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Abstract—Faster, ultra-reliable, low-power, and secure
communications has always been high on the wireless evolu-
tionary agenda. However, the appetite for faster, more reliable,
greener, and more secure communications continues to grow. The
state-of-the-art methods conceived for achieving the performance
targets of the associated processes may be accompanied by an
increase in computational complexity. Alternatively, a degraded
performance may have to be accepted due to the lack of jointly
optimized system components. In this survey we investigate
the employment of quantum computing for solving problems
in wireless communication systems. By exploiting the inherent
parallelism of quantum computing, quantum algorithms may be
invoked for approaching the optimal performance of classical
wireless processes, despite their reduced number of cost-function
evaluations. In this contribution we discuss the basics of
quantum computing using linear algebra, before presenting
the operation of the major quantum algorithms, which have
been proposed in the literature for improving wireless com-
munications systems. Furthermore, we investigate a number of
optimization problems encountered both in the physical and
network layer of wireless communications, while comparing
their classical and quantum-assisted solutions. Finally, we state
a number of open problems in wireless communications that
may benefit from quantum computing.

Index Terms—Algorithm design and analysis, channel estima-
tion, localization, multiuser detection, non-orthogonal multiple
access, optimization, precoding, quantum algorithms, quan-
tum computing, routing, visible light communication, wireless
communication.

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

AoA Angle of Arrival

BBHT Boyer-Brassard-Høyer-Tapp

BER Bit Error Rate

CDMA Code Division Multiple Access

CF Cost Function

CFE Cost Function Evaluation

Manuscript received February 10, 2018; revised August 15, 2018 and
October 10, 2018; accepted November 16, 2018. Date of publication
November 20, 2018; date of current version May 31, 2019. This work
was supported by the European Research Council under the Advanced
Fellow Grant the Royal Society’s Wolfson Research Merit Award and
the Engineering and Physical Sciences Research Council under Grant
EP/L018659/1. (Corresponding author: Lajos Hanzo.)

The authors are with the School of Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ, U.K. (e-mail: pb1y14@
ecs.soton.ac.uk; da1d16@ecs.soton.ac.uk; zb2g10@ecs.soton.ac.uk;
hvn08r@ecs.soton.ac.uk; dc2n14@ecs.soton.ac.uk; sxn@ecs.soton.ac.uk;
lh@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/COMST.2018.2882385

CIR Channel Impulse Response

CoMP Coordinated Multi-Point

DDCE Decision-Directed Channel Estimation

DEA Differential Evolution Algorithm

DH Dürr-Høyer

DN Destination Node

eMBB enhanced Mobile BroadBand

EQPO Evolutionary Quantum Pareto Optimization

FD-CHTF Frequency Domain - CHannel Transfer

Function

FFT Fast Fourier Transform

GA Genetic Algorithm

GNFS General Number Field Sieve

HetNet Heterogeneous Network

HHL Harrow-Hassidim-Lloyd

IoT Internet of Things

IQFT Inverse Quantum Fourier Transform

LED Light Emitting Diode

LLR Log-Likelihood Ratio

LOS Line Of Sight

LTE Long-Term Evolution

MAP Maximum A posteriori Probability

MBER Minimum Bit Error Ratio

ML Maximum Likelihood

MMSE Minimum Mean Square Error

mMTC massive Machine Type Communications

MODQO Multi-Objective Decomposition Quantum

Optimization

MPC Multi-Path Component

MUD Multi-User Detection

MUT Multi-User Transmitter

NDQIO Non-Dominated Quantum Iterative

Optimization

NDQO Non-Dominated Quantum Optmization

NOMA Non-Orthogonal Multiple Access

NU Network Utility

OFDMA Orthogonal Frequency Division Multiple

Access

OMA Orthogonal Multiple Access

PDP Power Delay Profile

PIC Parallel Interference Cancellation

PLR Packet Loss Ratio

PSO Particle Swarm Optimization

QCA Quantum Counting Algorithm

QGA Quantum Genetic Algorithm

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0002-6654-1702
https://orcid.org/0000-0001-6349-1044
https://orcid.org/0000-0003-2406-7229
https://orcid.org/0000-0002-0930-7194
https://orcid.org/0000-0002-2636-5214


1210 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 2, SECOND QUARTER 2019
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I. INTRODUCTION

T
HE NEXT generation of wireless communications

promises Ultra-Reliable Low-Latency

Communications (URLLC), massive Machine Type

Communications (mMTC), as well as 100x increased

throughput in enhanced Mobile BroadBand (eMBB) com-

munications [1], [2]. The plethora of applications, involving

the Internet of Things (IoT) and the vision of every-

thing being connected everywhere and anytime has to be

achieved [3], [4], while keeping the required resources as

low as possible. For example, the transition from Orthogonal

Multiple Access (OMA) to Non-Orthogonal Multiple

Access (NOMA) [5] is expected to occur in the eMBB use

case of 5G for increasing the system throughput. However, the

complexity of the signal detection will also be increased, even

if a sub-optimal detector based on for example Successive

Interference Cancellation (SIC) is adopted [6]. At the same

time, agile and accurate channel estimation will be required in

URLLC [7], where the target end-to-end delay requirement,

which includes both the transmission time as well as process-

ing time, is on the order of a few OFDM symbols. In order to

achieve this, a joint channel estimator and data detector may

be employed for achieving an improved performance, albeit

this tends to impose increased computational complexity. In

a mobile mMTC network, the inherent problem of finding

the optimal route amongst numerous nodes is again going to

require intensive computations [8].

During the last few years the research community has turned

its attention to quantum computing [1], [9]–[12] with the

objective of amalgamating it with classical communications in

order to attain certain performance targets, such as throughput,

round trip delay and reliability targets at a low computational

complexity. As we will discuss in more detail in this contri-

bution, there are numerous optimization problems in wireless

communications systems that may be solved at a reduced

number of Cost Function Evaluations (CFEs) by employing

quantum algorithms.

A. Why Quantum Computing?

The ever-reducing transistor size following Moore’s law is

approaching the point, where the so-called quantum effects [9]

become prevalent in the transistors’ operation [13]. This spe-

cific trend implies that quantum effects become unavoidable,

hence rendering the research of quantum computation systems

an urgent necessity. In fact, a quantum annealing chipset [14]

is already commercially available from D-Wave1 [15], [16].

Apart from the quantum annealing architecture, the so-called

gate-based architecture [10], which relies on building com-

putational blocks using quantum gates in a similar fashion

to classical logic gates, is attracting increasing attention due

to the recent advances in quantum stabilizer codes [17]–[22],

which are capable of mitigating the decoherence2 effects

encountered by quantum circuits [9]. In terms of implementa-

tion, D-Wave’s most recent model, namely D-Wave 2000Q,3

has a total of 2000 qubits, while IBM Q Experience,4 which

relies on the gated-based architecture, has currently only 20

qubits in total. However, IBM has recently announced their

plans5 for delivering a 50 qubit gate-based quantum computer

by 2020.

Once quantum computing becomes a commercial reality, it

may be used in wireless communications systems in order to

speed up specific processes due to its inherent parallelization

capabilities. While a classical bit may adopt either the values

0 or 1, a quantum bit, or qubit, may have the values |0〉, |1〉,
or any superposition of the two [9]–[11], where the notation

|·〉 is the ket representation [23] and it is the column vector

of a quantum state. If two qubits are used, then the compos-

ite quantum state may have the values |00〉, |01〉, |10〉 and

|11〉 simultaneously. In general, by employing b bits in a clas-

sical register, one out of 2b combinations is represented at

any time. By contrast, in a quantum register associated with

b qubits, the composite quantum state may be found in a

superposition of all 2b values simultaneously. Therefore, by

applying a quantum operation to the quantum register would

result in altering all 2b values at the same time. This repre-

sents the parallel processing capability of quantum computing.

Multiple quantum algorithms have been proposed [12], which

are capable of outperforming their classical counterparts in the

same categories of problems, by either requiring fewer com-

putational steps, or by finding a better solution to the specific

problem.

1https://www.dwavesys.com/d-wave-two-system
2As it will be explained in the following, decoherence may be considered

as detrimental noise in quantum circuits.
3https://www.dwavesys.com/d-wave-two-system
4https://quantumexperience.ng.bluemix.net/qx/experience
5https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
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In this treatise, we will focus our attention on the employ-

ment of quantum algorithms in classical communication

systems, which may be termed as quantum-assisted communi-

cations [1], [9]. More specifically, the employment of quantum

algorithms may be capable of improving the already exist-

ing processes of classical communications, such as optimal

multi-user detection, channel estimation, finding the optimal

precoding matrix for the downlink of a multi-user system,

or finding the optimal route in a classical wireless network.

Quantum-assisted communications should be distinguished

from quantum-based communications [1], [10], [11]. In the

latter, quantum bits are transmitted and received over quantum

channels. By contrast, quantum-assisted communications may

be considered as a classical communication system like the

mobile broadband in the Long-Term Evolution (LTE) standard,

where hybrid classical and quantum processors are exchanging

information at the Base Station (BS).

B. Motivation for This Contribution

There is a number of well-established surveys on quantum

algorithms [24]–[27]. In [24], Williams detailed the operation

of Grover’s Quantum Search Algorithm (QSA) [28], [29] and

discussed its applications as a “subroutine” in other quantum

algorithms. Quantum walk-based search algorithms were the

focus of [25], arguing that they may be used for solving search

problems, such as finding out whether a list has unique entries,

or determining if a group’s elements are commutative with

each other. In [26], efficient quantum algorithms substantially

outperforming their classical counterparts were reviewed, with

a focus on their employment in algebraic problems. In [27],

Mosca reviewed a number of quantum algorithms, explaining

their operation and their associated computational complexity.

The website “Quantum Zoo” [30] has gathered a compre-

hensive list of quantum algorithms, briefly describing their

operation.

Against this background, the main motivation of this paper

is to make quantum computing and quantum algorithms

accessible to communication engineers, by investigating their

operation and employment in communication applications. We

provide a list of optimization problems in the area of wireless

communications that may be solved using a quantum com-

puter. We review quantum algorithms that have already been

used6 for solving existing problems in classical wireless com-

munication systems. Furthermore, we discuss both the “why”

and the “how” of quantum computation. Quantum computing

is still considered by the majority of communication engi-

neers as a term closely intertwined with physics. Therefore,

we assume that the reader has no background on quantum

computing and we aim for ripping off this mysterious cloak

from quantum computing by showing the quantum circuits

employed in the quantum algorithms presented. In this study

we have focused our attention on the associated algorithmic

6Since a universal quantum computer does not exist at the time of writing,
the operation of the quantum algorithms has been demonstrated with simu-
lations on classical super-computers. Please note that the practical creation
of the discussed quantum algorithms is out of the scope of this paper. Here
we assume that a universal quantum computer exists and that the discussed
quantum algorithms are available.

perspectives, with an emphasis on the potential performance

gain as well as on the attainable complexity reduction. Indeed,

we concur that also the other important practical requirements

have to be taken into consideration, such as the scalability and

timing requirements, the required hardware and the potential

reuse of existing hardware blocks in a modem chip along with

the integration between the classical and quantum parts of the

solutions presented, which have not been considered in this

paper.

The rest of the paper is structured as follows. In Section II

we state the basic postulates of quantum mechanics and

describe how quantum computing systems can be represented

and simulated by classical computers. We continue by offer-

ing a brief historical perspective of quantum computing and

review the operation of the most popular quantum algorithms.

In Section III, we describe a number of optimization prob-

lems that appear in wireless communication systems, along

with their associated classical, as well as quantum algorithms

that may be employed for solving them. Finally, we state a

number of open problems in Section IV and we conclude in

Section V. The paper’s structure is given in Fig. 1.

II. INTRODUCTION TO QUANTUM COMPUTING

A. Basics of Quantum Computing

1) The Qubit: The quantum state of a qubit may be repre-

sented using any chosen orthogonal basis. The most commonly

used basis is the computational basis [9], which corresponds to

the states |0〉 and |1〉. The quantum state |q〉 of a single-qubit

system in the computational basis {|0〉, |1〉} is [9]

|q〉 = a|0〉+ b|1〉, (1)

where a, b ∈ C are the amplitudes of |q〉 on the computational

basis and we have |a|2+|b|2 = 1. When a = 0, we have b = 1

and hence

|q〉 = |1〉, (2)

which corresponds to the classical bit value 1. Similarly, if

a = 1, then b = 0 and

|q〉 = |0〉, (3)

which again is a classical bit value. However, if we choose

a = b = 1/
√
2, then we have

|q〉 = 1√
2
|0〉+ 1√

2
|1〉. (4)

The quantum state in (4) seems to exhibit a symmetry with

respect to the orthogonal states |0〉 and |1〉, not favoring one

over the other. This state is widely used in most of the quantum

algorithms that we will investigate.

2) Geometrical Representation: Assuming only real-valued

amplitudes for a quantum state a, b ∈ R, the resultant 2-D

geometrical representation of a qubit’s state is shown in Fig. 2,

since its state may be written as in

|q〉 = cos(θ)|0〉+ sin(θ)|1〉. (5)

In the general case, the amplitudes of the quantum states are

complex-valued, therefore the state of a qubit is represented
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Fig. 1. The structure of the paper.

by the 3-D Bloch sphere [9]–[11] of Fig. 3, since a qubit’s

state may always be written as

|q〉 = cos

(

θ

2

)

|0〉+ eiφ sin

(

θ

2

)

|1〉. (6)

Many algorithms, such as Grover’s QSA [28], the

Boyer-Brassard-Høyer-Tapp (BBHT) QSA [31] and the

Dürr-Høyer (DH) QSA [32] only consider real-valued

amplitudes, therefore the 2-D representation is suitable for

Fig. 2. The 2D representation of a qubit, when the amplitudes of its quantum
states are real-valued.

Fig. 3. The generic 3D representation of a qubit using a Bloch sphere, when
the amplitudes of its quantum states are complex-valued.

their analysis. However, other algorithms, like Shor’s algo-

rithm [33] and the quantum counting algorithm [34] exploit

the complex-valued nature of the states’ amplitudes and the

Bloch sphere may be used for geometrically representing

their quantum states.

