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Abstract

We construct from first principles the operators Ay that annihilate
the partition functions (or wavefunctions) of three-dimensional Chern—
Simons theory with gauge groups SU(2), SL(2,R), or SL(2,C) on knot
complements M. The operator Ay s a quantization of a knot com-
plement’s classical A-polynomial Ay (¢, m). The construction proceeds
by decomposing three-manifolds into ideal tetrahedra, and invoking a
new, more global understanding of gluing in topological quantum field
theory to put them back together. We advocate in particular that, prop-
erly interpreted, “gluing = symplectic reduction.” We also arrive at a
new finite-dimensional state integral model for computing the analyti-
cally continued “holomorphic blocks” that compose any physical Chern—
Simons partition function.
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This paper is in part about quantizing Riemann surfaces. The surfaces in
question are algebraic ones, defined as the zero-locus of some polynomial
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function on a semi-classical phase space. For example, we can consider the
surface

f(z,y) =0, (1.1)

thought of as a subset of the phase space P = {(z,y)} ~ C* x C* with a
symplectic structure w = (ik)~!(dx/x) A (dy/y). We have included a factor
of h in the symplectic form, where % is to be thought of as a small, formal
quantization parameter. The goal, then, is to promote f(z,y) to a quantum
operator f(i‘, U;q), where

&y = qi, (1.2)

with | g = ", as dictated by the semi-classical Poisson bracket. The opera-

tors &, ¢, and f itself should act on an appropriate quantum Hilbert space
H, typically obtained from (a real slice of) P by geometric quantization.

Unfortunately, the choice of a polynomial operator f (Z,9; q) that reduces
to f(x,y) in the classical limit ¢ — 1 is far from unique. As usual, one
encounters “ordering ambiguities” when attempting to quantize. These
ambiguities are aggravated by the fact that f(z,y) is not a polynomial func-
tion in the canonical linear coordinates on P, which would be X = logz and
Y =logy. Therefore, well understood mathematical quantization methods,
such as deformation quantization, do not immediately apply. Indeed, in a
few known examples where the quantization of f(z,y) has a precise physical
interpretation and the correct answer for f (z,9) is known (by various indi-
rect methods), the actual resolution of ordering ambiguities appears wildly
complicated.

In general, one might also consider phase spaces of higher dimension.
Instead of a Riemann surface, the relevant variety to quantize would then be
a higher-dimensional Lagrangian submanifold — describing a semi-classical
state. Just as in (1.1) above, we would be interested in the case where
the defining equations f; = 0 for this submanifold were polynomials in the
exponentiated canonical coordinates on phase space. Again, we would like
to promote the equations to quantum operators fz

1.1 Chern—Simons theory

We will describe a solution to the quantization of certain functions like
f(z,y) = 0 above in the context of Chern—Simons theory. In particular, we
consider an analytically continued version of three-dimensional Chern—Simons
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theory with rank-one gauge group SU(2), or SL(2,R), or SL(2,C), and we
put this theory on an oriented three-manifold M that is the complement
of a (thickened) knot or link in some other compact manifold M. Let us
suppose that M is a knot complement,

M =M\K. (1.3)

There is a classical phase space Pr2 associated to the boundary of M, which
is a torus, 9M ~ T?2. The coordinates of Pr2 can be taken as the eigenvalues
¢ and m of the holonomies of a flat connection (i.e., a classical solution to
Chern-Simons theory) on the two one-cycles of 72?. Chern-Simons theory
further induces a symplectic structure wpe = (ih/2)~1(dl/l) A (dm/m) on
Pr2, where h is the coupling constant, or inverse level, of the theory.

In an analytically continued setting, as developed in [1] (and later in [2,3]),
one is interested in complexified classical solutions to Chern—Simons theory,
i.e., in the set of flat SL(2, C) connections on M that extend from the bound-
ary T2 to the entire bulk. These are characterized by a single polynomial
condition Aps(¢,m) =0, where Ap;(¢,m) is the so-called A-polynomial of
M [4]. This condition cuts out a Lagrangian submanifold

Ly ={Apm,m)=0} C Ppr2={{¢,m)}~C"xC" (1.4)

or a semi-classical state in Chern—Simons theory [1]. We would like to
quantize the A-polynomial, promoting it to an operator AM(E,m; q) that
annihilates the quantum wavefunction or partition function of Chern—Simons
theory on M. More precisely, the operator AM(é,m; q) will annihilate the
“holomorphic blocks” of Chern—Simons theory on M. The holomorphic
blocks are universal, locally holomorphic functions Z§;(m), which can be
summed to form any analytically continued SU(2), SL(2,R), or SL(2,C)
partition function. According to the symplectic structure wps, ¢ and m
should act on Z§;(m) as

0Z5(m) = Z5(¢*m),  mZ5(m) = mZ§(m), (1.5)
so that!

1/2

i = ¢"/*ml, (1.6)

and we expect, following [1], that Ay (¢, 7; ¢) Z$,(m) = 0.

We choose ¢'/? to appear in (1.6), as opposed to ¢ in our “basic” example (1.2),
in order to agree with conventions in later sections. The reason is related to the fact
that A(f,m) is typically a polynomial in m? rather than just m; in terms of m?, the
g-commutation would be Im? = meZ.
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The quantum A-polynomial fl(f, m; q) has made previous appearances in
the guise of a recursion relation for colored Jones polynomials [5, 6] (see
also [7]). Famously, colored Jones polynomials are equivalent to Chern—
Simons partition functions with gauge group SU (2) [8—-10]. Deferring further
details to Section 2, we note that this connection (so far) has provided the
only known tool for finding the properly quantized AM(é,m; q) in various
geometries. As an example, consider the complement of the figure-eight
knot in the three-sphere, M = S3\4;. The classical A-polynomial is easily
calculated® as [4]

Ag, (0,m) =m0 — (1 —m? — 2m* —m® —m®)0 + m*. (1.7)

The quantum version was obtained in [6] by searching for a recursion relation
for the colored Jones polynomials of the figure-eight knot, and found to be

A(l,;9)ay = ¢°2(1 — @) 2 — (1 — ¢*i*)(1 — gin® — (g + ¢*)in*
— @S+ ¢+ 2 (1 - Bitymt. (1.8)

This example explicitly illustrates just how severe ordering ambiguities can
be! We observe that in addition to an extra factor of the form (1 — ¢#m?),
which has no meaning in the classical A-polynomial, monomials like 2m?* in
A(¢,m) split into expressions like (¢ + ¢*)m?* in fl(é, m; q); thus the quanti-
zation is not even linear.

We attempt in this paper to provide an intrinsic, three-dimensional con-
struction of quantum A—polynomials for knot and link complements. Our
method utilizes ideal triangulations of three-manifolds, along with a con-
venient relation between flat SL(2,C) connections and hyperbolic struc-
tures in three dimensions (cf. [1,11]). This relation allows us to use many
well-developed tools of hyperbolic geometry and decompositions into ideal
hyperbolic tetrahedra [12,13].> We make (and justify) the assumption that
quantization at the level of a single tetrahedron is simple. As we will sketch
out momentarily, a tetrahedron A has its own boundary phase space and
its own version of a constraint “Ca =07 (or a Lagrangian submanifold)
that should be quantized to an operator £a that annihilates the tetrahe-
dron’s partition function. The trick, then, is to glue tetrahedra together

2There is a universal factor of (£ —1) in the classical A-polynomials of knot com-
plements in S that was removed here. We will be discussing this factor in detail in
Section 2.5, as well as Section 4.3.

3Nevertheless, it should be entirely possible to use appropriately decorated ideal (topo-
logical) tetrahedra to describe flat connections of any complex gauge group, not just

SL(2,C).
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in an appropriate way, while also preserving information about the opera-
tors £a — and to somehow use this extra information to find an operator
A that annihilates the Chern—Simons partition function on an entire glued
manifold M.

1.2 Symplectic gluing

This brings us to our second major focus: a new perspective on gluing in
topological quantum field theory (TQFT). According to the standard rules
of TQFT, or quantum field theory (QFT), the gluing of two manifolds along
a common boundary should correspond to multiplying together component
wavefunctions or partition functions and then integrating over all possible
boundary conditions at the gluing. This is an exceedingly useful prescrip-
tion for computing partition functions, but it tells us very little about the
operators that annihilate them.

We reformulate the notion of “integrating over boundary conditions” in
terms of symplectic geometry. Semi-classically, we find that gluing corre-
sponds to forming a product of the phase spaces associated to two iden-
tified boundaries, and then taking a symplectic quotient, or reduction, of
this product. In the reduction, we use as moment maps the functions that
would relate boundary conditions at the two boundaries. For example, sup-
pose that we glue together M and N along a common boundary ¥, and that
the phase space Px is two-dimensional. There must be two functions C7, Co
on Py X P_yx that identify the boundary conditions of M to those of N by
requiring C; = C2 = 0. In this case, the resulting phase space of M U N
is a symplectic reduction of a four-dimensional space (Px X P_x) by two
moment maps (C; and Cs), and hence zero-dimensional (empty). This is,
trivially, as expected for a closed manifold M U N. However, when a gluing
happens to be incomplete, so that (say) M U N still has some boundary left
over, the prescription still works and the result is no longer so tautological.
The case of gluing together ideal tetrahedra to form a manifold M with a
left-over torus boundary is precisely such a situation.

The notion of gluing by forming products of phase spaces and then sym-
plectically reducing via gluing functions has immediate implications both
for semi-classical states (a.k.a. Lagrangian submanifolds) and for quan-
tum states and the operators that annihilate them. Roughly speaking,
Lagrangian submanifolds can be “pulled through” symplectic reductions by
projecting perpendicular to flows and then intersecting with moment maps.
One can use this to construct a semi-classical state on a glued manifold from
the states of its pieces. The analogous procedure for quantum operators will
be discussed in great detail in Section 3.
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In terms of partition functions, our new understanding of gluing essen-
tially replaces the rule “multiply and integrate over boundary values” with
an equivalent rule, “multiply and Fourier transform.” Applying this to a
three-manifold with an ideal triangulation leads immediately to a new state
integral model for the holomorphic blocks of Chern—Simons theory.

1.3 Some detail

In order to whet our appetites a bit further, let us actually consider rank-one,
analytically continued Chern—Simons theory on an ideal tetrahedron. We
will discover in Section 4 that the phase space of flat SL(2, C) connections on
the surface OA of an ideal tetrahedron (which could alternatively be viewed
as a four-punctured sphere) is two-dimensional, parameterized as

Poa = {(2,7,2") € (C\{0,1,00})? | 22'2" = —1}, (1.9)
with symplectic structure

Lds d

wan = (ih) - (1.10)

z oz
The complex variables z, 2/, 2”” might be recognized as the hyperbolic shape
parameters of the tetrahedron, while (1.10) is one tetrahedron’s worth of
the Neumann—Zagier symplectic form [13]. (Alternatively, if the z’s were
real, (1.10) would be the Weil-Petersson form on the Teichmiiller space of
the four-punctured sphere [14].)

The condition that a flat connection on the boundary of a tetrahedron
extend through its bulk is given by the Lagrangian submanifold

{LA =z4271 -1 =0} C Pya. (1.11)

(This is also a well-known equation from hyperbolic geometry, relating clas-

sically equivalent shape parameters z and 2’!) Let us use the condition

z2'2" = =1 in (1.9) to eliminate z” from the parametrization of the phase

space. We will argue in Section 5 that £ has the almost trivial quantization
La=2+42"1-1, (1.12)
where, according to (1.10),

28 =qi'2 (g=¢l). (1.13)
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If we denote by 1 (2’) the Chern—Simons holomorphic block of an ideal tetra-
hedron, then we should require that £ ¢(z") =0, or

Y(ge) = (1= 2"y (2). (1.14)
The formal solution to (1.14) is a quantum dilogarithm function [15],
o0
g~ emli2(d )
o@ =J[a-a=™) y d e (1.15)

whose leading asymptotic in the classical i — 0 limit reproduces a (holomor-
phic version of) the volume of an ideal tetrahedron, given by the classical
dilogarithm Lig(2'~1) [12,16]. As explained in [1,2,17] (also cf. [18]), this is
exactly what one would expect for analytically continued rank-one Chern—
Simons theory on an ideal tetrahedron.

Now suppose that a knot or link complement M has an ideal triangulation
{A 3N . In Section 5, our perspective on gluing will identify the quantum
A-polynomial A(E m;q) of M as a distinguished element in the left ideal
IMA generated by the operators L, = 2; + z' '—1fori=1,...,N. (If
M is the complement of a link with v components, there would actually be v
classical equations A, = 0 characterizing flat connections, and a correspond-
ing distinguished left sub-ideal of jMyA generated by at least v quantum
operators.) We will show, under certain assumptions, that the quantum
polynomials A(f, m; q) so constructed are in fact independent of the precise
choice of triangulation for M.

The state integral model predicted by our gluing construction will be
explored in Section 6. We find that the holomorphic blocks Z%(m) of Chern—
Simons theory on a manifold M with triangulation {A;}Y , can be expressed
(roughly) as certain multiple integrals of a product of N tetrahedron blocks

YD)
[ v, (1.16)

The label ‘a’ of the block, corresponding to a choice of complex (SL(2,C))
flat connection A“ on M, determines the choice of integration cycle C* used
on the right-hand side. This is highly reminiscent of the state integral model
for analytically continued Chern—Simons theory presented in [2] (based in

4The tetrahedron blocks actually needed for the state integral model will be nonper-
turbative completions of (1.15), constructed from “noncompact” quantum dilogarithm
functions [19].
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turn on [20]), as well as of the structure of infinite-dimensional integration
cycles for the Chern—Simons path integral that define holomorphic blocks
in [3,21,22]. We believe that the present state integral model is equivalent
to that of [2], although we have not yet attempted to show this directly. In
principle, both state integral models should thought of as finite-dimensional
versions of the infinite-dimensional path integrals in [3,21,22].

1.4 Topological strings

As a final relevant topic in this introduction, let us mention a rather different
place in physics where quantum Riemann surfaces arise: open B-model
topological string amplitudes. The precise context involves the B-model on
a noncompact Calabi—Yau manifold X that is described by an equation

X ={¢¢ = H(zx,y)} c C* x C*2 (1.17)

Such a geometry is typically mirror to a noncompact toric Calabi—Yau in the
A-model. Tt is a fibration of the (z,y) plane by complex hyperbolas, with
the hyperbolas degenerating to a reducible union of lines on the Riemann
surface

S = {H(z,y) =0} C C*xC". (1.18)

After placing a noncompact B-brane at a point z on ¥ and extending in
either the £ or ¢ fiber directions, the open topological string amplitude
becomes (locally) a function of the open string modulus z,

ZoPen — zopen (). (1.19)

It is argued in [23] that in fact Z°P*"(x) should be treated as a wavefunction
that is annihilated by a quantized version of the Riemann surface ¥, i.e.,

H(#,9;9)2°P" (x) = 0, (1.20)

with £§ = ¢(&, where now g = e'%. The known methods for quantizing
H(z,y) involve matrix models [24,25], and express H(&,; ¢) not as a finite
polynomial in its three arguments (cf. (1.8)) but as an infinite series in £,
the terms of which must be computed one by one, with increasing difficulty.
It is tempting to hope that the quantization of H(z,y) in topological string
theory might be related to the quantization of A(¢,m) in Chern—Simons
theory — or, more generally, that quantization of “Riemann surfaces” is
context-independent. Some promising experiments to test this idea were
conducted by [26,27].
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In terms of our present gluing methods, it is very interesting to note that
an ideal hyperbolic tetrahedra behaves very much like a pair of pants in
a pants decomposition of the Riemann surface . Namely, the algebraic
equation for a pair of pants is just

r+yt-1=0 c C*xC* (1.21)

Moreover, the wavefunction Z°P"(z) for a B-brane on a pair of pants obeys
the equation

(& 4+ 971 —1) 2P (), (1.22)

and is given precisely by the quantum dilogarithm (1.15). This is the
B-model mirror of a toric A-brane in C3, otherwise known to be com-
puted by a one-legged topological vertex. One might hope that the glu-
ing of pairs of pants to form a complete Riemann surface ¥ proceeds much
along the same lines as the gluing of tetrahedra to form a complete three-
manifold.

We now proceed, first by reviewing the details of analytically continued
Chern—Simons theory, holomorphic blocks, and A-polynomials in Section 2;
and then by breaking down and reinterpreting the meaning of gluing in
TQFT in Section 3. In Sections 4 and 5 we consider the classical and
quantum aspects, respectively, of ideal triangulations, and show how such
triangulations ultimately lead to quantized A-polynomials. Finally, in Sec-
tion 6 we focus attention back on the actual wavefunctions (holomorphic
blocks) of Chern—Simons theory, and use ideal triangulations and gluing to
construct a state integral model.

2 Analytically continued Chern—Simons theory

In QFT, one generally expects that a partition function Z can be expressed
as a sum of contributions from all possible classical solutions,

Z~ > 2% (2.1)

classical sol’s «

Each Z¢ could be thought of as obtained by quantum perturbation theory
in a fixed classical background. In general, however, an expansion such as
(2.1) would only strictly hold in a perturbative regime.
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As first proposed in [1], and further developed in [3], the notion of “sum-
ming contributions from classical solutions” can be made much more precise
in the case of Chern—Simons theory. The basic result is that for any three-
manifold M and gauge group G, there are a set of well-defined, nonper-
turbative pieces Z“(M; h) that can be used to construct the Chern-Simons
partition function. We will call them holomorphic blocks. Locally, they have
a holomorphic dependence on the Chern—Simons coupling (or inverse level)
h. When M has a boundary, they also depend holomorphically on boundary
conditions.

The holomorphic blocks Z%(M; k) are in one-to-one correspondence with
the set of flat complexified gauge connections {A*} on M [1-3]. They only
depend on the complexified gauge group G¢. The physical partition func-
tions for Chern—Simons theory with compact gauge group G, or noncompact
real gauge group G, or even complex gauge group Gg, are all constructed
from the same blocks. Schematically,

ZG(M;ﬁ)ZZantZ“(M;h), Zge (M5 h) = nPZ%(M; h),  (2.2)

[0}

Zag.(M;h) = chx Z(M;h) Z%(M; h). (2.3)
The coefficients ngpt, nipht or nifmple" discussed in [3], are the only things

that depend on the precise form of the Chern—Simons theory being con-
sidered. For many three-manifolds, the set of flat G¢ connections is finite,
and so the sums here are finite as well. Unlike the general QFT case (2.1),
the left- and right-hand sides in these expressions, properly interpreted, are
meant to be exactly equal.

It is the blocks Z¢(M;h) that are actually annihilated, individually, by
the “quantum Riemann surface” A(é, m; q) that forms the central focus of
this paper. (On a perturbative level, this statement was one of the main
observations of [1,2].) In this section, we take some time to review the struc-
ture of (2.2) and (2.3), and to properly understand the relation between the
classical A-polynomial A(¢,m), the quantum A-polynomial fl(é, m;q), flat
connections, and partition functions. Although the actual Riemann sur-
face A(¢,m) is intrinsically associated to the complexified rank-one gauge
group G¢ = SL(2,C) (or to G =SU(2), or Ggr = SL(2,R)) and a knot
complement M = M\ K, there exist corresponding classical varieties A and
quantum operators A for any gauge group and any oriented three-manifold
with boundary [2,17], so we will try to make general statements whenever
possible.
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2.1 The structure of Chern—Simons theory

For compact real group G, such as G = SU(2), the standard Chern—Simons
action on an oriented three-manifold M is

Tos(A) = L/MTr(A/\dA—i—iA/\A/\A), (2.4)

where A is a connection one-form valued in the real Lie algebra g. The
partition function of quantum Chern—Simons theory is calculated by the
path integral

Zeg(M) = / DAeHesA), (2.5)

This acquires a more standard quantum-mechanical form if we identify
Planck’s constant h as the inverse of the “level” k and rescale the action,’

h="T Ses(A) = hles(A) = 5 fo, Tr(ARdA+ S AR AN A). (27)

= Zos(M;h) = / DAerScs(A), (2.8)

Note that, for G compact, the action (2.4) is invariant under large gauge
transformations up to shifts by 27k times an integer; so if k € Z the path
integral (2.5) is well-defined. If G is not compact, this quantization of the
level is not always necessary [28,29].

As proposed in [1], and further discussed and developed in [2,3,21], the
level k or its inverse h can be analytically continued to arbitrary nonzero
complex numbers, so long as large gauge transformations are removed from
the gauge group.® This keeps the actual value of iIcg well defined. Simul-
taneous with the continuation of A, it is useful to allow the gauge connection
A to take values in gc. The initial path integral (2.5) can be viewed as inte-
gration along a real middle-dimensional contour, or integration cycle, in the
space of complexified gauge connections [3]. However, one can also consider

5From a physical perspective, it might be more natural to set i = m/k rather than in/k,
so as to keep h real. For us, it does not make much difference, since we will analytically
continue in % anyway. The conventions for 4 here differ from those of [2] by a factor of
two:

ﬁhere - 2href. [2]- (26)

SMathematically, a somewhat different analytic continuation for Jones polynomials was
considered in [30], though its precise relation to physics is unclear.
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many other integration cycles. As long as the real part of the exponent ilcg
tends to —oo at the endpoints of a cycle, the corresponding path integral
remains well defined.

At fixed arg(k) (or arg(h)), the set of well defined integration cycles —
i.e., the cycles leading to a finite path integral — forms a vector space over Z
(i.e., a lattice). A basis {C'®} for this space is simply obtained by starting at
any critical point a of the Chern—Simons functional and flowing “downward”
from it such that Re(ilcg) decreases. In other words, one forms stationary
phase contours by downward flow from saddle points. The critical points
of the complexified Chern—Simons functional are just flat G¢ connections
A“, and it is well known that the set of flat connections on many three-
manifolds is finite. Such three-manifolds include the complements of any
knot K in a closed, oriented three-manifold M, so long as M\ K has no closed
incompressible surfaces and appropriate boundary conditions are imposed
at the excised knot or link [4]. In such cases, we immediately find that the
basis C,, is finite.”

The outcome of the analysis of [1] and later [2,3] briefly summarized
here, is that any analytically continued Chern—Simons path integral can be
written as a finite sum of contributions from different critical points,

Zos(M:h) = 3 o Z85(M: B). (29)
(03
The asymptotic expansion of each Z&g(M;h),

Z8s(M: 1) "= exp <;,LSO + - ) (2.10)

corresponds to a perturbative expansion of SL(2,C) Chern—Simons theory
in the background of a fixed flat connection A® [1,2]. Nonperturbatively,
each Z&q(M;h) can in principle be obtained by evaluating a Chern-Simons
path integral on the downward-flow cycle C'* originating from the complex
G critical point A® in the space of complexified gauge connections [3]. The
blocks Z&4 (M ; h) are universal, in the sense that they depend on G¢ but not

"To be completely precise, large gauge transformations act nontrivially on the critical
points. If we remove large gauge transformations from the gauge group, then the actual
critical points of the action come in a finite set of infinite families, each family being the
large-gauge-transformation orbit of a single flat connection . The classical Chern—Simons
action only differs by 27ikZ when evaluated on different elements of the same family. The
net effect of this is to introduce extra factors of €™* in the ma coefficients of sums like
(2.9) below, which plays a critical role in, e.g., understanding the Volume Conjecture, but
will be of minimal importance here.
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on any particular real form G. Moreover, they locally have a holomorphic
dependence on both A and on potential boundary conditions.

The coefficients n, in (2.9) do depend on and indeed encode the actual
integration cycle used for a particular path integral [3]. For example, if
Gc = SL(2,C), the natural real integration cycle C' corresponding to non-
analytically continued G = SU(2) Chern—Simons theory is written as C°P* =
doa nePtC,, for some ncP'. Similarly, the natural real integration cycle CSPlit —
S, niPC,, for nonanalytically continued Gg = SL(2,R) theory leads to

some other set of n{P"’s. Thus, the actual SU(2) and SL(2,R) partition
functions are written as two different sums, as in (2.2).

We could also have considered honest, physical G¢ Chern—Simons theory,
and tried to analytically continue it. For a complex gauge group, the general
Chern—Simons action takes the form (cf. [1,11,28])

ICS(A;t,f):;/ ’I‘r(A/\dA+2A/\A/\A)
™ JM 3

t — 2
+8WA/HQMMA+3AAAAA) (2.11)

In order for Icg to be real, t and ¢ should be complex conjugates, but we
can analytically continue them as separate, independent complex variables.
Simultaneously, the gc-valued connection A should be analytically contin-
ued to a (g¢)c-valued connection. However, since (gc)c =~ gc @ gc, a (g¢)c-
valued connection is really just two copies (namely A and A, viewed inde-
pendently) of a gc-valued one. The analytically continued Chern—Simons
partition function then takes the form [1, 3]

ZES(M; R F) = 3 nas Z8s(M3 1) Zos(M; ), (2.12)

a,a

where o and & label flat A and flat A connections, respectively, and we have
set

4
h="1 p="11 (2.13)
t 7

The blocks Z&g(M;h) of (2.12) are identical to those of (2.9). The nat-
ural “real” integration cycle C'* in the space of complexified connections
(namely, the middle-dimensional cycle where A is actually the conjugate of
A) leads to a coefficient matrix ng 5 that is diagonal, although for a general
integration cycle the n, s can be arbitrary.
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2.2 Flat connections and the A-polynomial

For most of this paper we specialize to a three-manifold M that is the
complement of a knot (or sometimes a link) in a closed, oriented manifold M,

M = M\K, (2.14)

typically with M = S3. We also take our gauge group to be nonabelian of
rank one, i.e., SU(2), or SL(2,R), or even SL(2,C). It makes no difference
precisely which group is chosen, since we are only interested in holomorphic
blocks Z%(M;h). These blocks will always be labelled by flat SL(2,C)

connections A% on M.

