)] > 0. (51)
It is not difficult to show directly from (B7) with &(t)
in place of ﬁfrgd( ) and from ({7) that the time deriva-

tive of Trg[6(t)T;.5(t)] is zero for t between T and t,,
Consequently

Trs[6(T)T;,s(T)] > 0. (52)

Writing the left side of (53) as (u|lj s(T)|u) shows that
;. 5(T) is non-negative definite for all times 7' between
t, and &,

The non-negativity of I'; s(t) has two consequences.
Firstly it follows from (@) that pi°¢(t) is also non-
negative. This, combined with the trace of p}°¢(t) be-
ing conserved as unity, means that (i) is a legltimate
master equation. The second consequence is that I'; 5(t)
can be considered to be measurement device operators
associated with measurement events j. Furthermore, if
I'; 5(t) sum to be proportional to the unit operator on the
state space of S it follows from ([7) that this sum is also
conserved. Thus if the set of operators I'; g(t, ), which
are proportional to fJ s ® 1g, describes the operation of
an unbiased measuring device, so too will the set of op-
erators I'; ¢(t) and thus also I'; s(¢,,). Consequently the
open system considered here allows a similar interpre-
tation as does the closed system equation (RY) with the
measurement, or collapse of the state, taking place imme-
diately after the preparation time ¢,. It should be noted
that in the common interpretation, in which the opera-
tion of the measurement device is described by I'; s(tym),
the initial environment state is considered to be part of
the description of the operation of the preparation device.
For the new interpretation, with the measurement taking
place at t, in accord with (B(), the initial environment
state is considered to be part of the description of the



operation of the measurement device. This is analogous
to a homodyne detection system in which the initial state
of the local oscillator is considered to be part of the oper-
ation of the measurement device rather than part of the
operation of the preparation device along with the signal
field state. The conservation of non-negativity allows us,
in fact, to interpret (R7) and (9) in terms of the measure-
ment or collapse taking place at any time ¢t between ¢,
and t,, with non-negative preparation and measurement
device operators defined appropriately. The physical in-
terpretation of the invariance of PAT(j|i) under changes
of t is that measurable probabilities are independent of
when we choose the collapse time. This underlines the
somewhat arbitrary nature of this concept.

By comparing the predictive and retrodictive master
equations (B7) and (fig), we see that when the interac-
tion with the environment can be ignored, for example
for short enough time intervals, the evolution is given
by just the first term in each. The two equations for
this unitary evolution are then the same. It should be
remembered, however, that we have defined the time ¢
so that it increases in both cases. For retrodiction, it is
more natural to define a premeasurement time as

T =tm—t. (53)

so that

.retr

ape(e) fdr = = (0). (54)

The unitary part of the retrodictive master equation in
terms of 7 is then seen explicitly to be the time inverse
of the corresponding part of the predictive master equa-
tion. That the complete retrodictive master equation is
not simply the time inverse of the predictive equation
is illustrated by the following. If there is an extremely
long time between preparation and measurement, both
ﬁ?‘:d(t) and ﬁjcstr(T) can reach their steady-state values

for which ﬁir:d(t) and dp"°* (7)/dr are zero. A solution of
the resulting steady-state retrodictive equation is clearly
Pie (00) = 15/D where 1g is the unit operator acting
on the state space of S and D is the dimension of that
space. This represents the no-information state. Essen-
tially, at the measurement time the retrodictive state is
the product of the measured state and the no-information
environment state. As we go backwards in time from
the measurement, the retrodictive system state becomes
more entangled with the environment and we lose infor-
mation about the system state. In the limit of very long
times in the past, the system state becomes completely
unretrodictable. There is no similar simple general so-
lution of the predictive master equation, however, which
would imply unpredictability for long times. Indeed for
the case of an excited two-level atom undergoing spon-
taneous emission into the environmental vacuum field,
for example, it becomes very likely that the atom will
be found in its ground state in the long term future, an
outcome which is very predictable.