3) Measurement of a Qubit: Before we continue with the

investigation of the symmetrical state of (4), let us explicitly

mention that even though a qubit may be in a superposition of

two orthogonal states, if we desire to observe, or measure its

value, we will only obtain one of the two orthogonal states.

The measurement of a quantum state may be considered as

a Quantum-to-Classical (Q/C) conversion, since it allows us

to gain some insight on the quantum system.7 The measure-

ment of a qubit’s state may also be done in a basis different

from that which the qubit was prepared in. For now, let us use

the computational basis also for measuring a quantum state.

7Please note that the amount of insight obtained by a measurement heav-
ily depends on the context of the quantum algorithm or protocol which the
measurement is a part of.
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According to the Copenhagen interpretation [35], which is the

most widely adopted interpretation of a measurement’s opera-

tion, a quantum state does not have specific properties before

it is measured. However, when it is observed, the probabilities

of its superimposed states define not only the outcome of the

measurement, but also the new quantum state of the system.

The amplitudes a and b of the quantum state |q〉 in (1)

uniquely define the probabilities of obtaining |0〉 or |1〉, when

we measure the qubit’s state |q〉 on the orthogonal basis

{|0〉, |1〉}. More specifically, there is a |a|2 probability that

we will obtain the quantum state |0〉 and a |b|2 probabil-

ity that |1〉 will be observed. This is also the reason why

|a|2 + |b|2 = 1 is always true. For example, in (2) and (3),

since the system’s state is already equal to one of the two

states of the computational basis, which was used for the mea-

surement, we would always observe |1〉 and |0〉, respectively.

However, when we measure the quantum state of (4), there

is a |a|2 = 1/2 = 50% probability of obtaining the quantum

state |0〉 and |b|2 = 1/2 = 50% probability of obtaining the

quantum state |1〉. Since the probability of observing either of

the two states is the same, the quantum system of (4) is said

to be in an equiprobable superposition of states, always with

respect to the computational orthogonal basis.

After the measurement, the quantum state collapses to the

observed quantum state. For example, let us assume that the

output of the quantum state’s measurement in (4) was |1〉.
As mentioned before, this event had a 50% probability of

occurrence. Given that it has happened however, the system’s

quantum state from that point onwards becomes identical to

the observed quantum state, hence we have |q ′〉 = |1〉.
This feature is termed as wave function collapse in quantum

mechanics and it is irreversible. In other words, we are not

able to reconstruct the system’s quantum state to that before

the measurement, unless we have knowledge about the pre-

measurement amplitudes a and b of (1).

4) Algebraic Representation of a Quantum State: A quan-

tum state |q〉 may be fully described by its state vector [9]. The

size of the state vector |q〉 is equal to the number of orthog-

onal states that the quantum state could be superimposed in.

The values of the state vector |q〉 are the amplitudes of each

orthogonal state. For example, when a qubit is in the state

|q〉 = a|0〉+ b|1〉 as in (1), the 2-element state vector is

|q〉 =
[

a

b

]

= a|0〉+ b|1〉, (7)

implying that the first element corresponds to the amplitude

of the state |0〉, while the second element to the amplitude

of the state |1〉. As another example, the state vector of the

equiprobable quantum state of (4) is

|q〉 =
[

1√
2
1√
2

]

=
1√
2
·
[

1
1

]

. (8)

As expected, when more qubits are used, the system’s state

vector has more elements in order to accommodate the

amplitudes of all legitimate state combinations.

5) Multi-Qubit Quantum Registers: In a two-qubit register,

there are four legitimate states that the composite quantum

system can be superimposed in. If the first qubit of the register

is in the state |q1〉 = a|0〉 + b|1〉 and the second qubit is in

the state |q2〉 = c|0〉+ d |1〉, the state of the system is

|q〉 = |q1〉 ⊗ |q2〉 = |q1q2〉 (9)

= (a|0〉+ b|1〉)⊗ (c|0〉+ d |1〉) (10)

= a · c|00〉+ a · d |01〉+ b · c|10〉+ b · d |11〉 (11)

=

⎡

⎢

⎢

⎣

a · c
a · d
b · c
b · d

⎤

⎥

⎥

⎦

, (12)

where ⊗ is the tensor product operator and the system’s state

vector includes the amplitudes of the four quantum states |00〉,
|01〉, |10〉 and |11〉.

In general, in an n-qubit register, the state vector will have

2n entries, each corresponding to the amplitude of the respec-

tive orthogonal state. Now let us consider a 2-qubit register

with the following quantum state

|q〉 =
√
3

2
|00〉+ 1

2
|10〉 =

⎡

⎢

⎢

⎣

√
3
2
0
1
2
0

⎤

⎥

⎥

⎦

. (13)

After a potential measurement of that quantum register, there

is a (
√
3/2)2 = 0.75 probability of observing the state |00〉

and (1/2)2 = 0.25 probability of obtaining the state |10〉. It

is impossible to observe the states |01〉 or |11〉. We may also

observe that it is possible to rewrite its state as

|q〉 =
(√

3

2
|0〉+ 1

2
|1〉

)

⊗ |0〉 =
[ √

3
2
1
2

]

⊗
[

1
0

]

= |q1〉|q2〉.

(14)

This means that the first qubit is in a superposition (not

equiprobable) of its two possible states, while the second qubit

is at the state |q2〉 = |0〉. Since the state of the quantum register

may be written as a tensor product of the quantum states of the

individual qubits, the two qubits |q1〉 and |q2〉 are independent

of each other.

6) Entanglement: When the quantum states of two or more

qubits may not be represented separately and independently

of each other, the qubits are entangled with each other. For

example, let us consider the state

|q〉 = 1√
2
|00〉+ 1√

2
|11〉 =

⎡

⎢

⎢

⎢

⎣

1√
2
0
0
1√
2

⎤

⎥

⎥

⎥

⎦

. (15)

This 2-qubit register is in an equiprobable superposition of

the states |00〉 and |01〉. It is impossible to describe the

states of the two qubits individually as in (14).8 Therefore,

the two qubits of the quantum register in (15) are entangled.

Actually, the quantum state in (15) is one of the four Bell

states [36], [37],

1√
2
|00〉+ 1√

2
|11〉 (16)

8Try it, following the same methodology as in (13) and (14)!
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1√
2
|00〉 − 1√

2
|11〉 (17)

1√
2
|01〉+ 1√

2
|10〉 (18)

1√
2
|01〉 − 1√

2
|10〉, (19)

which are widely used, since they are the only four quan-

tum states of a two-qubit register that provide an equiprobable

entanglement between two qubits.

7) Partial Measurement of a Quantum Register: In a multi-

qubit quantum register, it is possible to only observe a subset

of the qubits it consists of. Therefore, when we measure one

of the qubits, its quantum state collapses to the observed state,

while the quantum state of the rest of the independent qubits

remains unaltered. However, this is not the case for the rest

of the entangled qubits, whose state will also be affected by

the observation of an entangled qubit.

As an example, let us try to only observe the second qubit

of the quantum register in (14). The second qubit has an 100%

probability of yielding the observation |0〉, therefore this is the

state we will obtain. At the same time, the state of the first

qubit |q1〉 =
√
3/2|0〉+1/2|1〉 will remain unaltered, because

it is in a superposition of its own, independent states.

Let us now try to measure the second qubit of the entangled

2-qubit register of (15). There is a (1/
√
2)2 = 0.5 = 50%

chance of observing either the state |0〉 or the state |1〉. Let us

assume that we observed the state |0〉. Therefore, the quantum

state of the second qubit collapses to |0〉. Based on (15), we

should notice that the state of the first qubit also collapses to

|0〉 instantaneously, upon obtaining the measurement output of

the second qubit. This happened because the whole quantum

register could either be observed in the state |00〉, or in the

state |11〉. Since we observed the second qubit in the state

|0〉, the first qubit can only be in the state |0〉 from this point

onwards.

Entanglement enables a plethora of applications, since it

allows instantaneous information exchange between qubits. As

it will be discussed in the following, the quantum algorithms

appropriately manipulate the available qubits in order to finally

measure a quantum state, which has a desirable property.

8) No Cloning Theorem: The irreversible nature of a

quantum measurement is exploited in quantum cryptogra-

phy [38]–[40], a field which also exploits the no cloning

theorem [41]. According to the no cloning theorem, it is

impossible to copy the unknown quantum state of a qubit into

the quantum state of another qubit, while keeping their states

independent of each other at the same time. In other words, it

is impossible to make independent copies of qubits, without

entangling them with each other in the process.

The rules of entanglement, the no cloning theorem and

the irreversible nature of measurements allow quantum-based

communications to be very promising for sharing private

keys between two parties. By exploiting these features in

the available QKD protocols, such as the Bennett-Brassard-

1984 (BB84) protocol [42], one or both parties become

capable of detecting whether an eavesdropper tempered with

their communications or not, due to the imperfections that

the eavesdropper would have imposed on the measured and

retransmitted states, since the eavesdropper would have been

unable to simply copy and forward the intercepted qubits. If

the two parties determine that an eavesdropper was present

during the transmission of the qubits, the whole process is

aborted and restarted.

9) Evolution of a Quantum State: The state of a quan-

tum register may be changed by applying unitary operators

or gates to its qubits [9]. Let us first investigate a single-qubit

system. One of the most widely used single-qubit unitary oper-

ators is the Hadamard operator H, which creates equiprobable

superpositions of the two states, given that the initial state was

either |0〉 or |1〉, as encapsulated in

H |0〉 = 1√
2
|0〉+ 1√

2
|1〉 = |+〉 (20)

H |1〉 = 1√
2
|0〉 − 1√

2
|1〉 = |−〉. (21)

The states |+〉 and |−〉 form the orthogonal Hadamard basis,

as depicted in Fig. 2. The matrix representation of the single-

qubit Hadamard operator is

H =
1√
2

[

1 1
1 −1

]

, (22)

while that of the two-qubit Hadamard operator is

H⊗2 =
1

2

⎡

⎢

⎢

⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥

⎥

⎦

. (23)

An n-qubit Hadamard gate has to be employed for creating

an equiprobable superposition of all legitimate states at the

beginning of most quantum algorithms, which is achieved by

applying it to an n-qubit quantum register in the all-zero state

|0〉⊗n . The circuit representation of the Hadamard gate is

shown in Fig. 4.

The parallel evolution of the state of a quantum register that

consists of multiple qubits is termed as quantum parallelism.

Quantum parallelism is one of the pivotal features of quan-

tum computing, which is exploited in order to create quantum

algorithms that solve problems by requiring for example fewer

CF evaluations than their classical counterparts.

Another popular set of single-qubit quantum gates is repre-

sented by the Pauli gates [9]–[11]

X=

[

0 1
1 0

]

, Z=

[

1 0
0 −1

]

, Y=

[

0 −i

i 0

]

. (24)

Explicitly, the X operator is the NOT gate, also known from

classical logic circuits, since it swaps the amplitudes of the

quantum states of a qubit as in

X (a|0〉+ b|1〉) =
[

0 1
1 0

]

·
[

a

b

]

=

[

b

a

]

= b|0〉+ a|1〉.

The Z operator is the gate imposing a phase shift by π radians,

since it flips the sign of the amplitude of just the state |1〉, as

described in

Z (a|0〉+ b|1〉) =
[

1 0
0 −1

]

·
[

a

b

]

=

[

a

−b

]

= a|0〉 − b|1〉.
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Fig. 4. The circuit representation of the Hadamard gate H, of the three Pauli
gates X, Z and Y, as well as of the Controlled-NOT operation, of the general
Controlled-U gate and of the Toffoli gate.

The Y operator may be considered as a combination of the X

and Z gates, since it results in

Y (a|0〉+ b|1〉) =
[

0 −i

i 0

]

·
[

a

b

]

=

[

−ib

ia

]

= i(−b|0〉+ a|1〉).

The circuit representation of the Pauli gates is also depicted

in Fig. 4.

Other popular gates require the use of control qubits. For

example, the Controlled-NOT (CNOT) gate applies the NOT

operation to the qubit |q2〉, only when the qubit |q1〉 is in the

state |1〉, as described by

CNOT =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥

⎥

⎦

. (25)

For example, if the first (control) qubit was in the state |q1〉 =
a|0〉+b|1〉 and the second (target) qubit was in the state |q2〉 =
c|0〉+ d |1〉, the CNOT gate would result into

CNOT (|q1〉|q2〉) = a · c|00〉+ a · d |01〉+ b · d |10〉
+ b · c|11〉

=

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥

⎥

⎦

·

⎡

⎢

⎢

⎣

a · c
a · d
b · c
b · d

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

a · c
a · d
b · d
b · c

⎤

⎥

⎥

⎦

= a · c|00〉+ a · d |01〉

+ b · d |10〉+ b · c|11〉.

TABLE I
OPERATION OF A CU GATE

We may observe that the amplitudes of the quantum states

where the first qubit is equal to |1〉 have been swapped. In

general, the Controlled-U gate applies a general quantum gate

U to a target qubit only when the control qubit is equal to |1〉,
as described by

CU =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 u11 u12
0 0 u21 u22

⎤

⎥

⎥

⎦

, (26)

where the aforementioned general single-qubit unitary opera-

tor U is

U =

[

u11 u12
u21 u22

]

. (27)

When the control qubits is equal to |0〉, the identity gate is

applied to the target qubit, as stated in (26). Table I states the

operation that the CU gate would carry out based on the four

possible quantum states of two qubits, where the first one is

the control qubit and the second one is the target qubit.

Finally, the Toffoli gate accepts two control qubits and flips

the state of the target qubit, if and only if both control qubits

are in the state |1〉. The matrix representation of the Toffoli

gate is [9]:

CCNOT =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (28)

The circuit representation of the controlled gates is also

depicted in Fig. 4. Table II portrays both the initial and resul-

tant states of a three-qubit register, when the Toffoli gate is

applied to it, where the first two qubits are the control qubits

and the last one is the target qubit.