What, then, are the flat SL(2,C) connections on a knot complement?
Flat connections are fully characterized by their holonomies, up to gauge
equivalence. Since SL(2,C) is an algebraic group, the set of flat connections
forms an algebraic variety

X = Hom(m (M), SL(2,C))/conjugation, (2.15)

called the SL(2,C) character variety of M. The complex dimension of com-
ponents of X is always > 1 for a knot complement M = M\K [12] (for a
link complement, the dimension is at least as big as the number of link com-
ponents), but, in general, it can become arbitrarily large [31]. To simplify
our discussion, we can additionally assume that our knot complements M
have no closed incompressible surfaces, which assures that dim¢ X =1 [4].
However, this assumption does not appear strictly necessary.

In Chern—Simons theory on a knot complement, one must specify gauge-
invariant boundary conditions on the boundary torus M ~ T2. Such bound-
ary conditions are also given by holonomies, up to conjugation, on two
independent cycles of this torus. A standard basis of cycles is given by
the so-called longitude and meridian of T2, which are canonically defined
for a knot complement in S3: the meridian x is a small loop linking the
(excised) knot once, and the longitude is a cycle A\ that intersects p once
and is null-homologous in M — essentially a projection of the knot itself to
the boundary torus. These cycles are sketched in figure 1. Since the fun-
damental group 71(7?) = Z x 7Z is generated by loops around the meridian
and longitude cycles and is abelian, the SL(2,C) holonomies around p and
A can be simultaneously brought to normal form,

m ok { %
/LN< 0 m! >7 AN(O -1 >> (2.16)
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Figure 1: Meridian p and longitude A cycles in M. Here, we are looking from
“inside” M the boundary torus OM = T? is the boundary of a neighborhood
of the thickened knot K.

where * can be 1 if the eigenvalues coincide and otherwise * = 0. The Weyl
group Zs of SL(2,C), a residual gauge symmetry, acts on the matrices (2.16)
to simultaneously exchange (¢,m) « (£71, m™1).

Naively, the two eigenvalues (¢,m) € (C*)?/Z? parameterize the classical
boundary conditions in Chern—Simons theory. However, both classically
and quantum mechanically, it is only possible to specify one element in this
pair. Classically, this is clear when the dimension of the character variety
(2.15) parameterizing representations of 71 (M) into SL(2,C) is 1: for both
matrices p and A of (2.16) to be part of the same representation some relation
between ¢ and m must be imposed. This turns out to be true even when X
has components of dimension > 1 [4,32]. The relation between ¢ and m is
algebraic and takes the form

A(l,m) = 0. (2.17)

Aside from presently unimportant technical details, this is the definition of
the classical A-polynomial [4]. It has been shown that the variety

{A(¢,m) =0} C (C* x C*)/Z? (2.18)

is birationally equivalent to X in many cases — for example, there is always
birational equivalence on the components of X and {A(¢, m) = 0} containing
hyperbolic flat connections [33].

Put a little differently, the space of flat G¢ connections Prz = (C* x
C*)/Zsy on the boundary torus is the classical phase space of analytically
continued Chern—Simons theory [1]. A “classical state” of Chern-Simons,
i.e., a flat connection, is described by the condition that a flat connection on
the torus extends to be a flat connection on all of M, and this is precisely
the condition A(¢,m)=0. Thus, to describe a good classical boundary
condition one can specify either m or ¢, but not both independently. We
will always choose to specify m. Then the number of flat connections on M
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with fixed m is simply equal to the degree of the A-polynomial in £. Each
solution to A(¢,m) = 0, counted with multiplicity if necessary, corresponds
to a holomorphic block in the expansion

Z(M;m;h)cs = Znang(M;m;h), (2.19)

where now the Zgg’s are locally holomorphic functions of the boundary
condition m.

As one varies m and different branches of the surface A(¢,m) =0 inter-
sect, a block Z&g(M;m;h) may pick up contributions from other blocks
Zgé(M ;m; h).  Simultaneously, the coefficients n, will jump in order to
keep the left-hand side (LHS) continuous. This is a version of the Stokes
phenomenon that was discussed at length in [3].

Semi-classically, the holomorphic, analytically continued Chern—Simons
action (2.4) induces a holomorphic symplectic structure on the complexified
classical phase space Prz = (C* x C*)/Zy = {(¢,m)}/Zs, given by (cf. [1,
28,34, 35])

k 2
wrz = - Tr(6ANOA) = 7 dlog? A dlogm. (2.20)

More commonly, this is written in logarithmic variables as

2
w2 = %dv Ndu, C=¢e", m=e"| (2.21)
i

Since the Chern—Simons action is first-order in derivatives, this symplec-
tic structure contains no “time derivatives” of u or v; rather, the conjugate
momenta to coordinates u and v are coordinates themselves. Upon canonical
quantization, the “Hilbert space” of analytically-continued Chern—Simons
theory with torus boundary is identified with the space of functions of u or
of v, but not both. We will work in the representation where the holomor-
phic blocks, vectors in this “Hilbert space,” are functions of u as in (2.19).
Invariance under the Weyl group action on Ppz requires the holomorphic
blocks to be invariant under m < m™!, or u < —u.

We have intentionally put “Hilbert space” in quotes here. In physics, a
phase space is usually endowed with a real symplectic form, not a holo-
morphic one. Quantization then leads to either a finite-dimensional vector
space (if the phase space is compact), or to something like the space of
L? functions of half the real phase space coordinates. For example, if we
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were quantizing honest SU(2) Chern—Simons theory on the torus, the phase
space would be Pepy = (81 x 81)/Zs, and the Hilbert space Hj}, consisting
of level-k representations of affine su(2), would be finite-dimensional [8,35].
Similarly, if we consider SL(2,R) Chern—Simons theory, the phase space is
Psplit = R2/Z5 U (S')?/Zs, and the Hilbert space is Heplit = L*(R) @ Hy. In
the actual case of complex SL(2,C) Chern—Simons theory, the phase space
is Pex = (C*)?/Zs as above, but the real symplectic form is w ~ tdv A du +
tdv A du [1,28]. Expressing the phase space as Pex = (R? x (51)?)/Z5 leads
to Hex = L2(R) ® Hy..

In contrast to these physical theories, the quantization that we are describ-
ing here is holomorphic. In terms of quantizing an algebra of operators and
(eventually) talking about things like the quantum A-polynomial, there is
no problem with this. Indeed, it is the usual state of affairs in, e.g., deforma-
tion quantization [36]. More interestingly, holomorphic quantization of the
algebra of operators has a natural interpretation in terms of brane quanti-
zation [37,38]. It becomes very clear in the brane picture that the quantized
algebra of operators (a space of “(Bec, Bee)” strings in [37]) depends only on
the complexified form of the underlying real phase space.

In addition to the abstract algebra of operators, we find ourselves dealing
here with a holomorphic version of wavefunctions themselves, namely the
holomorphic blocks. These do not live in an honest Hilbert space. They
do, however, live in a vector space — essentially a space of holomorphic
functions — that constitutes a representation of the operator algebra. In
favorable circumstances, the holomorphic blocks may also be thought of as
analytic continuations of wavefunctions in an actual L? Hilbert space. In our
case, it is particularly tempting to consider them as analytic continuations
of functions in the L?*(R) component of Hgpjix above.

Coming back to the complexified phase space Pp2 of the torus, the equa-
tion A(¢,m) = 0 that describes a classical state must be implemented as a
quantum constraint on the Chern—Simons wavefunction [1]. The symplectic
form (2.21) leads to a commutation relation

(2.22)

in the algebra of operators. For the classical coordinates ¢ and m, this
implies that

I =g, I=¢", m=e", (2.23)
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qg=-e" (2.24)

As described in the introduction, we then expect that the polynomial A(¢, m)
is promoted to an operator A(E,m; q) that annihilates the Chern—Simons
partition function [1,2] — or, more precisely, the holomorphic blocks Zg&g
(M;u; ). The elementary operators ¢ and 7 act on (locally) holomorphic
functions f(u) as

I (u), if(u) =uf(u), (2.25a)
0 f(u) = e2% f(u) = flu+h/2), i flu)=e" f(u). (2.25b)

2.3 Recursion relations and A

Up to now, almost all the known examples of operators A(é, m;q) have
been derived by finding recursion relations for colored Jones polynomials
[5,6,39,40]. (A notable exception includes work using skein modules for
the Kauffman bracket, e.g., in [7,41,42] and later [43].) The fact that a
relation of the form A(Z,7h;q) Zos(u) = 0 translates to a recursion relation
for Jones polynomials has been explained in [2,17]. After understanding the
structure of SU(2), SL(2,R), and SL(2,C) partition functions as explained
above, the relation simply amount to the facts that (1) the colored Jones
polynomials Jy (K, ) can be expressed as SU(2) partition functions on knot
complements, and (2) there then exists an appropriate change of variables
between (u, /) and (N, q). Let us review briefly how this works.

Physically, the colored Jones polynomial Jy (K, q) is the nonanalytically
continued SU(2) Chern-Simons partition function on the three-manifold
M = S3, with the insertion of a Wilson loop operator along a knot K [8-10].
The variable ¢ in Jy (K, q) is the same ¢ that appears throughout this paper;
it is related to the (quantized and renormalized) Chern—Simons level k as

g=e'=e i (2.26)

The positive integer N, on the other hand, is the dimension of the SU(2)
representation used for the Wilson loop. By standard arguments (see e.g.
[35,44,45]), such a Wilson loop creates a singularity in the Chern-Simons
gauge field A, precisely such that its holonomy on an infinitesimally small
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circle linking the knot is conjugate to

irN
. ( er 00 ) (2.27)
0 e &

Indeed, one can do away with the knot completely if we simply excise it
from M = S3, and enforce the condition that the gauge field has a holonomy
(2.27) at the new boundary T2 of the knot complement. Put differently, this
is just the statement that in three-dimensional Chern—Simons theory Wilson
loops are interchangeable with t Hooft loops.

From (2.27), we see that we should identify the standard holonomy eigen-
value u with imN/k. Therefore, the appropriate change of variables is

N 2”1). (2.28)

(u,h) = (iﬂ'?, -

The operators ¢ and 7 then act on the set of Jones polynomials
{In(K;q)tNen as

CIN(K;q) = I (K q), mn(K;q) = ¢V In(K;q), (2.29)

and the relation A((,7;q) Zos(u) = A(4,1m;q)Jn(K;q) = 0 is precisely a
recursion relation for Jy(K';q). The order of the recursion is equal to the
degree of A(¢,m) in ¢, and hence also equal to the number of flat SL(2,C)
connections on M = M\K.

Such a recursion relation for Jy(K;¢q) was found quite independently of
analytically continued Chern—Simons theory in [5,6]. It was argued there
that the recursion operator A(é,m; q) should reproduce the classical A-
polynomial A(¢,m) when ¢ — 1. From the point of view of Chern—Simons
theory, it is fairly clear that there should always exist an operator A(f, m;q)
with the properties that: (1) it gives a recursion relation for the Jones poly-
nomials of knots in any manifold; and (2) it reduces to the character variety
in the classical limit ¢ — 1. Of course, our goal here is to actually construct
A(@, m; q) from first principles.

2.4 Logarithmic coordinates

In many places in this paper, we will find it convenient to lift complexified
phase spaces like Pp2, introduced in Section 2.2, to their universal covers.
In other words, instead of using exponentiated coordinates m and ¢ on Pyp2,
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we will use genuine logarithmic coordinates v and v, with no assumption
of periodicity under shifts by 2mwi. As far as the analysis of an operator
algebra and the construction of operators like fl(g, m;q) are concerned, the
choice of logarithmic versus exponential coordinates is unimportant. How-
ever, it ends up being highly relevant when considering analytically contin-
ued wavefunctions and holomorphic blocks. In particular, it appears that
the holomorphic blocks Z&(M;u;h) for a knot complement M naturally
are nonperiodic, locally holomorphic functions of u, rather than functions
of m =e".

One way to see that holomorphic blocks should be nonperiodic functions
of u is to extend the analysis of analytic continuation of [3] from knots
in closed three manifolds to knot complements M = M\K. For example,
suppose that we consider SU(2) Chern—Simons theory on knot complement
M = M\K, where the meridian holonomy has eigenvalue

irN

m=e“=¢ek, (2.30)

as in (2.27) above. In standard SU(2) Chern-Simons theory, both N and
k must be integers. Moreover, there exist large gauge transformations —
essentially transformations winding around the meridian loop — that trans-
form N to N + 2k, confirming the fact that v and u 4+ 2xi describe equiva-
lent boundary conditions. (In the dual picture of a knot K inside a closed
manifold M, as described in Section 2.3, it is precisely these gauge trans-
formations that assure us a representation of dimension IV on the knot is
equivalent to one of dimension N + 2k; cf. [35].)

Now, both integers N and k of SU(2) Chern—Simons theory can be analyt-
ically continued to be arbitrary nonzero complex numbers. The analytic con-
tinuation in k requires one to stop quotienting out by large gauge transforma-
tions on M in the Chern—Simons path integral measure. As described briefly
in Footnote 7, this introduces multiplicative ambiguities by factors of the

: 7r2a
form e?mak — e_4T, a € Z, into the definition of an analytically continued

partition function, or holomorphic block. Similarly, analytic continuation
in N forces one to stop quotienting out by the large gauge transformations
wrapping the meridian cycle on the boundary of M. Fundamentally, this
results in holomorphic blocks that are (locally) holomorphic but no longer
periodic in u. Practically, the effect of not including large gauge transfor-
mations on the meridian cycle is to introduce multiplicative ambiguities of
the form

e?mibN — e%, beZ (2.31)
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into the definition of a holomorphic block, and it is very easy to see that
(2.31) is not invariant under v — u + 27i for arbitrary complex h.

The setup of analytically continuing both N and k is the one relevant to
the current paper (as it was in [1,2]), and we will eventually find that our
holomorphic blocks are indeed not periodic. Thus, we will almost always
use lifted logarithmic coordinates on complex phase spaces. In addition to
the complexified phase space Pr2 discussed in Section 2.2, we will introduce
very similar, two-complex-dimensional phase spaces Pya for tetrahedra in
Sections 4-5 (cf. (1.9) in the Introduction section). These phase spaces are
again described most naturally in logarithmic coordinates. In Section 6.1,
we shall see very explicitly that the appropriate conformal block ¥ (2’) for a
tetrahedron is not a function of the exponentiated variable 2’ but actually
a function of Z' = log 2. It breaks Z’ — Z' + 2mi periodicity by nonpertur-
bative effects precisely of the form (2.31).

2.5 The structure of A and A

The operator A(é, m; q) introduced in Section 2.2 has several important but
highly nontrivial properties. First, it is a polynomial in ¢ as well as in the
operators 7 and 7. A priori, one could instead have expected an arbitrary
infinite series in the coupling constant A.® The fact that all A-corrections
can be re-summed into a finite number of ¢’s follows from the construction
of A(é,m; q) as a recursion relation for colored Jones polynomials. This
property will also follow easily from our construction in Section 5.

Second, we implied in Section 2.2 above that the operator fl(é, m; q) anni-
hilates not just a complete Chern—Simons partition function as in (2.9), but
every individual holomorphic block Z&(M;u;h). Perturbatively, this was
already evident from the analysis of analytic continuation in [1]. Further con-
firmation appeared in [2], where actual solutions to A(¢, 1; q) Z(u) = 0 were
constructed using a state integral model. Although the solutions of [2] were
described perturbatively, as saddle point expansions of finite-dimensional
integrals, one could try to extend the integration contours of [2] by down-
ward flow to define nonperturbative Z&g(M;u;h)’s as well.

More generally, we observe that in any quantization scheme the order of
the difference equation A(¢,m;q) Z(u) = 0 is deg, A(¢, m), which is equal to
the number of flat SL(2,C) connections on M. Therefore, the difference

8In the analogous case of the topological B-model, almost all the known examples of
the operator H(Z,y) are only expressed as such infinite series.
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equation has a vector space of solutions of dimension deg, A(¢, m), and the
basis elements of this vector space can be chosen to be precisely the functions
Z&s(M; h;u). As discussed in [1,2], the semi-classical asymptotics of the
solutions Z&g(M;h;u) are in one-to-one correspondence with the classical
solutions to A(¢,m) = 0 at fixed m = e*. In particular,

Z&g(M; hyu) ~ exp [2/ v(u)du + O(logh) | , (2.32)
B J A(em)=0

where the integral is performed over the “ath” branch of the A-polynomial
curve, and higher-order terms also have a geometric meaning corresponding
in terms of flat connections A® [1,2,46]. (The lower limit of integration
is fixed, but we do not need to specify it here. Changing it would simply
multiply Z&g(M; h;u) by an overall constant, producing an equivalent basis

element in the vector space of solutions to A(Z, ; q) Z(u) = 0.)

In fact, a little more is true about the solutions to A(Z,h;q) Z(u) =0
and the structure of A(E, m; q). Recall that, classically, the A-polynomial of
a knot in M = S? always contains a factor (¢ — 1). This corresponds to an
abelian component of the character variety X — a component where all the
SL(2,C) holonomies of a flat connection are simultaneously diagonalizable,
hence the representation of 7; (M) factors through GL(1). The abelianiza-
tion of 7 (M) = 71 (S3\K) is just Hq(S3\K) ~ Z, generated by the merid-
ian loop in the knot complement. Therefore, the equation ¢ — 1 = 0 simply
reflects the fact that for an abelian connection the holonomy along the lon-
gitude loop must be trivial. For example, the classical A-polynomial of the
unknot complement is

U: A({¢,m)=1(-1, (2.33)

since the longitudinal holonomy in S\ U is always trivial; whereas the trefoil
(31), figure-eight knot (41), and 52 knot complements have A-polynomials’

31: ((—1)(+mP),
41 0 (=1 (m*® — (1 —m® —2m* —m® + m®) +m?), (2.34)
5 1 (0—1)(mMe +m*(1 —m? + 2m° + 2m® — m!0)¢?

— (1 =2m®+2m* + m® —m')e + 1).

°It is known that any nontrivial knot in S® has a nontrivial A-polynomial; in other
words, there are always components besides (¢ — 1) [47].
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Quantum- mechamcally, in the case of knot complements in S3, it is still
the case that A(f,1;q) has a factor of (f —1). This factor always appears
on the left of the quantum operator, and factors out in a nontrivial man-
ner. To be more precise, the recursion relations of [5,39] for colored Jones
polynomials always take the form

A"(0,1n; ) In (K5 q) = B(m; q), (2.35)

where the operator Ana(@ ,M; q) is a quantization of the classical A-polynomial
with the factor (¢ — 1) removed. This inhomogeneous recursion implies the
homogeneous recursion

1 ~ ~
TAna(fam; q) In(K;q) =0 (2.36)
= (B(m;q)l — B(q"*1; q)) A" (2,15 q) Jn (K q) = 0. (2.37)
The operator on the LHS of (2.37) is what we have been calling A(?, 7; q).

The inhomogeneous recursion (2.35) actually carries a little more infor-
mation than the homogeneous version (2.37). Most importantly for us, it
seems to be the case that the operator A" (¢, 1;q) identically annihilates

all blocks Z&g(M;h;u) except for the block corresponding to the abelian

flat connection. The abelian block Zéoé aL]DQI)(M ;h;u), in contrast, satisfies

(2.35) with nonzero B(m;q). We therefore have a situation that is very
familiar from the theory of inhomogeneous differential equations: the func-
tions Z (a;éabel) (M; h;u) constitute a vector space of general solutions to the
homogeneous equation

Aa(0,1m; q) ZETF™V (M hsu) = 0, (2.38)

whereas the abelian block is a special solution (with fixed normalization!)
to the inhomogeneous equation

AW (0,1 q) 255" (M ) = B(msq). (2.39)

Any linear combination of nonabelian solutions plus one copy of the abelian
block will then solve the inhomogeneous equation. Presumably, the colored
Jones polynomial is a linear combination precisely of this type.'?

The structure appearing in equations (2.38) to (2.39) and the fact that
A"*(¢,1; q) alone is sufficient to annihilate nonabelian blocks of the Chern—
Simons partition function is by no means proven. Such a structure became

10T his fact was actually verified for the figure-eight knot in [3].
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apparent!! from studying examples of partition functions built with the
state integral model of [2,20]. It is very important for us, since, in the
remainder of the paper, it is the nonabelian operator Ana(é,m; q) that we
actually construct.

Our methods for quantizing SL(2,C) Chern-Simons theory will use the
relation between flat SL(2, C) connections and hyperbolic metrics. Although
only a single flat SL(2, C) connection on a three-manifold can correspond to
a global hyperbolic metric [1,28], we will see that the tools of ideal hyperbolic
triangulation can construct more general flat connections as long as they are
nonabelian. Unfortunately, hyperbolic geometry can never detect an abelian
flat connection, and this is why, for a knot complement in S3, we at best
find a quantized version Ana(f, m; q) of the reduced A-polynomial, with the
¢ — 1 factor removed.

For knot complements in more general manifolds M # S3, abelian connec-
tions should again factor out as a component of the classical A-polynomial,
though perhaps not in the form (¢ — 1). Again, the ideal hyperbolic trian-
gulations of Sections 4-5 will only be able to describe and quantize reduced
A-polynomials, where these factors have been removed. Something interest-
ing can be gained from this statement. The fact that we can always quantize
a reduced, nonabelian A-polynomial by itself implies that in general, for a
knot complement in any three-manifold, the full quantum A-polynomial
should always have a left-factorized structure as in (2.36) and (2.37).

The precise relation between flat SL(2,C) connections and hyperbolic
geometry will be discussed further in Section 4.3. It is the hyperbolic “glu-
ing variety” there that corresponds to A" here. It is unfortunately not yet
clear how to quantize the entire A-polynomial, i.e., including abelian factors
like (¢ —1). The answer no doubt rests on understanding the physical basis
for the inhomogeneity of (2.35) or (2.39). With the exception of this subsec-
tion and Section 4.3 we remove the distinction “na” from A" (¢, m), simply
referring to this reduced object as the “A-polynomial.” We hope that this
will cause no confusion.

2.6 Generalizations

Although most of this paper focuses on rank-one nonabelian Chern—Simons
theory on knot complements, hence on quantization of A-polynomials, much

"We thank H. Fuji for very useful discussions on this topic and for sharing important
examples related to this structure.
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of the discussion in this section extends easily to more general situations
(cf. [2,17]).

The simplest generalization would be to let a three-manifold M be the
complement of a link, M = M\L. Then, instead of describing classical flat
connections on M by a single equation A(¢, m) = 0, there would be a system
of equations

Al(él,ml, . ,&,,ml,) == Al,(él,ml, e ,&,,ml,) = 0, (2.40)

where v denotes the number of components of L. There is one pair of
meridian and longitude holonomies for each of the v torus boundaries. Alge-
braically, these equations generate an ideal. Geometrically, they describe a
Lagrangian submanifold of the phase space

Porvt = {(u1,v1,...,uy,v,)} =~ ((C* x C*)/Zs)", (2.41)

with symplectic structure
2 v
w=o z; dv; N\ du;. (2.42)
1=

Upon quantization, the v equations (2.40) become quantum operators acting
on a “Hilbert” space that, in analytic continuation, can be described as
a space of holomorphic functions f(ui,...,u,). The quantum operators
A; (Ez,mz, q) generate a left ideal in the noncommutative ring C(g)[f;*!

)

A

mitl . 0, 1, ), defined by the equations

Aj(ly, i, ..., 4y, ,;q) ~ 0, (2.43)
where “~” means “annihilates holomorphic blocks when acting on the left.”
In the classical limit ¢ — 1, this ideal reduces to the commuting ideal (2.40).

Since ideal triangulations of link complements are no more complicated
than ideal triangulations of knot complements, extending the methods of
the present paper to the case of link complements is trivial. We usually
ignore this generalization for simplicity of presentation.

Two further generalizations would be to three-manifolds with general Rie-
mann surface boundaries, and to higher-rank gauge groups. From the point
of view of Chern—Simons theory, still not much changes. For a boundary
that is a higher-genus surface, one must carefully choose holonomies on dual
cycles to build a phase space. Once that is done, there must again be
a Lagrangian submanifold describing the flat connections on the boundary
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that extend to the bulk. In the case of higher-rank gauge groups, the increase
in rank simply increases the number of independent holonomy eigenvalues
that one should keep track of for any given boundary cycle. For example,
on a torus, a simple Lie group of rank r will lead to » meridian eigenvalues,
r longitudinal eigenvalues, and a 2r-dimensional phase space. We expect
that the subset of flat connections that extend to the bulk always contains
a Lagrangian submanifold as its highest-dimensional component; then the
defining equations for the Lagrangian should be quantized as a system of A
operators (cf. [40]).

From the point of view of ideal triangulations, our practical building
blocks for operator quantization in Sections 4 and 5, both higher-genus
surfaces and higher-rank groups require some refined methods. Allowing
higher-genus surfaces will necessitate modifying what we call “vertex equa-
tions” in Sections 4 and 5, because the standard hyperbolic structures on
ideal tetrahedra cause all triangular pieces of boundary around ideal vertices
to be Euclidean — and Euclidean triangles cannot be glued together to form
anything but a torus. In the case of higher-rank gauge groups, the triangula-
tions themselves will require a refinement and further decoration, essentially
a three-dimensional version of the two-dimensional refinement suggested by
Fock and Goncharov in [48]. Another perspective on this necessary refine-
ment appears in [49]. We hope to implement such generalizations in the
future.

3 Gluing with operators in TQFT

The partition function of any QFT on a spacetime manifold M can be
constructed by cutting M into pieces, calculating a partition function as
a function of boundary conditions on each piece, and integrating out over
boundary conditions to glue the pieces back together. Quantum mechani-
cally, “integrating out boundary conditions” is precisely expressed as taking
an inner product of wavefunctions in the Hilbert space associated to a bound-
ary. For example, if an n-dimensional manifold M is cut into pieces M; and
My along an (n — 1)-dimensional ¥ as in figure 2, then

Z(M) = (Z (M) | Z(M2))w(s)- (3.1)

Alternatively, since basis elements in H(X) are just choices of quantum
mechanical boundary conditions, labeled (say) by some symbol “u,” we can
consider both Z(Mj;u) and Z(Ma;u) to be functions of u. Then

Z(M) = / du Z(My; ) Z(Ms; w), (3.2)
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Figure 2: Gluing wavefunctions in QFT.

possibly with some complex conjugation of Z(Mi;u) if appropriate.

