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Quantum risk analysis
Stefan Woerner 1 and Daniel J. Egger1

We present a quantum algorithm that analyzes risk more efficiently than Monte Carlo simulations traditionally used on classical
computers. We employ quantum amplitude estimation to price securities and evaluate risk measures such as Value at Risk and
Conditional Value at Risk on a gate-based quantum computer. Additionally, we show how to implement this algorithm and how to
trade-off the convergence rate of the algorithm and the circuit depth. The shortest possible circuit depth—growing polynomially in
the number of qubits representing the uncertainty—leads to a convergence rate of O(M−2/3), where M is the number of samples.
This is already faster than classical Monte Carlo simulations which converge at a rate of O(M−1/2). If we allow the circuit depth to
grow faster, but still polynomially, the convergence rate quickly approaches the optimum of O(M−1). Thus, for slowly increasing
circuit depths our algorithm provides a near quadratic speed-up compared to Monte Carlo methods. We demonstrate our
algorithm using two toy models. In the first model we use real hardware, such as the IBM Q Experience, to price a Treasury-bill
(T-bill) faced by a possible interest rate increase. In the second model, we simulate our algorithm to illustrate how a quantum
computer can determine financial risk for a two-asset portfolio made up of government debt with different maturity dates. Both
models confirm the improved convergence rate over Monte Carlo methods. Using simulations, we also evaluate the impact of
cross-talk and energy relaxation errors.
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INTRODUCTION

Risk management plays a central role in the financial system.
Value at risk (VaR),1 a quantile of the loss distribution, is a widely
used risk metric. For example the Basel III regulations require
banks to perform stress tests using VaR.2 A second important risk
metric is conditional value at risk (CVaR, sometimes also called
expected shortfall), defined as the expected loss for losses greater
than VaR. By contrast to VaR, CVaR is more sensitive to extreme
events in the tail of the loss distribution.
Monte Carlo simulations are the method of choice to determine

VaR and CVaR of a portfolio.1 They are done by building a model
of the portfolio assets and computing the aggregated value for M
different realizations of the model input parameters. VaR
calculations are computationally intensive as the width of the
confidence interval scales as O(M−1/2). Many different runs are
needed to achieve a representative distribution of the portfolio
value. Classical attempts to improve the performance are variance
reduction or Quasi-Monte Carlo techniques.3–5 The first aims at
reducing the constants while not changing the asymptotic scaling;
whereas, the latter improves the asymptotic behavior, but only
works well for low-dimensional problems.
Quantum computers process information using the laws of

quantum mechanics.6 This has opened up novel ways of
addressing some problems, e.g. in quantum chemistry,7 optimiza-
tion,8 or machine learning.9 Problems in finance that make use of
machine learning may benefit from quantum machine learning.10

A quantum computer may also be used to optimize the risk-return
of portfolios and sample from the optimal portfolio.11 Amplitude
estimation (AE) is a quantum algorithm used to estimate an
unknown parameter and converges as O(M−1), which is a
quadratic speed-up over classical algorithms like Monte Carlo.12

It has already been shown how AE can be used to price financial
derivatives with the Black–Scholes model.13,14

In this article, we extend the use of AE to the calculation of
variance, VaR and CVaR of random distributions. Furthermore, we
develop methods to implement AE on actual hardware and we
discusses how to construct the corresponding quantum circuits to
calculate the expected value, variance, VaR and CVaR of random
variables. Therefore making AE a powerful tool for risk manage-
ment and security pricing. We illustrate our algorithm using
portfolios made up of debt issued by the United States Treasury
(US Treasury). As of December 2016 the US Treasury had 14.5
trillion USD in outstanding marketable debt held by the public.15

This debt is an actively traded asset class with typical daily
volumes close to 500 billion USD16 and is regarded as high quality
collateral.17 government debt typically lacks some of the more
complex features that other types of fixed-income securities have.
These features make US Treasuries a highly relevant asset class to
study while allowing us to use simple models to illustrate our
algorithm. We demonstrate AE on a real quantum computer by
approximating the expected value of a very simple portfolio made
up of one T-Bill, a short-term debt obligation issued by the US
Treasury, analyzed on a single period of a binomial tree. We also
show a more comprehensive two-asset portfolio and simulate the
presented algorithms assuming a perfect as well as a noisy
quantum computer.

