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Figure 1: A quantum robot, in a superposition over locations, searching for a marked item on a 2D grid

of size /nx /n.

1 Introduction

The goal of Grover’s quantum search algorithi7,[18] is to search an ‘unsorted database’ of size

in a number of queries proportional tgn. Classically, of course, orderqueries are needed. Itis
sometimes asserted that, although the speedup of Grover’s algorithm is only quadratic, this speedup is
provable in contrast to the exponential speedup of Shor’s factoring algori2@in [But is that really

true? Grover’s algorithm is typically imagined as speeding up combinatorial search—and we do not
know whether every problem iNP can be classically solved quadratically faster than the “obvious”
way, any more than we know whether factoring iSBiRP.

But could Grover’s algorithm speed up search gflgsical regio® Here the basic problem, it
seems to us, is the time needed for signals to travel across the region. For if we are interested in the
fundamental limits imposed by physics, then we should acknowledge that the speed of light is finite, and
that a bounded region of space can store only a finite amount of information, according to the holographic
principle [9]. We discuss the latter constraint in detaiSection2; for now, we say only that it suggests
a model in which a ‘quantum robot’ occupies a superposition over finitely many locations, and moving
the robot from one location to an adjacent one takes unit time. In such a model, the time needed to
search a region could depend critically on its spatial layout. For example, iif ¢héries are arranged
on aline, then even to move the robot from one end to the other tekéssteps. But what if the entries
are arranged on, say, a 2-dimensional square gigltel)?

1.1 Summary of Results

This paper gives the first systematic treatment of quantum search of spatial regions, with ‘regions’
modeled as connected graphs. Our main result is positive: we show that a quantum robot can search

a d-dimensional hypercube with vertices for a unique marked vertex in tirt.‘Ie(ﬁlog?’/2 n) when

d=2, orO(y/n) whend > 3. This matches (or in the case of 2 dimensions, nearly matcheQ)(t)@)

lower bound for quantum search, and supports the view that Grover search of a physical region presents
no problem of principle. Our basic technique is divide-and-conquer; indeed, once the idea is pointed out,
an upper bound o®(n1/2+8) follows readily. However, to obtain the tighter bounds is more difficult;

THEORY OF COMPUTING, Volume 1 (2005), pp. 47-79 48


http://dx.doi.org/10.4086/toc

QUANTUM SEARCH OF SPATIAL REGIONS

d=2 d>2
Hypercube, 1 marked itemO (/nlog®?n) ©(y/N)
Hypercubek or more marked items O ( /nlog®?n) © WL_”W

Arbitrary graph k or more marked items ﬁZO(\/W) ) WL,”W

Table 1: Upper and lower bounds for quantum searchawulinensional graph given in this paper. The
symbol® means that the upper bound includes a polylogarithmic term. Note thlat; &, thenQ (,/n)
is always a lower bound, for any number of marked items.

for that we use the amplitude-amplification framework of Grou€} pnd Brassard et al1[].

Sectionb presents the main resulSection5.4 shows further that, when there drer more marked
vertices, the search time becont[bé\mlogf’/2 n) whend = 2, or® (y/n/k2-%/4) whend > 3. Also,
Section6 generalizes our algorithm to arbitrary graphs that have ‘hypercube-like’ expansion properties.
Here the best bounds we can achieve @’(@O(M) whend = 2, or O(y/npolylogn) whend > 2
(note thatd need not be an integerJablel summarizes the results.

Section7 shows, as an unexpected application of our search algorithm, that the quantum communi-
cation complexity of the well-knowdisjointness problers O(/n). This improves aro(ﬁc"’g*”)
upper bound of Hgyer and de WoE(], and matches th@ (,/n) lower bound of Razboro\2j].

The rest of the paper is about the formal model that underlies our reSdtdion2 sets the stage
for this model, by exploring the ultimate limits on information storage imposed by properties of space
and time. This discussion serves only to motivate our results; thus, it can be safely skipped by readers
unconcerned with the physical universe Saction3 we definequantum query algorithms on grapte
model similar to quantum query algorithms as defined by Beals et]abyt with the added requirement
that unitary operations be ‘local’ with respect to some graph.Sdntion3.1 we address the difficult
question, which also arises in work on quantum random wdlkarid quantum cellular automatal],
of what ‘local’ means.Section4 proves general facts about our model, including an upper bound of

O(x/ n5) for the time needed to search any graph with diaméteand a proof (using the hybrid

argument of Bennett et al.7]) that this upper bound is tight for certain graphs. We conclude in
Section8 with some open problems.

1.2 Related Work

In a paper on ‘Space searches with a quantum robot, Berbfigked whether Grover’s algorithm
can speed up search of a physical region, as opposed to a combinatorial search space. His answer was
discouraging: for a 2-D grid of siz¢/n x y/n, Grover’s algorithm is no faster than classical search. The
reason is that, during each of t®g,/n) Grover iterations, the algorithm must use orgér steps just
to travel across the grid and return to its starting point for the diffusion step. On the other hand, Benioff
noted, Grover’s algorithm does yield some speedup for grids of dimension 3 or higher, since those grids
have diameter less thayin.

Our results show that Benioff’s claim is mistaken: by using Grover's algorithm more carefully, one
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\ d=2 d=3 d=4 d>5
This paper O(\mlogwn) O(yn) O(yn) O(y/n)
[16] O(n) O(n®¢) O(ynlogn) O(yn)

315 | O(yAlogn  O(VA) O(VA) OV

Table 2: Time needed to find a uniqgue marked itemddimensional hypercube, using the divide-and-
conquer algorithms of this paper, the original quantum walk algorithm of Childs and Goldsi@ine [
and the improved walk algorithms of Ambainis, Kempe, and Riv@kaihd Childs and Goldstoné§).

can search a 2-D grid for a single marked verteif/nlog®?n) time. To us this illustrates why one

should not assume an algorithm is optimal on heuristic grounds. Painful experience—for example, the
“obviously optimal’O (n3) matrix multiplication algorithm 30]—is what taught computer scientists to
see the proving of lower bounds as more than a formality.

Our setting is related to that of quantum random walks on grahii8]14, 28]. In an earlier version
of this paper, we asked whether quantum walks might yield an alternative spatial search algorithm,
possibly even one that outperforms our divide-and-conquer algorithm. Motivated by this question,
Childs and Goldstonelp] managed to show that in the continuous-time setting, a quantum walk can
search a-dimensional hypercube for a single marked vertex in {®rig/nlogn) whend = 4, orO (y/n)
whend > 5. Our algorithm was still faster in 3 or fewer dimensions (3able2). Subsequently,
however, Ambainis, Kempe, and Rivoss] fave an algorithm based on a discrete-time quantum walk,
which was as fast as ours in 3 or more dimensions, and faster in 2 dimensions. In particular, when
d = 2 their algorithm used onl@ (/nlogn) time to find a unique marked vertex. Childs and Goldstone
[15] then gave a continuous-time quantum walk algorithm with the same performance, and related this
algorithm to properties of the Dirac equation. It is still open whet®é{/n) time is achievable in 2
dimensions.

Currently, the main drawback of the quantum walk approach is that all analyses have relied heavily
on symmetries in the underlying graph. If even minor ‘defects’ are introduced, it is no longer known
how to upper-bound the running time. By contrast, the analysis of our divide-and-conquer algorithm
is elementary, and does not depend on eigenvalue bounds. We can therefore show that the algorithm
works for any graphs with sufficiently good expansion properties.

Childs and Goldstonelp] argued that the quantum walk approach has the advantage of requiring
fewer auxiliary qubits than the divide-and-conquer approach. However, the need for many qubits was
an artifact of how we implemented the algorithm in a previous version of the paper. The current version
uses onlyonequbit.

2 The Physics of Databases

Theoretical computer science generally deals with the limit as some resource (such as time or memory)
increases to infinity. What is not always appreciated is that, as the resource bound increases, physical
constraints may come into play that were negligible at ‘sub-asymptotic’ scales. We believe theoretical

computer scientists ought to know something about such constraints, and to account for them when
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possible. For if the constraints are ignored on the ground that they “never matter in practice,” then the
obvious question arises: why use asymptotic analysis in the first place, rather than restricting attention
to those instance sizes that occur in practice?

A constraint of particular interest for us is thelographic principle[9], which arose from black-
hole thermodynamics. The principle states that the information content of any spatial region is upper-
bounded by itsurface aregnot volume), at a rate of one bit per Planck area, or abaut 10°° bits per
square meter. Intuitively, if one tried to build a spherical hard disk with mass dansitiye could not
keep expanding it forever. For as soon as the radius reached the Schwarzschild bosung ®f (87 v)

(in Planck unitsc = G = h= k= 1), the hard disk would collapse to form a black hole, and thus its
contents would be irretrievable.