B. A Leap Into the Quantum World

Research on quantum mechanics was initiated by Planck,

Bohr, Heisenberg, Einstein and Schrödinger in 1923. Even

though arguments and conflicts arose regarding whether the

theory of quantum mechanics encapsulates a complete descrip-

tion of Nature, it is currently considered as the most suitable

interpretation of both the microscopic and the macroscopic

worlds.
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Fig. 5. Timeline of quantum computing milestones.

The inspiration of quantum computation was provided by

Feynman [43], who proposed in 1981 a novel framework for

conveying information by the spin of an electron and for sim-

ulating the evolution of the quantum states. In the following

year, Benioff [44] proposed a technique of simulating quantum

systems on Turing machines. Based on these contributions,

further quantum algorithms were inspired. In the following

sections we describe the general problems and the high-level

operation of the major quantum algorithms, before delving

into their applicability in wireless communications. A short

description of the major quantum algorithms is provided in

Fig. 5.

1) The Deutsch Algorithm: A few years later, the bene-

fits of quantum parallelism were exploited by Deutsch [45],

who conceived an algorithm, which now has the fond con-

notation of Deutsch algorithm. Let us first define the black

box problem that we can solve using Deutsch’s algorithm.

Generally, a black box problem involves a function f, whose

operation is unknown. We have to determine the features of the

function by only evaluating it with the aid of different input

arguments and then observing its corresponding outputs. Here,

we have to determine whether the binary function f : {0, 1}

→ {0, 1} does or does not have a one-to-one mapping. When

the function f has a one-to-one mapping we would expect
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TABLE II
OPERATION OF A TOFFOLI GATE

f (0) ⊕ f (1) = 1, otherwise it would be f (0) ⊕ f (1) = 0, since

that would mean f (0) = f (1), where ⊕ is the modulo-2 addi-

tion. In classical computing, a single evaluation for each of the

legitimate inputs would be required, bringing the total number

of function evaluations to two. Deutsch algorithm [45] suc-

ceeds in determining whether the function f has a one-to-one

mapping by only using a single function evaluation.

2) The Deutsch-Jozsa Algorithm: An extension of this

algorithm, namely the Deutsch-Jozsa algorithm [46], was con-

ceived for determining whether a function f : {0, 1}n →
{0, 1} is balanced or constant.9 Let us consider the problem in

a real scenario, where the two parties Alice and Bob commu-

nicate with each other. Alice sends an n-bit number to Bob,

who uses it as the input argument of his function f. Bob then

transmits back the output bit. Alice has to determine whether

the function that Bob used was balanced or constant. In classi-

cal computing, the best-case scenario would only be achieved

if the function was balanced, Alice transmitted two different

numbers and these two numbers happened to yield the two

different outputs. The worst-case scenario is always encoun-

tered, when the function is constant, since Alice has to transmit

(2n−1 +1) different input arguments (one more than half the

set of inputs), before she realizes that the function Bob is using

is constant. By using the Deutsch-Jozsa algorithm, Alice is

able to determine whether the function f used by Bob is bal-

anced or constant, with just a single transmission of n qubits in

an equiprobable superposition of all possible inputs. Bob uses

an extra auxiliary qubit, Hadamard gates and a quantum gate

Uf that performs the same operation as f, but accepts qubits

as its inputs. Finally, Bob measures the quantum state of the

n qubits at the output of his quantum circuit. If the observed

state is the all-zero state |0〉⊗n , the function f is constant,

otherwise it is balanced.

The Deutsch-Jozsa algorithm solves the generalized black-

box problem of the previous section. Indeed, if the function f

allows only 0 or 1 as its legitimate inputs, determining whether

9A function f is constant if it yields the same value at its output regardless
of the input argument. On the other hand, a function f is balanced, if it yields
one value (e.g., 0) for half the input arguments and another value (e.g., 1) for
the other half of the input arguments.

the function has a one-to-one mapping, or if it is balanced

answers exactly the same question. The algorithm was later

improved by Cleve et al. [48] for achieving a 100% probability

of success.

The Deutsch-Jozsa algorithm laid the foundations for the

development of the so-called Quantum Oracle gates [9],

which are quantum circuits implementing a generic function

f : {0, 1}N → {0, 1}M and they are capable of calculating

all the pairs of possible inputs-outputs of f using a single call

of f by exploiting quantum parallelism.

3) Simon’s Algorithm: In 1994, Simon managed to solve

a black-box problem by using on the order of O(n) queries

addressed to the black box, while the optimal classical algo-

rithm has to use Ω(2n/2) queries for the same task [47]. The

black box Uf implements a function f : {0, 1}n → {0, 1}n
and has the property that f (x) = f (y) if and only if x = y

or if x ⊕ y = s, for some unknown s ∈ {0, 1}n , where

x , y ∈ {0, 1}n . Simon’s algorithm succeeds in finding the

value s that satisfies the function’s above-mentioned property.

4) Shor’s Algorithm: In 1994, Shor proposed a quantum

algorithm [33], [57] for efficiently solving the problem of

factoring a given integer N. The best classical algorithm is

the General Number Field Sieve (GNFS) [58]. Shor’s algo-

rithm requires an exponentially lower complexity than the

GNFS, which is achieved by combining classical and quan-

tum processing. It first reduces the factoring problem to the

so-called order-finding problem addressed below using a clas-

sical algorithm. Initially, it randomly picks a number a<N.

Let us assume that the greatest common divisor between a

and N is equal to 1.10 Then a quantum circuit is employed for

finding the period r of the function12

f (x ) = ax mod N . (29)

If the estimated period r is even and ar/2 = −1 mod N is

false, then gcd(ar/2 + 1,N ) and gcd(ar/2 − 1,N ) are two

non-trivial factors of N and the algorithm ends.

The order-finding quantum algorithm initially creates an

equiprobable superposition of C = 2c states, using an appro-

priate number of c qubits,13 as shown in Fig. 6. It then employs

controlled-Uf operators,14 where each of the c qubits controls

the operation of a quantum gate that performs the function

f (x) of (29) on n = log2N auxilliary qubits. All n auxiliary

qubits should initially be in the quantum state |1〉⊗n . This

part is the bottleneck of Shor’s algorithm, since it requires

the operation of multiple controlled-Uf gates and n = log2N
auxilliary qubits. Therefore, when N is high, more gates are

required for a single Uf operation. At the same time, when C

is high, the estimation of the period will be more accurate, but

10If the greatest common divisor between a and N was not equal to 1, then

a would be a non-trivial factor11 of N and the algorithm ends, since N can
be factored in a and N/a. Then we have the problem of factoring i and N/a,
if they are not prime numbers, and so on.

12The period of a function f (x) is the smallest positive integer r so that
f (x+r) = f (x) for all values of x.

13Any number of qubits c that results in C = 2c states such that N 2 ≤
C < 2N 2 would suffice.

14Please note that a controlled-Uf gate performs the Uf gate to the input

target qubits only if the control qubits are in the state |1〉. When the control
qubits are in the state |0〉, the identity operator is applied instead.
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Fig. 6. The quantum circuit employed in Shor’s algorithm for finding the period of the function in (29) [33].

more controlled-Uf operations are required, hence increasing

the complexity.

After the operation of the controlled-Uf gates in Fig. 6,

the c qubits pass through an Inverse Quantum Fourier

Transform (IQFT) [10], [59] operator. The IQFT has the same

effect as a classical IDFT, where the amplitude of each of the

superimposed states is equally spread over the amplitudes of

the resultant superimposed state. At the output of the IQFT, if

we measure the resultant state of the c-qubit register, we will

obtain a value |q〉, which may then be classically processed to

approximate the period r. As mentioned earlier, after finding

the period i, classical processing is employed for the rest of

Shor’s algorithm.

5) Quantum Phase Estimation Algorithm: A few years after

Shor’s algorithm was introduced, the order-finding quantum

algorithm of Fig. 6 used in Shor’s algorithm was found in [48]

to be just a specific application of a general quantum cir-

cuit and algorithm, which is termed as the Quantum Phase

Estimation Algorithm (QPEA). The QPEA follows exactly the

same procedure as the period-finding quantum algorithm of

Section II-B4. More specifically, given a unitary operator U

that operates on n qubits and an eigenvector |φ〉, such that

U |φ〉 = 2iπθ|φ〉, (30)

the QPEA estimates the period θ, which means that it can

find the eigenvalue of a unitary operator. The quantum circuit

of the QPEA is given in Fig. 7. The upper c qubits are termed

as the control register, while the bottom n qubits represent the

function register.

The QPEA is used as a building block for multiple quantum

algorithms. As an example, let us now revisit Shor’s algorithm,

for the sake of relating it to the operation of the QPEA. In

Shor’s algorithm, the factoring problem was reduced to finding

the period r of the function f (x) of (29). In order to solve this

problem, we have U = f (x) and θ = r in (30). Comparing the

quantum circuits of Fig. 6 and Fig. 7, we may observe that in

the former, the n qubits of the function register are initialized

to the all-one state |1〉⊗n , because it is one of the eignevec-

tors of f (x) of (29). Essentially, since we force a controlled

function CU to operate on its eigenvectors, instead of alter-

ing the quantum states of the function register, we manage to

rotate the states of the c-qubit control register. By applying

the QFT to that control register, we are able to estimate the

phase, eigenvalue, or period of the unitary transform U, upon

its measurement.

6) Grover’s Quantum Search Algorithm: In 1996,

Grover [28], [29] proposed a Quantum Search Algorithm

(QSA), which solves a search problem. Specifically, the

search problem seeks to find a desired value δ in a database

of N entries. We aim to find which of the N entries is

equal to δ, i.e., we are interested in finding the position of

δ in the database. If the database is sorted from lowest to

highest values, the classical iterative halving-based search

algorithm [60] is indeed optimal. On the other hand, if the

database is unsorted, the optimal classical algorithm relies on

a full search of the database. The average complexity of the

full search would be on the order of O(N) database queries.

The worst case scenario occurs when the desired value is

found at the entry that is checked last.

By contrast, Grover’s QSA succeeds in finding the desired

entry with 100% probability of success after querying the

database on the order of O(
√
N ) times [28]. This provides a

quadratic reduction in complexity over the classical full search.

Grover’s QSA has been shown to be optimal by Zalka [61].

However, Grover’s QSA requires some additional knowledge

about the database. More explicitly, Grover’s QSA employs the

Grover operator G depicted in Fig. 8 Lopt number of consecu-

tive times. Apart from knowing N and (obviously) the desired

value δ, additionally Grover’s QSA requires the knowledge of

how many times the entry δ appears in the database, which is

termed as the number of solutions S. For example, when we

have δ = 2 and N = 16, if S = 3 entries out of N = 16 are

equal to δ = 2, a different number of iterations Lopt is used in

Grover’s QSA, compared to the scenario, where only S = 1 out

of N = 16 entries is equal to δ = 2. However, in both exam-

ples the same procedure is followed at each iteration. Using

fewer or more Grover iterations than Lopt may reduce the

success probability, which might even approach 0%. Grover’s

QSA relies on the generic amplitude amplification process of

Brassard et al. [50]. Explicitly, the optimal number of Grover

operator applications is Lopt = ⌊0.25π
√

N /S⌋.

In Fig. 8, the n = log2N qubits in the register |x 〉1 are

initialized to an equiprobable superposition of N states, each

corresponding to the index of an entry in the database. The

unitary operator O is termed as the Oracle, which marks the

indices of the specific entries in the database that are equal
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Fig. 7. The quantum circuit of the Quantum Phase Estimation Algorithm, which estimates the eigenvalues of a unitary operator U, which corresponds to its
eigenvector |φ〉, as described in (30) [48].

Fig. 8. Grover operator’s quantum circuit including an Oracle, two n-qubit Hadamard gates H and an n-qubit phase shift gate P0. The HP0H operator
forms the diffusion operator of the Grover operator G = HP0H ·O [28].

to the sought value δ. Specifically, the Oracle marks an index

by changing its sign in the superposition of states. In order

to achieve this, an auxiliary qubit |w〉1 initialized to the |−〉
state is used, along with the value δ represented in form of

a quantum state. The two Hadamard gates H and a phase

rotation gate P0 that follow the Oracle in Fig. 8 constitute

the diffusion operator of Grover’s circuit, which essentially

changes the amplitude of each state by reflecting it with respect

to the average amplitude of the current superposition of the

states. This has been proven in [28] to result in an amplitude

closer to
√

1/S for each of the specific S states that correspond

to the solution entries, while yielding a lower amplitude for

the rest of the states that do not correspond to solutions. By

repeating this process Lopt number of times, the amplitudes

of the S quantum states in the superposition that correspond to

solution entries gradually become close to
√

1/S , resulting in

an S · (
√

1/S )2 = 100% probability of observing a state that

is indeed the solution state. The resultant amplitude of each

solution state prior to measurement is equal to
√

1/S because

all solution states are treated in the same way in Grover’s

QSA and hence have the same probability (
√

1/S )2 = 1/S
of being observed at the output.

Let us clarify the operation of Grover’s QSA with the aid

of an example. Let us assume that a database has a size of

N = 32 entries. Let us also assume that the sought value δ
is only stored in a single entry of the database, but we do

not know in which portion exactly. Therefore, we have a sin-

gle solution S = 1, leading us to apply the Grover operator

Lopt = ⌊0.25π
√

N /S⌋ = 4 times. As shown in Fig. 9a, we

commence with an equiprobable superposition of all indices,

since we do not have a particular preference as to which may

be associated with the desired entry. After applying the Oracle

operator in Fig. 9b, the sign of the amplitude of index 18 is

flipped.15 The red dashed horizontal line in Fig. 9 indicates

the mean value of the amplitudes of all superimposed states

after the application of the Oracle. In Fig. 9c, the diffusion

operator reflects the amplitudes of each state with respect to

the aforementioned mean value of the amplitudes. This con-

cludes the first iteration of Grover’s QSA. We may conclude

that the index 18 has a higher probability of being observed at

this stage than the rest of the superimposed states. However,

we may increase the probability of observing the solution

state 18 even further by applying three more Grover iterations.