RESULTS

Amplitude estimation,12 formally introduced in Supplementary

Information, allows us to estimate a in the state A 0j inþ1¼
ffiffiffiffiffiffiffiffiffiffiffi

1� a
p

ψ0j in 0j i þ ffiffiffi

a
p

ψ1j in 1j i for an operator A acting on n+ 1
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qubits. AE uses m additional sampling qubits and Quantum Phase
Estimation18 to produce an estimator ~a ¼ sin2ðyπ=MÞ of a, where
y∈ {0, …, M− 1} and M, the number of samples, is 2m. The
estimator ~a satisfies

a� ~aj j � π

M
þ π2

M2
¼ O M�1

� �

; (1)

with probability of at least 8/π2. This represents a quadratic speed-
up compared to the O(M−1/2) convergence rate of classical Monte
Carlo methods.1

To use AE to estimate quantities related to a random variable X
we must first represent X as a quantum state. Using n qubits we
map X to the interval {0, …, N− 1}, where N= 2n. X is then
represented by the state

R 0j in¼ ψj in¼
X

N�1

i¼0

ffiffiffiffi

pi
p

ij in with
X

N�1

i¼0

pi ¼ 1 (2)

created by the operator R. Here pi∈ [0, 1] is the probability of
measuring the state ij in and i∈ {0, …, N− 1} is one of the N
possible realizations of X. Next, we consider a function f:{0,…, N−
1}→ [0, 1] and a corresponding operator

F : ij in 0j i7! ij in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f ðiÞ
p

0j i þ
ffiffiffiffiffiffiffi

f ðiÞ
p

1j i
� �

; (3)

for all i∈ {0, …, N− 1}, acting on an ancilla qubit. Applying F to
ψj in 0j i yields
X

N�1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f ðiÞ
p

ffiffiffiffi

pi
p

ij in 0j i þ
X

N�1

i¼0

ffiffiffiffiffiffiffi

f ðiÞ
p

ffiffiffiffi

pi
p

ij in 1j i:

With AE we approximate the probability of measuring 1j i in the

last qubit, which equals
PN�1

i¼0 pif ðiÞ ¼ E f ðXÞ½ �. AE can be used to
approximate the expected value of a random variable.19,20 By
choosing f(i)= i/(N− 1) we estimate E

X
N�1

� �

and hence E½X�. If we
choose f(i)= i2/(N− 1)2 we can efficiently estimate E½X2� and

obtain the variance VarðXÞ ¼ E½X2� � E½X�2 .
We now extend this technique to risk measures such as VaR and

CVaR. For a given confidence level α∈ [0, 1], VaRα(X) is the smallest
value x∈ {0, …, N− 1} such that P½X � x� � ð1� αÞ. To find
VaRα(X) on a quantum computer, we define the function fl(i)= 1 if
i ≤ l and fl(i)= 0 otherwise, where l∈ {0, …, N− 1}. Applying Fl, the
operator corresponding to fl, to ψj in 0j i produces
X

N�1

i¼lþ1

ffiffiffiffi

pi
p

ij in 0j i þ
X

l

i¼0

ffiffiffiffi

pi
p

ij in 1j i: (4)

The probability of measuring 1j i for the last qubit is
Pl

i¼0 pi ¼ P½X � l�. Therefore, with a bisection search over l we
find the smallest level lα such that P½X � lα� � 1� α in at most n
steps. The smallest level lα is equal to VaRα(X). This estimation of
VaRα(X) has accuracy O(M−1), i.e. a quadratic speed-up compared
to classical Monte Carlo methods (omitting the additional
logarithmic complexity of the bisection search).
CVaRα(X) is the conditional expectation of X restricted to {0, …,

lα}, where we compute lα= VaRα(X) as before. To estimate CVaR we
apply the operator F corresponding to the function f ðiÞ ¼ i

lα
� flαðiÞ

to ψj in 0j i to create

P

N�1

i¼lαþ1

ffiffiffiffi

pi
p

ij inþ
P

lα

i¼0

ffiffiffiffiffiffiffiffiffiffiffi

1� i
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q

ffiffiffiffi

pi
p
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 !

0j i

þP
lα

i¼0

ffiffiffi

i
lα

q

ffiffiffiffi

pi
p

ij in 1j i:
(5)

The probability of measuring 1j i for the ancilla, approximated

using AE, equals
Plα

i¼0
i
lα
pi . However, since

Plα
i¼0 pi does not sum

up to one but to P½X � lα�, as evaluated during the VaR
estimation, we must normalize the probability of measuring 1j i

to get

CVaRαðXÞ ¼
lα

P½X � lα�
X

lα

i¼0

i

lα
pi : (6)

We also multiplied by lα, otherwise we would estimate CVaRα
X
lα

� �

.