Actually the situation is worse than that: evemplanar hard disk of constant mass density would
collapse to form a black hole once its radius became sufficiently large@ (1/v). (We assume
here that the hard disk is disc-shaped. A linear or 1-D hard disk could expand indefinitely without
collapse.) Itis possible, though, that a hard disk’s information content could asymptotically exceed its
mass. For example, a black hole’s mass is proportional to the radius of its event horizon, but the entropy
is proportional to thesquareof the radius (that is, to the surface area). Admittedly, inherent difficulties
with storage and retrieval make a black hole horizon less than ideal as a hard disk. However, even a
weakly-gravitating system could store information at a rate asymptotically exceeding its mass-energy.
For instance, Bouss®] shows that an enclosed ball of radiation with radiusan storen = © (r%/2)
bits, even though its energy grows onlyrasOur results irSection6.1 will imply that a quantum robot
could (in principle!) search such a ‘radiation disk’ for a marked item in t@r{g%*) = O (n%%). This
is some improvement over the trivi@l(n) upper bound for a 1-D hard disk, though it falls short of the
desiredO (y/n).

In general, ifn = r® bits are scattered throughout a 3-D ball of radisvherec < 3 and the bits’
locations are known), we will show ifheorem 6.%hat the time needed to search for a ‘1’ bit grows as
n'/c+1/8 = y1+¢/6 (omitting logarithmic factors). In particular, if= © (r?) (saturating the holographic
bound), then the time grows a&® orr#/3. To achieve a search time ©f(,/npolylogn), the bits would
need to be concentrated on a 2-D surface.

Because of the holographic principle, we see that it is not only quantum mechanics that yields a
Q (4/n) lower bound on the number of steps needed for unordered search. If the items to be searched
are laid out spatially, then general relativity int3 dimensions independently yields the same bound,
Q(4/n), up to a constant factdr. Interestingly, ind + 1 dimensions the relativity bound would be
Q (n¥(@-D) 'which ford > 3 is weaker than the quantum mechanics bound. Given that our two funda-
mental theories yield the same lower bound, it is natural to ask whether that bound is tight. The answer
seems to be that it isottight, since (i) the entropy on a black hole horizon is not efficiently accegsible
and (ii) weakly-gravitating systems are subject to Bekenstein bounfb], an even stronger entropy
constraint than the holographic bound.

1Admittedly, the holographic principle is part of quantum gravity and not general relgigitge All that matters for us,
though, is that the principle seems logically independent of quantum-mechanical linearity, which is what produces the “other”
Q(4/n) bound.

2In the case of a black hole horizon, waiting for the bits to be emitted as Hawking radiation—as recent evidence suggests
that they are7]—takes time proportional to®, which is much too long.
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Yet it is still of basic interest to know whether bits in a radiug- ball can be searched in time
o(min{n,ry/n})—that is, whether it is possible to dmythingbetter than either brute-force quantum
search (with the drawback pointed out by Benid})| or classical search. Our results show that it is
possible.

From a physical point of view, several questions naturally arise: (1) whether our complexity measure
is realistic; (2) how to account for time dilation; and (3) whether given the number of bits we are
imagining, cosmological bounds are also relevant. Let us address these questions in turn.

1)

)

®)

One could argue that to maintain a ‘quantum database’ ofrsieguiresn computing elements

([32], though see also2d]). So why not just exploit those elements to search the database in
parallel? Then it becomes trivial to show that the search time is limited only by the radius of
the database, so the algorithms of this paper are unnecessary. Our response is that, while there
might ben ‘passive’ computing elements (capable of storing data), there might be many fewer
‘active’ elements, which we consequently wish to place in a superposition over locations. This
assumption seems physically unobjectionable. For a particle (and indeed any object) really does
have an indeterminate location, not merely an indeterminate internal state (such a sping

location. We leave as an open problem, however, whether our assumption is valid for specific
guantum computer architectures such as ion traps.

So long as we invoke general relativity, should we not also consider the effects of time dilation?
Those effects are indeed pronounced near a black hole horizon. Again, though, for our upper
bounds we will have in mind systems far from the Schwarzschild limit, for which any time dilation

is by at most a constant factor independemn.of

How do cosmological considerations affect our analysis? Bow@sodues that, in a spacetime
with positive cosmological constant > 0, the total number of bits accessible to any one exper-
iment is at most 3/ (AIn2), or roughly 1622 given current experimental boundg on A.2
Intuitively, even if the universe is spatially infinite, most of it recedes too quickly from any one
observer to be harnessed as computer memory.

One response to this result is to assume an idealization in whigdnishes, although Planck’s
constanfi does not vanish. As justification, one could argue that without the idealizAtio®,

all asymptotic bounds in computer science are basically fictions. But perhaps a better response is
to accept the 8/ (AIn2) bound, and then ask how close one can congatoratingit in different
scenarios. Classically, the maximum number of bits that can be searched is, in a crude model
actually proportional to 2v/A ~ 10°* rather than IA. The reason is that if a region had much
more than Iﬁ bits, then after ;[\ﬂ Planck times—that is, about ﬂ)years, or roughly the
current age of the universe—most of the region would have receded beyond one’s cosmological

3Also, Lloyd [21] argues that the total number of bits accessilpdill nowis at most the square of the number of Planck

times elapsed so far, or abo(]to‘il)2 =10'22, Lloyd's bound, unlike Bousso’s, does not depend’oheing positive. The
numerical coincidence between the two bounds reflects the experimental fi€iag]that we live in a transitional era, when
both A and “dust” contribute significantly to the universe’s net energy bala@ge~ 0.7, Qqust~ 0.3). In earlier times dust
(and before that radiation) dominated, and Lloyd’s bound was tighter. In later imésdominate, and Bousso’s bound will
be tighter. Whywe should live in such a transitional era is unknown.

4specifically, neglecting gravity and other forces that could counteract the effact of
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horizon. What our results suggest is that, using a quantum robot, one could come closer to
saturating the cosmological bound—since, for example, a 2-D region of slredn be searched

in time O (ﬁ polylogﬁ). How anyone coulgreparea database of size much greater than
1/\ﬂ remains unclear, but if such a database existed, it could be searched!

3 The Model

Much of what is known about the power of quantum computing comes fronbldek-boxor query
model R, 4, 7, 17, 29, in which one counts only the number of queries to an oracle, not the number of
computational steps. We will take this model as the starting point for a formal definition of quantum
robots. Doing so will focus attention on our main concern: how much harder is it to evaluate a function
when its inputs are spatially separated? As it turns out, all of our algorithiirise efficient as measured
by the number of gates and auxiliary qubits needed to implement them.

For simplicity, we assume that a robot’s goal is to evaluate a Boolean funicti¢@, 1}" — {0, 1},
which could be partial or total. A ‘region of space’ is a connected undirected @aphV, E) with
verticesV = {vy,...,Vn}. LetX =x;...X, € {0,1}" be an input tof ; then each bik; is available only
at vertexvi. We assume the robot knou&and the vertex labels in advance, and so is ignorant only
of thex; bits. We thus sidestep a major difficulty for quantum wallds yhich is how to ensure that a
process on an unknown graph is unitary.

At any time, the robot’s state has the form

Zai,z|vi,z>.

Herev; €V is a vertex, representing the robot’s location; ansl a bit string (which can be arbitrarily
long), representing the robot’s internal configuration. The state evolves via an alternating sequence of
T algorithm steps and oracle steps:

ub o0 uy® ... yMm oM,

An oracle stef0") maps each basis stdig, z) to |v;,z& x;), wherex; is exclusive-OR’ed into the first
bit of z. An algorithm stefJ V) can be any unitary matrix that (1) does not depen&oand (2) acts
‘locally’ on G. How to make the second condition precise is the subjeSection3.1

The initial state of the algorithm is1,0). Let ai(fz) (X) be the amplitude of;,z) immediately after

thet!" oracle step; then the algorithm succeeds with probabilityeif
IVi,2) : zouT="1(X)
for all inputsX, wherezoyt is a bit of zrepresenting the output.

3.1 Locality Criteria

Classically, it is easy to decide whether a stochastic matridacadly with respect to a grap: it does
if it moves probability only along the edges@f In the quantum case, however, interference makes the
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guestion much more subtle. In this section we propose three criteria for whether a unitaryUniatrix
local. Our algorithms will then be implemented using the most restrictive of these criteria.