Following the same approach, Fig. 9d and Fig. 9e character-

ize the second Grover iteration, Fig. 9f and Fig. 9g the third

Grover iteration, while Fig. 9h and Fig. 9i illustrate the fourth

and final Grover iteration. In Fig. 9i, the probability of observ-

ing the solution state 18 after the fourth Grover iteration is

equal to 99.92%. Again, these intermediate steps of Grover’s

QSA are not readily accessible to us, therefore we have to find

another way of determining, when to stop the iterations and

observe the resultant state. For that, we have to know both

the number of solutions in the database and the size of the

database.

Please note that if there are no solutions in a search problem,

corresponding to S = 0, the Oracle in Fig. 8 will not mark

any quantum state and hence the diffusion operator will leave

the amplitudes of the quantum states unaltered, since the

amplitude of each of the states found in an equiprobable

15Please note that in practice we will not be aware of that, since we have
not observed the quantum system yet. However, for the sake of clarity, we
show the intermediate steps of Grover’s QSA.
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Fig. 9. Example of Grover’s QSA in a database with N = 32 entries, where the searched value exists only in the entry with index 18. Since there is only a
single solution S = 1 in a database of size N = 32, we have to perform Lopt = 4 Grover iterations. The red dashed lines indicate the mean value of the
amplitudes after each Oracle operation.

superposition of states is equal to the average amplitude and

hence a reflection with respect to the average amplitude will

not affect the system. Therefore, regardless of the number of

Grover iterations, the initial superposition will not change and

a potential measurement at the end will result in any of the

N states with equal probability. We can then classically check

that the observed index does not correspond to a solution in

the database, and hence conclude that there is no solution to

the search problem.

7) Boyer-Brassard-Høyer-Tapp Quantum Search

Algorithm: Nevertheless, requiring a priori knowledge

of the number of solutions that exist in the system may

not always be viable in practical engineering problems. A

beneficial extension of Grover’s QSA has been introduced

by Boyer et al. [31] in the form of the so-called Boyer-

Brassard-Høyer-Tap (BBHT) QSA, which is applicable in

the specific scenario, where the actual number S of valid

solutions is unknown, whilst imposing the same order of

complexity as Grover’s QSA, namely O(
√
N ) in a database

having N entries. The BBHT QSA solves the same problem

as Grover’s QSA, while assuming less knowledge about

the database. Therefore, it may be employed in a higher

number of engineering problems, where no information is

available about the entries of the database. Since the number

of solutions S is unknown, we are unable to find the optimal

number of Grover iterations Lopt that we should apply to the

initial equiprobable superposition of states in Fig. 8. Hence, it

employs classical processing and a “trial-and-error” approach

for finding Lopt , proven to eventually lead to a 100%

probability of success in [31]. The flowchart of the BBHT

QSA is depicted in Fig. 10, where λ = 6/5 is a constant that

should be chosen to be in the range [6/5, 4/3] [31]. If the

BBHT QSA is not terminated after 4.5
√
N applications of

Grover’s operator, we may conclude that there is no solution

for this search problem.

8) Dürr-Høyer Quantum Search Algorithm: A quantum

search algorithm that solves a different search problem was

conceived by Dürr and Høyer [32]. More specifically, the Dürr-

Høyer (DH) QSA is employed for identifying the extreme

values of an unsorted database having N entries, while impos-

ing a low complexity, which is on the order of O(
√
N ). In

this problem, either the minimum or the maximum entry of a

database is sought, without knowing the specific value of that

minimum or maximum entry. Therefore, the sought value δ
is unknown. Let us describe the problem, when the minimum

entry of the database is desired, without any loss of generality,

as described in the flowchart of Fig. 11. The DH QSA starts by

randomly picking one of the N entries in the database. Let us

assume that the randomly selected entry has a value δi and an

index i. It then invokes the BBHT QSA for finding any entry

that has a lower value than the randomly picked one. Since

there is no knowledge about the database, it is not possible

to know how many entries have a value lower than δi , there-

fore only the BBHT QSA can be used. If we somehow were
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Fig. 10. Flowchart of the BBHT QSA. The colored box represents the
operation of Grover’s QSA’s quantum circuit of Fig. 8, while the rest of
the steps are performed in the classical domain. The value of λ remains
constant throughout the operation, while m is always initialized to 1. When

the maximum number of allowed iterations Lmax is at least 4.5
√
N , there

is a ≈ 100% probability of success.

aware of the number of entries that have a value lower than

δi , then Grover’s QSA could also be used. Once an entry with

a lower value than δi is found, corresponding to the index xs
and hence f (xs) < δi , we update the value δi with the newly

found entry’s value δi = f (xs). Then another BBHT QSA

iteration is employed for finding an entry that has a lower

value than the updated δi . This process is repeated until no

better value is found.

Since the DH QSA uses the BBHT QSA, its minimum com-

plexity is equal to 4.5
√
N Grover iterations, referring to the

case, where the initially selected entry δi was indeed the min-

imum entry in the database. That would result in the BBHT

QSA not being able to find an entry with a lower value, causing

it to terminate after 4.5
√
N applications of Grover’s operator.

The maximum number of Grover iterations required for finding

the minimum of the database was proven by Dürr and Høyer

to be equal to 22.5
√
N Grover iterations [32]. In [62] it was

shown that if the initial entry is carefully chosen instead of

Fig. 11. Flowchart of the DH QSA. The colored box represents the operation
of Grover’s QSA’s quantum circuit of Fig. 8, while the rest of the steps
are performed in the classical domain. The randomly selected index i at the
beginning of the algorithm may be replaced by a deterministically selected
index, if there is knowledge that specific indices are favoured to correspond to
low-valued entries. The maximum number of applications of Grover’s operator

is Lmax = 22.5
√
N .

being randomly chosen, the average complexity of the DH

QSA is further reduced. At the same time, if offline statistics

are available about the database of the specific engineering

problem, a one-to-one relationship between the number of

Grover iterations used and the success probability may be

found [62].

9) Quantum Counting Algorithm: In 2000, Brassard et al.

proposed the Quantum Counting Algorithm (QCA) [50], by

combining Grover’s QSA [28] and the QPEA [48]. The

problem that is solved by using the QCA is the search for the

number of solutions S in a search problem. Given a database

having N entries, we are interested in finding how many times

a known value δ appears in the database, without aiming to

find its position in the database. In order to achieve this,

the controlled-Uf gates of Fig. 7 are replaced by controlled-

Grover operators. Explicitly, the Grover operators of Fig. 8,

are used in the quantum circuit of Fig. 12. Furthermore, the

function register consists of n = log2N qubits initialized in an

equiprobable superposition of 2n = N states. The eigenvector
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Fig. 12. The quantum circuit of the Quantum Counting Algorithm [34]. It employs the quantum circuit of the QPEA shown in 7, where the U operator
is the Grover operator G and the quantum function register is initialized to an equiprobable superposition of all states, which represents the eigenvector of
Grover’s operator.

of Grover’s QSA consists of a superposition of the specific

states that do correspond to solutions in the database and a

superposition of the states that do not correspond to solutions

in the database. By creating an equiprobable superposition of

all states at the beginning of the circuit, we essentially feed the

controlled-Grover operators with their eigenvector. Therefore,

an application of Grover’s operator to such a superimposed

state will result in a rotation of their amplitudes [50]. The

rotation angle depends on the ratio between the number of

solutions S and the size of the database N. Therefore, by

applying the QPEA using Grover’s QSA, the QCA obtains

the number of solutions S upon observing the control register

at the output of the QFT seen in Fig. 12, followed by classical

processing.

The QCA’s accuracy depends on both the number of qubits

in the control register c. Its complexity depends on both the

number of qubits in the control register c and in the func-

tion register n. In other words, the complexity to be invested

depends on the required accuracy in terms of the number

of solutions, as well as on the size of the database. Again,

the optimal classical algorithm is the full search, since all

entries in the unsorted database should be checked in order

to count the number of solutions. This results in a complexity

on the order of O(N) for the full search. The QCA achieves a

quadratic speedup compared to the full search, with the spe-

cific complexity required depending on both the estimation

error margin and on the size of the database [50].

10) Quantum Heuristic Algorithm: In 2000, Hogg proposed

a Quantum Heuristic Algorithm (QHA) [51], [52], which relies

on Grover’s QSA’s circuit. The aim of the QHA is to solve

the particular optimization problem of finding either the mini-

mum or the maximum of a database by requiring fewer CFEs

than the DH QSA, when the database has some form of

correlation. In more detail, Grover’s QSA, the BBHT QSA

and the DH QSA are optimal, when they perform search

in an unsorted database. When the entries of a database are

inherently correlated to each other, heuristic algorithms may

succeed in solving the optimization problem, while requiring

fewer queries to the database. In order to achieve this, Hogg

changed both the Oracle and the diffusion operator used in

Grover’s QSA. Recall that in Grover’s QSA, where δ is known,

the Oracle marks the quantum states that correspond to solu-

tions by flipping the sign of their amplitudes. This may be

interpreted as a rotation by π for the amplitudes of the solu-

tion states and no rotation for the rest of the states. Since in

the optimization problem the minimum value δ is unknown,

Hogg conceived a different Oracle, where the rotation angle of

the amplitudes of each state depends on the value of the entry

it corresponds to. The QHA has been demonstrated to outper-

form Hogg QSA [51], but it needs fine-tuning for each specific

system and scenario, since the exact rotation angles applied by

the Oracle and the diffusion operator have to be appropriately

chosen. This is reminiscent of the employment of classical

heuristic algorithms, like the Genetic Algorithm (GA) [63],

[64], where the algorithm’s parameters have to be carefully

selected in order for a heuristic algorithm to converge to the

solution.

11) Quantum Genetic Algorithm: In order to solve the same

optimization problem of finding either the minimum or max-

imum of a database, Malossini et al. proposed the Quantum

Genetic Algorithm (QGA) [53], which is an amalgam of the

classical GA [63], [64] and of the DH QSA. Please note that

as with the QHA, the QGA may be employed in particular

problems, where there is correlation between the entries of

the database.

More specifically, in the classical GA, a population of P

agents or chromosomes is generated, where each agent repre-

sents an index of the database. The database is then queried

P times, once for each of the agents of the population. After

combining the two best so-far found16 agents, the next gener-

ation of the population is created based on them, with the aim

of having agents representing even smaller values. Eventually,

after a sufficiently high number of generations, an agent corre-

sponding to the minimum value of the database is found. Since

it cannot be mathematically predicted, when the GA will find

the minimum of the database, the algorithm is terminated after

a predetermined number of generations.

In the QGA, the same procedure is followed as in the GA

with one difference. The DH QSA is invoked for searching

16By “best so-far found” we refer to the agents that correspond to the
smallest entries in the database in that population.
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Fig. 13. The quantum circuit of the Quantum Mean Algorithm [55]. It employs the quantum circuit of the QPEA shown in 7, where the U operator is the
function’s operator Uf = f (x). The quantum function register is initialized to the superposition of states |Ψ〉, using n Hadamard gates and the operator A,
which includes two operations of Uf and a controlled rotation of the (n+1)th auxiliary qubit. The circuit estimates the mean value of the function’s values

a =
∑N

x=0 f (x)/N .

through the population of each generation for finding the best

agents. In other words, the DHA QSA in the QGA is employed

for reducing the complexity imposed by the GA while query-

ing the database during each generation. Since only the two

best agents have to be found in order to create the subse-

quent generation’s population, the DH QSA may be employed

twice. The QGA was demonstrated to outperform the GA for

the same complexity, or to require a lower complexity for the

same success probability.

12) Harrow-Hassidim-Lloyd Algorithm: The Harrow-

Hassidim-Lloyd (HHL) algorithm [54] is a quantum

algorithm, which relies on the QPEA and solves linear

systems of equations at an exponential reduction of the

computational complexity required. The problem of solving

a linear system of equations may be formulated as follows.

Given an (N × N)-element matrix A and an (N × 1)-element

vector b, find an (N × 1)-element vector x, so that we have

A · x = b.

In order for the HHL algorithm to be practically applica-

ble, the goal of the problem should be a bit different from

the aforementioned one. The linear system of equations has to

exhibit a few specific features. Firstly, the output is a superpo-

sition of N states |x 〉, where the values of the solution vector

are encoded in the amplitudes of that superposition of states.

Therefore, it cannot provide all values of the solution vector

x for further classical processing. Alternatively, it may result

in specific properties for the solution vector, for example for

its moments. Moreover, both the solution vector −→x and the

vector
−→
b should be unit-vectors. Furthermore, the matrix A

should be sparse.

The HHL algorithm estimates the eigenvalues of the

matrix A, using an appropriately modified version of the

QPEA of Section II-B5. The QPEA circuit is employed as

a subroutine of an amplitude amplification procedure in the

HHL algorithm, in order to further reduce its complexity of

obtaining the solution quantum state |x 〉. The HHL algorithm’s

complexity was further reduced by Ambainis in [67], while the

precision of the estimated solution was exponentially increased

by Childs et al. in [68].

13) Quantum Mean Algorithm: In 2011,

Brassard et al. [55] proposed the Quantum Mean

Algorithm (QMA), which succeeds in finding the mean

value a =
∑N

x=0 f (x )/N of a function f requiring an

exponentially reduced number of evaluations of the function

than the optimal classical algorithm, since the latter would

require access to all legitimate evaluations of the function.

In order to achieve this, a modified QPEA is used, where

the controlled-Uf operation evaluates the output of the

function f to its inputs, as illustrated in Fig. 13. One of

the main differences between the QMA and the QPEA

is that even though there are N legitimate inputs for the

function f, log2(N ) + 1 = n + 1 qubits are employed in

the function register, instead of n = log2(N ), which would

have been the case in the QPEA. The above-mentioned

extra qubit is required, because the function register is

initialized using a unitary operator A, which relies on the

function f and it performs controlled-rotations on the extra

qubit [55], [56]. At the output of the unitary operator A,

there is a superposition of states |Ψ〉. Each state of Ψ was

used for evaluating Uf in the unitary operator A. Based

on the Uf and the controlled-rotations imposed on the

auxiliary qubit, the amplitudes of half of the states in |Ψ〉
are equal to their respective function’s output. In fact, this

is true for the specific states, for which the auxiliary qubit

is equal to |1〉. The size of the control register determines

the precision of the estimated mean value, similarly to

the QPEA.

