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Abstract: Can Grover’s algorithm speed up search of a physical region—for example a
2-D grid of size

√
n×

√
n? The problem is that

√
n time seems to be needed for each

query, just to move amplitude across the grid. Here we show that this problem can be sur-
mounted, refuting a claim to the contrary by Benioff. In particular, we show how to search
a d-dimensional hypercube in timeO(

√
n) for d ≥ 3, or O(

√
nlog5/2n) for d = 2. More

generally, we introduce a model ofquantum query complexity on graphs, motivated by
fundamental physical limits on information storage, particularly the holographic principle
from black hole thermodynamics. Our results in this model include almost-tight upper and
lower bounds for many search tasks; a generalized algorithm that works for any graph with
good expansion properties, not just hypercubes; and relationships among several notions of
‘locality’ for unitary matrices acting on graphs. As an application of our results, we give
anO(

√
n)-qubit communication protocol for the disjointness problem, which improves an

upper bound of Høyer and de Wolf and matches a lower bound of Razborov.
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Figure 1: A quantum robot, in a superposition over locations, searching for a marked item on a 2D grid
of size

√
n×

√
n.

1 Introduction

The goal of Grover’s quantum search algorithm [17, 18] is to search an ‘unsorted database’ of sizen
in a number of queries proportional to

√
n. Classically, of course, ordern queries are needed. It is

sometimes asserted that, although the speedup of Grover’s algorithm is only quadratic, this speedup is
provable, in contrast to the exponential speedup of Shor’s factoring algorithm [29]. But is that really
true? Grover’s algorithm is typically imagined as speeding up combinatorial search—and we do not
know whether every problem inNP can be classically solved quadratically faster than the “obvious”
way, any more than we know whether factoring is inBPP.

But could Grover’s algorithm speed up search of aphysical region? Here the basic problem, it
seems to us, is the time needed for signals to travel across the region. For if we are interested in the
fundamental limits imposed by physics, then we should acknowledge that the speed of light is finite, and
that a bounded region of space can store only a finite amount of information, according to the holographic
principle [9]. We discuss the latter constraint in detail inSection2; for now, we say only that it suggests
a model in which a ‘quantum robot’ occupies a superposition over finitely many locations, and moving
the robot from one location to an adjacent one takes unit time. In such a model, the time needed to
search a region could depend critically on its spatial layout. For example, if then entries are arranged
on a line, then even to move the robot from one end to the other takesn−1 steps. But what if the entries
are arranged on, say, a 2-dimensional square grid (Figure1)?

1.1 Summary of Results

This paper gives the first systematic treatment of quantum search of spatial regions, with ‘regions’
modeled as connected graphs. Our main result is positive: we show that a quantum robot can search

a d-dimensional hypercube withn vertices for a unique marked vertex in timeO
(√

nlog3/2n
)

when

d = 2, orO(
√

n) whend≥ 3. This matches (or in the case of 2 dimensions, nearly matches) theΩ(
√

n)
lower bound for quantum search, and supports the view that Grover search of a physical region presents
no problem of principle. Our basic technique is divide-and-conquer; indeed, once the idea is pointed out,
an upper bound ofO

(
n1/2+ε

)
follows readily. However, to obtain the tighter bounds is more difficult;
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d = 2 d > 2

Hypercube, 1 marked itemO
(√

nlog3/2n
)

Θ(
√

n)

Hypercube,k or more marked items O
(√

nlog5/2n
)

Θ
( √

n
k1/2−1/d

)
Arbitrary graph,k or more marked items

√
n2O(√logn) Θ̃

( √
n

k1/2−1/d

)
Table 1: Upper and lower bounds for quantum search on ad-dimensional graph given in this paper. The
symbolΘ̃ means that the upper bound includes a polylogarithmic term. Note that, ifd = 2, thenΩ(

√
n)

is always a lower bound, for any number of marked items.

for that we use the amplitude-amplification framework of Grover [19] and Brassard et al. [11].
Section5 presents the main results;Section5.4shows further that, when there arek or more marked

vertices, the search time becomesO
(√

nlog5/2n
)

whend = 2, orΘ
(√

n/k1/2−1/d
)

whend≥ 3. Also,

Section6 generalizes our algorithm to arbitrary graphs that have ‘hypercube-like’ expansion properties.

Here the best bounds we can achieve are
√

n2O(√logn) whend = 2, or O(
√

npolylogn) whend > 2
(note thatd need not be an integer).Table1 summarizes the results.