Even though we replace P½X � lα� by an estimation, the error
bound on CVaR, see Supplementary Information, still achieves a
quadratic speed-up compared to classical Monte Carlo methods.
We have shown how to choose f to calculate the expected

value, variance, VaR and CVaR of a random variable X represented
by ψj in. However, we are usually interested in E½f ðXÞ� for a more
general function f:{0, …, N− 1}→ {0, …, N′− 1}, N0 ¼ 2n0, n0 2 N,
for instance representing some payoff or loss depending on X. In
some cases, as shown later, we can adjust F accordingly. In other
cases, we can apply a corresponding operator ij in 0j in0 7! ij in f ðiÞj in0
and use the previously introduced algorithms on the second
register. There exist numerous quantum algorithms for arithmetic
operations21–25 as well as tools to translate classical logic into
quantum circuits.26,27

Quantum circuits

We now show how the previously discussed algorithms can be
mapped to quantum circuits. We start with the construction of
ψj in, see Eq. (2), representing the probability distribution of X. In
general, the best known upper bound for the number of gates
required to create ψj in is O(2n).28 However, approximations with
polynomial complexity in n are possible for many distributions,
e.g., log-concave distributions.29

Approximating E½X� using AE requires the operator F corre-
sponding to f(x)= x/(N− 1), defined in Eq. (3). In general,
representing F for the expected value or for the CVaR either
requires an exponential O(2n) number of gates or additional
ancillas to pre-compute the (discretized) function f into qubits,
using quantum arithmetic, before applying the rotation.30 The
exact number of ancillas depends on the desired accuracy of the
approximation of F. Another approach consists of piecewise
polynomial approximations of f.31 However, this also implies a
significant overhead in terms of the number of ancillas and gates.
In the following, we show how to overcome these hurdles by
approximating F without ancillas using polynomially many gates,
at the cost of a lower—but still faster than classical—rate of
convergence. Note that the operator required for estimating VaR is
easier to construct and we can always achieve the optimal rate of
convergence as discussed later in this section.
Our contribution rests on the fact that an operator mapping

xj in 0j i to xj in cosðζðxÞÞ 0j i þ sinðζðxÞÞ 1j ið Þ, for a given polynomial

ζðxÞ ¼
Pk

j¼0 ζ jx
j of degree k, can be efficiently constructed using

multi- controlled Y-rotations. Single qubit operations with n− 1
control qubits can be exactly constructed, e.g., using O(n) gates
and O(n) ancillas or O(n2) gates without any ancillas. They can also
be approximated with accuracy ϵ > 0 using Oðn logð1=ϵÞÞ gates.32
For simplicity, we use O(n) gates and O(n) ancillas. Since the binary
variable representation of ζ, leads to at most nk terms, the
corresponding operator can be constructed using O(nk+1) gates
and O(n) ancillas. An example for a second order polynomial is
shown in Supplementary Information.
For every analytic function f, there exists a sequence of

polynomials such that the approximation error converges
exponentially fast to zero with increasing degree of the
polynomials.33 Thus, for simplicity, we assume that f is a
polynomial of degree s.
If we can find a polynomial ζ(y) such that sin2ðζðyÞÞ ¼ y, then

we can set y= f(x), and the previous discussion provides a way to
construct the operator F. Since the expected value is linear, we
may choose to estimate E c f ðXÞ � 1

2

� �

þ 1
2

� �

instead of E½f ðXÞ� for a
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parameter c∈ (0, 1], and then map the result back to an estimator
for E½f ðXÞ�. The rationale behind this choice is that
sin2 y þ π

4

� �

¼ y þ 1
2 þ Oðy3Þ. Thus, we want to find ζ(y) such that

c y � 1
2

� �

þ 1
2 is sufficiently well approximated by sin2 cζðyÞ þ π

4

� �

.
Setting the two terms equal and solving for ζ(y) leads to

ζðyÞ ¼ 1

c
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c y � 1

2

	 


þ 1

2

s
 !

� π

4

 !