The first criterion we calZ-locality (for zero): U is Z-local if, given any pair of non-neighboring
verticesvy, v2 in G, U “sends no amplitude” from; to v»; that is, the corresponding entriesunare all
0. The second criteriorG-locality (for composability), says that this is not enough: not only nist
send amplitude only between neighboring vertices, but it must be composed of a product of commuting
unitaries, each of which acts on a single edge. The third criterion is perhaps the most natural one to a
physicist:U is H-local (for Hamiltonian) if it can be obtained by applying a locally-acting, low-energy
Hamiltonian for some fixed amount of time. More formally,Ugt_.;- » be the entry in thév;, z) column
and|vi-,Z) row of U.

Definition 3.1. U is Z-local if U i~ » = 0 whenever # i* and(vi, v;-) is not an edge ob.

Definition 3.2. U is C-local if the basis states can be partitioned into suli%ets. , P such that

(i) Uizi-» =0 whenevely;,z) and

vi+,Z*) belong to distinc®;’s, and

(i) for eachj, all basis states iR; are either from the same vertex or from two adjacent vertices.

Definition 3.3. U is H-local ifU = " for some HermitiarH with eigenvalues of absolute value at most
m, such thaH; ;.- » = 0 whenevei # i* and(v;, vi-) is not an edge ik.

If a unitary matrix is C-local, then it is also Z-local and H-local. For the latter implication, note that
any unitaryU can be written ag"' for someH with eigenvalues of absolute value at m@stSo we can
write the unitaryU; acting on eact?; aset'i; then since th&Jj’s commute,

|_|Uj —gxHi

Beyond that, though, how are the locality criteria related? Are they approximately equivalent? If
not, then does a problem’s complexity in our model ever depend on which criterion is chosen? Let
us emphasize that these questionsrareanswered by, for example, the Solovay-Kitaev theorem (see
[22)), that ann x n unitary matrix can be approximated using a number of gates polynomial For

recall that the definition of C-locality requires the edgewise operations to commute—indeed, without
that requirement, one could produce any unitary matrix at all. So the relevant question, which we leave
open, is whether any Z-local or H-local unitary can be approximated by a product oD sagn)

C-local unitaries. (A product dD(n) such unitaries trivially suffices, but that is far too many.)

4 General Bounds

Given a Boolean functiori : {0,1}" — {0,1}, the quantum query complexif(f), defined by Beals
et al. {], is the minimumT for which there exists & -query quantum algorithm that evaluatesvith
probability at least 23 on all inputs. (We will always be interested in ttveo-sided, bounded-error
complexity, sometimes denot€ (f).) Similarly, given a graplt with n vertices labeled 1..,n, we
let Q(f,G) be the minimumT for which there exists & -query quantum robot o6 that evaluates
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with probability 2/3. Here we require the algorithm steps to be C-local. One might also consider the
corresponding measur€¥ (f,G) andQ" (f,G) with Z-local and H-local steps respectively. Clearly
Q(f,G) > Q%(f,G) andQ(f,G) > Q" (f,G); we conjecture that all three measures are asymptotically
equivalent but were unable to prove this.

Let 6g be the diameter dB, and callf nondegenerat# it depends on alh input bits.

Proposition 4.1. For all f,G,

() Q(f.G) <

(i) Q(f,G) < (26c+1)Q(f).

(i) Q(f,G) = Q(f).

(iv) Q(f,G) > dg/2if f is nondegenerate.
Proof.

(i) Starting from the root, a spanning tree fércan be traversed in(2— 1) — 1 steps (there is no
need to return to the root).

(i) We can simulate a query indg steps, by fanning out from the start vert@xand then returning.
Applying a unitary at; takes 1 step.

(iii) Obvious.

(iv) There exists a vertex whose distance t, is at leastdg/2, andf could depend ox.

We now show that the model is robust.

Proposition 4.2. For nondegenerate f, the following changé fQG) by at most a constant factor.
(i) Replacing the initial statév1,0) by an arbitrary (known)y).

(i) Requiring the final state to be localized at some veriexith probability at leastl — ¢, for a
constante > 0.

(iii) Allowing multiple algorithm steps between each oracle step (and measuring the complexity by the
number of algorithm steps).

Proof. (i) We can transfornvy,0) to |y) (and hencey) to |v1,0)) in 6 = O(Q(f,G)) steps, by
fanning out fromv; along the edges of a minimum-height spanning tree.

(i) Assume without loss of generality thajy T is accessed only once, to write the output. Then after
ZoyT is accessed, uncompute (that is, run the algorithm backwards) to localize the final state at
vi. The state can then be localized at & 6z = O(Q(f,G)) steps. We can succeed with any
constant probability by repeating this procedure a constant number of times.
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(iii) The oracle stef is its own inverse, so we can implement a sequéhc¥,, . .. of algorithm steps
as follows (wherd is the identity):

Uy—-0—-1—-0—-Uy—---

g

A function of particular interest i§ = OR(x, ..., Xy), which outputs 1 if and only ik; = 1 for some
i. We first give a general upper bound Q{OR,G) in terms of the diameter d&. (Throughout the
paper, we sometimes omit floor and ceiling signs if they clearly have no effect on the asymptotics.)

Proposition 4.3.

Q(OR G) =0(v/nds).

Proof. Let 7 be a minimum-height spanning tree 18t rooted atv;. A depth-first search om uses
2n— 2 steps. LetS be the set of vertices visited by depth-first search in stepsdtt&; be those
visited in step$g + 1 to 20, and so on. Then

SU--USpyss = V.

Furthermore, for eac§; there is a classical algorith#y, using at most & steps, that starts af, ends
atvy, and outputs ‘1’ if and only ik = 1 for somev; € §;. Then we simply perform Grover search at

v over allAj; since each iteration také€¥(dg) steps and there a@(« /2n/6G) iterations, the number
of steps iO (v/ndg). O

The bound oProposition 4.3s tight:
Theorem 4.4. For all §, there exists a graph G with diametdg = 6 such that
Q(ORG)=Q (\/n(S) .

Proof. Let G be a ‘starfish” with central vertex, andM = 2(n—1) /d legsLy,...,Lm, each of length
0/2 (seeFigure2). We use the hybrid argument of Bennett et &. [Suppose we run the algorithm on

the all-zero inpuiXy. Then define theguery magnitudé*gt) to be the probability of finding the robot in
leg Lj immediately after the!" query:

r_

Let T be the total number of queries, and\et T/ (cd) for some constant @ c < 1/2. Clearly

2

ai(,tz> (Xo) ‘

w—1 M

B w—1
q; glrf 99) < q;)l: w.
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o/2

Figure 2: The ‘starfish’ grap®. The marked item is at one of the tip vertices.

Hence there must exist a l&g- such that

Wir(-chm <W_ W )
& ! -M 2(n-1)

Letv;- be the tip vertex oL j-, and letY be the input which is 1 at- and O elsewhere. Then ¥ be a
hybrid input, which isXy during queries 1 t@ — qcd, butY during queried —qcd +1toT. Also, let

v 06) = 3 o 06) .2

be the algorithm’s state aftequeries when run oKy, and let

o) ol

~aD )]

I Z

Then for allq > 1, we claim thalD(q 1,q) < 4F(T 9 For by unitarity, the Euclidean distance

between\q/t) (Xg—1 > and \1// > can only increase as a result of queries- qcé + 1 through

—(q—1)cé. Butno amplitude from outsidej- can reaclhv;- during that interval, since the distance
is /2 and there are onlgd < /2 time steps. Therefore, switching frog_1 to X, can only affect
amplitude that is irLj» immediately after query —qcs:

D@-19< Y ¥ |al 00 (~a] )|

vie j* 4

T-qcs 2 T-qcs
=4 5 3|} x)| = ari e,

Vieljx z

It follows that

i _ i ché
D(O,W)ngl D(q 1q)§2qZ 1/ — ,/ o= 1.
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Here the first inequality uses the triangle inequality, and the third uses the Cauchy-Schwarz inequality.
Now assuming the algorithm is correct we n&@®, w) = Q (1), which implies thall = Q (\/ n6). O

It is immediate thafTheorem 4.4applies toZ-local unitaries as well a€-local ones: that is,
Q*(ORG) =Q (\/n5>. We believe the theorem can be extendedHttocal unitaries as well, but
a full discussion of this issue would take us too far afield.

5 Search on Grids

Let L4 (n) be ad-dimensional grid graph of size'/d x --- x n¥/9.  That is, each vertex is specified
by d coordinatedy,...,iq € {1,...,n1/d}, and is connected to the at mogt Zertices obtainable by
adding or subtracting 1 from a single coordinate (boundary vertices have fewerdtin@gbbors). We
write simply L4 whenn is clear from context. In this section we present our main positive results: that
Q(OR Ly) =0O(y/n) ford > 3, andQ(OR, L2) = O(y/npolylogn) for d = 2.