V. COHERENTLY DRIVEN ATOM
A. Retrodictive density operator

As an example of a retrodictive master equation and
its solution, we examine the case of a two-level atom
driven on resonance by a strong laser field. The solu-
tion of the predictive master equation for this system is
well known [B], with the atom exhibiting damped Rabi
oscillations at a frequency Q = (V2 —~42/4)'/2 where V
is proportional to the strength of the laser field and ~ is
the spontaneous decay rate. We can write the Hamilto-
nian describing the interaction between the atom and the
laser field in the interaction picture in the semiclassical
form

~ h
H= §V([7+ +d_) (55)
where o4 = |e){g| and o_ = |g){e|. A comparison of %)

with the predictive master equation for this system |
that is,

)

- pred iV

N ~ ~pred
pis (t) = —7[(0++0—)=P§,§ (t)]
Y26 pP5 ()54 — 615 pP5  (t)
~pred A A
—pPrs (t)o46-], (56)

shows that ¢ in (B7) has only one value, with Ay =
~1/2g_. Thus, using B(r) in place of T'; 5(7), we can
write the linear form (@) of the retrodictive master equa-
tion in terms of the premeasurement time 7 as

aB()/dr = {6y +6.),B(r)
+7[26 4 B(r)6_ — B(1)6,6_
—6,6_B(7)]. (57)

We can solve (f7) by converting it to a set of c-number
equations. We write

B(7) = u(1)o1 + v(7)62 + w(r)d3 + x(r)is (58)

where 1g is the unit operator acting on the space of the
atom and

61 =064 +6_ (59)
Gy = —i(64 —6_) (60)
63 =26,06_ —1g. (61)

Then substitution of (§§) into (57) yields

du, L do,  du | deg
d7'U1 d7'02 dr 73 ar 5~

—yudy — (Y — Vw)aa — (Vv + 2yw)3 — 27wl (H2)



Multiplying (@) by &1, &2 and 3 respectively and taking
the trace of both sides gives

. 63
dr R (63)
d
d—:}_ =—yv+Vw (64)
d
W vy 2w (65)
dr

and taking the trace of both sides of (63) gives
dx

= —2vyw. (66)
The solution of (63) is simply
u(t) = u(0) exp(—7). (67)

The simultaneous equations (f4) and (5) are straight-
forwardly solved by standard means [[LY] to yield

v(T) = exp(—377/2){v(0)[cos(27)
+7(29) "t sin(Q27)]
w(0)VQ L sin(Qr)} (68)

and

w(t) = exp(=3vy7/2){—0v(0)VQ~
+ w(0)[cos(Q7) — y(2Q) 7!

Lsin(Qr)
sin(Q27)]} (69)
which allows us to find z from (66) as
29[Vw(0) = yw(0)]

2,72 + V2

—2v
2724 V?

022V 2(9) E3V0) oy

+[Vv(0) — yw(0)] cos(27)}. (70)
Substituting (57), (69), (69) and ([@d) into (EJ) gives

B(7). The retrodictive density operator is then just

xz(r) = z(0) +

+ exp(—3y7/2)

B(r)
2z(7)’

Fv(r) = (71)

which has unit trace as required.

B. Some detection events

As a check of the retrodictive density operator ([T1]) ob-
tained from our general retrodictive master equation, we
now calculate its matrix elements for some specific de-
tection events. These can be compared with correspond-
ing matrix elements in [@] calculated by a quite different

method involving solutions of the predictive master equa-
tion and specific measurement POM elements.

As our first example, suppose the atom is detected at
time 7 = 0 in the excited state |e){e|. The measurement
device operator corresponding to this detection event is
proportional to |e)({e|, which is also the retrodictive den-
sity operator at this time. Thus B(0)  |e)(e|. We note
that it is not necessary to say whether or not the mea-
surement device operator is an element of a POM. By
writing |e)(e| as (14 d3)/2 we see that u(0) and v(0) are
both zero and w(0) = x(0). With these values we find
that

u(t) =0 (72)

v(1) = w(0) exp(—3y7/2)VQ ! sin(Q7) (73)

w(T) = w(0) exp(—37y7/2)[cos(Q7) — v(2Q) ! sin(Q7)]
(74)
and
or) = g ks (v~ 2yexp(-377/2)
2 2
« [% sin(27) — 5 cos(Q7)]}. (75)

The matrix elements of p'°*(7) are easily found from ()
and (F§) to be

u(t) —iv(7)

el ol =t (76)
el ole) = 150 (77)

Wlth (glissT(Tle) = (el (T)lg)™ and (g|p}E" (7)]g) =
— (e |pre“( )|e). From (@) (F3) and ([/4) we obtain

(e |prctr( YNg) = %ﬁ;g)exp(—fiﬂyT/Q) sin(Qr)  (78)

2N (V2 +277)
+ exp( 3y7/2)[(V? 4 442) cos(Q7)
~ 50 (5V2 + 4+?) sin(Q7)]}. (79)
These are identical to the corresponding expressions de-
rived in [[L6] except that here we have z(7)/w(0) in place
of the normalization factor N. As we already have an
expression for this in (f3) there is no need to calculate it
separately as we had to in ] These results therefore
not only confirm the validity of our new method but also
display its advantages.