; (7)

and we choose ζ(y) as a Taylor approximation of Eq. (7) around y
= 1/2. Note that Eq. (7) defines an odd function around y= 1/2,
and thus the even terms in the Taylor series equal zero. The Taylor
approximation of order 2u+ 1 leads to a maximal approximation
error for Eq. (7) of

c2uþ3

2ð2uþ 3Þ þ Oðc2uþ5Þ; (8)

for all y∈ [0, 1], as shown in Supplementary Information.
Now we consider the resulting polynomial ζ(f(x)) of order s(2u+

1). The number of gates required to construct the corresponding
circuit scales as O(ns(2u+1)+1). The smallest scenario of interest is s
= 1 and u= 0, i.e., both, f and ζ, are linear functions, which leads
to a circuit for F where the number of gates scales quadratically
with respect to the number of qubits n representing ψj in.
Thus, using AE to estimate E c f ðxÞ � 1

2

� �

þ 1
2

� �

leads to a maximal
error

π

M
þ c2uþ3

2ð2uþ 3Þ þ O c2uþ5 þM�2
� �

; (9)

where we ignore the higher order terms in the following. Since
our estimation uses cf(x), we also need to analyze the scaled error
cϵ, where ϵ>0 denotes the resulting estimation error for E½f ðXÞ�.
Setting Eq. (9) equal to cϵ and reformulating it leads to

cϵ� c2uþ3

2ð2uþ 3Þ ¼
π

M
: (10)

Maximizing the left-hand-side with respect to c, i.e. minimizing the
number of required samples M to achieve a target error ϵ, results
in c� ¼ ð2ϵÞ1=ð2uþ2Þ . Plugging c* into Eq. (10) gives

2
1

2uþ2 1� 1

2uþ 3

	 


ϵ
1þ 1

2uþ2 ¼ π

M
: (11)

Translating this into a rate of convergence for the estimation error
ϵ with respect to the number of samples M leads to ϵ ¼
O M�2uþ2

2uþ3

� �

: For u= 0, we get O(M−2/3), which is already better
than the classical convergence rate of O(M−1/2). For increasing u,
the convergence rate quickly approaches the optimal rate of O
(M−1).
For the estimation of the expectation we exploited

sin2 y þ π
4

� �

� y þ 1
2, for small |y|. For the variance we apply the

same idea but use sin2ðyÞ � y2. We employ this approximation to

estimate the value of E f ðXÞ2
h i

and then, together with the

estimation for E f ðXÞ½ �, we evaluate Var f ðXÞð Þ ¼ E f ðXÞ2
h i

�E f ðXÞ½ �2 . The resulting convergence rate is again equal to

O M�2uþ2
2uþ3

� �

.
The previous discussion shows how to build quantum circuits to

estimate E½f ðXÞ� and Var(f(X)) more efficiently than possible
classically. In the following, we extend this to VaR and CVaR.
Suppose the state ψj in corresponding to the random variable X

on {0, …, N− 1} and a fixed l∈ {0, …, N− 1}. To estimate VaR, we
need an operator Fl that maps xj in 0j i to xj in 1j i if x ≤ l and to
xj in 0j i otherwise, for all x∈ {0, …, N− 1}. Then, for the fixed l, AE
can be used to approximate P½X � l�, as shown in Eq. (5). With (n
+ 1) ancillas, adder-circuits can be used to construct Fl using O(n)
gates,23 and the resulting convergence rate is O(M−1). For a given

level α, a bisection search can find the smallest lα such that P½X �
lα� � α in at most n steps, and we get lα= VaRα(X).
To estimate the CVaR, we apply the circuit Fl for lα to an ancilla

qubit and use this ancilla qubit as a control for the operator F used
to estimate the expected value, but with a different normalization,
as shown in Eq. (5). Based on the previous discussion, it follows
that AE can then be used to approximate CVaRα(X) with the same
trade-off between circuit depth and convergence rate as for the
expected value.

T-Bill on a single period binomial tree

Our first model consists of a zero coupon bond discounted at an
interest rate r. See Supplementary Information for an introduction
to the financial concepts used in this article. We seek to find the
value of the bond today given that in the next time step there
might be a δr rise in r. The value of the bond today, with face value
VF, i.e. the amount of money the bond holder receives when the
bond matures, is

V ¼ ð1� pÞVF
1þ r þ δr

þ pVF

1þ r
¼ ð1� pÞVlow þ pVhigh; (12)

where p and (1− p) denote the probabilities of a constant interest
rate and a rise, respectively. This model is the first step of a
binomial tree. Binomial trees can be used to price securities with a
path dependency such as bonds with embedded options.34