Before proving these claims, let us develop some intuition by showing weaker bounds, taking the
cased = 2 for illustration. ClearlyQ(OR L>) = O(n3/4): we simply partitionC; (n) into y/n sub-
squares, each a copy 6f(y/n). In 5y/n steps, the robot can travel from the start vertex to any
subsquare, searchC classically for a marked vertex, and then return to the start vertex. Thus, by
searching alk/n of theC'’s in superposition and applying Grover’s algorithm, the robot can search the
grid in time O (n¥4) x 5,/n= 0 (n%%).

Once we know that, we might as well partitién (n) into n*/3 subsquares, each a copyf (n?/3).
Searching any one of these subsquares by the previous algorithm take3 @(’n€3)3/4 = 0O(y/n),
an amount of time that also suffices to travel to the subsquare and back from the start vertex. So using
Grover's algorithm, the robot can sear&h(n) in time O (\/m ﬁ) = O(n?/3). We can continue

recursively in this manner to make the running time apprda¢tyn). The trouble is that, with each
additional layer of recursion, the robot needs to repeat the search more often to upper-bound the error
probability. Using this approach, the best bounds we could obtain are ro@h¥npolylogn) for
d>3 or ﬁzo(m) for d = 2. In what follows, we use the amplitude amplification approach of
Grover [L9] and Brassard et all[l] to improve these bounds, in the case of a single marked vertex, to
O(y/n) for d > 3 (Section5.2) andO (\mlog3/2 n> for d = 2 (Section5.3). Section5.4 generalizes
these results to the case of multiple marked vertices.

Intuitively, the reason the casle= 2 is special is that there, the diameter of the gri®{s/n), which
matches exactly the time needed for Grover search.dEeB, by contrast, the robot can travel across
the grid in much less time than is needed to search it.

5.1 Amplitude Amplification

We start by describing amplitude amplificatidiil] 19], a generalization of Grover search. Léte a
guantum algorithm that, with probabili; outputs a correct answer together with a witness that proves
the answer correct. (For example, in the case of search, the algorithm outputs a vertexuahahat
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X = 1.) Amplification generates a new algorithm that callerder 1/\/€ times, and that produces both
a correct answer and a witness with probabiftyl). In particular, assumy starts in basis stats),
and letm be a positive integer. Then the amplification procedure works as follows:

(1) Set|yo) =U]s).
(2) Fori = 1tomset|yi 1) = USU~W |y;), where

e W flips the phase of basis staf@ if and only if |y) contains a description of a correct
witness, and

¢ Sflips the phase of basis stdte if and only if |y) = |s).

We can decomposayp) as sin |Wsyco + cosa |Wrail), where|Ws,co is a superposition over basis
states containing a correct witness afh;) is a superposition over all other basis states. Brassard et
al. [11] showed the following:

Lemma 5.1 ([11]). |y) =sin[(2i + 1) ] |Wsuco + cos[(2i + 1) o] |Wail) -

If measuring|yo) gives a correct witness with probabiligy then|sinet|? = € and|ct| > 1/1/e. So
takingm= O(1/+/¢) yields sin(2m+ 1) @] ~ 1. For our algorithms, though, the multiplicative constant
under the big-O also matters. To upper-bound this constant, we prove the following lemma.

Lemma 5.2. Suppose a quantum algorithth outputs a correct answer and witness with probability
exactlye. Then by usin@m+ 1 calls toU or U2, where

m< T 1
~ 4arcsin/e 2’

we can output a correct answer and witness with probability at least

<1— (2m;r1)28> (2m+1)%e.

Proof. We performm steps of amplitude amplification, which requires-2 1 calls toll or U™1. By
Lemma 5.1this yields the final state

sin[(2m+1) o [Wsycg +cos[(2m+ 1) o] |Wrail)
wherea = arcsiny/e. Therefore the success probability is

sir? [(2m+ 1) arcsinve] > sir? [(2m+1) V¢|
2
> ((2m+ 1) Ve — (2m+1)383/2>

6
4
> (2m+1)%e — (Zm;rl)ez.
Here the first line uses the monotonicity of &kin the interval[0, 7/2], and the second line uses the
fact that sinx > x — x3/6 for all x > 0 by Taylor series expansion. O
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Note that there is no need to uncompute any garbage lelt,byeyond the uncomputation that
happens “automatically” within the amplification procedure.

5.2 Dimension At Least 3

Our goal is the following:
Theorem 5.3.1fd > 3, then QOR Ly) = O (y/n).

In this section, we provdheorem 5.3for the special case of a unique marked vertex; then, in
Sections5.4 and 5.5, we will generalize to multiple marked vertices. Let (9Rbe the problem of
deciding whether there are no marked vertices or exactlf them, given that one of these is true.
Then:

Theorem 5.4. 1f d > 3, then Q(OR(l),Ld> =0O(y/N).

Choose constan{$ € (2/3,1) andu € (1/3,1/2) such tha3u > 1/3 (for example 8 = 4/5 and
u =5/11 will work). Let ¢ be a large positive integer; then for all positive integBrdet /g =
lr_1 M{f{ﬂ . Also letng = eg. Assume for simplicity tha = ng for someR; in other words, that the

hypercubely (ng) to be searched has sides of length Later we will remove this assumption.

Consider the following recursive algorithsh If n= ng, then searclLy (np) classically, returning 1
if a marked vertex is found and 0 otherwise. Otherwise partifigfing) into ng/ngr_1 subcubes, each
one a copy oflq4 (nr-1). Take the algorithm that consists of picking a subcGheniformly at random,
and then runningl recursively orC. Amplify this algorithm(ng/ng_1)* times.

The intuition behind the exponents is thmat ; ~ n’é, so searchind.q (nr_1) should take abou‘t’é/2
steps, which dominates trmé/d steps needed to travel across the hypercube whe. Also, at level
R we want to amplify a number of times that is less tftj.’:\ﬁ/nR_l)l/2 by some polynomial amount,
since full amplification would be inefficient. The reason for the constiint> 1/3 will appear in the
analysis.

We now provide a more explicit description df, which shows that it can be implemented using
C-local unitaries and only a single bit of workspace. At any time, the quantum robot’s state will have
the formy; , @i 2 |Vi,2), wherey; is a vertex ofCq (nr) andzis a single bit that records whether or not
a marked vertex has been found. Given a sub€idet v(C) be the “corner” vertex o€; that is, the
vertex that is minimal in altl coordinates. Then the initial state when searci@ngill be |v(C),0).
Beware, however, that “initial state” in this context just means the gateom Section5.1. Because of
the way amplitude amplification worksg, will often be invoked orC with other initial states, and even
run in reverse.

For convenience, we will implemedit using a two-stage recursion: given any subcube, the tagk of
will be to amplify the result of another procedure callédwhich in turn runsA recursively on smaller
subcubes. We will also use the conditional phase WpandS from Section5.1. For convenience, we
write Ar, Ur, W, Sk to denote the level of recursion that is currently active. ThiyscallsUg, which
callsAgr_1, which callsUgr_1, and so on down tdl,.
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Algorithm 5.5 (Ag). Searches a subcube C of sizefar the marked vertex, and amplifies the result to
have larger probability. Default initial statelv(C), 0).
If R=0then:

(1) Use classical C-local operations to visit aly wertices of C in any order. At each & C, use a
query transformation to map the stdtg, 2) to |vi, z® x;).

(2) Return to \(C).
If R>1then:

(1) Let mk be the smallest integer such tiatg + 1 > (nr/Nr_1)".
(2) Call Ug.
(3) Fori=1to g, call Wk, thenlz?, then R, thenUg.

SupposeAr is run on the initial statév(C),0), and letCy,...,Cy. n, be theminimal subcube#
C—meaning those of siza). Then the final state aftetr terminates should be

nRr/No
Fi — 3 M©).0

if C does not contain the marked vertex. Otherwise the final state should have non-negligible overlap
with |v(C;-), 1), whereC;- is the minimal subcube i@ that contains the marked vertex. In particular, if
R =0, then the final state should bgC), 1) if C contains the marked vertex, ahdC),0) otherwise.

The two phase-flip subroutinédk and Sy, are both trivial to implement. To appWk, map each
basis statévi, z) to (—1)%|vi,2). To applySg, map eachv;,z) to — |v;, 2) if z= 0 andv; = v(C) for some
subcubeC of sizeng, and to|v;,z) otherwise. Below we give pseudocode Tos.

Algorithm 5.6 (Ug). Searches a subcube C of sizg for the marked vertex. Default initial state:

Iv(C),0).
(1) Partition C into nr/nr_1 smaller subcubesC... s Crr/MR_17 each of sizeg. 1.