14) Quantum Weighted Sum Algorithm: The Quantum

Weighted Sum Algorithm (QWSA) [56], [69] is based on

the QMA of Section II-B13 and it finds the weighted sum

of the values of a function f with N inputs, again requiring

O(
√
N ) evaluations of the function f. The difference between

the QWSA and the QMA is the initialization of the function

register, as seen in Fig. 14. Instead of initializing it in an

equiprobable superposition of states, the inputs of the func-

tion f are initializated in a superposition of states, where each

state’s amplitude is the weight of the wanted weighted sum.

Therefore, the QWSA may be considered as a generalization

of the QMA, since in the latter all weights are the same and

equal to 1/N in an N-element database, resulting in the use of

Hadamard gates instead of general unitary rotation gates, as

shown in Fig. 13.
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Fig. 14. The quantum circuit of the Quantum Weighted Sum Algorithm [56]. It employs the quantum circuit of the QMA shown in 13, with the difference
that the quantum function register is not equiprobably initiliazed. Rather, the initilization is performed based on unitary rotation gates, which rely on the
weights of the desired weighted sum.

Last but not least, an overview of the quantum algorithms

discussed in this survey in terms of their application and com-

plexity is carried out in Tables III and IV. In terms of practical

implementation, IBM Q Experience has a drag and drop editor

for the sake of synthesizing quantum circuits out of the funda-

mental quantum gates of Fig. 4 as well as a Python toolkit17

for designing more complex quantum circuits. Consequently,

Grover operator’s quantum circuit, presented in Fig. 8, may

be readily implemented using IBM’s framework at least for a

limited number of qubits. Nevertheless, we should state that at

the time of writing, there has not yet been any real-life demon-

stration of employing a quantum-assisted solution in order to

solve a practical wireless problem. Therefore, the comparisons

between the classical and the quantum solutions employed in

the wireless communication problems in the following section

are based on the theoretical capabilities of the algorithms.

III. OPTIMIZATION PROBLEMS AND QUANTUM

ALGORITHMS IN COMMUNICATIONS

Let us now shift our attention to discussing potential

applications in the field of wireless communications, which

would benefit from using a quantum computer. Most of these

optimization problems in the current state-of-the-art employ

algorithms for finding suboptimal solutions, because of the

excessive cost of finding an optimal solution. This is partic-

ularly so for joint optimization of several functions, such as

joint channel estimation, data detection and synchronization

for example, or for multi-component optimization, where the

search space is expanded.

A. Multi-User Detection

1) The Problem: In the uplink of an OMA system, like

Code Division Multiple Access (CDMA) [70], Orthogonal

Frequency Division Multiple Access (OFDMA) [71], Single-

Carrier Frequency Division Multiple Access (SC-FDMA) or

Time Division Multiple Access (TDMA), the users are either

allocated all available resources in a round-robin fashion, or

they are allowed to share orthogonal resources simultaneously.

For example, in TDMA the whole bandwidth is allocated to a

single user for a few time slots. On the other hand, in CDMA

17https://developer.ibm.com/code/open/projects/qiskit/

the whole bandwidth is used by all users supported in the

system simultaneously, in order to transmit their narrowband

signal after spreading it by a unique user-specific, orthogonal

spreading code. In OFDMA, where the spectrum is partitioned

in multiple orthogonal subcarriers, each user may be allocated

a subset of user-specific subcarriers, which no other user is

allowed to activate.

By contrast, in the uplink of a NOMA system [5], [72]–[76]

the users are allowed to simultaneously share the same

frequency and time resources in order to increase the cell

throughput by being able to support more users simultane-

ously. However, the BS now has the new task of extracting

the signal of each user from the received superposition of sig-

nals,18 as illustrated in Fig. 15, given the knowledge of the

channel states and the symbol constellation that was used by

each user. In more detail, each user transmits its own symbol

based on its constellation. Since the system is synchronous,

every transmitted signal is added together at each receive

antenna. Each transmitted signal is modified based on the

channel it utilizes. At the receiver, Additive White Gaussian

Noise (AWGN) is added at each receive RF chain. The Multi-

User Detector has to estimate the three transmitted symbols

based on the received signals, the channel states, the noise

power and any prior estimates that may be available. This

extraction is also currently required in the uplink of the spe-

cific CDMA systems, where non-orthogonal spreading codes

have been allocated to the users [70]. This is termed as the

problem of Multi-User Detection (MUD).

2) The Classical Algorithms: The optimal Maximum

Likelihood (ML) detector finds the most likely U-user sym-

bol vector, relying on the received signal, on the estimates of

the channels and on the estimated noise power. More specifi-

cally, the ML MUD searches through all legitimate transmitted

multi-user symbol combinations that may have resulted in

the reception of that specific signal and in the end outputs

the most likely U-user symbol vector. As an example, let us

assume that U = 20 users are supported by the system and

that each of them transmits L = 4-ary Quadrature Phase Shift

Keying (QPSK) symbols. Then, the signal received at the BS

18Please note that the mentioned superposition of signals is their addition
in the classical domain, since in a synchronous system the signals arrive
simultaneously. It should not be confused with the superposition of quantum
states.
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TABLE III
THE QUANTUM ALGORITHMS REVIEWED

has been constructed based on only one out of LU = 420

possible combinations. In other words, the ML MUD has to

search through more than one trillion legitimate U-symbol

vectors in order to find the most likely one. In general, the

computational complexity of the ML MUD is on the order of

O(LU ). In an OMA system, where a received signal conveys

the information of a single user, the ML MUD may have an

affordable complexity, which is on the order of O(L).

Next-generation wireless communication systems may

employ iterative receivers in the uplink of a NOMA system.

In iterative receivers, information is allowed to be exchanged

between the MUD and the channel decoders.19 In this case,

an MUD that outputs soft information and also accepts

19Since each of the U users has encoded its own bit information stream
independently, the BS has to employ U channel decoders in parallel.
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TABLE IV
THE QUANTUM ALGORITHMS REVIEWED (CONTINUED)

soft estimates as input should be used. The optimal Soft-

Input Soft-Output (SISO) MUD is the Maximum A posteriori

Probability (MAP) MUD [6], which outputs bit-based or

symbol-based Log-Likelihood Ratios (LLR). The LLR of a

bit represents the log-domain probability of that bit to have

been 0 or 1, when it was transmitted. Similarly, the symbol

LLR describes the log-domain probability of that symbol to

have been transmitted as one of the legitimate symbols in the

constellation. The MAP MUD creates the LLRs by taking

into account all possible multi-level symbol vectors, requir-

ing a computational complexity on the same order as the ML

MUD [6].

The excessive complexity required by the ML and

MAP MUDs in NOMA systems has driven the research

community to low-complexity sub-optimal solutions, such

as the Minimum Mean Square Error (MMSE) detec-

tor [70], the Zero Forcing (ZF) detectors [70], the Ant

Colony Optimization (ACO) based MUD [77], the Particle

Swarm Optimization (PSO) based MUD [78] and the

SIC [70] MUD.

In the uplink of a multi-user system, the SIC MUD detects

the signal of the user experiencing the best channel first, by

treating as interference the signals of the rest of the users,

which are also present in the superimposed received signal.

Having detected the signal of the best user, it reconstructs

that user’s noiseless transmitted signal and subtracts it from

the received signal. Therefore, only the transmitted signals

of (U − 1) users are left in the composite received sig-

nal. The same procedure is repeated until the signals of all

users are detected. The SIC MUD requires a low complex-

ity on the order of O(L·U), which scales linearly with the

number of users supported. However, it does not perform

well in rank-deficient scenarios and when the channel con-

ditions of different users are similar. In the latter case Parallel

Interference Cancellation (PIC) is preferred [70]. Therefore,

when SIC is employed, appropriate scheduling is required for

matching groups of users together in order to share the medium

simultaneously.

3) The Quantum Algorithms: In order to reduce the com-

putational complexity of the optimal ML detection, which

requires a full search, the DH QSA of Section II-B8 was

employed in [56] and [62], where it was demonstrated that

it approaches the optimal performance. The operation of the

DH QSA in the problem of MUD is described in Fig. 16. The
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Fig. 15. The problem of Multi-User Detection in the uplink of a synchronous multiple access system.

Fig. 16. Inside a quantum multi-user detector.

DHA employed in the QMUDs makes multiple calls to the

BBHT QSA. Grover’s QSA is not used, but it is included for

completeness, since the BBHT QSA uses the same Oracle O,

but may even be capable of finding a solution with a ∼100%

probability, when the number of solutions is unknown. The

QMUD may also be performed on a subcarrier basis in a multi-

carrier system. The DHA processes the signals received yq at

all the receive AEs on the qth subcarrier, along with the chan-

nel state estimates Hq , the noise’s variance N0 and the a priori

LLRs Lm, apr (b̂). After it completes its initial procedure, the

DHA exchanges information with a classical processing unit,

which determines whether the DHA should or should not be

called again, while additionally determining its search space.

Finally, the QMUD outputs the calculated a posteriori LLRs

Lm, apo(b̂).
In [62], a deterministic initialization of the DH QSA was

proposed for exploiting the low-complexity Zero Forcing (ZF)

and Minimum Mean Square Error (MMSE) [79] detectors.

More specifically, instead of randomly initializing the DH

QSA, initially a ZF or MMSE detector is employed and its out-

put is used as the initial guess of the DH QSA. This was shown

to further reduce the complexity of the QMUD. Moreover, an

early-stopping criterion was proposed in [62], where the DH

QSA is terminated after a specific number of Grover itera-

tions, without degrading the Bit Error Rate (BER) performance

of the system. The specific number of Grover iterations used

for the early-stopping criterion was found via simulations and

histograms.

When iterative detection is employed at the base station,

a SISO MUD should be used in order to exchange LLRs

with the SISO decoders. Therefore, the DH QSA-based hard-

output QMUD is not suitable. In [56] and [80], a SISO

QMUD was proposed based on the QWSA of Section II-B14,

exhibiting near-optimal performance, while requiring fewer
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CFEs20 (CFE) than the MAP MUD. In order to calculate an

LLR, two weighted sums have to be calculated; one for the

LLR’s numerator and one for its denominator. The MAP MUD

evaluates the Cost Function (CF) for all legitimate multi-level

symbols. By using the QWSA twice, we may estimate the

weighted sums requiring a lower computational complexity.

Please note that there is a performance vs. complexity trade-

off, when using the QWSA, due to the control register of the

QPEA of Section II-B5. In other words, if we employ more

qubits at the control register, a higher precision is achieved

during the estimation of the weighted sums, hence resulting

in a more accurate LLR value. However, a higher complexity

is required, since the complexity of the QWSA scales with the

size of the control register [56].

In [80] and [81] another SISO QMUD was proposed, relying

on an amalgamation of classical processing and the DH QSA.

The SISO QMUD was demonstrated to achieve near-optimal

performance with respect to the MAP MUD, while requiring

substantially fewer CFEs. The DH QSA-based SISO QMUD

employs the DH QSA multiple times in different databases,

in order to create a pool of the “k-best”21 multi-level symbols

of each weighted sum of each LLR. By classically processing

the values found, we are able to estimate the weighted sums

of the LLRs and hence to attain a near-optimal performance.

Please note that even though the precision of the weighted

sums, and hence the LLRs, is lower than that achieved by the

QWSA QMUD and the MAP MUD, it is sufficiently close to

the real values for the channel decoders to successfuly decode

each user’s bits. Therefore, since a SISO MUD or QMUD

is always followed by channel decoders, the DH QSA-based

QMUD of [81] achieves a near-optimal performance, while

imposing a lower complexity than the MAP MUD.

B. Joint Channel Estimation and Data Detection

1) The Problem: In the uplink of wireless communications

system, accurate channel estimation has to be performed at

the base station in order to predict and counteract the effect

of the channel, when the signal arrives [79], [82], [83]. In a

multi-user NOMA system, all channels between the antennas

of all users and the antennas of the base station have to be

accurately estimated, otherwise the performance of the MUD

would be degraded.

In a multi-carrier system like OFDM, the multi-path channel

may be estimated either in the time domain or in the frequency

domain. For example, let us assume the scenario where the

Power Delay Profile (PDP) of a channel exhibits four paths

and that we partition the available bandwidth in 512 non-

dispersive subchannels. The channel envelope of each of the

four paths may be deemed to fade independently. Assuming

that the channel envelope at each path is quasi-static22 during

20The cost function in the MUD problem is the Euclidean distance of the
received, noisy multi-level symbol from a legitimate multi-level symbol from
the multi-user constellation.

21By “best” here we mean the multi-level symbols of each weighted sum
that correspond to the highest CF values.

22In an OFDM system, a channel is quasi-static, when its channel gain
remains constant during an OFDM symbol period. The channel gain between
two OFDM symbols may be different, but still constant within their OFDM
symbols.

the channel estimation process, we may either estimate the

four time-domain (TD) channel gains of the four paths, or the

512 frequency-domain (FD) subcarrier gains, which represent

the Fast Fourier Transform (FFT) of the time-domain PDP,

having taken the delay spread of the channel and the sampling

frequency into consideration. Typically the FD channel is rep-

resented by the terminology of FD CHannel Transfer Function

factor (FD-CHTF) [71]. Naturally, a lower complexity may be

required for estimating the four time-domain channel gains,

than for estimating the channel gain of each subcarrier.

However, the FD channel estimation lends itself to joint

channel and data estimation, where the FD channel estima-

tion problem may be thought of as a search for the true

continuous-valued subcarrier channel gains. This prohibits the

employment of the full search approach, which was previously

followed in the MUD problem of Section III-A, since an

infinite-sized database should be constructed. The joint chan-

nel estimation and data detection problem may however also

be considered as two separate problems, the former being

dedicated to searching for continuous-valued channel gains,

while the latter to searching for discrete-valued multi-user

symbols.