When a QFT is topological, the process of cutting and gluing becomes
especially simple. In particular, since nothing in the theory depends on a
metric, a Hilbert space H(X) can be canonically associated to the topo-
logical class of a boundary X. Similarly, wavefunctions such as Z(M)
and Z(My), Z(Ms) € H(X) only depend on the topologies of M, My, M.
These ideas led to the mathematical axiomatization of TQFT by Atiyah
and Segal [50].

In the case of Chern—Simons theory, the boundary Hilbert spaces H(X)
can be obtained systematically by geometric quantization. The classical
phase space of ¥ is, by definition, the space of flat gauge connections on X
modulo gauge equivalence,

P(X) = {flat connections on X} /gauge, (3.3)

and Chern-Simons theory induces a symplectic form w ~ [, Tr(6A A §A) on
this space; cf. (2.20). Geometric quantization then turns P(X) into a Hilbert
space L(X), roughly thought of as the space of L? functions that depend on
half the coordinates of P(X). We described this in Section 2 for the case
y=T2

Now, in many quantum field theories, one can work not only with wave-
functions but with operators (“Schrédinger equations”) that annihilate the
wavefunctions. Indeed, wavefunctions could be implicitly defined as the
solutions to Schrédinger equations, up to some normalization. In Section 2,
we saw how this worked for Chern—Simons theory. The set of flat connec-
tions on a boundary ¥ that can extend to be flat connections throughout
the bulk manifold M forms a Lagrangian submanifold

L(M) = {flat connections on M}/gauge C P(X). (3.4)
The equations that cut out this submanifold are (somehow) promoted to

quantum operators, which in turn should all annihilate the partition func-
tion, or physical wavefunction.
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Unfortunately, although cutting and gluing in terms of wavefunctions is
a very familiar process in TQFT, cutting and gluing in terms of opera-
tors is not. This is what we mean to investigate in the present section.
In particular, we want to know what happens to operators when two mani-
folds My and M, are glued together along a common boundary . If either
of M; or My has additional (unglued) boundaries, then the glued manifold
M7 U Mj still has a boundary, and there should therefore be a new operator
that annihilates Z(M; U My) as a wavefunction. We want to explain how
this new operator is obtained in terms of the original ones for My and Mo.

3.1 A toy model

To begin, let us consider an example where the gluing of wavefunctions
is already fairly well understood. Since we have just reviewed analytically-
continued rank-one (e.g., SU(2) or SL(2,R)) Chern—Simons theory on three-
manifolds with torus boundary, we can take this as our TQFT.

(As discussed in Section 2.2, it does not quite make sense to talk about
Hilbert spaces in an analytically continued theory. Rather, one should con-
sider the analytic continuation of functions in a real Hilbert space. This
really makes no difference to the illustrative construction here. For the
reader’s complete peace of mind, we can assume to be discussing an honest
SL(2,R) Chern-Simons theory, and focus only on the L?*(R) part of the
Hilbert space Hgpiit defined on page 497. That is, we assume that all phase
space coordinates u and v are real and take all Hilbert spaces to be L*(R)
or L?(RY), as appropriate. Some more serious and practical implications of
analytic continuation to a gluing construction for holomorphic blocks will
be taken up in Section 6.)

The three-manifold to be considered appears in figure 3. We begin with
two oriented manifolds M and N, which have torus boundaries ¥; and
(—X2) U X3, respectively. The minus sign in front of ¥y indicates a reversal
of orientation, which will be quite important. These two manifolds are
glued together by identifying 3; = —Xo = X, producing a manifold P whose
boundary is the torus ¥3. We expect that the wavefunction Z(P) can be
expressed as an inner product, or an integral over boundary conditions at X,

Zp = (Zm | ZN)ms (3.5)

and we want to recast this statement in terms of operators. Namely, given
an operator Ajs and operators Ay 1, Ang2 (there are two of them, since N
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Figure 3: The TQFT gluing setup. Holonomies around the cycles A; and
i (not necessarily longitudes and meridians as defined in Section 2) have
eigenvalues ¢; and m;, respectively.

is a link complement) that annihilate the partition functions Zy; and Zy,
respectively, we want to construct the operator Ap that annihilates Zp.

Semi-classically, we know that for each boundary ¥; there is a phase space
Py, consisting of flat connections at that boundary. We can choose a basis of
“longitude” and “meridian” cycles for each torus. These are not necessarily
the actual longitude and meridian as defined in Section 2.2 (our manifolds
are not necessarily knot or link complements in S®). We can, however chose
the cycles such that (A1, 1) on 3q are identified with (Ag, u2) on X9 during
the gluing. Each Py, can then be described by holonomy eigenvalues as
{(¢;,m;)} € C* x C*, or, in lifted logarithmic coordinates ¢; = e”* and m; =
e"i (cf. Section 2.4), as

Ps; = {(vi,u;)} ~C x C, (3.6)
modulo a Zy Weyl group action. The Weyl group quotient simply requires

that wavefunctions (as in (3.20) below) ultimately be invariant under u; <
—u;. The phase spaces associated to the boundaries of M and N become

Pom = Px, = {(vi,u1)}, Pon =P-x, X Pgy = {(va, uz,v3,u3)}. (3.7)
The symplectic forms on these spaces are
ih

ih
EwaM = dvy A duq, IEWQN = —dwvs A dug + dvs A dus, (3.8)

where dvs A dug acquires an extra minus sign due to the orientations.
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After gluing together M and N, we construct a manifold P whose bound-
ary phase space is

Pop = Ps; = {(’U37u3)}a (3'9)
with symplectic structure

ih
%UJ@F = dvs A dus. (310)

Although we know this must be the end result of the gluing, it is useful to
understand how Pyp can be systematically obtained from Pyp; and Pyy .

To this end, observe that the classical identification of boundary con-
ditions ¢ = f5 and mj; = mo during the gluing can be expressed as the
vanishing of two gluing constraints

Ci=u1—us=0 and Cy:=v; —vy=0. (3.11)

As functions on the product phase space Py, n) := Pom X Pan, they have
trivial Poisson bracket

[C1, Calpp. = 0. (3.12)

This suggests that we could use C; and Cy simultaneously as moment maps
to perform a (holomorphic version of) symplectic reduction on P, n). A
basic counting of coordinates shows that the (complex) dimension of the
quotient will be 6 — 2 x 2 = 2, exactly right for the phase space Pyp. More-
over, the coordinate functions ug and vg have trivial Poisson brackets with
C1 and Cj, so they are invariant under the flow of these moment maps and
descend to be good coordinates on the quotient. Thus,

Poap = (Pam x Pan) /| (Cey x Cey). (3.13)
To be a little more explicit, it is convenient to introduce canonical conjugates
I'M:=vy and T9:= —uo (3.14)
to Cp and Cb, respectively. These satisfy
ih
1, CilpB. = [I'2,ColpB. = > L, ilps. = [y, uslp.. = [I'i, v3lp.B. = 0.
(3.15)
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Therefore, the I'; are interpreted as coordinates along the flows generated
by the respective moment maps Cj;, and

Pop = ((PaM X PaN) ‘01:02:0> /(1“1 ~ Ty + 11,0y ~ Ty + 1) (3.16)

Still staying semi-classical, let us next consider the Lagrangian mani-
folds in the phase spaces Py and Pyy that describe semi-classical states.
For M, which has a single torus boundary, the set of flat connections that
extend from the boundary to the bulk is given by the standard A-polynomial
Aprr(£1,m1) =0. For N, which has two boundaries, the set of flat con-
nections in the bulk is described by two equations Ap i(f2, ma,l3,m3) =
An2(l2,ma,l3,m3) = 0. These equations cut out a Lagrangian submani-
fold of Py, just as Apy = 0 cuts out a Lagrangian submanifold of Pyy. It is
then easy to see that upon setting m; = ms = m and £; = f» = £ and elim-
inating m and ¢ from all three equations Ay = Ay;1 = An2 = 0 we should
find the classical A-polynomial for P, Ap(¢3,m3) =0. However, we could
also describe this elimination a little differently and more suggestive of the
symplectic reduction on phase spaces.

In order to pull Lagrangian submanifolds through symplectic reduction,
let us start with a symplectic basis of coordinates (v, uy, —ve, —ug, v3, u3) on
the product phase space Py, n), and change coordinates to a new symplectic
basis (Fl, Cl, FQ, CQ, V3, U3), with

vy =TI, (3.17a)
up = Cp —I'y, (3.17b)
—vg = Cy — I'y, (3.17¢)
ug = —I'y, (3.174d)
v3 = V3. (3.17e)
usz = ugz. (3.17f)

The A-polynomials for M and N cut out a product Lagrangian submanifold
Lv,ny in PNy, described by

Ap (b, mz) =0, (3.18a)
AN (e, mo, l3,m3) =0, (3.18b)
An2(l2, M2, l3,m3) = 0. (3.18¢)

Then, the process of finding Ap(¢3,m3) consists of (1) using (3.17) to rewrite
equations (3.18) in terms of new variables /3, m3 and

I
)

1:=¢ cl = eCl, Yo 1= eFZ, Co = eCZ; 3.19
Y
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(2) eliminating all the ; from the equations, so that one equation in (c1, ¢,
l3,m3) remains; and (3) setting ¢; = co =1 in this last equation. After
eliminating +; and 72, the one remaining equation in (ci,co, 3, m3) has
trivial Poisson bracket with the I';, so it descends to a well-defined function
on the slice C; = C5 = 0, and that function is the A-polynomial for P.

Geometrically, we have projected L5 ) perpendicular to flow lines and
intersected it with the zero-locus of the moment maps. We can also say this

somewhat more algebraically. Equations (3.17) define an ideal in C[vlﬂ, u{d,

vy L u%tl,vgcl,ugtl], which after changing to new symplectic variables is an
ideal in the isomorphic ring (C[’ylil, 01117 72i1, c2il, ¢E, mgﬂ] Eliminating v,
and -9 produces the intersection of this ideal with the subring (C[clﬂ, céd, €3ﬂ,
mSﬂ], a so-called elimination ideal. In this case, the elimination ideal is gen-
erated by a single equation, and setting ¢; = co = 1 in this equation recovers

Ap(fg,, m3) = 0.

Now, let us quantize. The phase spaces Pans, Poan, and Pyp give rise to
respective “Hilbert” spaces

Hom ~{f(u)}, Hon ~ {f(uz,u3)}, Hop ~ {f(us)} (3.20)

For concreteness, we can suppose that Haonr, Hon, and Hyp consist of mero-
morphic functions that are square integrable on the real line. We can also
form a product space

Moy = Hom ® Hon ~ {f(u1,uz, us)}. (3.21)

On any of these these spaces, operators 4; and ¥; act as

GGy = i) B = Do AC ) (3:22)

We expect that the Chern—Simons partition functions Z;(u1) and Zy

(ug,us3) are annihilated by some quantized operators flM(él,fnl;q) and a
pair Ay ;(l2,m3,3,7m3;q), i = 1,2, respectively:

Ay -Zy =0, Any-Zn=Ans-Zy=0. (3.23)

In the semi-classical symplectic reduction above, we began by creating a
product phase space Py, ) With a product Lagrangian submanifold. Here,
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it similarly makes sense to define a product wavefunction
Zuny(ur, ug, uz) = Zyr(ua) Zn (uz, us) € Hon vy, (3.24)

which is annihilated by all three operators AM, ANJ, and AN72. We will
write this suggestively as

A~

Apr(€1,ma;q) ~ 0, (3.25a)
A1 (b, g, 3,103 q) ~ 0, (3.25b)
A o(la, g, 03,1035 q) ~ 0, (3.25¢)

where "~ (0”7 means “annihilates the wavefunction when acting on the left.”
Indeed, these three equations are the generators of an entire left ideal of oper-
ators that annihilate Z(u1,u9,us): we can add, subtract, and multiply by
other operators on the left while staying within the ideal. Being precise, this
is a left ideal in the g-commutative ring C(q)[élil,mlil,@2¢1,m2i1,@3i1,
mat.

In order to perform the quantum gluing, we cannot simply set Cy =y —
Giy or Cy = b1 — B9 to be zero in the full algebra of operators on Hys v,
because these elements are clearly not central. However, just as in the semi-
classical case, we could set Ci=Cy=01in an operator equation that only
involved generators that commute with C’l and C’g. So, let us do this. In the
algebra of linear, “logarithmic” operators on Hys ), the only generators

that do not commute with C’l and C’g are
[ =0, and T'y:= —as. (3.26)

We can perform a canonical change of basis in the operator algebra by
inverting these relations, i.e., setting

oy =11, (3.27a)
4y = Cy — Iy, (3.27b)
—tg = Cy — Ty, (3.27¢)
fig = —T'y, (3.27d)
by = D3, (3.27¢)
iy = i3 (3.27f)

Exponentiating, we have

=41, mi=¢é3"" la=¢c& 14, ma="%"" (3.28)



514 TUDOR DIMOFTE

Then, replacing ?; and 7h; with the new exponentiated operators, equations
(3 25) define a left ideal in the isomorphic g-commutative ring C(g)[§1%?,

1 5%l ¢ ot 3%l 3*1]. By adding, subtracting, and multiplying on
the left, we can eliminate 4; and 42 from the new equations (3.25), leaving
(ideally) a single equation'?

A(ey, 6, 03,703;.q) ~ 0. (3:29)
More formally, (3.29) is the generator of the intersection of our left ideal
with the subring C(q)[¢1T!, &1, £3F s ™).

By construction, the product wavefunction Z(uq,uz,us) is annihilated by
(3.29),

A(él7627£37m3;q) Z(Clac27u3) =0 (330)

To understand this equation a little better, although, we should perform the
symplectic transformation (3.27) on the “Hilbert” space H s, n) as well as on
the algebra of operators. This requires some version of a Fourier transform
on Hy,n) to be defined. Our previous stipulation that wavefunctions be L?
on the real line should be sufficient for this. Switching to a representation
of the operator algebra that consists of functions {f(C1, Ca,u3)}, with

~ h ~
i f(C1,C,u3) = §3Cif(C1,C2,u3), Cif(C1,Co,uz) = C; f(Cr,Co, us),
(3.31a)

. h .
03f(C,Co,u3) = §3u3f(01, Cy, u3), G f(C1, Ca,uz) = uz f(Cy, Cy, us),
(3.31b)

the product wavefunction Z(uj,ug,ug) formally becomes

du Z(u + Cy, u, u;;)eﬁc?u

(3.32)

Z(Ul,UQ,U3) = 2(017027u3 \/7

This expression follows systematically from the Weil representation of the
symplectic group [51,52], discussed further in Section 6.2.

12We should note that polynomial algebra and elimination of variables in a g-
commutative ring work much the same way as their classical fully commutative cousins.
We will say more about this in Sections 5.2 and 5.5.
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The actual wavefunction that we know we should obtain for the glued
manifold P is just the integral (3.32) with C; = Cy =0,

ZP(U3) = 2(01702711“3)}01 Co= duZ U u, Ug)

=)

du ZM ZN(U ’LL3) (3.33)

F

However, because the operator fl(él, ¢, U3, ms; q) in (3.30) is a function of
generators that all commute with ¢; and ¢, we can also consistently set
Cp = Cy =01in (3.30) to find that

A(1,1,03,73;q) Zp(u3) = 0. (3.34)

This leads us to the conclusion that the “glued” operator Ap must be

Ap(ls, 133 q) = A(é1, éa, b3, 1035 q) (3.35)

‘01,0220

By construction, the classical ¢ — 1 limit of this final operator is simply the
classical A-polynomial Ap(¢3,m3) = 0.

3.2 The toy is real

The above example contains all the features of a generic gluing in any TQFT
— particularly in any physical TQFT with honest Hilbert spaces. It also
contains all the ingredients that we will need to glue tetrahedra in our ana-
lytically continued context. Let us therefore summarize schematically but
generally what should happen when two oriented manifolds M and N are
to be glued together along a common boundary component X3,

Y C oM, X cC-0N, (3.36)
to form an oriented manifold
P=MUsN, (3.37)

possibly with 9P # 0.

A TQFT typically assigns phase spaces Pgpr and Pyy to the full bound-
aries of M and N, respectively. These are symplectic manifolds. Semi-
classical states for the TQFT on M and N are described by Lagrangian
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submanifolds
Ly C Poyi, Ln C Pan. (3.38)

The equations that cut out Ly and Ly can be thought of as generating
ideals Zp; and Zy in the algebras of functions on Pyps and Py, respectively.

Upon quantization, the boundary phase spaces become Hilbert spaces
Honr and Hypn, and the complete quantum wavefunctions or partition func-
tions of M and N are elements of these Hilbert spaces,

Zyu € Honv, ZnN € Han. (3.39)

Each wavefunction is annihilated by the quantization of the functions that
define the semi-classical Lagrangians £j; and Ly. Thus, corresponding to
Ty and Ty, there are left ideals Ty and Zy in the algebras of operators on
Hay and Hgy such that

Iy -Zy =0, In-Zy=0. (3.40)

In order to glue together M and N to form P semi-classically and quantum
mechanically, one should:

(1) Semiclassically, form the product phase space Porruan = Panm X Pan-

(2) Select g functions {C} }?:1 on Pyryuan to be gluing constraints, so that
setting C; = 0 for all j classically identifies the boundary conditions
on ¥ C 9M with the corresponding boundary ¥ C —9N. The number
of constraints is

g = dim Py, (3.41)

where Py is the semi-classical phase space of 3, a subfactor of both
Pam and Py . The gluing functions should have trivial Poisson brack-
ets among themselves.

(3) Construct the phase space Pyp as a symplectic quotient, using the
g Cj’s as moment maps. Schematically, if G is the group action
generated by the vector field w‘lde, then

Par = Pomvon | (I1; Gj) = Poruon /(I1; G;) ‘c].:o- (3.42)

Note that dim Pyp = dim Py + dim Pyy — 2 dim Py.

(4) Form the product Lagrangian Ly, n) = L X LN C Poyuon- Then
construct the Lagrangian Lp € Pyp by first projecting L ) onto
the quotient PaMuaN/(Hj G;), then intersecting with C; = 0V j.
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4a. Algebraically, the ideal Zp corresponding to Lp in the algebra of
functions on Pyp is formed by starting with Zp; UZx (as an ideal
in the algebra of functions on Pyasan ), removing all elements that
have nontrivial Poisson bracket with the C; (i.e., forming an elim-

ination ideal), and setting C; = 0.

(i) Form the product Hilbert space Haonruan = Hon ® Han. This
is a quantization of Pyyruan, with some polarization induced
from the constructions of Hyys and Hgny. Recall that in geo-
metric quantization a polarization consists of dim Pyrron /2
commuting vector fields. To form the glued Hilbert space Hgp,
first change the polarization on Pyps 9N so that g of the com-
muting vector fields are the moment map vector fields w_lde,
leading to an isomorphic Hilbert space ﬁaMuaN ~ HomuoN -
In ﬁ@MuaN, wavefunctions depend explicitly on C; as “coordi-
nates,” so it makes sense to set

Hop = ﬁaMuaN‘Cj:[)- (3.43)

The change of polarization here is typically implemented via
some version the Weil representation of the symplectic group.
(ii) It follows that the wavefunction of P is

ZP = ZM X ZN |Cj:07 (344)

where f — f is the preceding isomorphism of Hilbert spaces.
(iii) Finally, construct the operator(s) that annihilate Zp by using
the quantum version of Step 4 above.
iiia. Algebraically, form the union left ideal f( M,N) = Iy x Iy in the

algebra of operators on Hyprugn, or (equivalently) on Homuon -
Remove all elements of f( M, ) that do not commute with the quan-
tized glulng constraints C to obtain an elimination ideal Jp. Set
C’ =0in Jp to find the ideal of operators Ip that annihilate Zp,

Ip = (j(M,N) N {operators commuting with C'j’s}> N(C; =0) (3.45)
= i P A P = 0.
While the order of operations done in finding the semi-classical

Lagrangian £p was not important, the order of operations in (3.45)
is critical.
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Note that the construction here makes sense even when P has no bound-
ary, and Zp is just a number. Then the ideal Zp is empty, and Step 4(ii)
simply reproduces the usual TQFT inner product Zp = (Zy | ZN)Hs,-

Our goal in the remaining sections is to apply the above gluing scheme to
a three-manifold P that is a knot complement with an ideal triangulation.
After properly understanding the phase space, Hilbert space, and wavefunc-
tion of individual ideal tetrahedra, we will find that following the above
steps yields both the quantum fl—polynomial of P and the wavefunction —
a holomorphic block — that it annihilates in an extremely straightforward
manner. (In the rest of the paper, the glued knot complement is usually
called ‘M’ rather than ‘P.’)

4 Classical triangulations

As described in the introduction, our approach to finding both the Chern—
Simons partition function on a knot complement M and the operator A
that annihilates it relies on cutting M into ideal tetrahedra. In Section 3,
we learned how to systematically obtain the annihilating operator and wave-
function on a glued manifold in terms of the operators and wavefunctions
of pieces. In order to apply this machinery to tetrahedra, however, we
must first understand how Chern—Simons theory on tetrahedra behaves.
In the current section, we therefore begin by studying ideal triangulations
(semi)classically.

In the beginning, we will simply review a well-known mathematical pro-
cedure of constructing a flat SL(2,C) connection on a three-manifold in
terms of flat SL(2,C) structures on tetrahedra. Since SL(2,C) is the dou-
ble cover of the isometry group PSL(2,C) of hyperbolic three-space, one
can describe SL(2,C) structures much more easily and intuitively by using
hyperbolic geometry. We follow standard references, such as the classic notes
of W. Thurston [12] and the work of Neumann and Zagier [13], and well as
e.g., the more recent [53-55]. However, we will try to recast the classic con-
structions in just the right language to make the eventual quantization of
Chern—Simons theory on triangulations (Section 5) both easy and natural.

4.1 Ideal triangulation

An ideal topological tetrahedron is an ordinary tetrahedron with neighbor-
hoods of its vertices removed. Two such tetrahedra are shown in figure 4.
It is possible to glue ideal tetrahedra together to form any knot (or link)



QUANTUM RIEMANN SURFACES 519

Figure 4: Triangulation of the 47 knot complement. The gluing of faces is
indicated by calligraphic letters.

Figure 5: Developing map for the boundary of the 41 knot complement. The
four triangles (A) on the bottom come from the vertices of the tetrahedron
on the left of figure 4, and the triangles (V) on top come from the tetrahedron
on the right. The torus is being viewed from outside of M (from inside of
the thickened knot).

complement M = M\K, for M oriented and compact, in such a way that
the small triangular pieces of boundary around the vertices join together to
form the torus boundary of M (cf. [12]). This is called an ideal triangulation
of M. The edges and faces of tetrahedra in this triangulation are part of
M, so the gluing must be continuous there. The vertices, however, do not
belong to M, and can be thought of as lying instead on the excised knot
K C M. Therefore, the gluing need not be (and generally is not) continuous
at the vertices themselves.

As an example, consider the complement of the figure-eight knot 44 in
the three-sphere, M = S3\4;. This knot complement can be built from just
two tetrahedra, as shown in figure 4 [12]. If we number the vertices of the
two tetrahedra as in this figure, then the small triangular boundaries around
the eight tetrahedron vertices glue together to form the torus of figure 5.
Such a drawing of the triangulated boundary torus is called a developing
map. Notice that the final, glued triangulation of M has only two distinct
edges (blue and green in figure 4), which each intersect the boundary torus
twice.

Any two ideal triangulations of a knot complement are related by a
sequence of so-called 2-3 Pachner moves, illustrated in figure 6. A non-
ideal simplicial triangulation (which includes its vertices) would admit a “1
to 47 move as well, which places a vertex at the center of a single tetra-
hedron to subdivide it into four new ones. However, a 1 to 4 move in an
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V‘”

Figure 6: The 2-3 Pachner move.

ideal triangulation would create or destroy spherical boundary components
(around newly created vertices), thereby changing the glued manifold, so it
cannot be allowed. For ideal triangulations, the 2-3 moves are sufficient.

Now, let us put hyperbolic structures on ideal tetrahedra. Recall that
hyperbolic three-space H? can be visualized as the upper half-three-space,
or, conformally, as the interior of a three-ball. The boundary of H? is a
two-sphere, thought of as the Riemann sphere, or C U {oco}. By definition,
an ideal hyperbolic tetrahedron is a tetrahedron in H? all of whose vertices
lie on OH? and all of whose faces are geodesic surfaces. An ideal hyperbolic
tetrahedron is illustrated in figure 7.

The positions of the vertices of this tetrahedron on OH? = C U {oo} fully
determine its geometric structure. In fact they overdetermine it: the isom-
etry group PSL(2,C) acts as the Mobius group (i.e., by fractional linear
transformations) on the boundary, and allows any three points to be fixed.
Thus, the only independent parameter of the hyperbolic structure on an
ideal tetrahedron is a single complex cross ratio, the so called shape param-
eter of the tetrahedron.