(2) Forall j € {1,...,d}, letV be the set of corner verticed@) that differ from (C) only in the
first j coordinates. Thusg/ {v(C)}, and in generalV;| = ((r/¢r-1)). For j=1tod, let|V;)
be the state

1
|VJ'>:W > v(G).0)
R V(G)eV;

Apply a sequence of transformationg 2o, ..., Zqg where 7 is a unitary that map$vj,1> to \V,-}
by applying C-local unitaries that move amplitude only along thegordinate.

(3) Call Ar-1 recursively. (Note that this searches,C.,Cpy/n, , in superposition. Also, the
required amplification is performed for each of these subcubes automatically by stepi):0f
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If Ur is run on the initial statév(C), 0), then the final state should be
1 I’IR/no

V/NR/NR-1 i; 14,

where|¢;) is the correct final state whefir_; is run on subcub€; with initial state|v(C;),0). A key
point is that there is no need fbir to call Ar_1 twice, once to compute and once to uncompute—for
the uncomputation is already built inthg.  This is what will enable us to prove an upper bound of

O(y/n) instead ofO (,/n2%) = O(,/npolylogn).
We now analyze the running time difx.

Lemma 5.7. Ag uses Qng) steps.

Proof. Let T4 (R) andTy (R) be the total numbers of steps usedhyandUg respectively in searching
Lg(nr). Then we havd 4 (0) = O(1), and

T4(R) < (2mg+ 1) Ty (R) +2mg
Tu(R) < dny®+ T4 (R—1)

forallR> 1. ForWg andSg can both be implemented in a single step, whileusesd/r = dn%{d steps
to move the robot across the hypercube. Combining,

TA(R) < (2mg+1) (dn&{d T (R 1)) +2mg
< ((ne/mr)* +2) (d{* + Ta(R-1)) + (ne/nR_1)" +1
O ((ne/nr-1)" n§") + ((ne/nR-2)* +2) Ta (R—1)
=0 (n/nr-1)* 1) + (nR/nR 1) Ta (R-1)
of

(nR/nr-1)" N + (nR/MR_2)" NE%; + -+ (nr/no)* ”i/d)

yd 1/ 1/d
- R NR1 m
_nR'O(r]ll+r]I'L+".+>
:nﬁ,c)(n;/dfﬁu+m+n%/dfﬁﬂ+ni/dfﬁu)
_ _ 1/B _ 1/BR1
=n§-o<n;/d g (o) (o) >
=0O(ng)-

Here the second line follows because2t+ 1 < (ng/nr_1)" + 2, the fourth because th@r/ng_1)"
terms increase doubly exponentially, so adding 2 to each will not affect the asymptotics; the seventh

because\i“ =Q <(ni‘ﬁrl)ﬁ), the eighth becausg_; < ng; and the last becaugku > 1/3>1/d, hence
/¢ Pr <1, O
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Next we need to lower-bound the success probability. SayAhair Ur “succeeds” if a measure-
ment in the standard basis yields the re$ulCi-) , 1), whereC;- is the minimal subcube that contains
the marked vertex. Of course, the marked vertex itself can then be fougdHrO (1) steps.

Lemma 5.8. Assuming there is a unique marked vertég,succeeds with probabilit® <1/n1 2“).

Proof. Let P4 (R) andPy (R) be the success probabilities 4k andUg respectively when searching
L4 (nr). Then clearlyP4 (0) =1, andPy (R) = (nr—1/nr) P4 (R—1) forallR> 1. So byLemma 5.2

Pi(R) > (1— 1 (2mg+ 1)2Pu(R)> (2mg+1)?Py (R)

= W

<1— = (2me + 1)2%PA<R 1)) (2mg + 1>2%PA<R 1)

= W

> (1—<nR/nR1>2“”§1 A<R—1>) (/1) "2 (R
R

= W

> (1_ 3 (nR—l/nR>l_2u> (Nr-1/nR) 2 P4 (R—1)

w

> (no/nr)* ﬁ (1— % (NR-1/ nR)1_2“>

R 1
1-2u
> (ng/n 1-——in——
(No/NR) rL! ( 3n(1 B)(1-2u)

R
> (no/nR)* % | 1

erSnl B 1-2u)
_Q(l/n1 2“).

Here the third line follows because®+ 1 > (ng_1/ng)* and the functionx— %xz is nondecreasing in

the interval[0, 1]; the fourth becausB, (R— 1) < 1; the sixth becauser_1 < nﬁ; and the last because
B < 1landu < 1/2, theng’s increase doubly exponentially, anglis sufficiently large. O

Finally, takeAg itself and amplify it to success probabilify (1) by running itO(né/Z_“) times.
This yields an algorithm for searchirg (ng) with overall running timeO (n%f), which implies that
Q (0R<1>,Ld (nR)) —0 (nl/z).

All that remains is to handle values pfthat do not equahg for anyR. The solution is simple:
first find the largesR such thang < n. Then setY = ng [nl/d/ZR]d, and embed.4 (n) into the larger

hypercubelq (). ClearlyQ (OR(l),Ld (n)) < Q(OR(l),Ld (n’)). Also notice thar’ = O(n) and

thatn’ =0 (né/ﬁ) =0 (n"’,;/z) . Next partitionlq4 (n') into n’/ng subcubes, each a copy®f (ng). The
algorithm will now have one additional level of recursion, which chooses a subculg of) uniformly
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at random, runglg on that subcube, and then amplifies the resulting procetﬂlér@fn’/npg) times. The

total time is now
o <\/ni(( )1/d+n§{2)> o <\/n7Rng{2) —0(vh).

while the success probability 3(1). This complete§heorem 5.4

5.3 Dimension 2
In thed = 2 case, the best we can achieve is the following:
Theorem 5.9. Q(OR L) = O (\mlog5/2 n>.

Again, we start with the single marked vertex case and postpone the general case to Settions
and5.5.

Theorem 5.10.Q (OR ) (\flog3/2 )

Ford > 3, we performed amplification on large (greater tI@ﬁL/nlfzﬂ)) probabilities only once,
at the end. Fod = 2, on the other hand, any algorithm that we construct with any nonzero success
probability will have running timeQ (1/n), simply because that is the diameter of the grid. If we
want to keep the running tim@(,/n), then we can only perforr® (1) amplification steps at the end.
Therefore we need to keep the success probability relatively high throughout the recursion, meaning that
we suffer an increase in the running time, since amplification to high probabilities is less efficient.

The proceduregly, Ur, WR, and Sy are identical to those iSection5.2; all that changes are the
parameter settings. For all integéts> 0, we now letng = K%R, for some odd integefi; > 3 to be set
later. Thus,Ag andUg search the square grith (ng) of size/S x (5. Also, letm= (¢o— 1) /2; then
Ar appliesm steps of amplitude amplification og.

We now prove the counterparts of Lemniag and5.8for the two-dimensional case.

Lemma 5.11. Ag uses QR(GTY) steps.

Proof. Let T4 (R) andTy (R) be the time used bylr andUg respectively in searching, (ng). Then
T4(0)=1, and for alR> 1,

TA(R) < (2m+1) Ty (R) +2m,
Tu(R) < 2n¥? 4+ T4 (R—1).
Combining,
Ta(R) < (2m+1) (20 %+ Ta (R-1)) +2m
lo (205 +Ta(R—1)) +4o—1
O (L& +£6oTa(R-1))
O(RCE™).
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Lemma 5.12. Ar succeeds with probabilit@ (1/R).

Proof. Let P4 (R) andPy (R) be the success probabilities 4k andUg respectively when searching
Lo(nR). ThenPy(R) = P4(R—1)/43 for all R> 1. So byLemma 5.2 and using the fact that
2m+ 1= (o,

2
Pa(R) 2 (1—(”“3“)%@) (2m+ 1Py (R

< % PA<R—1>) P4 (R-1)
= Y 0
3 2 2

=Pa(R-1)~ 3P4 (R-1)
—Q(1/R).

This is becaus® (R) iterations of the mapr := xg_1 — %xﬁfl are needed to drop from (say)JRto
1/R, andxp = P4 (0) = 1 is greater than /R. O

We can amplifyAr to success probabilit® (1) by repeating iO (\/ﬁ) times. This yields an algo-
rithm for searchingl (nr) that usesO (R¥2(§™1) = O (,/MrR¥2(p) steps in total. We can minimize
this expression subject t&%R = nr by taking/p to be constant an®& to be © (logng), which yields
Q (OR(l),Lz (nR)) =0 (ﬁlognﬁ,’{z) If nis not of the formE%R, then we simply find the smallest
integerR such than < ¢2%, and embed; (n) in the larger gridC, (¢27). Since/, is a constant, this
increases the running time by at most a constant factor. We have now prbgedem 5.10

5.4 Multiple Marked Items
What about the case in which there are multifdevith x;, = 1? If there ark marked items (wherk
need not be known in advance), then Grover's algorithm can find a marked item with high probability

in O («/n/k> queries, as shown by Boyer et alL(. In our setting, however, this is too much to hope

for—since even if there are many marked vertices, they might all be in a faraway part of the hypercube.
ThenQ (nl/d) steps are needed, evem'vfn/k < nYd. Indeed, we can show a stronger lower bound.
Recall that O is the problem of deciding whether there are no marked vertices or exasftihem.