2) The Classical Algorithms: In LTE [84], FD pilot sig-

nals are transmitted on specific subcarriers of certain OFDM

symbols, enabling the user or the base station to estimate

the channels for the rest of the subcarriers with the aid of

interpolation in the downlink or uplink, respectively. The esti-

mated channel states may be used for the subsequent OFDM

information symbols between a pair of OFDM symbols having

pilot-subcarriers without any change at the cost of accepting

a performance degradation, but not imposing any additional

complexity. Alternatively, the estimated subcarrier gain may

be used for predicting the subcarrier gains of each subsequent

OFDM symbol using linear predictions.

Furthermore, as alluded to above, channel estimation may be

combined with data detection for improving both the estima-

tion accuracy of the subcarrier gains and of the detection error

probability of the transmitted data, resulting in a joint channel

estimator and data detector [85]–[88]. In a multi-user scenario,

the MUD replaces the single-usedr symbol detector, hence

joint channel estimation and MUD may be used [89]–[93].

In the iterative receiver of a NOMA system, information may

be exchanged between the channel estimator, the MUD and

the channel decoders for further increasing the channel esti-

mation’s accuracy and the channel decoding performance [90].

The Decision-Directed Channel Estimation (DDCE) [94] used

in multi-carrier systems initially estimates the FD channel

gains based on a pilot OFDM symbol, as depicted in Fig. 17.

Initially, the super-imposed pilot signals are used for perform-

ing conventional, pilot-assisted channel estimation, associated

with the received OFDM symbol period. Based on those chan-

nel estimates, the Channel Impulse Response (CIR) prediction

filter predicts the channel states that would correspond to the

next OFDM symbol, which now carries data. The output of

the CIR prediction filter becomes the initial output of the

quantum channel estimator. When the next OFDM symbol

is received, it invokes the MUD using the predicted channel

gains.
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Fig. 17. System model of a joint channel estimation and multi-user detection
receiver in the uplink of a multi-carrier NOMA system employing decision-
directed channel estimation.

It then selects the specific multi-level symbols, which were

detected sufficiently reliably,23 and assumes that these were

known pilot symbols. Hence it refines the channel estimation

process based on those “hypothesized” pilot symbols. In other

words, the DDCE combines the separate problems of channel

estimation and data detection by employing them sequentially,

allowing them to “lend” their output to the other process, in

order for it to perform a search in a more accurately con-

structed database, as exemplified in Fig. 17. The updated FD

channel gains may be used for performing a refined MUD pro-

cess for the same OFDM symbol for improving the estimated

LLRs. Similarly, the updated LLRs can be used aftewards for

improving the accuracy of the FD channel gains even further.

The number of iterations between the channel estimation pro-

cess and the MUD constitute a design parameter. The DDCE

aims for reducing the pilot overhead, and hence increasing the

system’s effective throughput. Naturally, it imposes a higher

complexity than the purely pilot-based channel estimation.

In order to reduce the complexity of the joint channel esti-

mation and data detection, heuristic search algorithms may be

used instead of a full search.24 In [95] a GA-aided joint chan-

nel estimator and data detector was proposed, while in [91]

the Differential Evoluation Algorithm (DEA) was employed

for joint channel estimation and data detection. In [93] vari-

ous heuristic algorithms, such as the GA, the Particle Swarm

Optimization (PSO) and the Repeated Weighted Boosting

Search (RWBS) algorithm were used instead of a full search

for the true continuous-valued channel gains, as well as for the

full search of the discrete-valued symbol-space of the MUD.

As another design option, a factor-graph based approach was

used for joint channel estimation and MUD in MC-IDMA

systems in [92]. By exploiting the sparsity of the wire-

less channels, Prasad et al. [88] proposed a methodology

23Please recall that a symbol’s LLR value may be considered an indicator
of how reliably it has been detected.

24The full search here is meant in the context of finding the channel gain
that minimizes a cost function designed based on the maximum likelihood
criterion.

that requires fewer pilot symbols, without degrading the

performance.

3) The Quantum Algorithms: In [96] the Quantum

Repeated Weighted Boosting Search (QRWBS) algorithm was

proposed for reducing the computational complexity of the

classical evolutionary algorithms-based joint channel esti-

mation and data detection, without degrading the system’s

performance. To elaborate a little further, the QRWBS is an

amalgam of the DH QSA and the RWBS algorithm. Both

the RWBS and the QRWBS algorithms create a population

of agents, which are transformed to better agents via multiple

generations. Please note that an agent in the context of channel

estimation represents a continuous-valued FD channel gain,

while in the context of data detection it represents a discrete-

valued symbol. Therefore, a continuous-valued QRWBS and a

discrete-valued QRWBS are employed in [96] for solving the

two problems. An agent is deemed to have a higher fitness

than another agent, if its channel gain or symbol corresponds

to a lower cost function value than the other agent’s.

The maximum affordable number of generations25 is Ξ In

both the RWBS and the QRWBS. In the classical RWBS a

specific number of agents P is created during each generation.

During the ξth generation, where ξ = 1, . . . ,Ξ, the agents are

classically processed in order to create a new agent, which

is termed as the best agent or winner of that generation. The

lower the cost function values of the P agents during the ξth

generation are, the lower the cost function value of the best

agent of that generation will be. Therefore, it is beneficial

to create populations, which have agents with as low cost

function values as possible. The best agent of a generation

is subsequently used as the basis for creating new agents for

the next generation. Therefore, the population of the (ξ+1)st

generation is created randomly in the vicinity of the best agent

of the ξth generation.

The QRWBS algorithm obeys the same procedure, but dif-

fers in the creation of the population of each generation.

Instead of creating Z agents in each generation, it creates a

much higher number of agents ZQ ≫ Z . It then employs

the DH QSA in that database of ZQ agents in order to find

the specific agent of the population that corresponds to the

minimum cost function value of that generation. As discussed

in Section II-B8, in the process of searching for the minimum

value, the DH QSA also queries the database for other entries,

which are later proven not to be the minimum ones. However,

due to the particular nature of the DH QSA, most of the extra

observed agents have a cost function value close to the min-

imum one in the database. All these entries are used in the

QRWBS in order to form a population of Zξ ≪ ZQ agents.

The subscript ξ of Zξ reflects the fact that due to the probabilis-

tic nature of the DH QSA, the population size may differ from

one generation to the next. Both the continuous-valued and

25In an evolutionary algorithm, there are individuals and generations. Each
individual takes the form of a legitimate solution to the search problem.
Individuals that are created at the same “round” or “iteration” belong to the
same generation. The subsequent generations apart from updated individuals,
who rely on the previous generations’ individuals in order to take the form
a better solution. After a number of generations the evolutionary algorithm
stops and the best individual is the output of the algorithm.
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Fig. 18. The problem of Multi-User Transmission in the downlink of a multiple access system.

discrete-valued QRWBS employed for channel estimation and

MUD, respectively, in the context of a joint channel estima-

tion and MUD receiver was shown to outperform its classical

counterpart [96].

C. Multi-User Transmission

1) The Problem: Let us now consider the dual counter-

part of MUDs. In a nutshell, given the FD-CHTF of all users,

the MUD detects the multi-user symbol vector. By contrast,

the Multi-User Transmitter (MUT) relies on the FD-CHTF of

all users signalled back to the BS. Explicitly, the multi-user

symbol vector is “pre-distorted” by the MUT of the BS invok-

ing the FD-CHTFs of all users for ensuring that after passing

through the predicted channel each user receives a symbol-

vector having the single non-interfered symbol destined for it.

The duality of MUDs and MUTs was discussed for example

by [97]. The substantial benefit is that a low-complexity single-

user detector may be invoked by the mobile user terminal.

This MUT principle is applicable both to OMA and NOMA

systems. Hence in the downlink of a NOMA system, the base

station may appropriately combine the different information

symbols destined for the users supported and transmit a single

multi-user signal, in order to increase the system throughput

as depicted in Fig. 18 [5], [97]. It is up to each user then to

detect and decode their own information upon the reception

of the combined multi-user symbol vector. Since the user ter-

minals do not have the same complexity capabilities as the

base stations, the complex processing should be performed

at the base station’s side. Let us assume that the base sta-

tion desires to transmit a multi-user symbol vector, where

each entry of the vector corresponds to a different user. To

elaborate a little further, the multi-user transmission problem

is that given the symbol vector, as well as the system and

channel characteristics, we should find a (U × Nt )-element

Transmit Pre-Coding (TPC) matrix P, where U is the num-

ber of users and Nt the number of transmit antennas at the

base station, in order to multiply with the information symbol

vector as in

s = P · x, (31)

1where x is the (U × 1)-element multi-user vector and s is the

transmitted (Nt×1)-element vector. Again, by doing so, when

each user receives the composite multi-user symbol vector,

they can detect and decode their own symbol by employ-

ing a low complexity single-user detector. Different criteria

may be used for finding the optimal TPC matrix, such as the

MMSE [98] or the Minimum Bit Error Ratio (MBER) [99]

criteria.

2) The Classical Algorithms: Linear channel inversion

algorithms, such as the ZF and the MMSE algorithms [98]

perform adequately in underloaded or in full-rank systems,

where the number of antennas at the base station is higher

than the number of users supported. However, in challenging

rank-deficient systems, where the number of users supported

is higher than the number of antennas at the base station, more

powerful non-linear algorithms should be used for performing

the transmit precoding process.

In the 5G NOMA systems, the precoding matrix is expected

to be calculated based on the distance between the users

and the base stations, as well as on their channels’ qual-

ity [5], [73], [74]. More specifically, assuming a two-user

system, a higher power is allocated to the symbol of the user,

who experiences the worse channel and higher losses. This

way that user is able to detect and decode its own symbol,

treating the other user’s symbol as low-power interference. On

the other hand, the user experiencing the better channel has

received a signal with high multi-user interference, due to the

worse user’s symbol having been allocated a higher portion

of the power. Therefore, the higher-power symbol is detected

first, whilst treating the lower-power symbol as interference.

Then the detected signal is remodulated and deducted from

the composite signal, leaving the weaker signal behind. This

is termed as Successive Interference Cancellation (SIC) and

it has also been used as an MUD [100] as described in

Section III-A.
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Fig. 19. The resultant legitimate constellation of each user layer, after
applying a perturbation vector.

In [101], the vector perturbation precoding technique was

proposed for the downlink of multiple access systems, where

a vector w is added to the multi-user information symbol vec-

tor before it is transformed into a multi-antenna vector by

multiplying it with the precoding matrix, as encapsulated in

s = P · (x+ w). (32)

Given an already calculated precoding matrix P, the goal of

the perturbation vector is to minimize the required transmis-

sion power, while also minimizing the MMSE or the MBER

criterion. If the average transmission power at the base station

is constant, a scaling factor should be applied to the resultant

symbol vector, since its power will depend on the selected per-

turbation vector. This scaling factor should be signalled to the

receivers through a side channel. Since the perturbation vector

is discrete-valued, it may be considered as shifting the whole

symbol constellation an integer number of times in power as

shown in Fig. 19. As an example in Fig. 19, the specific sym-

bol xu represented by the filled circle of the original QPSK

constellation, which is the closest to the origin, would have

been transmitted as the uth user’s symbol, if no perturbation

vector was applied. When that symbol is subjected to the per-

turbation wu = 1+ j , the top left filled circle (xu + wu) will

be transmitted instead for the sake of minimizing the transmis-

sion power and the interference at the receiver. This operation

is performed for each user’s symbol, hence the jointly optimal

perturbation vector should be found. A simple modulo opera-

tion on the perturbed symbol vector may recover the original

symbol vector.

Therefore, using the above-mentioned scaling factor and a

low-complexity modulo operation is sufficient at the users in

order to map their received signals to the original constella-

tion [101], [102]. The high-complexity part of this problem is

to search for the optimal discrete-valued perturbation vector

w of (32). Alternatively, one can immediately search for the

optimal continuous-valued transmit vector s of (32).

A joint block diagonalization and vector perturbation

multiple access downlink techinque was proposed in [103].

Fig. 20. The design methodology for the vector perturbation precoding
for MUT.

Furthermore, Yao et al. employed a discrete-valued PSO algo-

rithm for finding the perturbation vector that minimizes the

MBER criterion in [104], while in [99] a continuous-valued

PSO algorithm was proposed for further improving the out-

put of the discrete-valued PSO algorithm. It should be noted

that even though the perturbation vector is discrete-valued,

the eventually transmitted signal vector is continuous-valued,

therefore a continuous-valued fine tuning of the output of the

discrete-valued PSO may reduce the system’s BER even fur-

ther. The system model of the vector perturbation precoding

technique is shown in Fig. 20. After the precoding matrix is

estimated based on the known symbol vector x, the channel

states and a selected criterion (such as the MMSE criterion),

the optimal – with respect to a selected criterion – perturbation

vector w is found using discrete-valued classical or quantum

search. The found perturbation vector determines a transmitted

vector s. A continuous-valued classical or quantum search may

be employed for further fine-tuning the resultant transmitted

vector s.

Masouros et al. [105] proposed a sphere search technique

for reducing the complexity of searching for the optimal

perturbation vector, with the objective of minimizing the trans-

mission power of the base station. Masouros et al. [102]

conceived a vector perturbation algorithm for improving the

system’s performance, when there is a finite-precision feed-

back of the scaling factor from the base station to the users,

mainly due to the indispensible quantization prior to transmis-

sion. The vector perturbation precoding methodology was also

employed in the downlink of Coordinated Multi-Point (CoMP)

systems [106].

3) The Quantum Algorithms: In [107], the discrete-valued

and continuous-valued Quantum-assisted Particle Swarm

Optimization (QPSO) algorithms were proposed in the con-

text of finding the optimal perturbation vector and the optimal

transmitted vector, respectively, as depicted in Fig. 20. Both

the discrete-valued and the continuous-valued QPSO algo-

rithms combine the DH QSA with the classical PSO algorithm.

The classical PSO algorithm creates a population of Z particles

during each of the Ξ generations. Each particle is associated

with a position and a velocity. The position refers to a legit-

imate input to the CF, or in other words, an entry in the

database. The velocity describes the rate and the direction of

the change of its position between two successive generations.