If we place three vertices of the tetrahedron at 0, 1 and co as in Figure 6,
the fourth vertex lies at the shape parameter z. It then turns out that the

O
OH? OH>

Figure 7: An ideal hyperbolic tetrahedron.
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dihedral angles on two opposing edges of the tetrahedron are actually equal
to arg(z), and we label these edges by ‘z’ as indicated. However, there exist
two other pairs of edges, and it is only natural to associate to them their
own parameters z’ and 2”, so that the dihedral angle around any edge is
equal to the argument of its shape parameter. It is easy to see that 2z’ and
2" are just conjugate cross ratios, given by

1 1
= "'=1--. 4.1
: 1—2’ : z (4.1)

The three shape parameters or edge parameters z, 2/, and 2" should really
be treated symmetrically. From (4.1), we see that they must satisfy two
relations (giving one independent parameter in the end). The two relations,
however, are not on equal footing. First, the product of shape parameters
around any vertex of the tetrahedron is

222" = —1. (4.2)

This ensures, in particular, that the sum of angles'® in the little boundary
triangle that is formed by truncating any vertex is m; hence we call (4.2)
the verter equation. The second relation between shape parameters can be
written in any one of the three equivalent forms

z+ () t—1=0, (4.3a)
2+ ()t —1=0, (4.3b)
Myt —1=0. (4.3¢)

Roughly, these equations contain the requirement that a hyperbolic struc-
ture is consistent through the interior of a tetrahedron.

In terms of SL(2,C) or PSL(2,C) structures, the interpretation of equa-
tions (4.2) and (4.3) (and the distinction between them) becomes much
clearer. The shape parameters z, 2/, and 2” can actually be thought of as
squared partial holonomy eigenvalues along small bits path running from one
face to another (through a dihedral angle) around an edge. Their product
on any closed path is an honest gauge-invariant holonomy eigenvalue. The
vertex equation, the fact that the product of shape parameters at any vertex
is —1, is simply the condition that a flat PSL(2,C) connection exists on the
boundary of an ideal tetrahedron. On the other hand, equations (4.3) are

13In a hyperbolic triangulation, the vertices are truncated by geodesic horospheres, so
the boundary triangles are Euclidean. Note that only Euclidean triangles could line up as
in Figure 5 to form a torus.



522 TUDOR DIMOFTE

precisely the conditions that a flat connection from the boundary extends
through the interior.

One way to justify this interpretation of equations (4.2) and (4.3) is to
think of the boundary of a tetrahedron A as a triangulated, four-punctured
sphere S2. The moduli space of flat PSL(2,C) structures on S7 is a nat-
ural complexification of its Teichmiiller space. Moreover, our edge param-
eters z, 2/, 2" are nothing but complexifications of Checkov-Fock coordi-
nates [14,56] (a.k.a. Thurston’s shear coordinates) on this triangulated
surface — with the restriction that holonomy eigenvalues at each puncture
equal —1.14 »15 A standard counting argument immediately shows that
the dimension of Teichmiiller space, equal to the expected complex dimen-
sion of our phase space, is (# edges — # punctures) =6 —4 =2. A lit-
tle further thought leads to the conclusion that this phase space is indeed
Pon = {(z,7',2") € (C\{0,1,00})? | 22'2" = —1}.

Equations (4.3) also have an interpretation in terms of Teichmidiller theory.
Namely, they are related to a “diagonal flip” transformation that pushes a
PSL(2,R) structure from one hemisphere of A = S7 through to the other.
Hence, our claim that equations (4.3) are precisely the requirements that a
complexified flat PSL(2,C) connection extends through the bulk of A.

One great advantage of using two-dimensional shear coordinates is that
they automatically come with a representation of the Weil-Petersson sym-
plectic form, which is precisely the symplectic structure induced by Chern—
Simons theory. We find that the classical phase space for Chern—Simons
theory on a tetrahedron, Pya = {(z,7,2") € (C\{0,1,00})3 | 22'2" = —1},
has the symplectic form

_dz dZ
1? N (4.4)

w = (ih)

(This is a complexification of the Weil-Petersson form on Teichmiiller space,
written in shear coordinates [14].) Better still, we can lift to linear, loga-
rithmic coordinates Z, Z’, Z” such that

z=e?, 2z =e7, 2 =e7. (4.5)

14YWe would also like to thank R. Kashaev for extremely enlightening discussions regard-
ing the connection between 3d hyperbolic geometry and 2d moduli spaces.

5For interesting and possibly related recent applications of shear coordinates in other
areas of physics, see [57,58].
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As discussed in Section 2.4, holomorphic blocks will explicitly depend on
these lifted coordinates. Then

Poa :=1{(2,2',2") € (C\2miZ)3 | Z + Z' + Z" = in} |, (4.6)

with
(ih)wa =dZ A dz' =dZ' NdZ" = dZ" N dZ. (4.7)

Equations (4.3) define a Lagrangian submanifold

LA :={z+ J 1= 0} C Pana (4.8)

that parameterizes the set of “classical solutions in the bulk” of A.

In defining Pya in (4.6), we have purposely excluded the points z, 2/, 2" =
1, as well as z, 2/, 2" € {0,00}. Tt is clear from figure 7 that these values lead
to degenerate tetrahedra, whose hyperbolic volumes are ill-defined. In terms
of flat connections, the values of the classical Chern—Simons action would
become ill-defined.

As we have defined them, both the phase space Pya and Lagrangian L£a
are completely invariant under cyclic permutations of the shape parameters,

22 =2 -2 (4.9)

The cyclic order (4.9) is determined by the orientation of a hyperbolic tetra-
hedron, and it will be important for us to give all tetrahedra in the trian-
gulation of an oriented manifold M the common orientation induced from
that of M. Then z, 2/, and 2’ are always assigned to edges in the order
appearing in figure 7.

4.2 Gluing, holonomies, and character varieties

When gluing ideal hyperbolic tetrahedra together to form a three-manifold
M, extra conditions must be imposed to ensure that the hyperbolic struc-
tures of different tetrahedra match up globally. These are the equivalent of
the TQFT gluing conditions discussed in Section 3. They require that the
total angle circling around each distinct edge in the triangulation of M is 2w
and that the hyperbolic “torsion” around the edge vanishes. Equivalently, in
terms of flat connections, they simply require that the PSL(2,C) holonomy
circling around any edge in M be the identity, which must be the case since
this holonomy loop is contractible.
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Figure 8: Hyperbolic triangulation of the 4; knot complement.

To translate this to equations, suppose that an oriented knot complement
M is composed from N tetrahedra A;, i1 =1,...,N. FEach tetrahedron
initially has its own independent set of shape parameters (z;, 2}, z!') with
zizlz! = —1. Computing the Euler character of the triangulation quickly
shows that there must be exactly N distinct edges in the triangulation. (In
the 47 knot example of figure 8, the two distinct edges were colored green and
blue.) Then, at the jth edge in M, the square of the PSL(2,C) holonomy
eigenvalue — or the exponential of the complexified metric quantity [torsion
+ 4 angle] — is given by the product of all shape parameters that meet this
edge.

To be precise, we can define €(7, j) to be the number of times (0, 1, or
2) that an edge with edge parameter z; in tetrahedron A; is identified with
edge j in M. Similarly, define €(7, j)" and (7, j)” to be the number of times
z; and 2] meet j. Then the gluing constraint at edge j is that

N
¢ = [[4" G (&) " (4.10)

K]
i=1
must equal 1.

As an example, consider the ideal triangulation of the figure-eight knot
complement. Let us assign shape parameters (z,2’,2"”) and (w,w’,w”) to
the two tetrahedra in its triangulation, as in figure 8. Every dihedral angle
of these two tetrahedra appears twice in the developing map, since each
edge intersects the boundary torus twice, so we can also label angles in the
developing map with z’s and w’s as in figure 9. From the developing map,
it is clear that the products at the two edges are

2.1, 2 I
Chlue = 272w w", (4.11a)
2 2
Cgreen = 22w (4.11b)
Upon using vertex equations zz'z” = —1 and ww'w” = —1, the two con-

straints cplye = 1 and Cgreen = 1 become equivalent. In general, there is a
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Figure 9: Hyperbolic developing map of the 4; knot complement.

single constraint among the N gluing functions, coming from the fact that
every edge parameter in a tetrahedron meets two edges, i.e., Zﬁvzl e(i,j) = 2.
Then the constraint is

N N
[T = [Tty "= 1. (4.12)
j=1 i=1

In the case of the figure-eight knot, we see that cplye Careen = (22'2"

v eqs
ww'w”)? =" 1.

We can also lift the gluing constraints to logarithmic coordinates (4.5).
They take the form of N linear functions

C;:= i (e(i,j)Zi + €(i,§)' Z] + €(i,5)"Z]"), j=1,....,N,  (4.13)
i=1
which must classically satisfy
C;=2m, j=1,...,N. (4.14)
This certainly implies that
cj=e% =1. (4.15)
Note that if we view the C; as functions on the product phase space

P(M,A) = PAl X e X PAN, (416)

which includes the vertex equations, imposing conditions (4.14) is compati-
ble with the constraint

N N
> Cj =2 (Zi+ Z+ Z]) = 2Ni. (4.17)



526 TUDOR DIMOFTE

Figure 10: Meridian and longitude paths for the 4; knot complement.

Of course, there are two more important holonomy eigenvalues that we
would like to compute in terms of the shape parameters: the longitude and
meridian of the boundary torus. The longitude and meridian paths can be
drawn on the developing map, as in figure 10. The rule for computing the
squared eigenvalues 2 or m? is to multiply by shape parameters that are
encircled clockwise and to divide by shape parameters that are encircled
counterclockwise [13,53].16

Alternatively, in lifted logarithmic variables U and V such that

m?=¢eV, ?=¢"| (4.18)

one just adds or subtracts. Thus, for the figure-eight knot we find

U=2-W, (4.19a)
V=Z-W -Z+W'+Z-W'-Z'+W'=22Z-27"  (4.19b)

which implies

m?=eV = Zw™? (4.20a)

—1_,-1 —1_,-1 -2
P =e" = 2" T w " Y T W = 22T (4.20b)

Now, for any oriented, triangulated knot complement M the N — 1 glu-
ing constraints ¢; =1, the N vertex equations zz[z] = —1, and the N
Lagrangian equations z; + zg_l — 1 =0 together describe a one-complex-
dimensional subvariety of (C*\{1})3" = {(z;, 2},2)}. Up to some small
caveats that we discuss in Section 4.3, this is, abstractly, the PSL(2,C)
character variety of M. In the case of the figure-eight knot, we can easily

eliminate variables to obtain a single equation
z1l-2z)w(l—-w)—1=0 c C*xC. (4.21)

In order to lift from PSL(2,C) to an SL(2,C) character variety, one should
in general take appropriate square roots of all the shape parameters in these

0f course “multiplication” and “division” are relative, since holonomy eigenvalues
are only well defined up to the final Weyl group action (£, m) — (£71, m™").
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equations. For the figure-eight knot, the SL(2,C) character variety X is
then described abstractly by a component of

22(1 - 22)w?(1 —w?) —1=0. (4.22)

Since we also have at our disposal the concrete relation between the merid-
ian and longitude holonomies (4.20) and shape parameters, we can combine
them with (4.21) or its lifted version to obtain A-polynomials (cf. (2.15) vs.
(2.18) in Section 2). In general, to obtain the lifted SL(2,C) A-polynomial
of a knot complement in S3, the only square root one ever needs to take
is that of the ¢2 equation. In the case of the figure-eight knot, the proper
square root is

0= —2z2'71, (4.23)
which, combined with (4.20a) and (4.21) immediately leads to (cf. [59,60])

Ay (6,m) =m0 —(1—m? —2m* —m® +m®)y+m*=0 < C*xC*
(4.24)

Of course, this also descends to a variety in the Weyl-group quotient (C* x
C*)/Z,.

For knot complements in S2, or in any homology sphere M, the A-
polynomial is always a polynomial in m? rather than just m [4]. (A physical
explanation of this fact appears in Section 4.2.7 of [3].) This is precisely
why taking a square root of m? is unnecessary. We will often emphasize the
dependence on m? and write A(¢, m?) rather than A(¢,m).

4.2.1 The A-polynomial, symplectically

Above, we reviewed the classical construction of the A-polynomial from
hyperbolic triangulation data. In order to truly understand its quantiza-
tion, however, we must view the A-polynomial not just as a variety in
(C* x C*)/Z2 but as a Lagrangian submanifold in the phase space of the
torus, obtained by symplectic reduction. In other words, we should recast
the classical construction of the A-polynomial in the semi-classical spirit of
Section 3.

To begin, for any given triangulation (M, {A;}Y ), we form a product
phase space P(sa) as in (4.16). This is an affine linear symplectic space,
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with product symplectic structure
N
wara) = (R)Y " dZ; ndZ]. (4.25)
i=1
The coordinate functions Z; and Z! then have Poisson brackets
[Zi, ZilpB. = ih iy (4.26)

The individual Lagrangian equations z; +zg_1 — 1 =0 define a product
Lagrangian submanifold

E(M,A) = {ZZ + Zg_l —1=0 V Z} C p(M,A)- (4.27)

The phase space of the final 72 boundary of M can be lifted to logarithmic
coordinates as

Pro = {(V,U) € C*}, wpe = (2ih)"1dV A dU. (4.28)

We ignore the Weyl quotient for the moment. Recalling the standard con-
vention ¢ = e¥ and m = e¥, it is convenient to define v to be either

Vv
v=g or UZE—i—iTF, (4.29)

depending on which square root of 2 we chose.!'” Then the symplectic form
becomes

wy2 = (i) tdv A dU, (4.30)

with a canonical normalization.

The space Pr2 should be a symplectic reduction of Psa) with the N
linear gluing functions C; used as moment maps. In fact, due to the rela-
tion (4.13), it suffices to take any set of N — 1 C}’s as linearly independent
functions. However, in order for such a set of the C; to be used as simulta-
neous moment maps, they must all have trivial Poisson brackets with each

1"We deeply regret breaking the general rule that capital letters are used for logarith-
mic variables and lowercase for exponentiated ones, but unfortunately there is already a
convention in place for the logarithms v = log ¢ and v = logm in much of the literature.
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other. It is an important theorem of Neumann and Zagier [13] that under
the symplectic structure (4.25) this is precisely the case:

[C;,Cilps. =0 V34,5 €{l,...,N}. (4.31)

Moreover, it was shown in [13] that the affine linear functions U and v have
trivial Poisson brackets with all the C}’s, and precisely the desired canonical
bracket

[v,Ulp B. = ih, (4.32)
with each other.

In the spirit of Section 3, we therefore choose N — 1 independent Cj’s,
say the first N — 1, and complete the set {v,U,C1,...,Cn_1} to a new
symplectic basis of P(ysa) by defining N — 1 new linear functions I'; such
that

L5, Cylps. = ihdj5, L, Ty] =T, U] = [Ij,v] = 0. (4.33)

In the new affine linear symplectic coordinates (v, U, C;,T';) on Par,n), each
moment map C; generates a C translation I'j — I'; + ¢;. Therefore, precisely
as desired, we find!®

/P(M’A)//(Fj — Fj + tj) = P(M,A)/(Fj ~ F]’ + tj) }Cj:27ri = Pre. (4.34)

In order to reduce the product Lagrangian L7a) C Pasa) to a
Lagrangian in Pr2, we must first project £y a) to a codimension-one sub-

manifold of the quotient space P(M’A)/(Fj ~I'j +1t;), then take the inter-
section with the locus C; = 27i V j.

Algebraically, we can first generate an ideal with the defining equations
of ﬁ( M,A)>

Ty = (z+27 =1, (4.35)
This is an ideal in the ring of functions on Py a),

Roway =Clz 275 (L= 2)7 (1= 2) 7Y (mzf + D)7, (4.36)

K3 » 7

where the extra inverted elements 2z, L (1 — z;)~ %, etc. are present to reflect
the fact that none of the z;,z.,z! ever take the values {0,1,00}. The

8Note that the phase space Prp2 here is described in lifted, logarithmic coordinates —
as anticipated in Section 2.4.
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(inverse) transformation of affine symplectic basis ¢ : (21,21, ...,2Zn, Z))

= (v,U,T1,C1, ..., T'n_1,Cn-1) for Ppra) then allows us to pull back the
g:ﬁ:l m:l:2 Cil

: ,vjﬂ, ...], where now

ideal Z s a) to an isomorphic ring C|
;= el (4.37)

This is just a monomial transformation: each of the z; and 2] become mono-
mials in ¢+, m*2, cfl,q/;d. Working in these new variables, we eliminate
the N — 1 ;s from Z (3 a), producing an elimination ideal Jjs. Finally, we
intersect Jy with ¢; =1 Vj to get Zp;. From what we know about ideal
hyperbolic triangulations and character varieties, the ideal Zp; should be
generated by a single equation, the A-polynomial of M,

z¢[=.]M¢%:1::@4M(a7n%). (4.38)

We could now put the Zs Weyl quotient back in the definition of Pr2. The
fact that Ay (¢,m?) = 0 descends to a well-defined equation on the quotient
space (C x C)/Zy = {(U, V)}/(U, V) ~ (—U,—V) results from the observa-
tion that the overall (artificial) orientation of tetrahedra cannot affect the
final construction of the A-polynomial. Flipping the orientation of all tetra-
hedra is equivalent to sending all (2;, 2}, 2/') + (27, 2071, 2/~1) and revers-
ing the cyclic ordering z; « 2| « 2} « z; everywhere. This produces an

A-polynomial Aps(¢~1, m=2) that must be equivalent to Ay (¢, m?).

4.2.2 Example: 4; knot

Since this description of symplectic reduction may have been very abstract,
let us go through it explicitly for the figure-eight knot. We can choose the
“green” edge as the one independent gluing function. We already know

C:=Cgreen =22'+ 2" +2W +W" =21i—Z+Z' — W+ W', (4.39)
U=27 -W, (4.39Db)
v=2-27"+ir (4.39¢)

(note the extra im in v that results from taking the negative square root of
%), and it suffices to chose the dual variable

=w. (4.40)
Then the inverse transformation is

Z=—in+v+U+T, Z'=U+T, W=I, W =-3ri+v+C+T,
(4.41)
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or
z=—ym?l, 2 =ym? w=~, w =—cyl. (4.42)

The ideal Zprn) = (24271 =1, w4 w'~! — 1) can be rewritten as

INE (—ym2+m™ 2yt =1, y—c Iy et 1), (4.43)
Eliminating ~y results in
Iu = (Em*? — (¢ — m? — 2em* — em® — m®)C + em?), (4.44)

and finally setting ¢ — 1, we retrieve the A-polynomial (4.24).

4.3 Hyperbolic versus SL(2,C)

There are several technical but important differences between hyperbolic
structures and SL(2, C) structures, or flat connections, on a three-manifold.
In order to tell a complete story, we must now draw some attention to them.

We begin by recalling the famous fact that on a so-called hyperbolic three-
manifold — defined as a three-manifold that admits any hyperbolic metric
of finite volume — the hyperbolic metric is unique. This is the statement of
Mostow rigidity [61]. If the three-manifold in question happens to have
a boundary and one chooses appropriate boundary conditions, then the
uniqueness property continues to hold. For example, on a knot complement,
one should fix a conjugacy class for the meridian holonomy of the metric;
then, if a finite-volume hyperbolic metric with such a meridian holonomy
exists it will be unique.

One can also consider flat SL(2,C) connections on a knot complement
M = M\K. After fixing the conjugacy class of the meridian holonomy, one
often finds (e.g. when M has no closed incompressible surfaces [4], cf. Sec-
tion 2.2) that the flat connections on M form a discrete, finite set {A“}. If
M admits a hyperbolic metric of finite volume, then precisely one element
of this set, say A& corresponds to the hyperbolic metric. (By “corre-
sponds to” we mean that the flat SL(2,C) connection can be transformed
into the hyperbolic metric and vice versa, with all holonomies matching, as
detailed in [1,11].) Other flat connections correspond to “metrics” that have
curvature —1 but may not be everywhere positive definite; from an SL(2,C)
standpoint, positive definiteness is simply not a natural constraint.
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When asking for the classical A-polynomial of a knot complement M, we
want to know about all the flat SL(2, C) connections, not just the (potential)
geometric one. Global hyperbolic geometry on all of M is unlikely to help us
in this regard. However, the construction of hyperbolic structures in terms
of ideal tetrahedra, as described in Sections 4.1 and 4.2, is almost sufficient.
To understand this, note that an ideal hyperbolic tetrahedron with shape
parameter z (or z/, or z”’) has a hyperbolic volume [12,16]

Vol(A,) = D(z) := ImLiy(z) + arg(1l — z) log | 2]
= D(2') = D(2"). (4.45)

When Im(z) > 0, the volume is positive; but if Im(z) =0 or Im(z) <0,
the volume is correspondingly zero or negative. In the construction of Sec-
tions 4.1 and 4.2, we put no restriction whatsoever on z aside from requiring
z # 0,1, 00 (in order to avoid completely degenerate tetrahedra). This allows
us the freedom to access many of the SL(2,C) connections on M that do
not correspond to positive-definite metrics. Moreover, it becomes possible
to analyze SL(2,C) structures on manifolds such as the complements of
torus knots in S3, for which no complete positive-definite hyperbolic struc-
ture exists at all. As an example, in Section 5.5, we will explicitly use ideal
triangulations to quantize the A-polynomial for the trefoil.

Unfortunately, the shape parameters of ideal tetrahedra cannot be used
to parameterize quite all SL(2,C) structures. Even more regrettably, it is
not completely known yet precisely which flat connections can be obtained,
or even how the set of attainable connections depends on the choice of an
ideal triangulation. We can list several facts that are known, and formulate
a guess at what the general picture could be.

First, let us note that ideal hyperbolic tetrahedra by themselves can never
be used to construct abelian (or reducible) flat connections. The basic rea-
son behind this is that the SL(2,C) holonomies corresponding to an ideal
hyperbolic triangulation of a three-manifold are constructed from matrices
that are either upper or lower triangular — hence possibly parabolic —
but never diagonal. This can be seen explicitly either from constructions
involving three-dimensional developing maps [59,62], or from more combi-
natorial viewpoints as in [55]. In the case of a knot complement in S3, i.e.,
M = S3\ K, this means that an ideal hyperbolic triangulation never detects
the single abelian (¢ — 1) factor of the SL(2,C) A-polynomial.

In general, given a knot complement M with an ideal triangulation {A;},
one can use the methods of Section 4.2 to construct a “gluing variety” that
is cut out by a single polynomial equation as in (4.24) or (4.38). For clarity,
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let us denote this polynomial as A%}ueA(ﬂ, m?). Tt divides the actual SL(2,C)
A-polynomial Ay (¢, m?), but it is not equal to Ay (¢, m?). At the very
least, by what was said above,

Apr(€,m?) = (€ — 1) x A5/ (¢,m?) x (possibly other factors).  (4.46)

In other words, A%Iu A (¢,m?) contains some combination of the irreducible

factors of Aps(¢,m?), with the exception of (¢ —1). It was argued in [59]
(see also [62]) that if M admits a finite-volume hyperbolic metric and the

triangulation A is sufficiently generic, then A%UZ(E, m?) must contain at

least the irreducible component of Ay (¢, m?) containing the geometric flat
connection A(8eom),

The condition that the triangulation A be “sufficiently generic” is moti-
vated by the fact that certain “bad” triangulations give an empty gluing
variety, i.e., A%[UZ (¢,m?) = 1. This happens when an edge e in the triangu-
lation belongs to only one tetrahedron. Suppose that in this one tetrahedron
the edge has a parameter z.. Then the condition that the total angle around
edge e is 27 results in the classical gluing equation z, = 1, which contradicts
the general nondegeneracy condition on shape parameters, z. # 0, 1, co.

In Section 4.4, we will argue (but not quite prove) that if two triangu-
lations A, A’ are related by a 2-3 Pachner move and both triangulations
are sufficiently generic — in particular, neither triangulation is “bad” in the
above sense of containing a degenerate edge — then the two gluing vari-
eties A%IEZ and A%IEZ, must be equal. If this were indeed proven, and if it
were possible to go from one good triangulation of a knot complement to any
other by using a chain of 2-3 Pachner moves that in turn only involved good
triangulations, then the gluing variety A%}lz would be a unique invariant of
M. It could simply be defined by choosiné any good triangulation. This is
the scenario that we hope is actually realized. In addition, we could imagine
that at least for knot complements in S3, we have exactly

Ap(6,m?) = (€ —1) A3PS (6,m?)  (for “good” {A}), (4.47)

with no other factors involved.

So far, to the best of our knowledge, no data has invalidated (4.47). How-
ever, not much data is available. In general, we only know that (4.46) holds.
One can sort the infinite triangulations of M into a finite number of classes
according to which irreducible components of Ay;(¢, m?) are contained in the
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glue
M,[A]
an invariant of M and its triangulation class.

e

corresponding A (¢,m?). Then the gluing variety A%}f[ Al (¢,m?) becomes

For the remainder of this paper, we will largely ignore issues of triangula-
tion class and whether or not various factors of Ay (¢, m?) appear in gluing

varieties A%UZ(E, m?). On the one hand, for many simple knots (includ-

ing all the examples in this paper) the A-polynomial Ay;(¢, m?) has exactly
two factors, one being (¢ — 1) and the other containing the geometric flat
connection; then for any “good” triangulation, (4.47) must hold. On the
other hand, it is not entirely clear whether the symplectic construction of
Section 4.2.1 (and in particular its quantum version that will appear in Sec-
tion 5.2) might not be able to bypass the problems of bad gluing conditions
such as z, = 1 conflicting with constraints z. # 0, q, co. This requires some
further study. Physically, any triangulation of a knot or link complement M
should lead to a triangulation-independent wavefunction for M and a sys-
tem of operators that annihilates it. This is yet another reason to suspect
that gluing varieties, at least when defined as in Sections 4.2.1 or 5.2, are
not nearly as triangulation-dependent as they seem.

Henceforth, just as in preceding sections, we hide the potential depen-
dence of the gluing variety A%%Z(Z, m?) on the triangulation {A;}, and
denote it simply by Ap(¢,m?). It is the object we quantize. It is to be
understood that it differs from the actual SL(2,C) A-polynomial in at least
(and probably at most) an abelian factor like (¢ — 1).