Theorem 5.13. For all dimensions &> 2,

J/n
o(o ) -0 gefc)

Here, for simplicity, we ignore constant factors depending on d.

1/d

Proof. For simplicity, we assume that bok%/'® and (n/3dk) are integers. (In the general case, we

can just replacé by [kY/9] 4 andn by the largest integer of the fort8m)?k which is less tham. This
only changes the lower bound by a constant factor dependiig)on
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We use a hybrid argument almost identical to thaTbéorem 4.4 Divide Lq into n/k subcubes,
each having vertices and side lengtt/9. Let Sbe a regularly-spaced set bf = n/ (3dk) of these
subcubes, so that any two subcube$ imave distance at leask29 from one another. Then choose a
subcubeC; € Suniformly at random and mark all vertices inCj. This enables us to consider each
C; € Sitself as asinglevertex (out ofM in total) having distance at least’?? to every other vertex.

More formally, given a subcub@; € S, let C; be the set of vertices consisting®f and the 8 — 1
subcubes surrounding it. (Thu3; is a subcube of side length89.) Then the query magnitude 6§

after thet!" query is
t_ (t)
My’ = Z z o

Vi €Cj z

whereX; is the all-zero input. LeT be the number of queries, andVet= T/ (ckl/d) for some constant
¢ > 0. Then as irfmheorem 4.4there must exist a subcu@ such that

w—1 _ /d d
r(T qekt/d) < w_ 3 kW
& ! M n

Let Y be the input which is 1 i€ and 0 elsewhere; then 1}, be a hybrid input which % during
queries 1 tol —qck!/9, butY during queried —qck/9+1toT. Next let

- ',z) (Xf)

I Z

Then as inTheorem 4.4for all c < 1 we haveD (q— 1,q) < 4FJ(*T_qul/d). For in theck!/d queries from
T — qck!/? 4 1 throughT — (q— 1) ck/9, no amplitude originating outsidg- can travel a distande"'
and thereby reacB;-. Therefore switching fronX, 1 to X4 can only affect amplitude that is i@;.
immediately after query¥ — qck!/d. It follows that

w w _ d d|1/2—1/d
VDOwW <Y VD LTg <2y il <ow /T WSWT
g=1 g=1

HenceT = Q (,/n/kY2-1/d) for constant, since assuming the algorithm is correct we nBga, w) =
Q(1). O

Notice that ifk = n, then the bound ofheorem 5.1become® (n*/4) which is just the diameter of
Lg. Also, ifd=2,then ¥2—1/d = 0 and the bound is simp§ (1/n) independent dk. The bound of
Theorem 5.1%an be achieved (up to a constant factor that depend¥fon d > 3, and nearly achieved
for d = 2. We first construct an algorithm for the case whkes known.

Theorem 5.14.

(i) Ford>3,
n
Q(0R" 26) =054y )
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(i) Ford=2,
Q (OR("),L2> ~0 (\m log®/2 n) .

To prove Theorem 5.14we first divideLq (n) into n/y subcubes, each of sizé/d x ... x y%/d
(wherey will be fixed later). Then in each subcube, we choose one vertex uniformly at random.

Lemma 5.15. If y > k, then the probability that exactly one marked vertex is chosen is at léast k

(k/7)%.

Proof. Let x be a marked vertex. The probability thais chosen is 1y. Given thatx is chosen, the
probability that one of the other marked verticgss chosen is 0 ik andy belong to the same subcube,
or 1/vif they belong to different subcubes. Therefore, the probabilityxtzdne is chosen is at least

(1-5)250-3)

Y Y Y Y

Since the events<‘alone is chosen” are mutually disjoint, we conclude that the probability that exactly
one marked vertex is chosen is at least — (k/7)*. O

In particular, fixy so thaty/3 < k < 2y/3; thenLemma 5.15mplies that the probability of choosing
exactly one marked vertex is at leagB2 The algorithm is now as follows. As in the lemma, subdivide
L4 (n) into n/y subcubes and choose one location at random from each. Then run the algorithm for
the unique-solution case (Theorém or 5.10 on the chosen locations only, as if they were vertices of
La(n/7).

The running time in the unique case mta{\/ﬂ) ford > 3 or

o) <\/jlog3/2(n/y)> =0 <\/?Iog3/2 n)

for d = 2. However, each local unitary in the original algorithm now becomes a unitary affecting two
verticesv andw in neighboring subcubes, andC,. When placed side by sid€, andC, form a
rectangular box of sizey?/d x y1/4 x ... x y1/4,  Therefore the distance betweemndw is at most
(d+1)yY9. It follows that each local unitary in the original algorithm taI@@dyl/d) time in the new
algorithm. Ford > 3, this results in an overall running time of

)
o . /2 y210g%2n) = o(/nlog¥2n) .
(/37 706°n) = 0( g )
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5.5 Unknown Number of Marked Items

We now show how to deal with an unknown Let OR=K be the problem of deciding whether there
are no marked vertices at least kof them, given that one of these is true.

Theorem 5.16.
() Ford >3,

w0 ) o VT
Q(0R™,£4) =0 141y )

(i) Ford=2,
Q (OR@'O,LZ) —0 (ﬁlogw n) .

Proof. We use the straightforward ‘doubling’ approach of Boyer et HlJ:[
(1) Forj=0tolog, (n/k)

e Run the algorithm orheorem 5.14vith subcubes of sizg = 2/k.

o If a marked vertex is found, then output 1 and halt.
(2) Query arandom vertex and output 1 ifvis a marked vertex and 0 otherwise.

Let k* > k be the number of marked vertices. kif < n/3, then there exists a< log, (n/k) such
thaty;/3 < k* < 2y;/3. SoLemma 5.15mplies that thejth iteration of step (1) finds a marked vertex
with probability at least 29. On the other hand, K* > n/3, then step (2) finds a marked vertex with
probability at least 13. Ford > 3, the time used in step (1) is at most

NG
=0 <k1/2—1/d ’

the sum in brackets being a decreasing geometric seriesd £&, the time isO <ﬁlog5/2 n), since

log,(n/K) NG NG logy(n/k) 1
J; yjl/Z—l/d:kl/Z—l/d J;) 2i(1/2-1/d)

each iteration take® (ﬁlog?’/2 n) time and there are at most logterations. In neither case does step
(2) affect the bound, sinde< nimplies thamn'/9 < ,/n/k%/2-1/d, O

Taking k = 1 gives algorithms for unconstrained OR with running tin@s/n) for d > 3 and
O(y/nlog®?n) for d = 2, thereby establishing Theore®8 and5.9.
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6 Search on Irregular Graphs

In Sectionl.2, we claimed that our divide-and-conquer approach has the advantage ofddwiisg it
works not only for highly symmetric graphs such as hypercubes, but for any graphs having comparable
expansion properties. Let us now substantiate this claim.
Say a family of connected grapk&n = (Vn, En) } is d-dimensionalf there exists ac > 0 such that
for all n,¢ andv € V,,

IB(v,£)| > min(Ked,n),

whereB(v,¢) is the set of vertices having distance at médtom v in G,. Intuitively, G, is d-
dimensional (ford > 2 an integer) if its expansion properties are at least as good as those of the hy-
percubelq (n).° It is immediate that the diameter &, is at most(n/:c)l/d. Note, though, tha6G,
might not be an expander graph in the usual sense, since we have not required that every sufficiently
smallsetof vertices has many neighbors.

Our goal is to show the following.

Theorem 6.1. If G is d-dimensional, then

(i) For a constant d> 2,
Q(OR,G) = O(y/npolylogn) .

(i) Ford=2,
Q(OR,G) = /n20(VIogn)

In proving part (i), the intuition is simple: we want to decompd&ae&ecursively into subgraphs
(calledclusterg, which will serve the same role as subcubes did in the hypercube case. The procedure is
as follows. For some constamt > 1, first choosén/n; | vertices uniformly at random to be designated
as 1pegs Then form Iclustersby assigning each vertex i@ to its closest 1-peg, as in a Voronoi
diagram. (Ties are broken randomly.) L&) be the peg of cluste€. Next, split up any 1-cluster
C with more tham; vertices into[|C| /n1| arbitrarily-chosen 1-clusters, each with size at masand
with v(C) as its 1-peg. Observe that

3ol
i; m|~- |m|’

wheren = |Cq| +--- + \C[n/nﬂ \ Therefore, the splitting-up step can at most double the number of
clusters.