During each generation of the classical PSO algorithm, the

CF is evaluated for the positions of all particles in the specific

generation. Their position and velocity calculated for the sub-

sequent generation are updated based on their current position
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and velocity, as well as on the current generation’s “best” par-

ticle’s position and velocity.26 Therefore, a full search of each

generation’s population has to be performed in order to find

the best particle.

The QPSO algorithm employs the DH QSA for finding the

best particle during each generation of both the discrete-valued

and the continuous-valued QPSO algorithms. This way we are

not only able to efficiently search for the best particle, but due

to the trial-and-error nature of the DH QSA, only a subset

of the original population is available to us. This procedure

may be considered as selecting a few of the elite high-fitness

particles for creating the population. As shown in [107], both

the discrete-valued and continuous-valued QPSO algorithms

outperform their classical counterparts for the same number

of CF evaluations.

D. Multi-Objective Routing

1) The Problem: So far we have primarily focused our

attention on network structures, where the transmission of the

messages relies on a single hop, from the mobile users to

the BS and vice versa. However, this is not always the case,

since occasionally multihop communications are employed

to reach remote nodes, which would otherwise be inacces-

sible [108]. These particular nodes have random locations

and limited resources in terms of bandwidth and power and

thus they rely on optimal routing for the sake of maximizing

their performance. Optimal routing relies on a delicate balance

amongst several Quality of Service (QoS) criteria apart from

the ubiquitous BER performance, which was considered as the

primary optimization objective in the majority of the previous

applications. On one hand, mobile nodes rely on their bat-

teries having for their communications with the rest of the

network, bringing the optimization of their power consump-

tion into the limelight as well [109]. This concept is commonly

referred to as “green” radio [110]. On the other hand, the

widespread use of lip-synchronized audio and video stream-

ing resulted in considering both the delay and the achievable

rate [111] as additional QoS criteria. Over the years sev-

eral other metrics have been proposed such as the routing

overhead [112], the control-channel cost [113] or the commu-

nication security [114]. Consequently, it becomes clear that

routing optimization has to cater for multiple QoS criteria.

Most of the studies in the literature utilize single-component

aggregate functions, which combine multiple QoS criteria. In

this context, one of the most prominent optimization met-

rics is the network lifetime [115]. In fact, this specific metric

encapsulates several optimization objectives [116], such as the

power consumption, the nodes’ battery levels and the route’s

delay. Additionally, the Network Utility (NU) also takes into

account the routes’ achievable rate [117], hence providing a

more holistic perspective on the routing problem.

Despite the numerous single-objective approaches advo-

cated in the literature, focusing on a single requirement may

unduly degrade all the rest of the metrics. This problem may

26Here, by “best” particle we mean the particle in the current population,
whose position yields the minimum CF value.

be mitigated [119] by using a multi-objective approach utiliz-

ing the concept of Pareto optimality27 [120] for evaluating the

fitness of multi-objective problems. Likewise, all the require-

ments considered may be optimized jointly without the need

for user-defined parameters in order to aggregate the differ-

ent design objectives [121]. In this way, we end up with a

set of Pareto-optimal solutions, which cannot improve their

individual objectives without degrading the rest. Based on

this approach, our ultimate goal is to identify the entire set

of Pareto-optimal routes from a database of L routes, given

a set of QoS requirements. To elaborate further, an illustra-

tive example is shown in Fig. 21, where a fully-connected

Heterogeneous Network (HetNet) [118] is portrayed. In this

specific scenario, the Source Node (SN) has to transmit its

message to the Destination Node (DN) through a cloud of het-

erogeneous mobile Relay Nodes (RN). Note that the DN acts

as a cluster head and has access to a quantum computer for

employing quantum-assisted routing optimization. This spe-

cific topology has been studied in [65], [66], [122], and [123],

where the following Utility Vector (UV) f(x) has been utilized:

f(x ) = [Pe(x ),D(x ),PL(x )]. (33)

Observe in Eq. (33) that the routes’ end-to-end BER Pe(x ),
their end-to-end delay D(x) and their total power dissipation

PL(x ) are jointly minimized under the Pareto optimality prin-

ciple. This process involves a complexity on the order of

O(L2) [65], when using exhaustive search. However, the total

number L of routes increases exponentially with the number

of nodes [124], as we can observe in Fig. 22, hence rendering

the problem NP-hard. Consequently, sophisticated methods are

required for addressing the multi-objective routing problem.

2) The Classical Algorithms: A plethora of single-objective

studies exist in [110], [116], [117], and [125]–[131], each

addressing different routing aspects. In a nutshell, these

specific studies consider the optimization objectives in a

single-component aggregate function in an attempt to optimize

the latter using either a heuristic or a formal systematic

optimization method. To elaborate further, several of these

studies [110], [125]–[127] utilize Dijkstra’s algorithm [132]

for the sake of identifying the optimal routes. Explicitly, this

technique is capable of approaching the optimal routes at the

cost of imposing a complexity on the order of O(E3), where

E corresponds to the number of edges in the network’s graph.

For instance, Zuo et al. [126] employed this specific algorithm

for optimizing the route’s energy efficiency in the context of

wireless ad-hoc networks. Hu et al. [125] utilized Dijkstra’s

algorithm for minimizing both the power consumption and the

delay, quantified in terms of the number of hops, in socially-

aware networks. Additionally, Dehghan et al. [127] adapted

this specific algorithm to the problem of cooperative routing

and attempted to maximize the route’s energy efficiency.

27In multi-objective routing, each route is now associated with a Utility

Vector (UV) f(x) = [f1(x), . . . , fn (x)], where fi (x) corresponds to the
i-th optimization objective out of n objectives in total. For minimization
(maximization) problems, a specific route is dominates another if all of its
objectives are strictly lower than (greater than) the respective objectives of
the second route. Hence, a route is then considered as Pareto-optimal if there
exist no other routes dominating it.
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Fig. 21. Exemplified topology for routing optimization in a Heterogeneous Network (HetNet) [118].

The beneficial properties of convex optimization [133] have

also been exploited in the context of routing optimization.

To elaborate further, Dall’Anese and Giannakis [128] trans-

formed the non-convex routing problem of cognitive random

access networks into a convex one using successive convex

approximations for the sake of minimizing both the routes’

Packet Loss Ratio (PLR) and the resultant outage probabil-

ity. Additionally, Yetgin et al. [129] maximized the network

lifetime in the context of Wireless Sensor Networks (WSN)

using a similar approach. Based on this specific metric,

Abdulla et al. [130] have maximized the lifetime of WSNs

by introducing a range of Hybrid Multihop Network (HYMN)

parameters. The so-called Network Utility [131] also consti-

tutes a meritorious single-component optimization.

The employment of Pareto optimality comes at the cost of

increased complexity and thus primarily heuristic evolution-

ary methods have been employed for the sake of making the

problem tractable. In fact, there are some comprehensive stud-

ies in [124] and [135]–[138], each investigating networks from

a diverse perspective using the multi-objective approach, while

relying on evolutionary algorithms. For instance, both the

Non-dominated Sorting Genetic Algorithm II (NSGA-II) and

the Multiobjective Differential Evolution Algorithm (MODE)

have been invoked in [124] for optimizing their end-to-end

delay and power dissipation of transmission routes established

Fig. 22. Total number L of Hamiltonian routes as a function of the number
Lnodes of nodes of a HetNet.

in WSNs. Additionally, the NSGA-II has been employed

in [135] for satisfying the same QoS requirements in context

both of the ubiquitous Voice over Internet Protocol (VoIP)

and for file transfer in WSNs. Moreover, Perez et al. [136]

minimization of the WSN’s deployment cost by using a

multi-objective model for optimizing both the total energy



1234 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 2, SECOND QUARTER 2019

Fig. 23. The BBHT-QSA chain process used in [65], [66], [122], and [134] for identifying a single Pareto-optimal route.

dissipation and the number of deployed sensor nodes in WSNs.

Martins et al. [137] employed a hybrid multi-objective evo-

lutionary algorithm for solving the Dynamic Coverage and

Connectivity Problem (DCCP) of WSNs subjected to node

failures. Additionally, Pinto and Barán [138] introduced the

concept of Pareto Optimality in the ubiquitous single-objective

ACO and proposed the so-called Multiobjective Max-Min Ant

System (MMAS) for solving the multi-objective mutlicast

routing problem.

3) The Quantum Algorithms: The application of the

aforementioned multi-objective heuristics results in reduced

performance due to their tendency to convergence to local

optima [65]. Fortunately, quantum computing provides a pow-

erful framework for addressing the multi-objective routing

problem by exploiting the complexity reduction offered by

the QP, while guaranteeing a near-full-search-based accuracy.

In fact, several quantum-assisted treatises have been dissem-

inated in [65], [66], [122], and [134] in the context of the

multi-objective routing problem.

To the best of our knowledge, the first ever quantum-

assisted multi-objective approach to the routing problem is

the so-called Non-dominated Quantum Optimization (NDQO)

algorithm [65]. This specific algorithm extended the DH QSA

of Section II-B8 for solving the Pareto optimality problem for

the sake of successively approaching the Pareto-optimal routes

at a reduced complexity. Assuming a database of L routes in

total, the NDQO algorithm succeeds in identifying the entire

set of Pareto-optimal routes at a complexity on the order of

O(L
√
L), while exhibiting near-optimal routing performance

by exploiting the probabilistic nature of the BBHT QSA. In a

nutshell, the NDQO algorithm invokes the BBHT QSA to con-

clude as to whether a reference route is optimal by searching

for routes that dominate this specific route.

This process is referred to as a BBHT-QSA chain in [65] and

its sub-processes are highlighted in Fig. 23. The BBHT-chain’s

input parameters are shown at the right-hand-side, namely the

nodes’ geo-locations Z, the initial reference route xr and the

nodes’ interference power levels I0. Initially, the BBHT QSA

is invoked for searching for routes that dominate the reference

route xr . The output of this process is the route xs , which is

checked as to whether it dominates xr . This is denoted by the

condition f(xs) 
 f(xr ), where the operator 
 corresponds

to the Pareto dominance comparison operator. If the referece

route xr is dominated by xs , xr is then set equal to xs and a

new BBHT QSA is invoked with the updated reference route

value. This process is repeated until the BBHT QSA outputs a

route that does not dominate its reference route, thus ensuring

that the current reference route is indeed Pareto-optimal in the

absence of dominant routes.

Since the BBHT QSA exhibits a ∼100% probability of

correctly detecting a solution as detailed in Section II-B7,

some sub-optimal routes may be erroneously classified as

being Pareto-optimal due to BBHT QSA’s inability to guar-

antee 100% probability of correctly detecting a route that

dominates the reference route. Therefore, the NDQO algo-

rithm exhibits a modest error floor owing the low-probability

inclusion of sub-optimal routes into the set of Pareto-optimal

routes. Its error floor has been mitigated by its succes-

sor, namely the so-called Non-dominated Quantum Iterative

Optimization (NDQIO) algorithm [66], where a repair pro-

cess guaranteeing the identification of only true Pareto-optimal

routes has been proposed. The NDQIO algorithm succeeds in

further reducing the complexity imposed, which is quantified

on the order of O(LOPF

√
L), with LOPF corresponding to the

number of Pareto-optimal routes, while reducing the associated

performance error floor to infinitesimally low levels.

An additional source of complexity reduction, namely

that of the database correlation exploitation, has been com-

bined with the quantum parallelism for the sake of fur-

ther complexity reduction. Explicitly, it has been con-

firmed by Zalka [61] that Grover’s QSA and its variants

are optimal in terms of the number of database queries

in uncorrelated databases. Therefore, database correlation

exploitation would significantly increase the efficiency of

quantum parallelism. In this context, the so-called Multi-

Objective Decomposition Quantum Optimization (MODQO)

algorithm [134] has been proposed for multi-objective rout-

ing in socially-aware networks [125]. Note that the topology

considered in [134] is different from that of Fig. 21, since

multiple pairs of SNs and DNs are considered. In this sce-

nario, the MODQO algorithm exploited the specific property

that the Pareto-optimal route combinations are constituted by

individual Pareto-optimal routes. Therefore, by exploiting this

observation, the search space has been partitioned into sev-

eral less correlated databases, where the quantum parallelism

framework proposed in [66] can be more efficiently exploited.

As for its complexity, the MODQO algorithm succeeds in

identifying the entire set of Pareto-optimal route combina-

tions at a complexity, which is on the orders of O(
√
L) and

O(LMR

√
L+ L

2LMC

MR ) for the best- and worst-case scenarios,
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respectively, where LMR and LMC correspond to the number

mesh routers and clients, respectively. Note that the classical

exhaustive search would impose a complexity on the order of

O(LLMC ), where we have O(L) ≫ O(LMR), hence rendering

the problem unsolvable in polynomial time.

Apart from the exploiting the correlations in the formation

of Pareto-optimal route combinations, the potential correla-

tions in the formation of Pareto-optimal routes has been inves-

tigated in [122] and [123]. To elaborate further, it has been

proven in [122] that Pareto-optimal routes exclusively consist

of Pareto-optimal sub-routes. Based on this observation, the

so-called Evolutionary Quantum Pareto Optimization (EQPO)

algorithm [122] and an irregular trellis graph [139] has

been proposed for the sake of guiding the search, hence

effectively transforming the search space into a series of

weakly correlated databases with the aid of dynamic program-

ming [140], [141]. A quantum-assisted feed-forward process

resembling the ubiquitous Viterbi algorithm [142] is then

invoked for the sake of identifying the Pareto-optimal routes

by processing the trellis-stages. More specifically, the NDQIO

algorithm is activated for each trellis-stage to identify the

respective Pareto-optimal routes. The EQPO algorithm suc-

ceeds in identifying 99.9% of the set Pareto-optimal routes

at a complexity order of O(L
3/2
optL

2
nodes), while exhibiting

a performance associated with a low heuristic error floor.

Therefore, since the total number L of routes has an exponen-

tial relationship with respect to the number Lnodes of nodes, as

seen in Fig. 22, a substantial complexity reduction is achieved

compared to full-search-based NDQO and NDQIO algorithms.