The simple scenario in Eq. (12) could correspond to a market
participant who bought a 1 year T-bill the day before a Federal
Open Markets Committee announcement and expects a δr=
0.25%-points increase of the Federal Funds Rate with a (1− p)=
70% probability and no change with a p= 30% probability.
We show how to calculate the value of the investor’s T-bill by

running AE on the IBM Q Experience and mapping V to [0, 1] such
that Vlow and Vhigh correspond to $0 and $1, respectively.
Here, we only need a single qubit to represent the uncertainty

and the objective and we have A ¼ RyðθpÞ, a Y-rotation of angle

θp ¼ 2 sin�1 ffiffiffi

p
p� �

, and thus, A 0j i ¼ ffiffiffiffiffiffiffiffiffiffiffi

1� p
p

0j i þ ffiffiffi

p
p

1j i.
AE requires applying exponentials of an operator Q derived

from A. For the single qubit case Q= Ry(2θp). This implies Qj
=

Ry(j2θp), which allows us to construct the AE circuit efficiently to
approximate the parameter p ¼ E½X� ¼ 30%.
Although a single period binomial tree is a very simple model, it

is straight-forward to extend it to multi-period multi-nomial trees
with path-dependent assets. Thus, it represents the smallest
building block for interesting scenarios of arbitrary complexity.
We run several experiments on read quantum hardware in

which we apply AE with a different number of evaluation qubits
m= 1, 2, 3, 4 corresponding to M= 2, 4, 8, 16 samples,
respectively, to estimate p ¼ E½X�. This requires at most five
qubits and can be run on the IBM Q 5 Yorktown (ibmqx2) quantum
processor.35 Since the success probability of AE is larger than 8/π2

we would in principle only need, for instance, 24 repetitions to
achieve a success probability of 99.75%.36 However, current
quantum hardware introduces additional errors. Therefore, we
repeat every circuit 8192 times (i.e., the maximal number of shots
in the IBM Q Experience) to get a reliable estimate. We distinguish
between the number of repetitions required by the imperfections
of the hardware and the convergence rate of our algorithm. We
thus consider the 8192 repetitions as a constant overhead, which
we ignore when comparing the quantum and classical algorithms.
The quantum circuit for m= 3 compiled to the IBM Q 5 quantum
processor is illustrated in Fig. 1. The connectivity of the IBM Q 5
quantum processor, shown in Supplementary Information,
requires swapping two qubits in the middle of the circuit between
the application of the controlled Q operators and the inverse
Quantum Fourier Transform. The results of the algorithm are
illustrated in Fig. 2a where it can be seen that the most frequent
estimator approaches the real value p and how the resolution of
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the algorithm increases with m. The quantum algorithm presented
in this paper outperforms the Monte Carlo method already for M
= 16 samples (i.e. m= 4 evaluation qubits), which is the largest
scenario we performed on the real hardware, see Fig. 2b. The
details of this convergence analysis are discussed in Supplemen-
tary Information.

Two-asset portfolio

We now illustrate how to use our algorithm to calculate the daily
risk in a portfolio made up of 1-year US Treasury bills and 2-year
US Treasury notes with face values VF1 and VF2 , respectively. We
chose a simple portfolio in order to put the focus on the AE
algorithm applied to VaR. The portfolio is worth

Vðr1; r2Þ ¼
VF1

1þ r1
þ
X

4

i¼1

rcVF2

ð1þ r2=2Þi
þ VF2

ð1þ r2=2Þ4
; (13)

where rc is the annual coupon rate, i.e. the annual interest
payment that the bondholder receives divided by the face value
of the bond, paid every 6 months by the 2-year treasury note and
r1 and r2 are the yield to maturity of the 1-year bill and 2-year note,
respectively.
US Treasuries are usually assumed to be default free.37 The

cash-flows are thus known ex ante and the changes in the interest
rates are the primary risk factors. Therefore, a proper under-
standing of the yield curve, i.e. the yield of bonds versus their
maturity, suffices to model the risk in this portfolio. We use the
Constant Maturity Treasury (CMT) rates to model the uncertainty
in r1 and r2. To calculate the daily risk of our portfolio we study the
difference in the CMT rates from 1 day to the next. These
differences are highly correlated (as are the initial CMT rates), see
Fig. 3a, making it unnecessary to model them all when simulating
more complex portfolios. A principal component analysis reveals
that the first three principal components, named shift, twist and
butterfly account for 96% of the variance,38,39 see Fig. 3b, c.
Therefore, when modeling a portfolio of US Treasury securities it
suffices to study the distribution of these three factors. This
dimensionality reduction also lowers the amount of resources
needed by our quantum algorithm.
To study the daily risk in the portfolio we write ri= ri,0+ δri for i