The Rabi oscillations are clearly evident in both the
diagonal and off-diagonal elements of the density matrix.



In the limit of long 7, that is, in the distant past, the
off-diagonal elements vanish and both diagonal elements
tend to 1/2. This is the density matrix describing the no-
information state discussed earlier. The actual state the
atom was prepared in is thus essentially unretrodictable
for these long times. This contrasts with the predictive
density matrix, which also exhibits Rabi oscillations for
short times but for long times in the future tends to an
equilibrium state which is not the no-information state,
instead it is determined by the relative value of V' and ~
(£}

If the atom is detected in its ground state, we simply
take u(0) and v(0) as zero and w(0) = —z(0) and obtain a
slight variation on the above elements of the retrodictive
density matrix.

If the atom is detected in the superposition state
271/2(le) + |g)), the measurement device operator is pro-
portional to (14 &1), so v(0) and w(0) are zero and u(0)
= z(0). Then we obtain simply

u(t) = u(0)exp(—77) (80)
o(t) = 0 (81)
w(t) = 0 (82)
xz(r) = u(0). (83)

The retrodictive density operator is then easily found

from ([71) and (Fg) to be

prST () = [1+ 61 exp(—7y7)] /2. (84)
This has matrix elements

{elpi s ()|g) = [exp(—v7)]/2 (85)

(el (T)le) = 1/2 (86)

which are precisely those calculated in [@] Because of
the phase of the detected state there are no Rabi oscil-
lations, the density operator (B4) simply decays to the
no-information state in the infinite past. To obtain Rabi
oscillations in retrodiction from a detected state that is
an equal superposition of |e) and |g), we could instead use
a measuring device that detects the state 2= /2(|e)+i|g)),
for which the measurement device operator is (1 + 62)/2
so v(0) is not zero. Some of the oscillatory terms in (%)7
(b9) and (7d) are then retained.

C. Preparation probabilities

The elements of the retrodictive density matrix, di-
agonal or off-diagonal, do not translate into preparation
probabilities until we specify the operation of the prepa-
ration device, that is, the values of A; g for use with @)
The simplest calculations of preparation probabilities are
those in the infinite-7 limit. As we have seen, in this limit
the retrodictive density operator becomes proportional to
the unit operator. Substituting this into (@) yields

- TrsA; s

PAF i : — ,
(il7) Trohs

(87)
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which from (f§) and ([L]) is seen to be just the a priori
probability for the preparation event i. Thus no further
information has been gained from knowing the measure-
ment event.

We consider a preparation device which can prepare
the two-level atom in a pure state |i) that is either |e),
|g) or some superposition of the two. One might envisage
a device that can apply pulses of resonant coherent radi-
ation of various durations and phases to an atom in its
ground state. The application of a 7 pulse would prepare
the atom its the excited state and a 7/2 pulse with ap-
propriate phase would prepare the state 271/2(|e) + |g)).
A zero pulse would prepare the atom in the ground state.
The operation of such a device is described by a set of
preparation device operators, each of which represents
a possible prepared state and incorporates the a priori
probability for that state to be prepared. That is A; g is
proportional to PA()]i)(i|. Clearly, even if the prepared
states are restricted to |e) and |g) the preparation device
operators will not be the elements of a POM unless these
are produced with equal a priori probabilities. If the de-
vice can only prepare the states 27/2(|e) + |g)) and |g),
the preparation device operators are not proportional to
the elements of a POM, whatever each a priori probabil-
ity is. This is the situation for most preparation devices
and can be contrasted with measurement devices, very
many of whose operations can be described by a POM.

To be specific, let us assume that the preparation de-
vice is unbiased, preparing the atom in states |e) and |g)
with equal probability. Then A, g = |e)(e|/2 and A, s =
lg){g|/2 and the preparation probabilities for states |e)
and |g) become, from ([I]), simply the diagonal elements
{elpiir(7)]e) and (g|pi"(7)|g). On the other hand, for a
biased device that prepares the atom in states |e) and |g)
with a priori probabilities p and 1 — p respectively, /A\&S
and A, s are ple)(e| and (1 — p)|g){(g|. Then the proba-
bility that the atom was prepared in the excited state if
the measurement is j is

plelpss (T)le)
(elpret(r)le) + (1 = p)(glprt(r)lg)

In the limit of long 7, this expression becomes equal to
p, the a priori probability that the atom was prepared in
the excited state, as discussed above. For short times 7,
the dependence of the probability @) on 7 will exhibit
an oscillatory behavior depending on the state detected.