In the next iteration, seh, = ni/ﬁ, for some constang € (2/d,1). Choose 2n/ny| vertices
uniformly at random as 2-pegs. Then form 2-clusters by assigning each 1-@ustéhe 2-peg that
is closest to the 1-peg(C). Given a 2-cluste€’, let |C'| be the number of 1-clusters €. Then as
before, split up anyC’ with |C'| > ny/ny into [|C'| /(nz/ny)] arbitrarily-chosen 2-clusters, each with
size at moshy/n; and withv(C') as its 2-peg. Continue recursively in this manner, settifgr n;/_ﬁl

5In general, it makes sense to consider non-integes well.
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and choosing®1 [n/ng] vertices aR-pegs for eaclR. Stop at the maximurR such thang < n. For
technical convenience, sef = 1, and consider each vertexo be the 0-peg of the 0-clustév}.

For R> 1, define theadius of an R-clusterC to be the maximum, over a[R— 1)-clustersC’ in
C, of the distance fronv(C) to v(C'). Also, call anR-clustergoodif it has radius at mostg, where

tr=(2ngIn n)l/d.
Lemma 6.2. With probabilityl — o (1) over the choice of clusters, all clusters are good.

Proof. Letv be the(R— 1)-peg of an(R— 1)-cluster. ThenB(v,¢)| > k¢4, whereB (v, /) is the ball of
radius/ aboutv. So the probability that has distance greater thénto the nearedR-peg is at most

dN [N/NR] n/ng
(1—K€R> < (1—2"'”) <3
n n/nr n?

Furthermore, the total number of pegs is easily seen ©(pg. It follows by the union bound thavery
(R—1)-peg forevery Rhas distance at mogk to the nearesR-peg, with probability - O(1/n) =
1—0(1) over the choice of clusters. O

At the end we have a tree of clusters, which can be searched recursively just as in the hypercube
case. Lemma 6.2gives us a guarantee on the time needed to move a level down (from a peg of an
R-cluster to a peg of aR— 1-cluster contained in it) or a level up. Also, It (C) be the number of
(R— 1)-clusters inR-clusterC; thenK’ (C) < K (R) whereK (R) = 2[ng/nr-1]. If K'(C) <K (R), then
placeK (R) — K’ (C) “dummy” (R— 1)-clusters inC, each of which hasR— 1)-pegv(C). Now, every
R-cluster contains an equal numberrf 1 clusters.

Our algorithm is similar tdSection5.2 but the basis states now have the fomz C), wherev is
a vertex,z is an answer bit, an@ is the label of the cluster currently being searched. (Unfortunately,
because multipl&-clusters can have the same peg, a single auxiliary qubit no longer suffices.)

The algorithmAg from Section5.2 now does the following, when invoked on the initial state
Iv(C),0,C), whereC is anR-cluster. IfR=0, thenAr uses a query transformation to prepare the
state|v(C),1,C) if v(C) is the marked vertex an(C),0,C) otherwise. IfR> 1 andC is not a
dummy cluster, therlr performsmg steps of amplitude amplification dfr, wheremg is the largest in-
teger such thatrer+1 < \/nr/nr_1.% If Cis a dummy cluster, thesir does nothing for an appropriate
number of steps, and then returns that no marked item was found.

We now describe the subroutifk, for R> 1. When invoked withv(C),0,C) as its initial state,

U first prepares a uniform superposition

1
VKR

It does this by first constructing a spanning tieér C, rooted atv(C) and having minimal depth, and
then moving amplitude along the edgesTogo as to prepargic). After |¢c) has been preparetliz
then callsAr 1 recursively, to searc, . ..,Ck () in superposition and amplify the results. Note that,

K(R)
9c) = 3 V(@) .0.C).

8In the hypercube case, we performed fewer amplifications in order to lower the running timg/fipolylogn to \/n.
Here, though, the splitting-up step produces a polgltagtor anyway.
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because of the cluster labels, there is no reason why amplitude being routed tGrslighld not pass
through some other clust€f along the way—but there is also no advantage in our analysis for allowing
this.

We now analyze the running time and success probabili#qf
Lemma 6.3. Ar uses C( /nrlog®/d n) steps, assuming that all clusters are good.

Proof. Let T4 (R) and Ty (R) be the time used bylgr andUr respectively in searching dr-cluster.
Then we have

Ta(R) < Vnr/nR_1Tu (R),
Tu(R) < lr+Ta(R-1)
with the base casg, (0) = 1. Combining,
TA(R) < VNr/Mr_1 (R + T4 (R—1))
< V/MR/MR-1lr+ /NR/MR_2lR-1+ -+ v/NRr/Nol1

B . (nRInn)l/d (nllnn)l/d
= /MR o(\/m T T

= /IR (Inl/d n) .0 (né/d’ﬁ/%r - ni/d*3/2>
= /A (In¥n) -0 (ni/d—ﬁ/z - (re2) e (o) (1/[3)R1>
=0 (Jn?log”d n> ,

where the last line holds becayse- 2/d and thereforeni/dfﬁ/2 <1 O

Lemma 6.4. Ar succeeds with probabilit®2 (1/ polylogng) in searching a graph of size - ng, as-
suming there is a unique marked vertex.

Proof. For allR > 0, letCg be theR-cluster that contains the marked vertex, andlg{R) andPy (R)
be the success probabilities.ék andUg respectively when searchi@gz. Then for allR > 1, we have
Py (R) =P4(R-1) /K (R), and therefore

2
Pa(R) > (1 (Z”‘Fj“mm) (2me+ 1P (R)

(2mg+1)? P4 (R—1) Pi(R—1)
:(l_ KR )QmR“)zM
=Q(Pa(R-1))
= Q(1/polylogng).

Here the third line holds becaugmg+1)? ~ nr/nr_1 ~ K (R) /2, and the last line because=
O (loglogng). O
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Finally, we repeatAg itself O(polylogng) times, to achieve success probabil@/(1) using
O (/Nrpolylogng) steps in total. Again, ifi is not equal tong for any R, then we simply find the
largestR such thatg < n, and then add one more level of recursion that searches a raRddnster
and amplifies the resul (« /n/nR) times. The resulting algorithm us€x/npolylogn) steps, thereby
establishing part (i) oTheorem 6.Xor the case of a unique marked vertex. The generalization to mul-
tiple marked vertices is straightforward.

Corollary 6.5. If G is d-dimensional for a constantd 2, then

K v/npolylogy
o(or.6) =0 (I )

Proof. Assume without loss of generality that= o(n), since otherwise a marked item is trivially found

in O(nl/d) steps. As inTheorem 5.16we give an algorithnB consisting of log (n/k) + 1 iterations.

In iterationj = 0, choosg n/K] verticeswy, ..., wp, i uniformly at random. Then run the algorithm for

the unique marked vertex case, but instead of taking all verticBsais 0-pegs, take onlyy, ..., Wy -

On the other hand, still choose the 1-pegs, 2-pegs, and so on uniformly at random from among all
vertices inG. For all R, the number oR-pegs should bé(n/k) /nr|. In general, in iteratiorj of

B, choose[n/ (2! k)| verticesw, ... ,W(n/(2ik) uniformly at random, and then run the algorithm for a
unique marked vertex asvfy, ..., Wy, (2ik) Were the only vertices in the graph.

Itis easy to see that, assuming therekamemore marked vertices, with probabili@/(1) there exists
an iterationj such that exactly one afy, ..., wp, ik is marked. Henc& succeeds with probability
Q(1). Itremains only to upper-bouri’s running time.

In iteration j, notice that_emma 6.2goes through if we usg) := (22lkngin E)l/d instead ofr.
That is, with probability 2- O(k/n) = 1—0(1) over the choice of clusters, eveRycluster has radius
at mostég). So lettingT4 (R) be the running time aflg on anR-cluster, the recurrence lremma 6.3

becomes _ |
Ta(R) < v/r/mr 1 (4 +Ta(R-1)) = O (i (2klog(n/k) 7).

o \mlogl/dE
(21 k)l/Zfl/d

if R =0(n/(2/k)). As usual, the case where there isRsuch thang = © (n/ (2/k)) is trivially
handled by adding one more level of recursion. If we factor in@i&/ polylogng) repetitions ofAg
needed to boost the success probabilittd ), then the total running time of iteratignis

o (ﬁ polylogE) |

which is

(21 k)l/Z—l/d

ThereforeB’s running time is

o logy(n/K) \/ﬁpo|y|ogn _0 \/ﬁpOIylogn
,Z) (@vEya | =P\ Tz )
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For thed = 2 case, the best upper bound we can show‘ﬁﬁo(V °0)  This is obtained by simply
modifying Ar to have a deeper recursion tree. Instead of taking- n;/_“l for someu, we take

nr = 2vV109Nng_, = 2RVIoan " 5q that the total number of levels is/logn|. Lemma 6.2goes through
without modification, while the recurrence for the running time becomes

TA (R) < v/ nR/anl ((R—FTA (R— 1))
< VMR/NR-1lR+ /NR/NR-20R-1+ -+ /NR/Nol1

~0 (gﬁlognm/z), N - .. + 2V08n(R/2) 1y n)
— /n20(Vogn).