Section7 shows, as an unexpected application of our search algorithm, that the quantum communi-
cation complexity of the well-knowndisjointness problemis O(

√
n). This improves anO

(√
nclog∗ n

)
upper bound of Høyer and de Wolf [20], and matches theΩ(

√
n) lower bound of Razborov [23].

The rest of the paper is about the formal model that underlies our results.Section2 sets the stage
for this model, by exploring the ultimate limits on information storage imposed by properties of space
and time. This discussion serves only to motivate our results; thus, it can be safely skipped by readers
unconcerned with the physical universe. InSection3 we definequantum query algorithms on graphs, a
model similar to quantum query algorithms as defined by Beals et al. [4], but with the added requirement
that unitary operations be ‘local’ with respect to some graph. InSection3.1 we address the difficult
question, which also arises in work on quantum random walks [1] and quantum cellular automata [31],
of what ‘local’ means.Section4 proves general facts about our model, including an upper bound of

O
(√

nδ

)
for the time needed to search any graph with diameterδ , and a proof (using the hybrid

argument of Bennett et al. [7]) that this upper bound is tight for certain graphs. We conclude in
Section8 with some open problems.

1.2 Related Work

In a paper on ‘Space searches with a quantum robot,’ Benioff [6] asked whether Grover’s algorithm
can speed up search of a physical region, as opposed to a combinatorial search space. His answer was
discouraging: for a 2-D grid of size

√
n×

√
n, Grover’s algorithm is no faster than classical search. The

reason is that, during each of theΘ(
√

n) Grover iterations, the algorithm must use order
√

n steps just
to travel across the grid and return to its starting point for the diffusion step. On the other hand, Benioff
noted, Grover’s algorithm does yield some speedup for grids of dimension 3 or higher, since those grids
have diameter less than

√
n.

Our results show that Benioff’s claim is mistaken: by using Grover’s algorithm more carefully, one
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d = 2 d = 3 d = 4 d≥ 5

This paper O
(√

nlog3/2n
)

O(
√

n) O(
√

n) O(
√

n)

[16] O(n) O
(
n5/6

)
O(

√
nlogn) O(

√
n)

[3, 15] O(
√

nlogn) O(
√

n) O(
√

n) O(
√

n)

Table 2: Time needed to find a unique marked item in ad-dimensional hypercube, using the divide-and-
conquer algorithms of this paper, the original quantum walk algorithm of Childs and Goldstone [16],
and the improved walk algorithms of Ambainis, Kempe, and Rivosh [3] and Childs and Goldstone [15].

can search a 2-D grid for a single marked vertex inO
(√

nlog3/2n
)

time. To us this illustrates why one

should not assume an algorithm is optimal on heuristic grounds. Painful experience—for example, the
“obviously optimal”O

(
n3
)

matrix multiplication algorithm [30]—is what taught computer scientists to
see the proving of lower bounds as more than a formality.

Our setting is related to that of quantum random walks on graphs [1, 13, 14, 28]. In an earlier version
of this paper, we asked whether quantum walks might yield an alternative spatial search algorithm,
possibly even one that outperforms our divide-and-conquer algorithm. Motivated by this question,
Childs and Goldstone [16] managed to show that in the continuous-time setting, a quantum walk can
search ad-dimensional hypercube for a single marked vertex in timeO(

√
nlogn) whend = 4, orO(

√
n)

whend ≥ 5. Our algorithm was still faster in 3 or fewer dimensions (seeTable2). Subsequently,
however, Ambainis, Kempe, and Rivosh [3] gave an algorithm based on a discrete-time quantum walk,
which was as fast as ours in 3 or more dimensions, and faster in 2 dimensions. In particular, when
d = 2 their algorithm used onlyO(

√
nlogn) time to find a unique marked vertex. Childs and Goldstone

[15] then gave a continuous-time quantum walk algorithm with the same performance, and related this
algorithm to properties of the Dirac equation. It is still open whetherO(

√
n) time is achievable in 2

dimensions.
Currently, the main drawback of the quantum walk approach is that all analyses have relied heavily

on symmetries in the underlying graph. If even minor ‘defects’ are introduced, it is no longer known
how to upper-bound the running time. By contrast, the analysis of our divide-and-conquer algorithm
is elementary, and does not depend on eigenvalue bounds. We can therefore show that the algorithm
works for any graphs with sufficiently good expansion properties.