Apart from the aforementioned treatises, which primarily

rely on Grover’s operator and thus harnessing the power

of quantum parallelism, some others exploit the benefi-

cial complexity reduction offered by the quantum tunneling

effect [16]. Explicitly, the particular quantum algorithms rely-

ing on quantum tunneling are referred to as quantum anneal-

ers [143], [144]. More specifically, a quantum annealer may be

treated as a sampler, which approximates the global optimum

of a function or of a database with the aid of quantum tunnel-

ing. In the context of multi-objective routing, Wang et al. [145]

proposed a quantum annealing algorithm designed for optimiz-

ing the scheduling of the wireless links in interference-limited

networks. The proposed quantum annealing algorithm suc-

ceeded in jointly optimizing both the network’s throughput as

well as its interference, whilst imposing a substantially lower

complexity than its classical counterpart, namely the simulated

annealing algorithm.

E. Breaking Public-Key Cryptography Schemes

1) The Problem: Public-key cryptosystems, such as the

RSA [146], named after its creators Rivest, Shamir and

Adleman, encrypt data using a public key, which may be

eavesdropped by anyone, and they decrypt data using a pri-

vate key. Node A randomly picks two large prime numbers.

Based on these two prime numbers, a public key and a private

key are generated. The public key can be used by any other

node for encrypting their data and transmitting it back to the

node A. However, only node A has the private key, which is the

only key that can be used for correctly decrypting the received

data. Please note that none of the transmitting nodes should be

able to decrypt the data they encrypted themselves. The same

applies to any potential eavesdroppers, who have obtained both

the public key and the encrypted messages from the transmit-

ting nodes. This means that no processing of the public key

should lead to any information concerning the private key.

However, due to the process invoked for creating the public

and the private keys, if the two prime numbers, which were

used for creating the keys are obtained by an eavesdropper,

the private key can be replicated and the information mes-

sages can be decrypted. This is termed as the RSA problem,

which reduces to the following factorization problem. Given

a large number N, we have to find its two prime factors.

Even though it would be beneficial if a solution did not exist

to the RSA problem, creating algorithms that are able to break

a cryptosystem inevitably provides insights for constructing

post-quantum cryptosystems.

2) The Classical Algorithms: Integer factorization tech-

niques may be used for finding the prime factors of an integer.

The most efficient classical algorithm of solving an integer

factorization problem is the quadratic sieve [147], when the

number to be factored is less than 332 bits long. For higher

numbers, the general number field sieve [147] outperforms all

other classical algorithms, but it imposes a high computational

complexity.

3) The Quantum Algorithms: Shor’s algorithm [33] can be

used for efficiently solving the RSA problem. As discussed in

Section II-B4, Shor’s algorithm employs a classical subroutine,

which resembles the operation of the quadratic sieve, while the

QPEA [48] of Section II-B5 is used for finding the necessary

period of the function employed. Shor’s algorithm achieves an

exponential speed-up, over the general number field sieve, as

a benefit of the inherent parallelism of quantum computing. In

2012, the number 21 was factored to its prime factors 3 and 7

using Shor’s algorithm [148].

F. Indoor Localization

1) The Problem: The problem of indoor localization is

to estimate the position of a user in a room, based on the

user’s transmit or received signals [149]. More precisely, the

signals’ Received Signal Strength Indicator (RSSI), Time of

Arrival (ToA), Angle of Arrival (AoA), or Time Difference

of Arrival (TDoA) may be exploited for estimating the user’s

location [150]. The localization’s accuracy is enhanced, when

the floor plan of the room is known. The localization problem

is illustrated in Fig. 24.

Due to the paradigm shift to mm-Wave communica-

tions [151]–[153], pencil beams may be formed in order to

minimize the multi-user interference and to increase the data

rate [154]. In order to use very thin beams, accurate user

localization is necessary.

Accurate localization may also be used for track-

ing the movement of a user in a room. Visible Light

Communication (VLC) systems [155]–[157] may exploit accu-

rate localization, since they will be able to form more accurate

clusters of access points for serving the users supported by
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Fig. 24. The indoors localization problem, where an accurate position of the
user has to be estimated. (a) Uplink localization, where a mm-Wave anchor
processes the received line of sight path, as well as the reflected paths. Based
on the RSSI, the ToA and the AoA, the mm-Wave anchor may initially reduce
the search space. Then, it may employ the fingerprinting methodology for
comparing the received signals to those stored in a pre-calculated database.
(b) Downlink localization using a VLC system, where each LED panel is
switched on and off sequentially. The RSSI at the user by each LED access
point is compared to a pre-calculated database, following the fingerprinting
methodology. Quantum search may be employed for searching in the databases
in both the downlink and the uplink localization methods.

the system. More specifically, since multiple Light Emitting

Diodes (LED) will be installed in a room, the accurate local-

ization of users may support efficient spatial MIMO techniques

for increasing the data rate of the downlink. Accurate tracking

of the user’s movement would help the system maintain the

throughput attained.

2) The Classical Algorithms: Ultra WideBand (UWB)

systems may also be employed for achieving accurate local-

ization [149], [158]–[164] by exploiting the signals’ inherently

short symbol duration and the ToA of its Line Of Sight (LOS)

component. If the floor plan of the room is known, the

Multi-Path Components (MPC) of the signal’s PDP may

also be exploited for increasing the accuracy of the local-

ization [158], [163], [164]. More specifically, the TOA of the

LOS path and of the MPCs may be jointly processed in order

to extract a small subset of legitimate areas in the room, where

the user may be located, as exemplified in Fig. 24.

VLC-based localization has also been employed, by exploit-

ing the limited coverage of the VLC access point [155], [165].

Based on the fingerprinting approach [166], the room may be

partitioned into small virtual tiles. The localization algorithm

has to determine the center of which specific tile the user is

closest to. This is performed by building a database of the

potentially received signals’ RSSIs, ToAs, AoAs and TDoAs

from each legitimate tile. A suitable CF which would com-

pare the actual received signals to the saved ones at the known

tile-centre positions would determine, which tile is closest to

the supported user. Hence, the localization problem may be

reduced to a search problem. The size of the search space

depends on the size of each tile. The smaller the dimensions

of a tile are, the more accurate the localization will be, but

more tiles exist in the database. Therefore, there is a trade-off

between the performance attained and the complexity imposed.

The triangulation method [166] combines the signals of

three different access points by estimating the distance

between them and the user based on their RSSI and then

estimating the location of the user to be at the intersection

of the three circles. When operating in a system, where the

Signal to Noise Ratio (SNR) is low, using the triangulation

method based on the RSSI may lead to inaccurate localization.

The Global Positioning System (GPS) uses the triangulation

method for localization.

3) The Quantum Algorithms: The DH QSA was combined

with classical processing for performing indoor localization in

the VLC downlink and in the mm-Wave uplink [167]. The

fingerprinting approach is used in both systems. In the mm-

Wave uplink , multiple antennas may be used at the access

point for estimating the AoA. Based on the AoA and the ToA

of the LOS and multipath signals, the initial search space may

be reduced to a subset of surviving tiles, similarly to [158].

The DH QSA is then employed in the resultant database of

CF values, in order to find the particular entry that minimizes

the CF. In this problem, the CF takes into account the signal

received at all antennas of the access point over the LOS path,

as well as over all MPCs, and determines the square distance

from the corresponding values associated with the center of

each tile.

The fingerprinting approach is also used in the VLC down-

link in [167]. Similarly to [155], the signal strength of each

access points is measured and stored in a database, which cor-

responds to a specific tile’s center. Therefore, if there are 64

access points and 90 tiles in the room, there are 90 databases

with 64 entries each. The entries of each database are then

combined and compared to the actual 64 received values at

the user’s true position and the search problem reduces to

that of finding which of the 90 tiles offers the most similar

RSSI from all access points to the actually received ones. The

DH QSA was employed for offering a quadratic reduction in

the associated computational complexity compared to a full

search. Similarly, by appropriately reducing the size of each

tile in order to increase the search space so that the DH QSA

in the larger database requires the same complexity as a full

search in a smaller database, a higher localization accuracy

may be achieved.

In the uplink and downlink localization problems, the

quantum-assisted solutions of [167] achieved an equivalent

performance to the optimal classical methods, while requiring

a lower computational complexity.

G. Big-Data Analysis

1) The Problem: In big-data systems, multiple-feature data

has to be accessed and manipulated. Examples of problems

existing in big-data systems involve classification of the high-

dimensional data based on their features, search problems and

existence problems [168].

In the classification problem [169], the entries of a database

have to be classified into multiple classes, based on their fea-

tures’ values. The classification problem may be divided into

two parts: a) the supervised classification problem, where a

set of already classified data exists and can be exploited for

aiding the classification of the rest of the data, and b) the

unsupervised classification problem, where all entries have to

be classified.
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In a search problem, the index of the entry in a large

unsorted database has to be found. Furthermore, the existence

problem investigates whether there exists a specific entry in a

database or not.

2) The Classical Algorithms: Classical machine learn-

ing [169], [170] can be used for solving both unsupervised

and supervised classification problems [171]. Support Vector

Machines (SVM) [172] may be employed for performing

either supervised or the so-called semi-supervised classifica-

tion [173]. They construct a model based on the classified

training data for accurately predicting the class that new data

should be classified into.

Both the search problem and the existence problem encoun-

tered in unstructured high-volume databases can be classically

solved by a full search, which however often imposes an

excessively high complexity.

3) The Quantum Algorithms: In [174] a Quantum Support

Vector Machine (QSVM) was proposed for performing super-

vised classification in large databases. The QSVM imposes

an exponentially lower complexity than its classical counter-

parts, when the latter are able to classify the same dataset in

polynomial time. To elaborate further, the QSVM reformulates

the classical SVM originally proposed in [175]. Explicitly,

this reformulation transforms the SVM’s quadratic formula-

tion into a system of linear equations, which are in turn solved

by using the HHL algorithm [54] of Section II-B12.

Grover’s QSA [28] of Section II-B6 can be employed for

searching through an unstructured database, whilst achieving a

quadratic speed-up compared to the classical full search. When

the exact position of the desired entry is not required, only the

knowledge of whether that entry exists in the database or not

is wanted, the Quantum Existence Testing (QET) algorithm

of [9] and [176] may be used instead. The QET algorithm

employs the QCA of Section II-B9, which finds the number of

times a desired entry appears in a database. Since in the con-

text of the existence problem we are not interested in finding

the specific number of times a value appears in a database, but

rather if it exists at all or not, the QET algorithm uses fewer

qubits in the control register of the QCA of Fig. 12. This way,

even though a precise estimate of the number of solutions in

a database cannot be obtained the measured control qubits are

non-zero, we are informed that there are indeed any solutions

in the database. When carrying out this task, the QET algo-

rithm imposes a lower complexity than the QCA, which in

indicates a quadratic speed-up over the full search.

IV. OPEN PROBLEMS

A suite of quantum solutions have been proposed for clas-

sical wireless problems. Nevertheless, there are numerous

open problems in both the physical and network layers of

wireless communications systems that may benefit from the

power quantum computing. For example, Coordinated Multi-

Point [177], also referred to as cooperative network MIMO,

is a compelling solution to the problem of degraded user

performance at the cell edge. Based on CoMP, a user will

be simultaneously connected to multiple base stations, which

essentially treat interference as useful information. Quantum

search algorithms [28], [31], [32] may be used in the context

of CoMP for detecting and processing the excessive amount

of information, since the notion of interference will have been

eliminated.

Quantum computing may also be used for improv-

ing the routing performance of drone communications and

networks [180], [181], given their limited battery lifespan

and mission-critical nature. For instance, optimal routes may

be found in drone networks using quantum algorithms, or

when drones are used as emergency base stations, optimal

drone placement planning may be performed by solving the

associated optimization problem.

The multi-objective quantum computing framework

constituted by the algorithms of Section III-D could

be employed for addressing the problem of proactive

caching [125], [182]–[184]. Explicitly, in proactive caching

the packets are buffered in the nodes by carefully considering

their popularity for the sake of reducing both the delay

and the power consumption, which is reminiscent of the

multi-objective routing problem. Additionally, this specific

case study could be undertaken with the aid of machine learn-

ing [185]. In fact, Kapoor et al. [187] have recently proposed

a model for quantum perceptrons, which may constitute

beneficial building blocks for quantum-aided neural networks.

Therefore, it would be worth investigating as to whether

quantum-assisted solutions can be adopted in this context.

In addition to the above-mentioned open problems, novel

quantum solutions may be explored in the specific wire-

less communication problems discussed in this contribu-

tion. For example, Hogg’s heuristic quantum search algo-

rithm [51], [52] may be employed in any database search,

where there exists correlation between the database entries, in

order to reduce the required search time. In the uplink multi-

user detection problem, the constructed database includes the

MSE between the actually received signal and a hypothetical

noiseless received signal that is based on a legitimate symbol

combination. Since there are different symbol combinations

that partially consist of the same symbols, there is correla-

tion in the constructed database. Therefore, Hogg’s heuristic

quantum search algorithm may further decrease the search

complexity imposed.

V. CONCLUSION

In this contribution, we have surveyed the family of quan-

tum algorithms that have been employed for solving realistic

problems in wireless communications faster and more accu-

rately than the available classical solutions. In Section II-A

we have stated the basic characteristics of quantum computing

with the aid of linear algebra and logical gates, reminiscent of

classical computing. Familiarity with the basics of quantum

computing was then exploited for highlighting the quantum

circuits of major quantum algorithms that have been proposed.

We have gathered the investigated quantum algorithms in

Tables III and IV, where we briefly state their application and

description.

Having acquired a feel for the capabilities of quantum com-

puting via the quantum algorithms presented, in Section III,



1238 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 2, SECOND QUARTER 2019

we have shifted the focus of our attention to classical wireless

optimization problems. We have opted for discussing each of

the optimization problems, as well as their state-of-the-art clas-

sical solutions. By comparing the presented quantum-assisted

solutions to their classical counterparts, we have argued that

for a specific complexity budget, a performance gain is

observed when the quantum algorithms are used. Similarly,

by employing the quantum algorithms, a specific performance

target may be reached at a lower computational complexity.
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