= 1, 2, where ri,0 is the yield to maturity observed today and the
random variable δri follows the historical distribution of the 1 day
changes in the CMT rate with maturity i. For our demonstration we
set VF1 ¼ VF2 ¼ $100, r1,0= 1.8%, r2,0= 2.25%, and rc= 2.5% in Eq.
(13). We perform a principal component analysis of δr1 and δr2
and retain only the shift S and twist T components. Figure 3d
illustrates the historical data as well as S and T, related to δri by

δr1

δr2

	 


¼ W
S

T

	 


¼
0:703 �0:711

0:711 0:703

	 


S

T

	 


: (14)

The correlation coefficient between shift and twist is −1%. We
thus assume them to be independent and fit discrete distributions
to each separately. We retained only the first two principal
components to illustrate the use of principal component analysis

Fig. 1 AE circuit for the T-Bill problem with m= 3. Dashed boxes highlight from left to right: the controlled Q operators, the swap of two
qubits, and the inverse Quantum Fourier Transform (QFT). The swap is needed to overcome the limited connectivity of the chip. U2 and U3,
formally introduced in Supplementary Information, indicate single qubit rotations where the parameters are omitted. Note that the circuit
could be further optimized, e.g., the adjoint CNOT gates at the beginning of the SWAP would cancel out, but we kept them for illustration

Fig. 2 a Results of running AE on real hardware for m= 1,…, 4 with
8192 shots each. Therefore, the error bars on the histograms are

1=
ffiffiffiffiffiffiffiffiffiffi

8192
p

and not shown. The green bars indicate the probability of
the most frequent estimate and the blue bars the probability of the
other estimates. The red dashed lines indicate the target value of
30%. The gray dashed lines show the probability of the second most
frequent value to highlight the resulting contrast. The possible
values are not equally distributed on the x-axis, since AE first returns
a number y∈ {0, …, M− 1} that is then classically mapped to
~a ¼ sin2 yπ

M

� �

. b Comparison of the convergence of the error of Monte
Carlo simulation and our algorithm with respect to the number of
samples M. Although the quantum algorithm starts with a larger
estimation error, for M ≥ 16 (m ≥ 4) the better convergence rate of
the quantum algorithm takes over and the error stays below the
Monte Carlo results. The blue solid line shows the error for our real
experiments using up to m= 4 evaluation qubits. The blue dashed
line shows how the estimation error would further decrease for
experiments with m= 5, 6 evaluation qubits, respectively
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despite the fact that, in this example, there is no dimensionality
reduction. Furthermore, this allows us to simulate our algorithm in
a reasonable time on classical hardware by keeping the number of
required qubits low. We expect that all three components would
be retained when running this algorithm on real quantum
hardware for larger portfolios.
To model the uncertainty in the quantum computer we use

three qubits, denoted by q0, q1, q2, to represent the distribution of
S, and two, denoted by q3, q4, for T. Following Eq. (2), the

probability distributions are encoded by the states ψSj i ¼
P7

i¼0

ffiffiffiffiffiffiffi

pi;S
p

ij i3 and ψTj i ¼
P3

i¼0

ffiffiffiffiffiffiffi

pi;T
p

ij i2 for S and T, which can
thus take eight and four different values, respectively. We use
more qubits for S than for T since the shift explains a larger part of
the variance. Additional qubits may be used to represent the
probability distributions at a higher resolution. The qubits
naturally represent integers via binary encoding and we apply
the affine mappings

S ¼ 0:0626x � 0:2188; (15)

T ¼ 0:0250y � 0:0375: (16)

Here x∈ {0, …, 7} and y∈ {0, …, 3} denote the integer
representations of S and T, respectively. Given the almost perfect
symmetry of the historical data we fit symmetric distributions to it.
The operator R that we define prepares a quantum state R 0j i5,
illustrated by the dots in Fig. 3e, f, that represents the distributions
of S and T, up to the aforementioned affine mapping.
Next, we show how to construct the operator F to translate the

random variables x and y into a portfolio value. Equations (13)
through (16) allow us to define the portfolio value V in terms of x
and y, instead of r1 and r2. For simplicity, we use a first order
approximation

~f ðx; yÞ ¼ 203:5170� 13:1896x � 1:8175y (17)

of V around the mid points x= 3.5 and y= 1.5. From a financial
perspective, the first order approximation ~f of V corresponds to
studying the portfolio from the point of view of its duration.40