4.4 Independence of triangulation and path

The topological nature of the A-polynomial is inherent in its definition as
the projection to Pz of the (nonabelian) character variety of a knot comple-
ment M. In the preceding subsections, however, we presented an alternative
combinatorial definition of the A-polynomial, as a “gluing variety,” using
shape parameters of ideal triangulations. From the combinatorial point of
view, topological invariance is not quite obvious, and several things should
be checked. In particular, within a given triangulation

e one chooses labels z;, 2, z!' in some order for each tetrahedron;

e one chooses certain paths for the meridian and longitude on the trian-
gulated boundary torus (the homology classes of these paths are fixed,
but their particular representatives are not); and

e in the symplectic, semi-classical approach of Section 4.2.1, one chooses
N —1 of the N C; with which to do the reduction, and then chooses
N —17T;’s as conjugate coordinates.
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Moreover, at the beginning of the whole construction
e one also chooses a particular triangulation of M.

In this subsection, we sketch proofs that the combinatorial construction
of the classical A-polynomial is independent of the first three choices, and
mostly independent of the last. Many of these arguments are already familiar
from the literature on hyperbolic triangulation, but we find it useful to
review them here as models for the discussion of topological invariance of A
in Sections 5.3 and 5.4.

Let us begin then with the standard topological setup of an oriented knot
complement M that is triangulated into N ideal tetrahedra {A;}Y,. Within
this triangulation, the cyclically symmetric constructions of the phase spaces
Paoa, and Lagrangians La, in Section 4.1 guarantee invariance under the
precise labeling of z;, z/, and z for each tetrahedron. As noted below (4.9),
this works as long as edges of tetrahedra are labeled in the cyclic order
determined by the orientation of M.

Within the triangulation {A;}, it is also easy to see that any choice of
N — 1 moment maps C; will work for the reduction of the phase space (4.34)
due to the classical constraint Zﬁvzl C; = 2miN. The subsequent choice of
I';’s is completely irrelevant in the symplectic reduction. Similarly, in the
classical construction of the reduced Lagrangian ideal Zp;, we could first
have intersected with ¢; = 1 and then eliminated the v;’s. The intersection
does not depend on which N —1 ¢;’s we choose, and the choice of v;’s is
irrelevant precisely because they are eliminated.

The only nontrivial thing to verify within a single triangulation is the
independence under a change of meridian or longitude paths on the bound-
ary torus. Suppose then that we have two paths on the boundary torus
which both represent the same homotopy class, and hence should have the
same holonomy eigenvalues. Any two such paths on a developing map can
be related by repeated applications of the two elementary moves depicted
in figure 11.

The move in Figure 11(a) deforms a path through a point where an edge
in M meets the boundary T2. The partial logarithmic holonomy on this
section of path corresponding to the left side of the move is

—Z'+) Xi-W", (4.48)

while on the right side of the move it is

Z" =Y+ W (4.49)
j
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Figure 11: Elementary moves for deforming a path.

We know that Z + 7'+ Z" =ir and W + W' + W” =im, and that C :=
Z4+W+> . Xi+ Zj Y; = 2mi due to the gluing condition on the central
edge. Therefore, the difference between (4.48) and (4.49) is

~Z' 7"+ X+ ) Y- W W
i j

vz eqs C—2mi

= omi+ Z+ WY Xi+> Y =10 (4.50)
i J

Thus, upon imposing vertex and gluing equations, move (a) does nothing to
the logarithmic holonomy along the path.

The second move, in Figure 11(b), adds a full C=Z+W + 3. X; +
> j Y; — 2mi to the logarithmic holonomy along a path. Obviously, this does
not leave the logarithmic holonomy invariant, although it cannot change the
final equations for the Lagrangian ideal Za simply because these depend on
exponentiated variables, where shifts of 27i are invisible. Nevertheless, we
do find it very useful to have well-defined logarithmic holonomies as coor-
dinates on the affine linear (logarithmic) phase space Py a), as discussed
in Section 2.4. We observe then that move (b) is fundamentally different
from move (a) in that it introduces a self-intersection of the path on the
developing map. If we simply require that meridian and longitude paths be
drawn in such a way that they have no self-intersections (which is certainly
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Figure 12: The 2-3 Pachner move, with shape parameters.

always possible), then move (a) alone is sufficient to translate between all
possible paths, and invariance of the logarithmic holonomy is ensured.

Having examined the choices to be made within a single triangulation, let
us now consider a change in the triangulation itself. Although our combina-
torial A-polynomial is not (in our present understanding) quite independent
of triangulation, as discussed in Section 4.3, it comes very close to being so.

We know that changes in triangulation are generated by 2-3 Pachner
moves (figure 6), so let us suppose that after a 2 — 3 move there is a new
triangulation {A;}N11 of M, such that the first N — 2 tetrahedra are iden-
tical to those of the {A;} triangulation,

A=A, i=1,...,N-2, (4.51)

while Ay_1 and Ay participate in the 2-3 move to become An_1, AN,
and Apn41. These tetrahedra that are involved in the move are given shape
parameters z, w, x, y, v, respectively, as in figure 12.

In the {A;} triangulation, the fact that there are N + 1 tetrahedra means
that there are N + 1 edges in M. The new edge is obviously the central
one on the right side of figure 12, the internal vertical edge of the 2-3
“hexahedron.” The holonomy around it is

C:=Cnp1=X+Y+V. (4.52)

In addition the nine external edges of the hexahedron, six upright diagonal
and three equatorial, are involved in the move. The holonomies around them
depend on whether we are in the {A;} or {A;} triangulations. In order for
these holonomies to be calculated consistently, and to even have a hope for
obtaining the same A-polynomial before and after the move, we must require
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six relations
Z=V'+Y" Z=X'+V" Z'=Y'+X", (4.53a)
W=Y+V" W=X+Y" W =V'+X" (4.53b)
These come from the diagonal edges. Together with the vertex equations
for the {A;} triangulation, equations (4.53) imply
X=C-2mi+2Z+W, Y=C-2mi+2 +W",
V=C-2ri+2"+W, (4.54)

which at C' = 271 are the conditions for consistent calculation of holonomies
around the three equatorial edges.

In order to argue for invariance under the 2-3 move, we will show that a
partial symplectic reduction of the 2(N + 1)-dimensional phase space
73( M,A)’ using only C' as a moment map, produces the 2/N-dimensional phase

space Py, of the {A;} triangulation. More importantly, we show that the
product Lagrangian submanifold E( MA) C 73( M,A) reduces to the product
Lagrangian L) C P,a)-

For the statement about phase spaces, it suffices to observe that due to
the Poisson brackets

(X, X'lpp. = [Y,Y']pp. = [V,V']ps =ih (+ cyclic) (4.55)
on P Ay, equations (4.53) ensure that
[Z, Z/]p‘B‘ = [VV, W’]p.B‘ =ih (—i— cyclic), (4.56)

and that Z, Z’, Z" have trivial brackets with W, W', W". Here, we are view-
ing the Z’s and W’s as functions on 73( M,A) Moreover, since

Z+ 7+ 2" =waw ywr P g o (4.57)

and

[C,Z]pp. = [C,Z'lpB. = [C,Z"]pp. = [C,W]pn. = [C,W']pB.
=[C,W"pp. =0, (4.58)
any two of (Z,Z', Z") and any two of (W, W', W") form good coordinates on

the symplectic quotient of 77( M,A) generated by C, and the vertex equations
for Z and W will be obeyed on the quotient space after sending C' — 27i.
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It is especially convenient to pick five coordinates (Z”, Z, W" W,C) on
the part of 73( M,A) corresponding to the tetrahedra involved in the 2-3 move.

This set can be completed to a symplectic basis for the full six-dimensional
subspace of 73( M,A) involved in the 2-3 move by adding

.= Xx". (4.59)
Noting that
0,Clpp. =ik, [I,Z"lpp. =1, Zlpp = [[,W"pp =[[,Wlps. =0,

(4.60)
it is clear that

Paray = P(M,A)/(F ~T+ t)|0=2wi' (4.61)

To analyze the Lagrangians, let us write the part of E( M,A) involved in
the 2-3 move as

42" t—1=0 ¢4y t-1=0 v+ t-1=0. (4.62)
This defines an ideal in the ring

Rmyv _ C[.’L’/(/)il,y/(/)il, v/(/):tl’ (1 B x/(/))—l’ (1 _ y/(/))—l’ (1 _ ’Ul(/))_l,

(@'z" + 1)~ (Y + D)7 (W + 1)1, (4.63)
By inverting equations (4.53) as well as the gluing equation (4.52) and the
definition of " (4.59), we can change coordinates to (2", z,w”, w,y = e',c =
e“) using
, 1 "_ /_ZN n_ =Y /_w” n__ Wy
r = ’ r =17, y =—-— y—ﬁ, v = U_ﬁ'
czwy v w v z
(4.64)

Rewriting the ideal (4.62) in the new coordinates, eliminating ~, and setting
c =1, we are left with two independent equations

, (4.65a)

(1—zw)(2"+271=1)=0
0. (4.65b)

(1—zw)(w” +w™t —1) =

However, due to the invertible elements in (4.63) and relations (4.54), these
equations define an ideal in a ring where the element (1 — zw) is invertible,
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so equations (4.65) are actually equivalent to
4zt —1=0, W4wl-1=0, (4.66)

the desired Lagrangian equations for Ly a). As functions on Py a) we
know that these are completely equivalent to

4271 -1=0, w+uwt-1=0. (4.67)

4.4.1 What’s missing

The desired invariance of the A-polynomial under changes of triangulation
could be summarized in the commutative diagram

(Pas,ay, Lo,a))
Kﬁimtﬂ]ézm
Pach. l (Pr2, A=0)
Aézm
(Poanay: Lo ) (4.68)

Unfortunately, the commutativity here is not quite true.  Although
Lagrangian submanifolds, or ideals in the algebra of functions, behave
exactly as expected under 2-3 moves, the algebras of functions themselves
do not!

To be more precise, in (4.63) we introduced a ring Ry, that is a subring
of the full ring R( MA) of “algebraic” functions on 73( MA)" It is the part of
R(M A) that is expected to change under the 3 — 2 move. After the 3 — 2
move, we would expect R, to reduce to the ring

Row = C[Z(H):H, w(//):tl’ (1 _ z(”))il, (1 _ w(//)):l:l, (ZZ” + 1)—17
(ww” +1)71], (4.69)

a subring of the full ring Ry a) for the {A;} triangulation. Instead, how-
ever, the local 3 — 2 symplectic reduction leads to

Rg;z _ C[Z(N)il, w(”)il, (1 _ Zw)—l’ (ww//JrZ//)—l’ (ZZ// +w//)—1]'
(4.70)
The rings R.,, and R3,;? are generated by the same monomials, but they
have different invertible elements. Indeed, the ability to invert (1 — zw)™*
in R3.;? was what allowed us to remove the leading factors in Equations

(4.65).
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The distinction between R.,, and R3,? can be crucial when triangula-
tions are sufficiently nongeneric. For example, suppose that {A;} is one of
the “bad” triangulations of M discussed in Section 4.3. In particular, sup-
pose that one of the “diagonal edges” of the 2-3 hexahedron, (say) the one
with parameter z, does not become identified with any other edge but itself
during the gluing. Then the classical gluing equation z = 1 cannot actually
be imposed in the phase space acted on by R, (which contains (z — 1) as
an invertible element), though it can be imposed in R3,2. If we are to take
invertible elements seriously, then in this case it looks like the {A;} trian-
gulation could lead to a reasonable A-polynomial, or “gluing variety,” while
the {A;} triangulation would lead to a trivial, empty one. This example
illustrates how the caveats of Section 4.3 can show up in symplectic gluing.

In the final step of our symplectic construction of A(¢,m?), we typi-
cally forget the information about the precise invertible elements in the
rings that we started with.' We just think of A(f,m?) as an element in
Rp2 = Cl(*!, m*2]. We might then expect that for sufficiently general tri-
angulations it should be possible to ignore the details of “precursor” rings
such as Rpr,a)- The extent to which this is true is still unclear. It is an
interesting but fundamentally classical issue, and beyond the scope of the
present paper. In the following sections, we will show how to quantize any
A-polynomial (a.k.a gluing variety) obtained from an ideal triangulation,
and show that the construction is at least as independent of combinatorial
choices as it would be classically.

5 Quantization

The semi-classical description of ideal tetrahedra and A-polynomials pre-
sented in Section 4 is ripe for quantization. In parallel to Section 4, we
begin here by discussing the quantization of Chern—Simons theory on a sin-
gle tetrahedron, then show how several tetrahedra can be glued together to
build an operator Ay (¢, 7;q) (also denoted Aps(¢,m?2;q)) that annihilates
the Chern—Simons partition function on an entire knot complement M. In
this section, our focus is almost entirely on the operator side of the story,
which can be analyzed abstractly in its own right. Later, in Section 6, we
will return to the technicalities of wavefunctions and holomorphic blocks,
for individual tetrahedra and for all of M.

19Tn some cases, however, invertible elements may be relevant for removing prefactors
from the A-polynomial in a penultimate step, much as prefactors were removed from (4.65).
This will occur with our triangulation of the trefoil knot complement in Section 5.5.
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5.1 A single tetrahedron

Recall from Section 4.1 that the complexified Chern—Simons phase space
associated to the boundary of a tetrahedron is

Poa ={(2,7',7") € (C]\2miZ)3 | Z + Z' + Z" = ir},
(ih) woa = dZ A az', (5.1)

and that a flat connection, or semi-classical state, in the bulk of the tetra-
hedron is described by a Lagrangian submanifold

Lan:={z+2"1=-1=0} C Psa, (5.2)

Z zZ'

. "
with z =eZ,2' =e? | and 2" =eZ .

Upon quantization, the coordinate functions Z, Z’, Z” should be pro-
moted to generators Z, Z', Z" of an operator algebra, which satisfy com-
mutation relations

2,2 =12',2" = (2", 2] = h. (5.3)

Since the space Pya is linear, we expect no further quantum corrections
to (5.3) at subleading order in h. The classical coordinates obey the ver-
tex equation Z + Z’ + Z" = im, which should imply that the corresponding
quantized operators also obey

Z+ 7'+ 7" =in + ah, (5.4)

where a is a potential quantum correction. It turns out that that the non-
trivial correction

(5.5)

N |

is necessary; it will be uniquely determined either by asking for topological
invariance of our combinatorial construction of A (Sections 5.3 and 5.4) or
by requiring a certain S-duality in the algebra of operators (Section 6.1.1).
For now, however, let us just keep a as an undetermined constant.
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The logarithmic commutation relations (5.3) imply g-commutation rela-
tions for exponentiated operators,

28 = qi's, #3"=qs"%, #'3=qs8, (5.6)
where
si=e?, Hi=e? | 2= (5.7)
and
q=ce". (5.8)

Furthermore, the quantum vertex equation (5.4) implies

223" = —gota, (5.9)

Note that in the abstract algebra of operators with commutation relations
(5.3) or (5.6), the elements Z + Z' + Z" and 222" are central. This is nec-
essary in order to consistently set them equal to constants as in (5.4) and
(5.9).

The Lagrangian equation (5.2) should be promoted to a quantum oper-
ator ﬁA that annihilates the Chern—Simons wavefunction of a tetrahedron.
Our basic ansatz, which we will see justified in many ways, is that the quan-
tization of this operator is simple. In particular, we assume that

LA = qbé + qblé'_l — qb” ~ 0, (5.10)

for some mild g-corrections parametrized by b,b',0”. As in Section 3, the
symbol “~” means “annihilates wavefunctions when acting on the left.” Just
as in the semi-classical case, we would like equation (5.10) to be equivalent
to the two other cyclic permutations

qbé, + qblﬁllil — qb// ~ 0, qbéll + qbléil - qbll ~ 07 (511)

and this condition fixes the constants b, ', b”. One can check (by multiplying
on the left of (5.10) with 2 and 2”2’) that the unique equation consistent
with (5.9) and cyclic permutations is

/—1 1—2a

—1~0, a:=q 5 | (5.12)

LA :=ai+a 12

up to an irrelevant overall constant prefactor. At the proper value a = 1/2,

we simply have .
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The algebra of operators described here can be represented on any phys-
ical Hilbert space thys obtained by quantizing a real slice of Pya where
wyA Is nondegenerate Different physical theories (for example, SU(2) vs.
SL(2,R) Chern-Simons theory) correspond to quantizing different real
slices. In any such representation, it is the same operator LA that anni-
hilates the wavefunction of a tetrahedron.

If we analytically continue wavefunctions, then the algebra of operators
can be taken to act on a functional space Hy that contains locally holomor-
phic functions of Z’,2°

Ha ~ {f(Z)}, (5.13)

in the representation
212 = hdgf(2), Z'[(Z)=2'f(Z"), (5.14)
Z" f(Z') = (ir + ah — hdg — Z') f(Z"). (5.15)

The wavefunction or “holomorphic block” of a tetrahedron then obeys
La (2= 2+ =1)9(Z) =0, (5.16)

where we have set a = 1/2. One solution to this equation is easily seen
to be

ﬁ —q 2 (5.17)

This is a quantum dilogarithm function?' [15,63], with leading asymptotic
behavior as A — 0 given by

W(Z') ~ exp (:1 Lig(z'1)> : (5.18)

The function —Lig(2' 1) = Lig(2) + log(z) log(1 — z) — ? (using the clas-
sical relation 2z'~! = 1 — 2) is a holomorphic version of the Bloch-Wigner

function (4.45), which gives the classical volume of an ideal tetrahedron.

20 Alternatively, one could choose equivalent holomorphic representations Ha ~ {f(Z)}
or HA ~ {f(Z")}; the relations between these choices will be discussed in Section 6.2.

21This function is periodic in Z' — Z' + 2xi. As previewed in Section 2.4, it is actually
not quite the right conformal block for the tetrahedron. We will see in Section 6.1 that
nonperturbative corrections to (5.17) ultimately break its periodicity.
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More precisely, —Liy(2'~!) differs from an analytic continuation of the
Bloch-Wigner function by a rational multiple of 72. This is the correct
leading asymptotic that one would expect in analytically continued Chern—
Simons theory: the classical Chern—Simons action evaluated at a flat, com-
plexified SL(2,C) connection on an ideal tetrahedron should reproduce its
analytically continued volume (cf. [1] or [2], Section 2). This agreement is the
first justification that the simple quantization ansatz (5.10) is on the right
track. Much stronger justification will come from the internal consistency
and topological invariance of our scheme for gluing tetrahedra together, and
from the fact that this scheme actually reproduces known A—polynomials on
the nose.

5.2 Quantum gluing

Now, let us try to glue N tetrahedra {AZ}Z]\L ; together to form a knot com-
plement M = M\K. Specifically let us try to glue together N operator
equations of the form (5.12) to find the quantum A-polynomial for M. The
general methods of Section 3 tell us how to proceed.

We begin with a product phase space P a) = Hf\il Poa,; and a prod-
uct Lagrangian submanifold £ a) = Hf\il L. The algebra of functions
on P(r,a) is quantized to a product algebra of operators, generated by
{Z;, 2!, Z"}N | with

(Zi, Z1) = |21, Z0) = |2V, Zy) = Wby, (5.19)
Zi+ Zl+ 2! =ir+ah Vi (5.20)

Since there is nothing to distinguish the quantization of one tetrahedron
from another, the constant a appearing in (5.20) must be the same for all
i. (Recall that we will eventually set a = 1/2.) The product Lagrangian
submanifold L7 a) is promoted to a left ideal in the operator algebra, gen-
erated by the equations

LA, =ai4+a 181 —1~0, i=1,...,N, (5.21)

with 2 = %, 5 = o, 2 = |
The algebra (5.19) and (5.20) can be represented on a space of holomor-

phic functions H{,, )~ {f(Z1,...,Zy)}, which is essentially the tensor
product of the spaces Hoa, for i =1,...,N. Then, the left ideal (5.21)



546 TUDOR DIMOFTE

contains precisely the elements of the operator algebra that annihilate the
analytically continued product wavefunction

U(Z1,. - Zy) = 9(Z1) - Y(ZN) € Hipgay- (5.22)

Algebraically, we could also write the left ideal (5.21) as

~

Touny = (af+a 7t —1)¥ . (5.23)

It is then useful to consider it as an ideal in the g-commutative ring of
exponentiated variables

Rouay =Cl@ 45 1 -2)" L Q- 2)" L A+ 22)71. (5.24)

Note that if a ring generator like (1 — %;) is invertible, then (1 — ¢#2!) is
also invertible for any power of q.

In the semi-classical gluing of Section 4.2, an identification among phase
spaces of different tetrahedra was imposed through N gluing conditions
C; = 2mi. The N functions {Cj}é-v:l served as moment maps for a sym-
plectic quotient of Py A, and a corresponding reduction of the product
Lagrangian submanifold L£(3s ). Quantum mechanically, we should pro-
mote C; to elements C’j in the operator algebra. Then the “reduction” of
the ideal i'( M,A) consists of removing all elements that do not commute with

the C'j and then setting C’j — 2.

Recall that the classical, logarithmic gluing functions C; are always linear
in Z;, Z!, and Z!'. They can therefore be quantized in a very straightforward
manner, simply by modifying (4.13) to

Mz

< (i, J) Z; + (i, §) Z! + (i, j)”Z”) j=1,...,N. (5.25)

i=1

For example, for the figure-eight knot complement, we define (cf. (4.11))

Coe 1= 22 + 2" +2W + W (5.26a)
Cureen i= 22/ + 2" + 2W" + W". (5.26D)

In principle, there could be mild quantum corrections to equations (5.25)
in the operator algebra. Rather than correcting definitions like (5.26)
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directly, we will instead modify the substitutions

~

Cj — 27Ti—|—l€jh (5.27)

that occur as the final step in the reduction of the ideal f( m,a)- The N
edges in a triangulation of M could have many factors distinguishing them
from one another, such as the number of dihedral angles touching each edge.
Therefore, the corrections x; might depend on the edge j rather than being
universal. However, in order for the substitutions (5.27) to be consistent,
they do have to be compatible with the operator algebra constraint

N N
Y G = Z (Z+ 7'+ Z") = 2Nri + 2Nah. (5.28)
j=1 i=1

This implies that

S kj=2Na| (5.29)

After checking invariance under changes of path and Pachner moves (Sec-
tions 5.3 and 5.4), we will find that the only possibility for the x;’s is ulti-
mately to assume an edge-independent value

=17 s

compatible with a = 1/2.

The logarithmic longitude and meridian holonomies v and U can also be
quantized in a straightforward manner, by simply adding hats to all the vari-
ables that appear in their affine-linear semi-classical definitions. Thus, for
the figure-eight knot complement (cf. (4.20) or rather (4.39b) and (4.39¢c)),
we find that

(o33
i
N>

- 7'+ (5.31a)

Z'—W. (5.31b)

U

Unlike in the case of quantum gluing operators C'j, the expressions (5.31)
for o and U really are definitions. The operators © and U generate the final
operator algebra for the glued knot complement M, and any modification
(such as h corrections) to expressions like (5.31) would simply result in a
new action of ¥ and U on the final glued “Hilbert” space Hyoyr = Hrp2.
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Due to the Poisson brackets of their semi-classical counterparts, the oper-
ators U}, U, and 0 will satisfy commutation relations

A~ A~ ~

[0,U)=h, [C;,Cy]=1[C4,0)=[C;,Ul=0 VYij,5. (5.32)

As in the semi-classical case, we can choose any set of N — 1 C’j’s (say the
first N — 1) to be linearly independent in the operator algebra. Then the set
{6,U,C1,...,Cn_1} can be completed to an (affine) linear basis for (affine)
linear operators by adding N — 1 more operators fj, such that
05, Cpl = 65ph, [0, 0y] = [0;,0]=[0;,0] =0 Vjj=1..N-L
(5.33)

This guarantees that the change of generators
(Z1, 20, ..., 2N, Z) 5 (0,U,11,Cy, ..., Tn_1, COn—1) (5.34)

in the operator algebra preserves the commutator.

The inverse of the map (5.34) allows us to write the equations generating
the ideal Z(j; ) in new exponentiated variables

0:=e® m?=4él, ¥; = el ¢j = eCi (5.35)

This transformation simply replaces every 2 or 2'~! in (éil mt2, ﬁfjﬂ, A;H),
possibly multiplied by a power of q. The ordering of the operators in these
monomials is unambiguous because inverting the map (5.34) is an affine
linear operation (with no ordering ambiguities), and all exponentiated oper-
ators are well-defined in terms of linear ones. In terms of the new operators
(5.35), the ideal I (M,A) becomes an ideal in the isomorphic g-commutative
ring

“ 2

where are additional elements that must be inverted due to the (1 —
N "Vs and (1 + £2)) Vs in (5.24).

For example, for the figure-eight knot we can choose one gluing operator

é = égreen = 27i + 2ah — Z + Z/ - W + Wla (537>
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where we have used the quantum vertex equations in the operator algebra
to eliminate Z” and W” from (5.26b). The new operator I' can be chosen as

I =w. (5.38)
Inverting equations (5.31), (5.37), and (5.38), we find

Z=—in+0o+U+T, (
7'=U+T, (5.39b
W= (5.39¢
W' = —3mi—2ah+0+C +7, (5.39d

or, after exponentiating,??

2 =4, 0 =—qi 2. (5.40)

N>
=)
N[
Y
3>
N>
N
\Q>
§>

L, = —aqiym®l + o 247 — 1~ 0, (5.41a)
a~lgat2ee14710-1 1~ (5.41b)

From here, one must eliminate variables 4; from f( Mm,A) to obtain an
ideal Jy; all of whose elements commute with the ¢j. Then, setting ¢; =
exp(2mi+ kjh) = ¢ in Jar provides the final ideal Z); that annihilates the
holomorphic blocks of Chern—Simons theory on M. Eliminating variables
in the left ideal f( M,a) is somewhat trickier than in the classical case of
Section 4, because one is only allowed to multiply on the left, and new factors
of ¢ arise when operators are commuted past each other. However, since the
ring (5.36) is just barely noncommutative, many standard techniques for
eliminating variables in polynomial equations are easily adapted to f( M,A)-
In particular, the ring (5.36) (or the isomorphic ring (5.24)) is Noetherian,
and ideals in it have Grobner bases, cf. [64-66].23

22 Any time operators are exponentiated, one should keep in mind the Baker-Campbell-
Hausdorff formula o o
eATB = o7 3ABlAGB g [A, B] is central.