Also, since the success probability decreases by at most a constant factor at each level, we have that
Pa(R) = 2—0(\/W), and hence Avoan) amplification steps suffice to boost the success probability

to Q(1). Handling multiple marked items adds an additional factor ohloghich is absorbed into
20(v109") - This completeheorem 6.1

6.1 Bits Scattered on a Graph

In Section2, we discussed several ways to pack a given amount of entropy into a spatial region of given
dimensions. However, we said nothing about how the entrogisiabutedwithin the region. It might

be uniform, or concentrated on the boundary, or distributed in some other way. So we need to answer
the following: suppose that in some graplgut of then verticesmightbe marked, and we know which
hthose are. Then how much time is needed to determine whether anytofdhearked? If the graph

is the hypercubé&.q4 for d > 2 or isd-dimensional ford > 2, then the results of the previous sections
imply thatO (y/npolylogn) steps suffice. However, we wish to use fewer steps, taking advantage of the
fact thath might be much smaller tham Formally, suppose we are given a graphwith n vertices,

of which h are potentially marked. Let OR=¥ be the problem of deciding wheth&rhas no marked
vertices or at leadt of them, given that one of these is the case.

Proposition 6.6. For all integer constants & 2, there exists a d-dimensional graph G such that

1/2-1/d
oowa)-a(e(1)")

Proof. Let G be thed-dimensional hypercubg&y (n). Createh/k subcubes of potentially marked ver-
tices, each having vertices and side lengtkl/9. Space these subcubes outdg(n) so that the

distance between any pair of themﬂs((nk/h)l/d). Then choose a subculeuniformly at random

and mark alk vertices inC. This enables us to consider each subcube as a single vertex, having distance
Q ((nk/h)l/d> to every other vertex. The lower bound now follows by a hybrid argument essentially
identical to that ofTheorem 5.13 O

In particular, ifd = 2 thenQ (,/n) time is always needed, since the potentially marked vertices
might all be far from the start vertex. The lower boundRybposition 6.6can be achieved up to a
polylogarithmic factor.
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Proposition 6.7. If G is d-dimensional for a constantd 2, then

1/2-1/d
Q (OR(h’Zk),G) =0 <nl/d <E) ponIogE) .

Proof. Assume without loss of generality thiat= o(h), since otherwise a marked item is trivially
found. Use algorithnB from Corollary 6.5 with the following simple change. In iteratigh choose
[h/ (2'k)] potentially marked verticesa, ..., Wik Uniformly at random, and then run the algo-
rithm for a unique marked vertex aswf, ..., W/ (2ix)) were the only vertices in the graph. That is, take
Wi, ..., Wjh(2iky] @S 0-pegs; then for aR > 1, choosefh/ (2/kng)| vertices ofG uniformly at random

asR-pegs. Lemma 6.2goes through if we usé(RJ> = (212 knRInE)l/d instead offr. So following
Corollary 6.5 the running time of iteratiof is now

1 1/2-1/d
o) (ﬁ (EZJ k) / polylogE) =0 (nl/d (;k) polongE)

if nr=0 (h/ (2'k)). Therefore the total running time is
O J; n <21k> ponIogE =0{n <k> polylogR :

Intuitively, Proposition 6.7%&ays that the worst case for search occurs whei fhatential marked
vertices are scattered evenly throughout the graph.

O]

7 Application to Disjointness

In this section we show how our results can be used to strengthen a seemingly unrelated result in quantum
computing. Suppose Alice has a striNg= x;...x, € {0,1}", and Bob has a string =y;...yn €

{0,1}". In thedisjointness problemAlice and Bob must decide with high probability whether there
exists an such thats = y; = 1, using as few bits of communication as possible. Buhrman, Cleve, and
Wigderson 12] observed that in the quantum setting, Alice and Bob can solve this problem using only
O(+/nlogn) qubits of communication. This was subsequently improved by Hayer and de 2@lf |

toO (ﬁc‘og* ”), wherec is a constant and Idg is the iterated logarithm function. Using the search
algorithm of Theorem 5.3we can improve this t® (,/n), which matches the celebratéd \/n) lower

bound of Razborov43].

Theorem 7.1. The quantum communication complexity of the disjointness problertyi$D

Proof. The protocol is as follows. Alice and Bob both store their inputs in a 3-D éigie) (Figure3);
that is, they lekjq = % andyjq = yi, wherei = n?/3j +n¥3k+1+1 andj.k,| € {0,...,nY3-1}. To
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<€ > B

Figure 3: Alice and Bob ‘synchronize’ locations on their respective cubes.

decide whether there existg pk,|) with X = yju = 1, Alice simply runs our search algorithm for an
unknown number of marked items. If the search algorithm is in the state

> %kiz|Vik,2),

then the joint state of Alice and Bob will be
> Aikize|Vik) ©12) @16) ® Vi ) (7.1)

where Alice holds the firsb/jk|> and|z), Bob holds the seconb/jk|>, and|c) is the communication
channel. Thus, whenever Alice is at locatignk,|) of her cube, Bob is at locatiofj, k, ) of his cube.

(1) To simulate a query, Alice send® and an auxiliary qubit holdingj to Bob. Bob performs
q q j p
|2) — |z®yju), conditional onxj = 1. He then returns both bits to Alice, and finally Alice
returns the auxiliary qubit to thi@) state by exclusive-OR’ing it withjy, .

(2) To simulate a non-query transformation that does not ch#u]gé, Alice just performs it herself.

(3) By examining Algorithm$.5and5.6, we see that there are two transformations that ch#au]géz.
We deal with them separately.

First, step 1 ofAlgorithm 5.5 uses a classical-local transformationVvj ) — |Vj i). This
transformation can be simulated by Alice and Bob each separately applying — [vj i 1’).

Second, step 2 dhlgorithm 5.6 applies transformations,;, Z,, andZz. For brevity, we restrict
ourselves to discussingy. This transformation maps an initial stdtg,0) to a uniform su-
perposition ovetvj i ,0) for all (j’,k,1) lying in the sameC; as(j,k,l). We can decompose this
into a sequence of transformations mappiigc) to &|vj k1) + B|Vj+1k1) for somea, . This

can be implemented in three steps, using an auxiliary qubit. The auxiliary qubit is initialized to
|0) and is initially held by Alice. At the end, the auxiliary qubit is returned@p The sequence

of transformations is

Vir k) 1O) [Vt ) — Vi ki) 10) Vi) + BIVirki) 1) Vi k)
— otVir 1) 0) Vi) + BIVirki) 11) Vi i)
— |V k) |0) Vi) BIVi k1) 10) [Virgaki)-
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The first transformation is performed by Alice who then sends the auxiliary qubit to Bob. The
second transformation is performed by Bob, who then sends the auxiliary qubit back to Alice,
who performs the third transformation.

Since the algorithm usé3(,/n) steps, and each step is simulated using a constant amount of com-
munication, the number of qubits communicated in the disjointness protocol is therefof@ (a%D.
O

8 Open Problems

As discussed irbection3.1, a salient open problem raised by this work is to prove relationships among
Z-local, C-local, and H-local unitary matrices. In particular, can any Z-local or H-local unitary be
approximated by a product of a small number of C-local unitaries? Also, is it truefaiG) =
O (Q*(f,G)) =0(Q"(f,G)) forall f,G?

A second problem is to obtain interesting lower bounds in our model. For examplg,deta
/N x y/n grid, and supposé (X) = 1 if and only if every row ofG contains a vertex; with x; = 1.
ClearlyQ(f,G) =0 (n3/4), and we conjecture that this is optimal. However, we were unable to show
any lower bound better tha®@ (,/n).

Finally, what is the complexity of finding a unique marked vertex on a 2-D square grid? As men-

tioned inSectionl.2, Ambainis, Kempe, and Rivos3] showed thatQ (OR(l),L2> = O(y/nlogn).
Can the remaining factor of lagbe removed?
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