Higher order expansions, e.g. convexity could be considered at the
cost of increased circuit depth.
To map the approximated value of the portfolio ~f to a function f

with target set [0, 1] we compute f ¼ ~f � ~fmin

� �

= ~fmax � ~fmin

� �

,

where ~fmin ¼ ~f ð7; 3Þ and ~fmax ¼ ~f ð0; 0Þ, i.e., the minimum and

maximum values ~f can take for the considered values of x∈ {0, …,
7} and y∈ {0, …, 3}. This leads to

f ðx; yÞ ¼ 1� 0:1349x � 0:0186y: (18)

Polynomial approximations allow us to construct an operator F
corresponding to f for a given scaling parameter c∈ (0, 1].
We simulate the two-asset portfolio assuming an ideal quantum

computer for different numbers m of sampling qubits to show the
behavior of the accuracy and convergence rate. We repeat this
task twice, once for a processor with all-to-all connectivity and
once for a processor with a connectivity corresponding to the IBM
Q 20 Tokyo, https://quantumexperience.ng.bluemix.net/qx/
devices, accessed: 2018-05-22. chip, see Supplementary Informa-
tion. This highlights the overhead imposed by a realistic chip
connectivity. For a number M= 2m samples, we need a total of m
+ 12 qubits for expected value and VaR, and m+ 13 qubits for
CVaR. Five of these qubits are used to represent the distribution of
the interest rate changes, one qubit is needed to create the state
in Eq. (3) used by AE, and six ancillas are needed to implement the
controlled Q operator. For CVaR we need one more ancilla for the
comparison to the level l. Once the shift and twist distributions are
loaded into the quantum computer, using the circuit shown in Fig.
3g, h, we apply the operator F to create the state defined in Eq. (3).
We compare the quantum estimation of risk to the exact 95%

VaR level of $0.288. Based on Eq. (18), this classical VaR
corresponds to 0.093, shown by the verticle line in Fig. 4. The
quantum estimation of risk rapidly approaches this value as m is
increased, Fig. 4. With m= 5 sample qubits the difference
between the classical and quantum estimates is 9%. The number
of CNOT gates needed to calculate VaR approximately doubles
each time a sample qubit is added, see Table 1, i.e. it scales as O
(M) with a resulting error of O(M−1). We find that the connectivity

Fig. 3 Daily change in the CMT rates. a Correlation matrix. The high correlation between the rates can be exploited to reduce the dimension
of the problem. b Shift, Twist, and Butterfly components expressed in terms of the original constant maturity treasury rates. c Eigenvalues of
the principal components. The numbers show the cumulative explained variance. d Historical constant maturity treasury rates (1-year against
2-years to maturity) as well as the resulting principal components: shift (longer vector), and twist (shorter vector). e 8-bin histogram of
historical shift data (bars) as well as fitted distribution (dashed line). f 4-bin histogram of historical twist data (bars) as well as fitted distribution
(dashed line). In both cases the labels show the quantum state that will occur with the corresponding probability. g, h show the quantum
circuits used to load the distributions of e, f, respectively, into the quantum computer
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of the IBM Q 20 Tokyo chip increases the number of CNOT gates
by a factor 2.3 when compared to a chip with all-to-all
connectivity.
Computing the expected value or risk measures for the two-

asset portfolio requires a long circuit. However, it suffices for AE to
return the correct state with the highest probability, i.e.
measurements do not need to yield this state with 100%
probability. We now run simulations with errors to investigate
how much imperfections can be tolerated before the correct state
can no longer be identified.
We study the effect of two types of errors: energy relaxation and

cross-talk, where the latter is only considered for two-qubit gates
(CNOT gates). We believe this captures the leading error sources.
Errors and gate times for single qubit gates are in general an order
of magnitude lower than for two-qubit gates.41–43 Furthermore,
our algorithm requires the same order of magnitude in the
number of single and two-qubit gates. Energy relaxation is
simulated using a relaxation rate γ such that after a time t each
qubit has a probability 1− exp(−γt) of relaxing to 0j i.44 We set the
duration of the CNOT gates to 100 ns and assume that the single
qubit gates are done instantly and are thus exempt from errors.
We also include qubit–qubit cross-talk in our simulation by adding
a ZZ error-term in the generator of the CNOT gate

expf�iπðZX þ αZZÞ=4g: (19)

Typical cross-resonance45 CNOT gate rates are of the order of
5 MHz whilst cross-talk on IBM Q chips are of the order of
−100 kHz.43 We thus estimate a reasonable value of α, i.e. the
strength of the cross-talk, to be −2% and simulate its effect over
the range [−3%, 0%].