23Near the completion of this project, we were introduced to an extraordinarily efficient
Mathematica package [67,68] that, among other operations, can compute Grobner bases
and eliminate variables in g-commuting algebras.
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We expect that the final ideal Zy; obtained after setting ¢;j = q" is gen-
erated by a single element, the quantum A-polynomial of M,

v = (Am(l, 1% q)). (5.42)

Our claim is that at the special values of vertex and gluing constants a =
1/2 and k; =1 Vj, the ideal Zu is a well-defined topological invariant of
M itself, independent of any triangulation or any choices made in a given
triangulation. We now proceed to check this, finishing the computation of
Iy for the figure-eight knot complement and exhibiting a few other examples
in Section 5.5.

5.3 Independence of path and more

We begin by examining the choices made within a single triangulation
{A;}N | of M. As in the semi-classical case of Section 4.4, these are:

a choice of labelings z;, z., 2!’ of tetrahedron edges;

a choice of N — 1 of the N gluing operators C'j to use as new generators
of the operator algebra;

a choice of N — 1 linearly independent elements fj satisfying commu-
tation relations (5.33); and

a choice of paths for the longitude and meridian holonomies (within a
fixed homology class) on the developing map.

Due to our cyclically symmetric constructions of both the operator algebra
and the annihilating operators L, for single tetrahedra A;, it is clear (just
like in the semi-classical case) that any cyclic relabeling

2+ 2l 2l — 2 (for any i) (5.43)

leaves the definition of fM,A, and ultimately fM, invariant. The cyclic
ordering on tetrahedra is induced from the orientation of M.

Invariance under the remainder of the choices above is a consequence of
the following observation. Suppose that we have an affine symplectic (or
“canonical”) map

T: (0,U,11,C1,....,Tn_1,Cn_y) — (@, U, T4, CL . Ty, O ),
(5.44)

that changes the linear basis in the product operator algebra. By affine
symplectic, we mean a composition of a linear symplectic transformation and
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a constant shift, so that the primed operators satisfy the same commutation
relations as the unprimed ones, namely,

(0,0 =h, [I},C}] = d;;h, (5.45)

with all other pairs commuting. Moreover, suppose that 7 is restricted so
that o' = 7,(0,U,{C;}) and U’ = Ty;(9,U, {C;}) do not depend on any of
the I';’s, and for any k Cr = Tck(él, . .,C’N,l) does not depend on @, U,
or any of the fj’s. Then the inverse affine symplectic transformation

T4 (&, 0,10, C, ..., T 1,.Cn 1) — (0,U,T1,Ch, ... ,Tn_1,Cn_1)
(5.46)

has this same property, namely ¢ = 7, (¢, U, {C’]’}) and U = TU_I(@’,
U, {CA'J’}) WithA noAdependeflce on f;’s, and Cj, = TCT;({CA'J’}) with 1o depen-
dence on o', U, I';.  Let Zp; be the ideal obtained by reducing Zys ) in
unprimed variables, i.e., by eliminating the 4;’s and setting C; — 2mi + k;h;
and let f}\/[ be the corresponding ideal obtained by writing f( M,A) in primed
variables and subsequently eliminating I'}’s and setting C = 2i + «’h, with

mgh::TCk(él,...,éN,l)( )—27ri, k=1,...,N—1.

(5.47)

(Cj =2mi+kjh Vj

Then

Proposition 5.1. With T, T, and ideals Tp; and ﬁw as above, iffM is
generated by G polynomials (Ag\g/’[) (é, mQ;q))ngl, then f]’\/[ is generated by G

polynomials (AE\Z)’(@’, m2' q))f:1 with

AR (s q) = AY) (exp(T,7 (0,07 (),
exp(Ty (0, U, {C}})) 1q)

A L (5.48)
CJ’.—»27ri+i€}h v j

We allowed the freedom to have more than one generator AW of Ty,
because a priori it is not completely obvious that the result of eliminat-
ing variables in a g-commutative ring will yield just a single equation, and
because the result with multiple generators extends immediately to link com-
plements, or cases where even classically more than one “A-polynomial” is
needed.
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Although Proposition 5.1 may have been difficult to state, it is quite easy
to prove. One simply has to notice that due to the form of 7 and 7! the
operations of

(a) eliminating the 4; from ZA'(MA) and then using 7! to rewrite the
elimination ideal in terms of primed variables; and
b) rewriting Z s o) in primed variables and then eliminating the 4/,
(M,A) J

are interchangeable. The definition of «’ in (5.47) then ensures that (5.48)
holds.

Now, let us use Proposition 5.1. First suppose that in the process of
calculating the ideal I for a triangulated manifold M, we fix a set of N — 1
C s, and choose N — 1 conjugate operators FJ, j=1,...,N—1. Any two
such choices {FJ} and {F;} are related by a transformatlon

N
fj = Z Bjkf,/l{; + 1, (5.49)
J'=1

where Bjj is a constant (N —1) x (N — 1) symmetric matrix, and t; are
(N — 1) constant shifts. Relation (5.49) extends to an affine symplectic
transformation 7! that acts trivially on the rest of the operators. In par-
ticular, we can have & = 9’ and U = U’. Then Proposition 5.1 immediately
implies that the generator(s) of Zy, i.e., the A-polynomial(s) of M, are
independent of the choice of fj’s.

Similarly, we can tackle the issue of invariance under the choice of N — 1
C;’s. Suppose, for example, that instead of the first N — 1 C;’s, we want to
choose the last NV — 1. Recalling that Zjvzl C; = 2N7i + 2Nah, and setting

(C4,Ch, .. -705\/71) = (C5,Cs,...,Cy), we see that

Ch -1 -1 -+ -1 -1 c ON7i+ 2Nah
Cy 1 0 -~ 0 0 ¢ 0
= . S+ .
Cvy 0 0 1 0)\&%, 0
(5.50)

Writing this in vector notation as C = A C’ + t, we find that (5.50) extends
to an affine symplectlc transformation 7 ! if it is accompanied by the trans-
formation I' = A~1I” of the N — 1 conjugate operators F s. The complete
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Figure 13: The elementary move for a non-self-intersecting path.

transformation 7 again acts trivially on ¢ and U , and the natural special-
ization C} — 27 + w’;h with

I@’}:R]‘_H, jIl,...,N—l (551)
agrees with the definition (5.47). Then Proposition 5.1 ensures that the
results of calculating Z); with old gluing functions C;, or with the new gluing
functions C;, are identical. It is also clear that we could have repeated this
argument with the C’; being any size-(N — 1) subset of {C'j}évzl, rather than
(C’g, ceey C N ), guaranteeing full quantum invariance under a choice of gluing
operators.

For independence of meridian and longitude paths, we must be a little
more careful. Let us assume that paths do not self-intersect, so that the
relevant “elementary move” under which we need to check invariance is that
of Figure 11(a), reproduced in Figure 13.

Suppose that the path in question is the meridian. (It should be obvious
how to repeat the following argument for the longitude.) Then, on the left
side of Figure 13 the meridian operator is

I
U=(-)=2'+Y X - W, (5.52)
i=1
whereas on the right side the meridian is
A A Il A~ A~
U=()+2"-> Y+ W, (5.53)

=1

where (- - - ) indicates the part of the logarithmic holonomy that is unchanged.
Using the vertex equations Z + Z' + Z” = ir + ah and the definition of the
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gluing operator C, = Z + W + 3, X; + 3., Yir at the central edge ‘e’, we
have

U=0U"+C,— 2ni— 2ah. (5.54)

Relation (5.54) can be completed to an (inverse) affine symplectic transfor-
mation 7! as in (5.46) that acts trivially on ¢ and all the C}’s (of which
C, is one), and defines

—o, and [;=T) (j#e). (5.55)

Proposition 5.1 then implies that the calculation of Zj; is identical before
or after the path-changing move as long as
(U’ + C. — 271 — 2ah)

!
‘C’:Qwi-i-neh =U. (5.56)

This requires that k. = 2a.

Since a path could be deformed through any edge e in the triangulation of
M, we see that complete invariance of Zp; under a choice of path is ensured
if and only if

K = 2a ijl,...N‘. (5.57)

Note that this is compatible with the constraint Zjvzl kj = 2Na in (5.29).

5.3.1 Cycles on T? and symmetries of A.

Proposition 5.1 is also useful for understanding what happens when the
homological class of “longitude” and “meridian” cycles on the boundary
torus is changed. This is particularly relevant when M = M\K is the com-
plement of a knot in a three-manifold M other than the three-sphere, since
the “longitude” and “meridian” may not be canonically defined there. If we
perform a classical Sp(2,Z) transformation on the boundary cycles A and

i, so that
(” - (Z Z) <2> : (5.58)

then it follows that the corresponding quantum operators satisfy

D-GDE e
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Proposition 5.1 then implies that the generator(s) A (¢, 7m?2;q) transform
as

A9 (0, m? q) — A )( gU o2t +al’, o)
A( )( /7b£/d7q7a6m/2aé/72c; q) (560)

Had we written the generators of Ty as functions of 7 rather than m2, this
would have taken a more symmetric form

A9l i q) — A9 (q T/ g T ). (5.61)

In a similar way, modifications of Proposition 5.1 can help us under-
stand how symmetries of the classical A-polynomial extend to the quan-
tum A—polynomial(s). First, on any knot complement M the A-polynomial
(or rather, the ideal generated by it) is invariant if one replaces (¢, m) —
(671, m™1). Geometrically, this corresponds to reversing the orientations of
both longitude and meridian cycles — while preserving the overall orienta-
tion of the boundary 7?2 — and coincides with the action of the Weyl group
Zy on Pra. Since (6,U) — (=0, —U) is a symplectic transformation, it is
immediate from Proposition 5.1 that the quantum A—polynomial(s) trans-
form as

AW (0, q) > AW 2 ). (5.62)

We claim that in fact, as ideals,

~

(A9 0)) L, = (A 0) L, (5.63)

One can show that this is indeed the case by examining the effect of the
transformation (Z;, Z}) — (—Z;, —Z!) on the operator algebra for tetrahe-
dra, though we omit further details for now. The quantum symmetry (5.63)
was discussed in [2] from a more general point of view.

One can also consider a classical transformation (¢,m)+ (£~ m) or
(¢,m) — (£,m™1), which corresponds to reversing the orientation of the
boundary T2. For a knot complement M = S3\K in the three-sphere,
this is the same as reversing the orientation of M. Quantum mechanically,
(0,U) — (—=0,U) or (6, —U) are not quite symplectic transformations and
must be accompamed by a change of sign & — —h. Then, one can argue
that the generators of ideals Zar, - for a knot complement M in S? and



556 TUDOR DIMOFTE

its mirror image — M, respectively, are related as

~

Ay D0, w2 q) = Ay D@ g = Ay 9 m 2. (5.64)

5.4 Independence of triangulation

Showing that the ideal ideal Z) in (5.42) is 1ndependent of specific choices of
ideal triangulation is the final ingredient in making T, generated by the A-
polynomial(s) of M, a well-defined topological invariant. We will argue for
this independence by quantizing the classical framework of Section 4.4, and
arguing for local invariance under 2-3 Pachner moves. Just as in Section 4.4
(and in particular Section 4.4.1), some subtle issues come into play when
the triangulations involved in a Pachner move are especially degenerate. We
will briefly discuss these issues at the end.

We suppose then that M has two different triangulations {Az}f\i ; and
{A; fi Il that differ by a 2—-3 Pachner move applied to tetrahedra

An_1, Ax <  An_1, Ay, Anii. (5.65)

The shape parameters involved in this move are assigned as in figure 12,
repeated here in figure 14. The one additional edge in the {A;} triangulation
now corresponds to an operator

C=Cnp=X+V 4+ V. (5.66)
We want to show that the product ideal Z Ly 5y for the {A;} triangulation

reduces to the product ideal I( M,A) (with gluing functions as appropriate for
the {A;} triangulation) after eliminating all elements that do not commute
with C, and setting

C — 27+ Fngih, (5.67)

for a k41 that will be determined. We do not immediately assume condi-
tion (5.57), that is k; = 2a, on either the x; of the {A;} triangulation or the
k; of the {A;}, so that we can find the most general “quantum-correction”
structure allowed by the Pachner move.

For any edge except the (94 1) edges involved in the 2-3 move, it is

clear that C'j = C’j, and that x; should equal ;. In order for the remaining
gluing operators of the {A;} triangulation to agree with those obtained
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Figure 14: Shape parameters for the 2-3 Pachner move.

from the {A;} triangulation after setting C' — 2i + &y 15, we require the
six relations (cf. (4.53))

Z=V'+Y"+bh, Z'=X'+V"+bh, Z'=Y'+X"+0bh, (5.68a)
W=Y'+V"+bh, W =X +Y"+bh, W'=V'+X"+bh (568b)
These can be taken as the definition of the 2-3 move at the level of operators.
We can introduce a quantum correction bh to each of these linear equations,

but must introduce the same correction to every equation since, a priori,
there is nothing to distinguish one from another.?*

Equations (5.68), combined with the quantum vertex equations for X , }A/,
and Z, imply the three additional relations (cf. (4.54))

X =C —2ni—2ah— 26+ W + Z, (5.69a)
Y =C — 2ni— 2ah — 2bh+ Z' + W, (5.69b)
V =C — 27— 2ah — 2bh+ Z" + W' (5.69¢)

Just as in the semi-classical case, it is also clear from (5.68) that AN A
and W, W', W" have the correct commutation relations with each other, and
that all these operators commute with C. Moreover, we find that

Z+2' +2" =W+ W +W" = 3ri+ 3ah + 3bh — C. (5.70)

Upon setting C—ori+#i ~N+1h, these must reduce to the vertex equations
for Z and W, which fixes | Ky4+1 = 2a + 3b|.

24Even if one does try to introduce six different b’s here, invariance under the quantum
Pachner move will force them to be equal.
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Together, equations (5.68) and (5.69) determine the relation between the
correction factors x; and &; on edges involved in the 2-3 Pachner move. A
little thought shows that in going from 3 — 2 tetrahedra, the quantum cor-
rections on the six “diagonal” external edges of the 2-3 hexahedron increase
by bh while the corrections on the three “equatorial” external edges decrease
by bh. The only possibility for assigning quantum edge corrections systemat-
ically to general triangulations in a way that is consistent with these b-shifts
is to make x; proportional to minus the number of dihedral angles meeting
edge j (7). However, we saw above that a 2-3 Pachner move is only possible
if the internal edge involved in the move has Kyy1 = 2a 4+ 3b. Combining
these restrictions, we conclude that for a 2-3 Pachner move with relations
(5.68) to be possible at any place in any given triangulation the quantum
edge corrections must be

kj =2a+ (6 —n;)b if n; dihedral angles meet edge j | (5.71)

Now consider the wavefunction equations in I( MA) corresponding to quan-

tized Lagrangians for the three tetrahedra A N—1, A N, A ~N+1- They can be
written as

Lo=ai' +a 12" —1~0, (5.72a)
Ly=a) +a 1§t —1~0, (5.72b)
L,=abt +a "1 —1~0. (5.72¢)

We want to change variables from (X', X", YY" V' . V") to (2", Z,W", W,
I',C), with

r:=X" (5.73)
In exponentiated variables, we want to replace (&',2",¢,4",¢',0") with
monomials in the new exponentiated variables (2", 2, 0", 0,79, ¢). ThlS is eas-

ily done by inverting equations (5.66) and (5 68) and subsequently
exponentiating (cf. (4.64)) with the result that

L, = q3a+2b 2y le s gt oA — 1~ 0, (5.74a)
L,=aq %" a7y 2" —1~0, (5.74b)
L.=oa¢ %5 0"+ 3 107 —1~0. (5.74c¢)

From the three equations (5.74), one can eliminate 4 by first multiply-
ing by 4 on the left and then taking the difference of any two equations.
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After some slight manipulation and setting ¢ — ¢*N+1 = ¢233% (which we
are allowed to do after eliminating ¥), the two independent equations that
remain are

~ _ b o~n _ Ll 9ba
E. =« 1zw—a 1 FU —aq 2+a b —aq bw22+a3q 5ta 2bz
—1-04 q —2b 2A//wN0

. 1l b _1lig_9p A
Eyi=a 20— a low” — ag 2T — ag 20% + o3¢ 2Ty

+ a?q 20?0 ~ 0.

In the semi-classical setting, we saw that these equations had to factor in
order to yield the Lagrangian equations for z and w. Here, the operators F,

and E,, factor in the noncommutative ring C(q)[2"*!, 21 "+t || ] if
and only if
1—2a
b= . 5.76
- (5.76)
Recalling that o = q%, this means that |¢” = o| Then we find
E.=—(a?=20)2 (a2 +a 27 —1) ~0, (5.77a)
Ey=—(a"? = 20) (et + a o™t = 1) ~ 0. (5.77h)

Just as we were not allowed to have zw = 1 classically, the operator (a2 —

Zw) must be invertible. The reasoning is that the ideal I( M,A) Was defined
in the ring

ﬁxyv _ (C( )[ (1 :l)/( )jd,@/(/)jzl7 (1 _ f/(/))fl’ (1 o g/(/))flj (1 - {)/(/))717
@&+ 107 @9+ )7 @+ 1), (5.78)

in which the element (1 — ) = (1 4+ ¢*"'/23”~14'~1) is invertible. Due to
relation (5.69a), (¢ # — 1) must therefore be invertible in the reduced
ring R3.’? containing the ideal generated by (5.77).

In the end, after removing the factors (a~2 — ) from F, and E, in

(5.77), we find that the ideal f( M,A) on the right side of the 2-3 Pachner

move has reduced to the ideal f( M,A) on the left. While conditions (5.71)
and (5.76) are the only ones necessary for the quantum version of the 2-3
Pachner move to hold, we know from (5.57) of Section 5.3 that invariance of
Ty under longitude and meridian path deformations also requires x; = 2a.
Combining these restrictions together, we would like to claim that
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Conjecture 5.1. The construction of the ideal Tu as defined in Section 5.2
for any triangulation {A;}Y., of a knot complement M, with

1
a=3 and k;j=1 j=1,...,N| (5.79)

produces a topological invariant of M, independent of the actual triangula-
tion used or any other choices made.

Unfortunately, just as in the classical scenario of Section 4.4.1, this Con-
jecture may not be entirely true for certain “bad” triangulations of M. The
subtle problem is that, while the ideal I( M,A) naively reduces to the ideal

N

Z(m,a) as desired under the 3 — 2 Pachner move, the reduced ring

7%3;2 _ C(q)[é(//):iﬂ’ uA)(//):I:I’ (1 o 2@)—1’ (12)’[[),/ + 2//)—1’ (22// +u§”)_1}
(5.80)
is not quite the same as the expected ring

~

Row = (C(q)[é’(”)il, UA)(//):I:I’ (1 o 2(//))11’ (1 o ﬁ)(”))il, (22// + 1)—1,
(wa” 4 1)71). (5.81)

In particular, the two rings have very slightly different invertible elements.
We certainly do expect that, at the special values (5.79) for a and &, the
ideal Zyy containing the fl—polynomial(s) of M is invariant under Pachner
moves whenever the corresponding classical gluing variety A(¢, m?) is invari-
ant. In the exceptional cases where the classical A(¢,m?) gains or loses
factors, it is possible that left factors could appear or disappear from the
generator(s) of Zy. We would then say, as at the end of Section 4.4.1,
that the ideal Zy; is really an invariant of a pair (M, [A]), consisting of a
three-manifold and a triangulation class.

We note that all the arguments and constructions of this section and
previous ones extend fairly trivially from knot to link complements. In the
case of a link complement with v components, one would construct an ideal
Ty that has at least G > v generators flg\g/’[) (él,ml, e ,ﬁy,my). This ideal
is a topological invariant to the same extent that it would be for a knot

complement — i.e., perhaps an invariant of some finite number of pairs
(M, [A]) rather than just three-manifolds M.
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5.5 Examples

We end this section with several explicit computations of the ideal Ty for
knot complements M = S3\ K, where K is the figure-eight knot, the trefoil,
and the 52 knot. In all these examples, we find that the ideal Ty has a
unique generator A(@, m?; q), which is identical to the quantized nonabelian
A—polynomial known previously to produce recursion relations for colored
Jones polynomials.

5.5.1 Figure-eight knot 4;

For the complement of the figure-eight knot in S3, the generators the gen-
erators La,; of the ideal Zi4, a), for a two-tetrahedron triangulation, were
determined in (5.41). Let us define

M :=m?|, (5.82)

After multiplying £, and £, from (5.41) by appropriate factors to clear
negative exponents, and using a = 1/2 as determined in Theorem 5.1, we
then find

B, = MALA. =1 — M4 — q2 M263% ~ 0, (5.83a)
GOALA, = —q2 — LA + 04 ~ 0. (5.83b)

To eliminate 4% from these equations, we form the combination
Bry o= ¢lE. + g3 M20Ey = —é+ M2 + eMA + q2eM205 ~ 0. (5.84)

In order to eliminate the linear term in 4, we need a second independent
linear equation. We can take it to be

Erg:= MIYE; o + qé(MI + q%)Ez
= — Ml — q2é+ ENTOA + q2eMA + qeM205 — 2 M3E5 ~ 0. (5.85)

Now, if these were classical equations, we could simply solve for 4 using
ELI = 0, and substitute the result into EAiLQ =0 to get the A-polynomial.
The quantum story is more complicated, but it turns out that it is always
possible to find some polynomial functions f; (¢, M ,¢) and fa(€, M, ¢) so that
the linear term in 4 is eliminated from f1 E1 1 f2E1 9. The fact that we are
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working in a noncommutative ring causes the degrees of fl and fg in M to
be higher than expected, and ultimately leads to extra factors of the form
(1 — ¢# M?) multiplying each term of the A-polynomial. (Classically, these
factors could be removed completely.) Here, we find that
fl =& — q%é2 — q2é2]\}[g + qzéM%? + ¢*eM?l + q4é]\2/3é
T eN? — SN, (5.86a)
fo= —qé® — 3N+ g5 eM3l + gPedr? (5.86b)

will do the job. Then

~0 (5.87)

is the generator of the elimination ideal j41. Setting ¢ — ¢ = ¢ now that
everything commutes with ¢, we obtain the actual A-polynomial that gen-
erates 74, , namely

Ag, (0, Mq) = Lay |, = a2 (1 — NP2
— (1= M?)(1 = M — (q+ ¢*)M* — ¢*M® + ¢* N1*)i
+q3 (1 — gM2) M2, (5.88)

With the substitution M = 2, this is the A-polynomial (1.8) that we
quoted in the introduction.

Note that (5.88) is the quantum fl—polynomial that corresponds to a nat-
ural physical normalization for Chern—Simons partition functions [2]. In
particular, 12141 leads to a recursion relation for the colored Jones polyno-
mials Jy(K;q), defined as the SU(2) Chern-Simons expectation values of
a Wilson loop in the three-sphere,

1 SU(2) 3
INK; Q) = ——r 7 (Kn C S%). (5.89)
Zgg(2)(53) CS

In contrast, the colored Jones polynomials V(K q) appearing in the math-
ematical literature are usually normalized by the expectation value of the
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unknot U,

IN(K;q)

VN(K;q) = In(Usq)

(5.90)

Following the dictionary of Section 2.3, this means that the operator actually
featuring on the LHS of the recursion relation for Vi (K;q) for the figure-
eight knot (or any other knot) is

Av.a, (0, M;q) = Aa, (6, M; q) (M2 — M~1/?). (5.91)

After multiplying through on the left by M2 to cancel negative powers
of M, and commuting all M’s to the left of all @’s, it is easy to see that
AV,41 (@,M;q) is the same operator appearing in, e.g., [5,39] on the left-
hand side of recursion relations.

Note that since the figure-eight knot is amphicheiral, i.e., it is homeo-
morphic to its mirror image, the A-polynomial (5.88) is invariant under the
orientation-reversing map (5.64).

5.5.2 The trefoil 3;

Now consider the complement of the trefoil knot in S3. This is a very
simple example, but it illustrates several important features which persist
generically for more complicated knots.

From the point of view of hyperbolic geometry the trefoil is often treated
specially because, like all torus knots, it does not admit a complete hyper-
bolic metric. As discussed in Section 4.3, this makes no difference whatsoever
for us.

An ideal triangulation for the trefoil is readily computed in the program
SnapPy [69] or snap [70].2> The minimal triangulation has two tetrahe-
dra, which we will call A, and A,. The (quantum) gluing functions and
boundary holonomies are

Ci=272'+W, (5.92a)
Co=22+2"+22"+2W + W' +2W" =dmi+2h— Z' — W', (5.92b)
U=—-Z+W, (5.92¢)
V=—4Z+ 7 +4W - W', (5.92d)

251t is also readily computable by hand. We heartily thank Bus Jaco for first showing
this to us.
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where we have used the quantum vertex equation W + W’ + W” = ir + h/2
to eliminate W” from Cy. We lift from a PSL(2,C) connection to a SL(2,C)
connection by choosing the square root

A O
0= 27+ 57 +2W - SW +im (5.93)

Factors of 1/2 are unavoidable here, as they are for many more complicated
knots.