A simple but interesting case is for an unbiased prepa-
ration device that prepares the states |[+) = 271/2(|e) +
lg)) and | =) = 271/2(|e) —|g)) with equal probability. The
preparation device operators are |+)(+|/2 and |—){—|/2.
The preparation probabilities for |+) and |—) if the mea-
surement event is j are, from (1)), just (+]p2 ()| +) and
(=1p% (1) =) respectively. For the case discussed earlier
in which the atom is detected in the superposition state
2-2(le) + |g)) and so the retrodictive density operator
is given by (@%, we find that these probabilities are just
[14+exp(—~v7)]/2 and [1 — exp(—~7)]/2 respectively. The

AT N\ —
P (elj)—p (83)



values of the probabilities change from unity and zero
for small 7 to both being one half for large 7 and do not
exhibit oscillations at any time. Thus the decay from
the measured state to the no-information state is shown
explicitly as the only change with time involved.

The above examples illustrate the procedure involved
and the preparation probabilities for preparation devices
with other operations are easily calculated from (@)

VI. CONCLUSION

The emerging importance of quantum communication
and quantum cryptography has made it worthwhile to
re-investigate quantum retrodiction as a means of solv-
ing the basic quantum communication problem. This in-
volves calculating the probabilities that particular states
were prepared when various states are detected. Where
original investigations of quantum retrodiction were in
terms of closed systems, quantum communication is more
likely to involve open systems because of interaction with
the environment. For closed systems the evolution is
unitary, so the backward-time evolution equation for the
state from measurement to preparation is just the simple
inverse of the forward-time equation. For open systems
the situation is not so simple. When a system is weakly
coupled to a large environment, the forward-time evolu-
tion is given by a master equation based on knowledge of
the prepared state of the system and the initial state of
the environment. In the retrodictive situation, the mea-
sured state of the system is known, but not the final state
of the environment because this is not measured. Instead,
the initial state of the environment is known. Thus the
backward-time evolution equation will not be the simple
inverse of the forward-time master equation. In this pa-
per we have derived the general, that is Lindblad, form of
the backward-time, or retrodictive, master equation. We
also prove that the retrodictive density operator remains
non-negative definite at all times between measurement
and preparation. As well as confirming the legitimacy
of the master equation as an equation for the a retrod-
ictive density operator, the non-negativity also allows us
to interpret the evolution plus the measurement in terms
of the operation of another measurement device. This
shows that we can consider the measurement, or collapse
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of the state, as taking place immediately after the prepa-
ration if we wish. Indeed it is possible to have a consis-
tent interpretation of the preparation-measurement pro-
cess with the collapse taking place at any time between
preparation and measurement, showing the somewhat ar-
bitrary nature of the concept. The vanishing of the time
derivative of ([4), or in general of ([iJ), effectively in-
corporates the invariance of the physically measurable
probability PAT(j]i) with choice of collapse time.

The retrodictive master equation is not in general lin-
ear, underlining the fact that it is not the simple inverse
of the predictive master equation. We have shown, how-
ever, that it can always be linearized by means of a suit-
able substitution, allowing analytical solutions for par-
ticular systems. As an explicit example, we have consid-
ered retrodiction for an atom driven by a coherent optical
field and have solved the master equation for the general
retrodictive density operator at all times between mea-
surement and preparation. This allows us to select any
particular measurement event we wish and easily find
the probabilities of various possible preparation events
based on this knowledge. Where the results overlap with
previous calculations based on an entirely different, and
less direct, method [@] there is perfect agreement, which
serves as confirmation of the validity of our new ap-
proach.

As we have discussed previously [E], preparation prob-
abilities can always be found from predictive evolution
plus inference by means of Bayes’ theorem. Retrodictive
quantum mechanics, however, offers a more direct and
often simpler means of finding these probabilities as well
as giving a different insight into the interpretation of the
quantum state. In this paper we have extended the the-
ory of quantum retrodiction for open systems by deriving
of a general retrodictive master equation.
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