We illustrate the effect of these errors by computing the
expected value of the portfolio. Since the distributions are
symmetric around zero and mapped to the interval [0, 1] we
expect a value of 0.5, i.e. from one day to the next we do not
expect a change in the portfolio value. This simulation is run with
m= 2 sample qubits since this suffices to exactly estimate 0.5. The
algorithm is successful if it manages to identify 0.5 with a
probability >50%. With our error model this is achieved for
relaxation rates γ < 10−4 s−1 and cross-talk strength |α| < 1%, see
Fig. 5a–c, despite the 4383 gates needed. A generous estimation
of current hardware capabilities with γ= 10−4 s−1 (loosely based
on T1= 100 μs) and α=−2%, shown as red lines in Fig. 5,
indicates that this simulation may be possible in the near future as
long as other error sources (such as measurement error and
unitary errors resulting from improper gate calibrations) are kept
under control.

DISCUSSION

We developed a quantum algorithm to estimate risk, e.g. for
portfolios of financial assets, resulting in a quadratic speed-up
compared to classical Monte Carlo methods. The algorithm has
been demonstrated on real hardware for a small model and the
scalability and impact of noise has been studied using a more
complex model and simulation. Our approach is very flexible and

Fig. 5 Results from noisy simulation for estimating the expected
value of the two-asset portfolio using two evaluation qubits. The
perfect simulation returns 0.5 with 100%. This figure shows how the
probability of measuring 0.5 decreases with increasing noise: a
shows the results for both, increasing cross-talk and increasing
relaxation rate, b shows the result for varying relaxation rate without
cross-talk, and c shows the result for different cross-talk strengths
without relaxation. The dashed red lines indicate the estimated state
of the currently available hardware

Fig. 4 VaR estimated through a simulation of a perfect quantum
computer. As the number of sample qubits m is increased the
quantum estimated VaR approaches the classical value indicated by
the vertical blue line. The dashed lines are intended as guides to the
eye. The stars indicate the most probable values

Table 1. Summary of the number of CNOT gates to estimate VaR as a

function of m for a processor architecture featuring an all-to-all qubit

connectivity and an architecture with a qubit connectivity

corresponding to the IBM Q 20 Tokyo chip with 20 qubits

#CX

m M #qubits all-to-all IBM Q 20
Tokyo

Overhead

1 2 13 795 1773 2.23

2 4 14 2225 4802 2.16

3 8 15 5085 11,821 2.32

4 16 16 10,803 24,811 2.30

5 32 17 22,235 52,096 2.34
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straight-forward to extend to other risk measures, such as semi-
variance.
More qubits are needed to model realistic scenarios and the

errors of actual hardware need to be reduced. Although the
quadratic speed-up can already be observed for a small number of
samples, more is needed to achieve a practical quantum
advantage. In practice, Monte Carlo simulations can be massively
parallelized, which pushes the border for a quantum advantage
even higher.
Our simulations of the two-asset portfolio show that circuit

depth is limited for current hardware. In order to perform the
calculation of VaR for the two-asset portfolio on real quantum
hardware it is likely that qubit coherence times will have to be
increased by several orders of magnitude and that cross-talk will
have to be further suppressed.
However, approximating, parallelizing, and decomposing quan-

tum phase estimation is ongoing research and we expect
significant improvements in this area not only through hardware,
but also algorithms.46–48 This can help shorten the required circuit
depths, and reduce the hardware requirements to achieve a
quantum advantage. Circuit depth can also be shortened by using
a more versatile set of gates. For instance, the ability to implement
SWAP gates directly in hardware would circumvent the need to
synthesize them using CNOT gates.49,50 In addition, techniques
such as error mitigation51 could be applied to cope with the noisy
hardware of the near future.
Another question that has only briefly been addressed in this

paper is the loading of considered random distributions or
stochastic processes. For auto-correlated processes this can be
rather costly and needs to be further investigated. Techniques
known from classical Monte Carlo, such as importance sampling,52

might be employed here as well to improve the results or reduce
the circuit depth.

METHODS

The code to run real experiment and simulations was written using the
Qiskit framework.44 Qiskit also provides access to the used quantum
hardware as well as the simulator.

Code availability
The code used for amplitude estimation is available open source in Qiskit

Aqua and some of the mentioned examples are available in Qiskit

Finance.53
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