As expected, the gluing functions are not independent because Cr+Cy =
47i + 2h. Throwing away Ca, we can choose the operator conjugate to C' :=

C4 to be

A

L1
r=-2
57+

A

W (5.94)

| =

Solving (5.92) and (5.94) for the old operators Z, Z', W, W', we find

Z:—§+r, Z’z@—Qﬁ—i—%—i—iw, (5.95a)
.U . . C
W=24T, W=-i+20+ 5 —im (5.95b)

Quantizing and exponentiating, the wavefunction equations generating the
left ideal Z(3, o) then become

L, =m Y — g le et —1~0, (5.96a)
Lo=m7—q ¢ 2mH—1~0. (5.96b)

= !0 — ezl — gn2)l — 02 ~ 0. (5.97)

The usual specialization of the logarithmic gluing constraint is C — 2mi+
1
h. While this means that ¢ — ¢, it also implies that we should set ¢2 —
. 1 1 1
e™th/2 — _ 43 rather than é2 — +¢2. Implementing this substitution, then,
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we obtain

mt (1 — g?)l — 2. (5.98)

The actual A—polynomial for the trefoil, known from recursion relations for
the colored Jones (cf. [5]), is first order in ¢, so this is evidently not it.
However, the operator (5.98) factors as

z
2

Ls, | = (g2 — O)(0 + q2m®), (5.99)

1 1
¢2——q2
and the factor on the right is precisely the desired quantum /l—poly]ao]rnial.26

In the classical limit ¢ — 1, the factor on the LHS of (5.99) becomes
(m* — ), and if this vanished it would imply that 2’ = w’ = 1, which is
not an acceptable point in the classical moduli space of tetrahedra. Quan-
tum mechanically, this statement translated to the fact that due to the
invertible elements in the original ring C(q)[2()*1, (1 — 2())~1 @)+ (1 —
)71 (1 + 2271 (14 b, @) 1] containing ZA'(31,A), any quantum operator
(g1t — q#@) is invertible in the reduced ring containing fgl. Therefore,

the generator of Zg, is really

5.5.3 The knot 55

The minimal ideal triangulation of the 55 knot complement in S3 requires
three tetrahedra. From SnapPy [69], we find

C’l = 221 + 22 + Zél + Zé + Z// =2ri+h+ 221 — Zé — 23, (5.101&)

26See the comments surrounding (5.91) in order to properly compare (5.99) to the
operator /lv,gl appearing in the mathematical recursion relation [5] for the colored Jones
polynomials of the trefoil. The A—polynomial for the trefoil knot complement with the
opposite orientation can also be computed, as described in Section 5.3.1.
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Co=2Z1+Zy+ Zy + Zs + Zy :m+§h+Z{ — Zy+ Zs+ Z5,  (5.101b)

03:Z{—I—QZ{,—FZQ—FZQ—{—Zg-i—Zg:37Ti—|—§h—2Z1—Zi

+ Dy + 24— 7, (5.101c)
N ~ o ~ A ~ 1 A ~ ~ A ~ o
U:Z1—Zi—l—Zg—Zé—FZ”:iﬂ'—Fih—{—Zl—Zi—}—ZQ—Zé—Zg—Zé,
(5.101d)
V = =22, + 22, =32y + 37y + 7y — Zy— 24 — ZY
=2—Z1+ Z) — 225 + 7). (5.101e)

After the second equal sign in each of these expressions, we have used the
semi-classical vertex equations to eliminate Z;', ZJ, and Zf. We also take a
square root of 2 by defining

b=im — 21+ Z} — 22y + Zb, (5.102)
with an extra im. One can check that these functions on Ps5, a) all have the
appropriate Poisson brackets.

Since the three gluing functions have a linear dependency Ci+Co+C3 =
671+ 3h, we can ignore C’g. We want to use C7 and C5 as semi-classical
moment maps, eventually setting them both equal to 27+ A quantum
mechanically. Conjugate operators f‘j are given by

0y =23+ Z4 (5.103a)
Uy =2y — Zo— 23— 7}, (5.103b)

~

We can now invert equations (5.101) and (5.103) to express (U,@,Cj,f‘j)
(for 7 = 1,2) in terms of the Z’s. We find

. 1 . . . . .
Zy=2mi+ch=U—0+Ty Zj=in—U-0+Cy—201,  (5.104a)

N 1 A ~ A 3 A N A
Z2:27Ti—|—§ﬁ—U—f1—F1, Zé:47ri+§ﬁ—2U—ﬁ—CQ+F2,
(5.104b)
7 1 5 A A r 51 .1 N
Z3=27r+§h—v—01+02+1“2, 23:—27T1—§h+v
—l—él —C’g—i—fl —fg. (51040)
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Exponentiating these expressions and plugging them in to the three equa-
tions L, ~ 0, we arrive at the ideal Z(5, a), written as

La, = a1y — g2y WV — 1~ 0, (5.105a)
La, =qM 747 4 g 1o MPl35 7 — 10, (5.105b)
La, = gér el Fg + q2é1 1607517 H — 1 0, (5.105¢)

where again
M =m?. (5.106)

Eliminating 42 from f(52’ a) is easy. Upon multiplying ﬁAl ~ (0 by MY,
we get

Ao — ME — g3 L NI2024,2 ~ 0, (5.107)

and we can use this to substitute for 4o in the other two equations. Note,
however that since we are working in a left ideal such substitutions must
always happen on the right. In other words, we must bring all factors of 4»
to the right before setting

Ay — NIO + q2 6o~ N20%4, 2. (5.108)
Doing this substitution in £, and £, and clearing denominators (by mul-
tiplying on the left) results in the respective equations
By i= o — eoN0Ay + EN20% + q2 M3 2 — g2 M2%4,3 ~ 0, (5.109a)
By i= q2 oM + 6o MA1 — qerAn + gM204% + q2 M203,3 ~ 0. (5.100b)
Since 42 no longer appears, we could set ¢o — ¢ at this stage.

From here, the process of eliminating 4; is essentially the same as in the
case of the figure-eight knot. We proceed to eliminate first 413 terms, then
412 terms, then linear 4; terms, making sure to generate enough independent
equations at each step to do this. In the end, we find a minimal generator
ﬁ52 of the elimination ideal j(52) and set ¢; — ¢ to get the generator of

I(s,)- The result is

A52(g) M7 Q)
l A A
=q2(1—¢"M*)(1 — ¢"M?)
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— (1= M*)(1 = ¢ M?)(1 = 2¢M — q(q + ¢*)M”

+ (1= q)(1 = ¢*) M + " M* — °Mo)l

x g3 (1= M) (1 — ¢* M) NI2(1 — ¢*M — ¢*(1 - q)(1 — ¢*)M*

+ ¢ (1 + @M + 24" M* — O M°) 2

x " (1 — gM*)(1 — @PM>)MP. (5.110)

In the classical commutative limit ¢ — 1, this becomes (1 — M?)? times the
classical nonabelian A-polynomial,

As, (6, M) =1— (1 —2M —2M? + M* + M)/
+ M?*(1— M 4 2M3 4 2M* — MY + M3, (5.111)

where M = m?2. Note how, in addition to the extra factors (1 — ¢#M?)(1 —
q#M 2), the noncommutative fl—polynomial actually contains extra terms
— such as M3 and M*?? — whose coefficients completely vanish in the
classical limit.

To compare this result with recursion relations in the knot theory liter-
ature [39], it is again necessary to renormalize As, — Ays, as in (5.91).
Since the 52 knot is not amphicheiral, it may also be necessary to apply the
transformation (5.64) to reverse the orientation of S*\52, depending on the
conventions being used.

6 The wavefunction

Having quantized fl(f, m?;q), we turn to our final task: constructing the
holomorphic blocks themselves for rank-one Chern—Simons theory on a knot
complement. Recall from Section 2 that the analytically continued Chern—
Simons partition function for a knot complement M = M\K is a locally
holomorphic function of the boundary parameter u (or m = e*) and f. For
any chosen integration cycle in the Chern—Simons path integral, we can
expand [1, 3]

Zcos(M;u; h) = Znang(M;u; h). (6.1)

Each block Z“(u;h) corresponds to a critical point of the Chern-Simons
action, hence to a flat connection on M. Thus, when M is e.g., a nontrivial
knot complement in S3, there are finitely many blocks.
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We argued in Section 2.5 that (at least for a knot complement in S3)
the nonabelian holomorphic blocks constitute a basis of solutions to the
homogeneous difference equation A-Z=0. The gluing methods of Sec-
tion 3 tell us explicitly how to construct these solutions. We decompose
a three-manifold M into tetrahedra; multiply together a tetrahedral block
Y(zh) (satisfying (2; + 2,71 — 1)3(2]) = 0) for each tetrahedron; transform
the resulting “product wavefunction” into a basis where it depends explic-
itly on u and the gluing functions C}; and finally set C; — 2mi+ h. The
change of basis and subsequent specialization C; — 27i + h are a general-
ized version of “integrating out boundary conditions.”

If we were dealing with an honest, physical TQFT, the gluing construction
of Section 3 would produce an unambiguous result for the wavefunction of
a knot complement. In our case we are not working with wavefunctions in
actual Hilbert spaces, but rather with analytic continuations of them. The
notion of changing basis for a product wavefunction is, therefore, not quite
well defined. Nevertheless, we will see that we can still change basis formally
in the space of analytically continued wavefunctions, without keeping precise
track, e.g., of the integration contours used in Fourier transforms.

Given a knot complement M, the formal change of basis leads to a result
for holomorphic blocks of the form

750 (M ) = / . / dpy - dpr (.. ) (..), (6.2)

i.e., a multiple integral in some complex variables p; of a product of tetra-
hedron blocks 1. Expression (6.2) satisfies

A(L, 0 q) Z8 (u; h) = 0 (6.3)

by construction, in the sense that formal manipulations under the integral
sign can validate this equality. Given any well-defined integration cycle for
(6.2) — i.e., a cycle such that the integrand approaches zero sufficiently
fast near its boundary — the evaluation of Z&"(u;h) produces an actual
well-defined solution to (6.3). We might expect, then, that a basis of good
integration cycles C* for (6.2) corresponds to a basis for holomorphic blocks,
and this is precisely true. Each nonabelian?” flat connection A® leads to a

2"We are assuming in this discussion that the operator A(é, m?; q) whose nullspace we
want to generate knows about all the nonabelian flat connections on a knot complement.
As discussed in Sections 4.3 and 4.4.1, this may not be entirely true if we construct
A(é, mZ;q) from nongeneric triangulations of M, and thereby lose some factors. The
correct general statement is that every flat connection appearing as a classical solution to
A(é, m?;q — 1) = 0 leads to a critical point of the state integral (6.2).
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critical point for the integrand of (6.2), which in turn defines a cycle C* via
downward flow, or stationary phase.

The idea of generating solutions to a difference or differential equation
via different cycles of a single integral is by no means novel. One encounters
similar phenomena often in mathematics. A very simple example is the
complex integral

&%) = /da: o T tar, (6.4)
which generates solutions to the second-order (Airy) differential equation
(392 —a) f(a) = 0. (6.5)

The integrand of (6.4) has two critical points, at x = +1/a/3, and each
extends by downward flow to a well-defined integration cycle — giving the
two independent functional solutions to (6.5). This particular example was
analyzed in detail in [3].

As noted in the introduction, a state integral model very similar to the
one we develop here was presented in [2], following [20, 71]. The formal
expression for Z8" in [2] takes the same general form as (6.2); and there,
just as here, various saddle point contours corresponded to flat connections
or holomorphic blocks. Precise equivalence of the two state integral models
is expected, but has yet to be established. Both state integral models can
be viewed as noncompact, or analytically continued analogues of Kashaev’s
invariant [18,72].

Unfortunately, there are several normalization ambiguities in our present
method of finding Z8". They stem from (1) a somewhat ill-defined normal-
ization for the individual tetrahedron blocks t(z}); (2) the lack of a notion
of unitarity in our holomorphic picture; and (3) the fact that the Weil rep-
resentation of the (affine) symplectic group, even when defined so that it
is unitary, is still only a projective representation. These issues can all be
remedied to some extent, but we will not really attempt to do so here. We
will argue that, at worst, holomorphic blocks from (6.2) are determined up
to a multiplicative ambiguity of the form

exp (%@—FC#—M@) , (6.6)
their functional dependence on wu still being completely fixed.

We will begin in Section 6.1 with a discussion of tetrahedral wavefunctions
¥(2'), then review the Weil representation of the (affine) symplectic group in
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Section 6.2, and finally put everything together in examples of holomorphic
blocks for the trefoil and figure-eight knots in Section 6.3. It is worth noting
that the actual quantum dilogarithm we use for ¢(z’) is not quite that of
Equations (1.15) or (5.17). Rather, we find it more appropriate to consider
a nonperturbatively completed quantum dilogarithm, sometimes known as
the “noncompact” quantum dilogarithm in the literature [19]. This function
has some very interesting almost-modular properties, hence the title, and
indeed the content, of Section 6.1.

With further work, it should be possible to define real Hilbert spaces and
to extend the present gluing construction to actual physical wavefunctions in
SU(2), or SL(2,R), or SL(2,C) Chern-Simons theory. A first and necessary
step in this direction would be to understand how to include abelian flat
connections into the construction of holomorphic blocks — or, alternatively,
how to introduce inhomogeneity into the operator equation A-Z=0. Ttis
likely that using integration cycles with finite boundaries for (6.2) will play
a key role. We hope to clarify such matters in the future.

6.1 S-duality

Let us take another look at equation (5.16), the wavefunction equation for
the holomorphic block of a tetrahedron:

La-¢(2Z)=(2+2"1=1)p(Z)=0. (6.7)

The operators here act as

2p(Z) = 0(Z' + h), 2Y(Z) =P (2, (6.8)

and it is easy to see that the formal solution to (6.7) can be written as an
infinite product,

o0

Wz E[ (e ?). (6.9)

r=1

This solution, however, has quite a lot of ambiguity. First, it is clear that
we could multiply ¥(Z’) by any function of A and still get a solution to
(6.7), since h is just a constant. But we can actually do much more. If we
allow 1(Z’) to be an honest function of the logarithmic variable Z’ rather

than a function of 2/ = eZ’ (in other words, breaking its periodicity under
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Z' — Z' + 2mi), we can multiply it by any other function f (exp %Z’) and
still solve (6.7). This is because

AP = f(T ) = f(eT 7). (6.10)

Since it is the exponentiated variables z, 2/, £, m?, etc. that correspond
to SL(2,C) holonomy eigenvalues, and therefore are the natural classical
coordinates on phase spaces Pa, P(ar,a), or Pr2, one might argue that the
wavefunction 1 (Z’) should be periodic in Z' — Z’ + 27i. There are several
excellent reasons, however, to break the classical Z' — Z' + 27i periodicity
of phase space quantum mechanically, at least in an analytically continued
context, and to use a modified solution to (6.7) that has a very specific set

27 .
of en corrections.

The function we would like to use is

U(Z') = Ppo(—2' +im + h/2) | (6.11)

where @/, is the “noncompact” quantum dilogarithm of [19].8 This func-
tion is meromorphic in Z’ on the entire complex plane (with essential sin-
gularity at Z’ = c0), and can be defined in various regimes as either a ratio
of infinite products

< q + qrfl/er
1:[1 T q 1 Re(h) < 0,
Qp(p) =9 o (6.12)
Lra el gy 0
e Re)>0
r=1
where
2mi 472 A
pP:= ?p7 h = —T, and q:=¢c | (613)

or via an integral formula

1 dx e
o 1 do , 14
h/2 = €XP (4 /R+z‘e x sinh(mwz) sinh(hx/(217)) ) (044

28The subscript of ® here is written as //2 in order to agree with the definition of
®5(p) in [2]. Recall that hnere = 2hyef 2
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Properties of this remarkable function have been discussed in many places,
including [2,19,73-78]. It was central to the state integral model constructed
by [2,20,71].

Rather than being periodic in Z — Z’ + 271, our desired function (Z’)
in (6.11) satisfies

(2 +2mi) = (1—e % 2)(Z"). (6.15)

This is the aforementioned breaking of periodicity, also anticipated in Sec-
tion 2.4. We emphasize, however, that in the classical limit A — 0, the dif-
ference between the two functions (6.9) and (6.11) becomes invisible. The
functions have identical asymptotic expansions in A. We can think of the
noncompact quantum dilogarithm as a nonperturbative completion of its
compact cousin (6.9).

Our strongest motivation for using (6.11) as the analytically continued
wavefunction of a tetrahedron stems from the observation that this function
alone is invariant under cyclic permutations

Z'—7"—Zw— Z. (6.16)

In terms of wavefunctions, such permutations are implemented via a Fourier
transform, the details of which will be explained in Section 6.2.1. The prop-
erty that allows invariance under permutations is the amazing fact that
the Fourier transform of the noncompact quantum dilogarithm is essentially
itself (cf. [75,76,79]).

Another consequence of the noncompact quantum dilogarithm’s Fourier
self-transform, combined with its famous pentagon identity [19], is that the
state integral model we construct for holomorphic blocks on triangulated
knot complements (M, A) is invariant under 2-3 Pachner moves.?? The
proof of this fact is very similar to arguments given in (e.g., [56, 78, 80])
in the context of quantum Teichmiiller theory, so we will not explain it
further here. (Once we have a well-defined tetrahedron wavefunction (Z2’)
that is invariant under permutations (6.16), invariance of a state integral
model under 2-3 Pachner moves and other combinatorial choices is actually
guaranteed for us. This is because we explicitly construct the state integral
model as a wavefunction dual to the operator gluings in Section 5, and
we have already checked in Section 5 that the “gluing together” of Ay is
independent of combinatorial choices.)

29 As usual, we ignore the subtleties of the “bad” triangulations discussed in Sections 4.3
and 4.4.1 when making such statements.
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Mathematically, we might note that just as the noncompact quantum
dilogarithm (6.11) is a rather nicer function of Z’' than (6.9) (and is more
suitable for a state integral model), it is also a much nicer function of h.
Namely, while (6.9) is only defined for Reh < 0 (or |¢| = 1) and has a natural
boundary at the real line, the function (6.11) can be analytically continued
to a holomorphic function on the entire complex plane minus a half-line.
This is reminiscent of the properties of similar functions discussed in [81],
in relation to the Eichler integrals of Maass waveforms.

Physically, we have one additional motivation for using the noncompact
quantum dilogarithm (6.11) rather than its “compact” cousin (6.9), and this
has to do with S-duality. In several recent works [21,22,37,38], it has been
shown that various ingredients of Chern—Simons theory on a three-manifold
M — such as its Hilbert space, or its holomorphic blocks — can be con-
structed in four-dimensional N' = 4 super Yang—Mills theory on a manifold
M % [0,1] or M x R,. The relation between the complexified coupling 7 of
super Yang—Mills theory and the Chern—Simons coupling % in these pictures
is roughly

h ~ 2miT. (6.17)

As super Yang—Mills theory is self-dual under the interchange 7 < —1/7
(together with the exchange of the gauge group with its Langlands dual), one
might wonder whether a similar symmetry might manifest itself in Chern—
Simons theory, under

S: h— —h. (6.18)

An alternative hint of S-duality (in fact, of modularity) in certain col-
ored Jones polynomials was also found in [82]. Unfortunately, the precise
physical interpretation of S-duality in Chern—Simons theory is far from
clear at the moment. Nevertheless, if one uses the noncompact quantum
dilogarithm (6.11) as the holomorphic block of a tetrahedron, S-duality,
at least in our present analytically continued context, suddenly appears
surprisingly simple. Namely, due to the properties ®p/5(p) = ®5/2(p) and
®_p/o(p) = ®pya(p) !, the first an elementary consequence of (6.12) and the
second a formal consequence of (6.14), we have

7' 7', h——h
—

S (2 Ww(Z' —h)7h, (6.19)

where we have accompanied the inversion of 1 with a Jacobi-type trans-
formation 7' — Z' = %Z’. Better yet, if we just send h — h = —4n%/h
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(preserving the upper half-A-plane) rather than i — —h, we find an exact
invariance

Z' 7', h—h
[

o W) w(Z"). (6.20)

The requirement that (Z’) be self-dual under the transformation o :
(Z',h) — (Z',h) as in (6.20) can be used as a fairly natural way to narrow
down its overall normalization. In particular, we see that if we multiply
¥(Z') by a “constant” function f(h), this function must be symmetric under
h < h in order to preserve (6.20). Combining this with the observation at
the end of Section 5.1 that the leading asymptotics of 1(Z’) should match
the analytically continued hyperbolic volume of an ideal tetrahedron, we can
estimate that any normalization factor f(h) should be of the general form

f(h) € exp <7:Q+C+h(@). (6.21)

This is a very rough, conservative estimate, although it will suffice here.
We will see in Section 6.2 that it coincides with the form of ambiguities
introduced into the state integral model through the projectivity of the Weil
representation.

6.1.1 Modular double and the dual A

The analytically continued wavefunction ¥(Z') = ®p/o(—2" +im + h/2) is
quasi-periodic under shifts of Z’ by h, ¥(Z'+h) = (1 —e % )p(Z'), and
this quasi-periodicity is embodied in the functional equation

La-(Z)= (G421 —1)0(Z")=0 (6.22a)
as in (6.7). The noncompact quantum dilogarithm, however, is also quasi-
periodic under shifts by 27, as in (6.15), and therefore satisfies a second
dual equation

La-P(Z) = (@+2"" = 1)y(Z) =0, (6.22b)
where
A 2T, 5, 2mip, . . N 5
Z = ?Z, Z = ?Z, and z=-exp(Z), z =exp(Z), (6.23)

so that, in particular,

27i VA

20(Z) = (2 +2mi) and Z(Z) =T L p(2). (6.24)
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The combination of equations (6.22a-b) completely fixes the functional
dependence of 1(Z’) on the logarithmic variable Z’, determining (Z’) =
®p9(—2" +im + h/2) up to overall normalization. This follows from an
analogous statement in the operator algebra. Namely, the full algebra of
exponential operators generated by z and z’ in addition to 2 and 2’ is iso-
morphic to the logarithmic algebra generated by Z and Z’ [19]:

Clq,q)[#F, 24, 2% 7+ ~ C(h)[ 2, Z). (6.25)

Thus, once z and 2’ are included, pairs of operator equations can determine
wavefunctions that depend on Z’ rather than just the exponentiated variable
2 =eZ,

Enlarging a g-commuting algebra of exponential operators by adding their
duals in this manner is sometimes referred to as forming its modular double
[19] (also cf. [83,84]). It is important to observe that original and dual
variables always mutually commute. For example,

272 =exp ([Z, Z’])i'é = exp < .

. h> 72 =172, (6.26)

and similarly, z 2/ = 2'z. Therefore, the modular double of a g-commutative
algebra really just contains two commuting copies of the algebra itself. There
is an involution o, sending operators to their duals, e.g.,

0.2 =17, 0,7 =72, (6.27)

and also
oxsh=h = o0.,0=aq, (6.28)
so that o, interchanges the two copies of an algebra of exponential operators

in a modular double. Note that the commutation relations for dual variables
are

-\ 2
2.71= (2" hen = 24 =qis 6.29
’ h q )

so that o, preserves the commutator.

The quantum vertex equations have a particularly nice transformation
under o,. In Section 5.1, we promoted the classical constraint Z + Z’ +
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Z" = ir on the phase space of a tetrahedron to a quantum relation (5.4),
Z+ 7'+ 27" =ir+ah. (6.30)

We used many ingredients in Section 5 to argue that a = 1/2 was the only
consistent value for a. Acting on the LHS of (6.30) with o, we find

0 (Z+2+27"=2+7+17"
2mi
5 (

2
= 21 (im + ah)

Z + Z/ Z//)

h
= 2ami + 2 (6.31)

which is equal to o, (im + ah) = i + ah if and only if . Thus, simple
compatibility of the vertex equation with the involution o, immediately fixes
the quantum correction a. (We have assumed here that in addition to (6.23)
we have Z" = 2—;.?2”.)

Since a tetrahedron wavefunction ¢ (Z’) satisfies both £ ¥(Z') = 0 and
La ¥(Z') = 0, one might wonder whether the holomorphic blocks Z(M:; u)
of an entire knot complement M are also annihilated by a dual operator, in
addition to A. The answer is easily found to be yes. The general TQFT
gluing methods of Section 3 imply that if the holomorphic blocks ¢(Z))
for every tetrahedron A; in a triangulation of M satisfy ﬁA Y(Z) =0 as
well as EA ¥ (Z!) = 0, then there is an element A(ﬁ m?; q) in the left ideal
generated by all the [«A s (and specialized to C = h) that annihilates the
glued holomorphic blocks Z%(M;u).

Explicitly, the element A (£, 10?%; q) is constructed by applying the involu-
tion o, to all the algebras and ideals of Section 5, sending

A

271 A A A 271 A A A 27 A

— 2 = i, Zl— 7 = ?Z’ Zl v 7! = ?Z” (6.32)
hi—h, q—q,
as well as
A A 27 . 27~ N 27 . 27,
¢j — € = exp Cj, A = 4 = exp f‘j, (6.33)

m?—m?=expU, (—~L=exp¥V, etc.
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and then repeating every argument in Section 5 word for word. The final
result is that A(@, m?; q) is equivalent to the operator obtained by just
applying o, directly to fl(é, m?; q), with one exception. Namely, if the neg-
ative square root of ¢ was taken by setting v = V/ 2 + im (cf. the factor of
im in (5.31), or the discussion of these roots around (4.29)), then the correct
effective transformation of ¢ from A to A is

—{ = exp (V/Z) > exp (V/2) = exp (221(\7 - i7r)> =q % (6.34)

The fundamental reason for the exception is that the choice of a root is the
only place where the symmetry between the quasi-periods 27i and h of the
noncompact quantum dilogarithm is broken. Everywhere else, they occur
in the o,—covariant combination 2xi+ h. Thus, for example, the special-
ization ¢; — ¢ (in the final step of calculating /1) is mirrored by the dual

specialization ¢; = exp (2—;;‘6’]) — exp(27i + h) = q. To summarize,

O'*A(é, m?; q) if V02 = ¢,

h A 6.35
0 A(=q V2, q) iV = —L. (6.35)

A(L,m? q) = {

It is pleasing to note that requiring o,—invariance of the quantum-corrected
specialization of gluing functions C; — 27i + x;h immediately fixes the con-

stants , the same way that o,—invariance of the vertex equations fixes

a = 1/2. Duality effectively allows us to bypass the painstaking analysis of
topological invariance in Sections 5.3 and 5.4.

Just as the semi-classical phase spaces and Lagrangians for tetrahedra
were closely related to constructions in semi-classical Teichmiiller theory
(Section 4.1), quantized tetrahedra are related to quantum Teichmdiller the-
ory [56,80], and in turn to quantum Liouville theory [85,86]. The appear-
ance of o-duality in Chern—Simons theory can be considered a 3d lift of
the well-known 2d S-duality, often written b < b~! in quantum Teichmiiller
[56,78,80] and Liouville [87] theories. This connection will be more fully
explored elsewhere [88].

6.2 Wavefunctions and the Weil representation

The gluing methods of Section 3 show that the construction of A-polynomials
from tetrahedra in Section 5 should be mirrqrqd by a construction of holo-
morphic blocks — i.e., of the solutions to A(f,m?;q) Z(U) =0 as well as
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(now) the dual equation A(£,1? q)Z(U) = 0. Explicitly, let us assume
that we have a triangulated knot complement M = Ufil A;. To build the
holomorphic blocks, we should

(1) Assign a wavefunction 9(Z;) = ®p/o(—Z; + im + h/2) to each tetrahe-
dron A;.

(2) Multiply these wavefunctions together to form a product ¥(Z,...,
Zy) =(Z1) - p(Zy).

(3) Change the basis, or representation, or polarization, of this wavefunc-
tion to obtain W (U, C4,...,Cn_1), with an explicit dependence on the
gluing functions Cj.

(4) Set Cj — 271+ hin \I’(U, cy,... ,CNfl).

This procedure should produce the holomorphic block integral (6.2)
described in the introduction to this section.

The only nontrivial step above is the third one. It mirrors the change
of symplectic basis (or canonical transformation) that we performed in the
algebra of operators in Sections 4.2 and 5.2, rewriting

(Zy,... 2N, 20, ZN) s (U, C, .., O, 0,1, .., Tvey). (6.36)

This transformation is implemented by an element of the affine symplectic
group ISp(2N,C), or more precisely a combination of Sp(2N, Q) transfor-
mations and translations by rational multiples of ir and h. The action of
the affine symplectic group on the operator algebra changes the representa-
tion of operators on wavefunctions. For example, corresponding to (6.36),
we would expect to go from a representation on functions f(Z1,...,ZY)
(with Z; = hdz:) to a representation on functions f(U,C1,...,Cn-1) (with

© = h Oy and fj = hdc;). The map between one representation and another,
which intertwines the action ¢, of the affine symplectic group in the operator
algebra, is precisely what is needed in Step 3 above to send

U(Z, ..., ZN) —= U(U,C,...,Cn_1). (6.37)

When wavefunctions live in a Hilbert space L?(RY), the desired inter-
twining action is known (mathematically) as the Weil representation of the
affine symplectic group ISp(2N,R) [51,52]. It is a unitary but projective
representation of ISp(2N,R), so its action on wavefunctions in only defined
up to a phase. In our case, we do not quite have a Hilbert space, but we can
still apply Weil transformations in a formal manner. To do so, we can imag-
ine our locally holomorphic wavefunction ¥ to be the analytic continuation
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of an actual element in L2(RY).3% Note also that if all the Z! and also
h are taken to be pure imaginary, then our symplectic transformation ¢,
becomes an element of I.Sp(2N,Q) C ISp(2N,R) rather than I.Sp(2N,C).
In this case, the classic Weil representation is fully well-defined — and can
thereafter be analytically continued.

Let us assume, then, that a formal Weil transformation of our holomorphic
wavefunctions does exist. Given an element ¢, of ISp(2N, C) as above, the
easiest way to find the corresponding intertwining action ¢ on wavefunctions
is to write @, as a product of generators. The generators of ISp(2N, C) can

be taken to be of four basic types. Acting on column vectors (Z’ Z )T =
(z,..., Zﬁ\,, Z1,...,Zn)T, the first three types of generators are Sp(2N, C)

matrices
I-J —-J A 0 I 0
< J I — J> y <0 AlT) ) and (B I> 3 (638)

written in terms of N x N blocks, where J is diagonal with entries 0 and
1, A is nonsingular, and B is symmetric (BT = B). The fourth type of
generators contains the translations

:»/ :'/ g :'/ :’/
ZVes (255) ana (2] .7 (6.39)
7 7 Z Z+i

The intertwiner corresponding to each generator is fairly simple (cf. [89]).
Let us first consider the three types of Sp(2N,C) elements, and suppose

that
oo (2, 6.40
<Y> 4 (Z> (6.40)

300ne could now make this statement much more precise. For example, at pure imag-
inary A, the quantum dilogarithm (Z’) is not square integrable, but it is integrable and
has a well-defined Fourier transform along a distinguished contour. In principle, this allows
for the definition of a distinguished “real” integration cycle in a final expression for the
wavefunction of M, such as (6.2). If we were interested in the actual partition function of
physical Chern—Simons theory, this is precisely the type of procedure that we should go
through. However, since we actually want holomorphic blocks (i.e., a complete basis for
the vector space of solutions to Az = 0), we would end up analytically continuing the
final integral (6.2) anyway, replacing any distinguished integration cycle by well-defined
critical-point cycles C*. Thus, there is presently no reason to be any more careful about
the actual integrations being performed.
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with ¢, € Sp(2N, C), such that Z; = h 0z on functions f(Z') and Y; = hox,

~

on transformed functions f(X). (To avoid cluttering notation, we omit the
hats ‘*” on operators here.) Then:

ce=1{7 o

J =1, then

y _I), which is the first matrix in (6.38) specialized to

H(Z) 20 FR) = oy [ 42 1(2) el 2.

CDRE (6.41a)

e More generally, if @, = I ; 7 I__J 7)) then a one-dimensional
Fourier transform of the type (6.41a) should be performed for every
coordinate corresponding to a ‘1’ on the diagonal of J.

A 0

o If p, = <0 AlT)’ then

f(Z') = f(X) =

N f(ATIX). (6.41b)

F(Z') 2 J(R) = f(X) e XTBX, (6.41c)

7! v 71! -
o If Z_. i )_{: = Z j_ 5 , then
Z Y Z

f(Z) V5 f(X) = (X - 9); (6.41d)
e and if <Z;/) ik <)§> = <_,_’/ -], then
A Y Z+t
F(Z') 2 F(X) = f(X)ertX, (6.41¢)

The wavefunction transformations (6.41) can be composed to create the
formal intertwiner corresponding to any ¢, € ISp(2N, C). We shall see some
examples momentarily. The reason this Weil transformation is only formal
is due to the Fourier transform (6.41a). For the types of functions we are
considering (locally holomorphic functions of A ), the Fourier integral may
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not be defined on a fixed, canonical integration cycle. Rather, as we have
mentioned several times, such an integral must ultimately be interpreted as
taken on any cycle that makes the integral converge; and such cycles are
generally constructed by downward flow from critical points.

The normalization constants 1/v/det A and (2rih)~N/? are included
because they would make transformations (6.41) unitary if & were pure imag-
inary and if we were acting on L2(RY). These normalizations continue to
be natural in an analytically continued context.

In (6.41d) and (6.41e), we have written the two different types of trans-
lations separately. Despite the fact that these translations commute as
elements of ISp(2N,C), the intertwining actions on functions f(Z') do
not! Indeed, note that if we map (Z/,Z) — (Z' +5,2) — (Z' + 5, Z +1) =
(X,Y), then

—

F(Z) > f(X — §)entX, (6.42)

whereas if we map (Z/,Z) — (2", Z + 1) — (Z' +5,Z +1) = (X,Y) in the
opposite order, then

—

F(Z") = e 7 ETF(X — §)ent X, (6.43)

The two transformations (6.42) and (6.43) differ by the multiplicative con-
stant e_%t'g, which would simply be a phase if we were acting with
ISp(2N,R), at imaginary A. This is one sign that the Weil representation,

formal or otherwise, is only projective.

Since all of the translations we consider are by rational multiples of either
im or h, the extra projective factor in (6.43) must be of the general form

exp (7:@ +C+ hQ). (6.44)

One can similarly check whether other expected commutation relations for
the generators of ISp(2N,C) are modified by projective factors in the Weil
representation. Aside from a mild, A-independent ambiguity arising from
commutation of Sp(2N,C) generators among themselves, the only other
notable projective factor comes from commutation of a lower-diagonal sym-
plectic transformation (6.41c) with a translation (6.41d). This factor is

sT'B

en®" BS, (6.45)

which again must be of the form (6.44) since B is always rational for us.
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In the introduction to this section, we claimed that our construction of
holomorphic blocks for a knot complement was naturally well-defined up
to a multiplicative factor precisely of the form (6.44). By combining the
self-dual normalization of ¥ (Z’) discussed on page 575 with the current
observations about projective factors and Weil generator normalizations, we
have substantiated this claim.

We note that, mathematically, the projective Weil representation of
ISp(2N,R) could be lifted to a true representation of an extension of the
affine metaplectic group IMp(2N,R) by the Weyl group of Sp(2N,R) (cf.
[90]). Unfortunately, we see no physical motivation or meaning of this lift
in the present context.

6.2.1 Cyclic permutations

As our first toy example of transforming wavefunctions in the Weil represen-
tation, we can consider the effect of cyclic permutations Z — 2/ — Z" — Z
on the tetrahedron wavefunctions ¢ (Z’).

The operator algebra corresponding to a tetrahedron is really generated
by three logarithmic elements Z, Z’, Z”, which satisfy the quantum vertex
equation

Z+ 72+ 7" =ir+h/2. (6.46)

We explained in Section 6.1.1 that (ignoring subtle details related to invert-
ible elements) this algebra is equivalent to the modular double of an algebra
in exponentiated operators. Explicitly including the vertex equations, we
have

CZ, 2, 2")(Z+ 7' + 2" = i + 1)2)
~C(q,q)[2,2,2",2,2 2" (2557 — o, 33 = q)- (6.47)

The operator algebras (6.47) are manifestly invariant under cyclic permu-
tations. Once we impose the vertex equations and eliminate one of the 2’s
in favor of the other two (eliminating the center of the operator algebra),
cyclic invariance becomes the statement that the canonical transformations

A zZ" —7 — 7' +ir+ 12 .
[ (2> — (Z’) = ( P (+ cyclic) (6.48)
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are isomorphisms of the algebras

2.2
Z// 5 %CZ/ Z//] (649)
that preserve the Lagrangian operator La and its dual La. Accordingly,

the formal Weil transformations p of wavefunctions should be isomorphisms,
in a suitable sense, of the analytically continued functional spaces

Hoa ~ (2}

p »
Hon ~ {f(2)} «—"——Hjp ~ {/(Z")} (6.50)
In particular, these maps p must preserve the wavefunction of a tetrahedron.

Here it should be understood that the operators (Z, Z'), (Z', 2", (2", Z),
respectively, act on the spaces Hix, Hon, Hoa as (hdz, Z"-), (hOzn, Z"-),
(hdz,Z-). The desired preservation of wavefunctions means that, in the
Weil representation,

W(Z') e p(2"), (6.51)
up to a projective factor.

As an element of I1Sp(2,C), p. is a composition of

STT:—<(1) _01><i ?) (6.52)

with a translation by ir + h/2. The easily verified identity p2 =1 is an
extension of the standard Sp(2,7Z) identity (STT)? =TI to the affine sym-
plectic group. In terms of wavefunctions, one can check formally that in the
Weil representation

3

F(Z) £ e im0/ p(7) (6.53)

for any f(Z), so that p? = id. up to an expected projective factor.

To check invariance of the tetrahedron wavefunction under a single p, we
need to use the fact that the Fourier transform of the noncompact quantum
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dilogarithm is (cf. [75])

1 im 2 —h2
Mot / AY @y p(YV) er XY = e T8 @y p(—X +im + 7/2), (6.54)

for a suitably defined contour.?!

Inverting this relation gives

im _,’_47r27h2

/chbh/Q(—X+i7r+h/2)eziX2—iXY—e4 7 Bpp(Y).  (6.55)

By decomposing the transformation p into generators and using the Weil
prescriptions in (6.41a-e), we then find that

7T L 72
)

W(Z') F— (Z) en
dZ/ ih (Z/2+2Z//Z/)
o [ 126
translate / / (Z’2+2Z”Z’ 2Z’(17r+ﬁ/2))
— dZ' p(Z")
V2rih /
(6.55)

2 it (/2 (7). (6.56)

The wavefunction maps to itself modulo projective factors, precisely as
needed. This identity would not have worked had we used the “compact”
quantum dilogarithm (6.9) as the definition of ¢(Z’).

For this to work, however, it is crucial that the noncompact quantum
dilogarithm (6.11) is used as the definition of ¢)(Z’), rather than the compact
version (6.9); the compact quantum dilogarithm (6.9) does not satisfy the
identity (6.55).

6.3 Examples

We finish with two illustrative examples of holomorphic blocks, tying
together all the ideas and methods of this paper. The first is the com-
plement of the trefoil knot, Mz, = S3\3;. For fixed boundary condition
u (or U = 2u), there is only one nonabelian flat connection on Ms,, and
the corresponding holomorphic block can be computed exactly and non-
perturbatively. The second example is the complement of the figure-eight
knot, My, = S3\4y, for which we obtain an abstract generating integral of

31Note that factors like exp (%) are sensitive to the precise rotation required to define
a good contour. Since we are only interested in transformations up to projective factors,
we do not keep careful track of them here.



586 TUDOR DIMOFTE

holomorphic blocks, written as a one-dimensional integral of two quantum
dilogarithms. The integrand has two critical points, each corresponding to
a distinct nonabelian flat connection on My,. By performing stationary
phase approximations around these critical points, we obtain the asymp-
totic expansions of the holomorphic blocks to (in principle) all perturbative
orders in £, and find complete agreement with the state integral model of [2].

In general, it is guaranteed that the number of distinct critical points
of an integral for holomorphic blocks agrees with the number of classical
solutions to A(¢, m?) = 0 at fixed m. More precisely, when we construct an
integral to generate solutions to A(Z,m2; q) Z(u) = 0, its critical points must
correspond to solutions of fl(ﬁ, m?2;1) = 0. The formal argument for this is
essentially identical to the discussion in Section 3.4 of [2]. Thus, in the end,
every flat connection A that appears as a solution to a classical equation
A(ﬁ, m?2;q — 1) = 0 must be uniquely identified with a critical point o (and
presumably an entire contour C%) of the state integral model.

6.3.1 Trefoil 34

The complement of the trefoil knot Mg, = S3\3; can be decomposed into
two ideal tetrahedra, with (say) shape parameters Z, Z’, Z" and W, W', W".
According to Section 5.5.2, the symplectic transformation in the operator
algebra from (Z’, Z, W’,W) to (U,C‘,f},f) takes the form

Z' U 0 0 -1 1\ /7 0
Z e, 1 1 0 of]| 2z 0
W I 0 0 35 3/ \W 0
The Sp(4,Q) matrix in (6.57) can be factored into generators>?
0 0 -1 1 100 0 1 -1 0 0
1 1 0 0of (o000 -1||-3 -3 0 0
-1 2 2]7l001 0 o o 1 -1
0 0 3 3 010 0 0 0 -1 -1
1 0 00\ /00 -1 0
0 1 00|00 0o -1
“l2 21 0|l10 0 of 659
-2 2 0 1/\01 0

and it is helpful to label the product appearing on the right-hand side here
as M 1M2M3M4.

32 A useful algorithm for decomposing such matrices into generators is described in [91].
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The Weil transformations rules described in (6.41a—e) immediately deter-
mine how the product wavefunction of two tetrahedra should transform. We
start with W(Z',W') = ¢(Z")y(W’), and calculate

P(Zyp(W') 2;ih/dZ'dW’w(Z’)¢(W) HZU+W'X)
Ms, 21h/dZ’dW’w( Ny(W')e L(Z'U+W' X )+ L (U4 X2-2U X)
- 27T1h / AZ' AW (2 )p(W) et XV +2)+50CU+2'-w)]
My i

S / 7' AW dX (2 )W)

y e% [-X(W'+2)+iUQU+Z'-W')+CX]
dZ' p(Z)p(C — Z') e tuz'++UU-C/2)
\/27‘(‘1 /
translate / 1 UZ’+lU(UfC/2)+i7'U
— dZ' Y(Z"Y(C — Z') en h R
vV 2mih /

dpy(p+C/2 p+C/2 e UUAP+57
ﬁ/ /20 (—p + C/2)

= U(U, Q). (6.59)

This is the product wavefunction in the transformed basis. In order to find
the holomorphic block, we should specialize to C' = 27i 4+ k. The product of
¥’s in (6.59) then becomes

3p2+n2—n2/4

Y(p+C/2)Y(=p+ C/2) — @pa(p)Ppo(—p) =e &, (6.60)

where the last equality is due to a standard (noncompact!) quantum dilog-
arithm identity. Thus, at C' = 27i 4 A, the integral in (6.59) is just a Gauss-
ian! There is a unique critical point, and exact integration on a downward-
flow contour constructed from it yields

-~ ‘Il'2—7,2 2 1
Zs, (U;h) = ¥ (U,27i + h) = —(ﬂe4 Ty ) exp (32[2 + th) . (6.61)

It is very easy to check that the fl—polynomial derived in Section 5.5.2
annihilates this unique nonabelian holomorphic block. Namely,

(0 + ¢*?M3) Zs, (U; h) =0, (6.62)
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where as usual ¢ = e”, and the operators M = m? and { act as
MZzZ(U)=e"Z(U), (Z(U)=Z(U + h). (6.63)

As predicted in Section 6.1.1, there is also a dual A polynomial that annihi-
lates the same holomorphic block, given by A(@, m?; q) = fl(—qfl/z@, m?; q)
=—qV 20 + q*/ 21\713, with M = m?. Indeed, it is also easy to check explic-
itly that

(—q Y28+ q*/>M?) Zs, (U ) = 0, (6.64)

where now

~ 27i

MZU)=e7 Y Z(U), £Z(U)= Z(U + 2xi). (6.65)
The wavefunction itself has an explicit duality

2mi 472
o Z3, (U: ) = Zs, <—U;

h _Y)Z(MM_I)I/QZMU;%), (6.66)

2mi
where M = e U,

The holomorphic block (6.61) has appeared before in the literature, in sev-
eral different guises. In particular, it agrees — up to our standard projective

factors exp (”—; Q+C+ h@) — with the direct analytic continuation of the

trefoil’s colored Jones polynomial, computed by [92].

As a final amusing and illustrative exercise, we can check directly that
the operator

231 — q5M5 _ q361/2M2é+q461/2M3é_52 (667)

from (5.97) actually annihilates the full product wavefunction W (U, C) before
setting C' — 2mi + h. Recall that this operator is a 4—independent element
of the left ideal that annihilates the trefoil’s product wavefunction in any
representation, so in particular it must annihilate W (U, C'). Recall also that
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on \I'(U, (), the operators ¢, M, % act as

eV(U,C) = U(U,C), MU(U,C)=MUUC)=ec"U(U,C) (6.68)
(U(U,C) = V(U + h,C).

The proof proceeds by formal manipulations under the integral sign
Using the functional equation

W(Z' +h) = (1—e 7 )(Z)

(6.69)
for the tetrahedron wavefunction, we find
¥(U,C) / dpio(p+ C/2)%(—p + C/2)erV U0+ 52
\/7
p—pth  —
= d; +C/2+h +C/2 -
— [ Aol + P2+ Wu(p+ CL2 1)
« enUU+P)+57+U
d C oyl
= M +C/2)¢(—p+ C/2)———
e M [ dpuo+ Cpup 02—
x erU(UHP)+IEE (6.70a)
Similarly,
¢ e VPMiv(U, O)
1 1 inU
- — [d + C/2)(—p + C/2)er VU5 =5
N p(p+C/2)Y(—p+C)/2)
C
p—pt+h  +i / 1—eP 3
= M [ d +C/2)Y(—p+C/)2)———F—
x enUU+P)+5 ep_%'m, (6.70b)

and

g e VPRI u(U, 0) =

Ji. dp(p+ C/2)(—p + C/2)

< erUU+P)+5E -5

(6.70c)
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Combining together the right-hand sides of (6.70a—c), we obtain

V(U,C) +q e PM200(U,C) — ¢ te V2P o (U, C)
—i inU

_ LU U+p)+=!
—_ / dp(p+ C/2(~p + C/2)e

= M V(U,0), (6.71)

which is equivalent to the desired relation £z, ¥(U,C) = 0.

More generally, one can use the same basic methods illustrated here to
prove that much more complicated integral formulas for holomorphic blocks
are annihilated by linear difference operators. In essence, one shifts both
the integration variable(s) and the functional variable U by +h over and
over again, until sufficiently many expressions are generated to satisfy a
nontrivial linear relation.

6.3.2 Figure-eight knot 4;

The next simplest holomorphic blocks are those for the complement of the
figure-eight knot in the three-sphere, M = S3\4;. As discussed in Sec-
tions 4 and 5, the figure-eight knot complement can be composed from two
tetrahedra, which again are assigned shape parameters Z and W. Accord-
ing to Section 5.2, the transformation from the original set of generators
(Z',Z,W' , W) in the operator algebra to (U,C,,T) is given by

A ) 1 0 0 -1\ /7 0

|z cl |11 <1 1| 2 2mi+ h
T e Tl 01 ol T i
W P 0 0 0 1 W 0

(6.72)
Let’s denote the Sp(4,Z) matrix appearing in (6.72) as M. It can be decom-
posed as

- o I 0 0 -1 As 0
o= (4 9)(3 )8 )
I 0 0 —I
() -
where the 2 x 2 blocks here involve the identity I as well as

-1 0 -1 1 0
B1:< 0 0>, A3:< 0 _1>, and B4:<1 0) (674)

—_
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The corresponding Weil transformation ¢ of the product wavefunction
U(Z' W' =(Z")p(W') can be constructed in steps, following rules (6.41a—
e). We find

B2 (W) ﬁllh / dZ' AW (2" (W) en X2+ W)

M [ aw sz ek X

r%) Fllh /dZ,dW/w(Z,)¢(W/) e%(—(X—i—Y)Z’—YW’—i—(X—‘rY)Y)

M (27T11h)2 / dZ' AW dX dY (2 )yb(W')

% oF (F(XHY)Z' YW/ H(X+Y)Y+UX+CY)

a1 / dZ'dW'dXdY (Z")p(W')

(2mih)?
M sor i)
1 L(-yw'+(c-U)y-5U?)
=5 AW'dY (Y + U)p(W') e
translate 2;171 /dW dY (Y + U)p(W')
/ 1 i
B ) 6

The integral over W’ in (6.75) can be performed by using (6.54), yielding

(6.75) dY (U + Y)ip(Y)

“

2 2 2
A (iU~ —inY —UY 4+ 2 — Y (C—2mi-B)Y))

X e 6h
1
\/ﬁ /dp ‘I’h/z(p - U)‘I)h/Q(p)

2 7\'27L2 2 . .
UG A (B U ) A (C—2mih) (—pin+ )

Y ——ptin+h/2

X e 2h 3h
/ Dp/a(p—U)
\/ 2mh ‘I)h/2 p)

4n2-n2 _U U : sk
X e 24h _E_ﬁ"'%"'ﬁ(c_Qm_m(_p+l7r+§)

= W(U,C). (6.76)
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Finally, the generating integral of holomorphic blocks becomes

ZEN U h) = U(U,C = 271 + h)
1 an_p2 U _u? dp (I)h/g(p - U) pU

= e 24k 2 2R

V21h ®p/2(—p)

It can be shown explicitly that the integral (6.77) is formally a solution
to the equation Ag, (¢,7% q)Z§"(U;h) = 0. The proof uses the methods
outlined at the end of Section 6.3.1. After removing a factor of

7\'27 L2 2
0—1/2, 505 exp (% Q+C+ h@) (6.78)

from (6.77), the integral can also be shown to be equivalent to the (presum-
ably well-normalized) state integral model of [2] for the figure-eight knot.
The excess factor in (6.78) is precisely of the form that projective ambiguities
are expected to take.

The integrand in (6.77) has two critical points o = geom. and « = conj.
in the A — 0 limit, corresponding to the two classical, nonabelian flat con-
nections on the figure-eight knot complement. These are sometimes known
as the geometric and conjugate flat connections. The asymptotic expansions
of the geometric and conjugate blocks Zzlzgeom’conJ(U; h) can be calculated
by performing a saddle-point approximation of (6.77). For example, if we

set

1
Z3,(U;h) ~ exp (th‘(U)+5alogﬁ+Sf(U)+hS§‘(U)+h2 S$(U) + ) 7

(6.79)
we find that
2 1+ M M(1+4 M¢) 1
o _ L — 14 7172
S (U) =5+ 12<1—M?> 12( “1+ M2 >+2U
1+ MY
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54 =0, (6.80b)
1 M(—1+ M?

SE(U) = 5 log <(A+)> , (6.80¢)
a1 (=14 M?)3(1—M—2M*+15M3 — 2M* — M® + M")
S2(U)__ﬂ+ 243 ’
(6.80d)

N (—=14+ M5 (1 — M —2M? +5M3 — 2M* — M> + M)
S5(U) = SAG , (6.80e)

etc.

The notation here is such that M = m? = eV = e?* (as usual), and A =
OpAg, (6, M) = =1+ M +2M? + M? — M* 4+ 2M?¢. In A and elsewhere,
the variable ¢ satisfies A4, (¢, M) = M? — (1 — M —2M? — M3 + M*){ +
M?¢ =0, and so is implicitly a function of M. The choice of critical point
or flat connection « is encoded in the choice of a solution ¢(M) = ¢*(M) to
the quadratic equation A4, (¢, M) = 0. These asymptotics all agree perfectly
with those found in Section 4.2 of [2], up to the projective factor (6.78).
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