Childs and Goldstone [16] argued that the quantum walk approach has the advantage of requiring
fewer auxiliary qubits than the divide-and-conquer approach. However, the need for many qubits was
an artifact of how we implemented the algorithm in a previous version of the paper. The current version
uses onlyonequbit.

2 The Physics of Databases

Theoretical computer science generally deals with the limit as some resource (such as time or memory)
increases to infinity. What is not always appreciated is that, as the resource bound increases, physical
constraints may come into play that were negligible at ‘sub-asymptotic’ scales. We believe theoretical
computer scientists ought to know something about such constraints, and to account for them when
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possible. For if the constraints are ignored on the ground that they “never matter in practice,” then the
obvious question arises: why use asymptotic analysis in the first place, rather than restricting attention
to those instance sizes that occur in practice?

A constraint of particular interest for us is theholographic principle[9], which arose from black-
hole thermodynamics. The principle states that the information content of any spatial region is upper-
bounded by itssurface area(not volume), at a rate of one bit per Planck area, or about 1.4×1069 bits per
square meter. Intuitively, if one tried to build a spherical hard disk with mass densityυ , one could not
keep expanding it forever. For as soon as the radius reached the Schwarzschild bound ofr =

√
3/(8πυ)

(in Planck units,c = G = h̄ = k = 1), the hard disk would collapse to form a black hole, and thus its
contents would be irretrievable.

Actually the situation is worse than that: even aplanar hard disk of constant mass density would
collapse to form a black hole once its radius became sufficiently large,r = Θ(1/υ). (We assume
here that the hard disk is disc-shaped. A linear or 1-D hard disk could expand indefinitely without
collapse.) It is possible, though, that a hard disk’s information content could asymptotically exceed its
mass. For example, a black hole’s mass is proportional to the radius of its event horizon, but the entropy
is proportional to thesquareof the radius (that is, to the surface area). Admittedly, inherent difficulties
with storage and retrieval make a black hole horizon less than ideal as a hard disk. However, even a
weakly-gravitating system could store information at a rate asymptotically exceeding its mass-energy.
For instance, Bousso [9] shows that an enclosed ball of radiation with radiusr can storen = Θ

(
r3/2
)

bits, even though its energy grows only asr. Our results inSection6.1will imply that a quantum robot
could (in principle!) search such a ‘radiation disk’ for a marked item in timeO

(
r5/4
)

= O
(
n5/6

)
. This

is some improvement over the trivialO(n) upper bound for a 1-D hard disk, though it falls short of the
desiredO(

√
n).

In general, ifn = rc bits are scattered throughout a 3-D ball of radiusr (wherec≤ 3 and the bits’
locations are known), we will show inTheorem 6.7that the time needed to search for a ‘1’ bit grows as
n1/c+1/6 = r1+c/6 (omitting logarithmic factors). In particular, ifn = Θ

(
r2
)

(saturating the holographic
bound), then the time grows asn2/3 or r4/3. To achieve a search time ofO(

√
npolylogn), the bits would

need to be concentrated on a 2-D surface.
Because of the holographic principle, we see that it is not only quantum mechanics that yields a

Ω(
√

n) lower bound on the number of steps needed for unordered search. If the items to be searched
are laid out spatially, then general relativity in 3+1 dimensions independently yields the same bound,
Ω(

√
n), up to a constant factor.1 Interestingly, ind + 1 dimensions the relativity bound would be

Ω
(
n1/(d−1)

)
, which ford > 3 is weaker than the quantum mechanics bound. Given that our two funda-

mental theories yield the same lower bound, it is natural to ask whether that bound is tight. The answer
seems to be that it isnot tight, since (i) the entropy on a black hole horizon is not efficiently accessible2,
and (ii) weakly-gravitating systems are subject to theBekenstein bound[5], an even stronger entropy
constraint than the holographic bound.

1Admittedly, the holographic principle is part of quantum gravity and not general relativityper se. All that matters for us,
though, is that the principle seems logically independent of quantum-mechanical linearity, which is what produces the “other”
Ω(

√
n) bound.

2In the case of a black hole horizon, waiting for the bits to be emitted as Hawking radiation—as recent evidence suggests
that they are [27]—takes time proportional tor3, which is much too long.
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Yet it is still of basic interest to know whethern bits in a radius-r ball can be searched in time
o(min{n, r

√
n})—that is, whether it is possible to doanythingbetter than either brute-force quantum

search (with the drawback pointed out by Benioff [6]), or classical search. Our results show that it is
possible.

From a physical point of view, several questions naturally arise: (1) whether our complexity measure
is realistic; (2) how to account for time dilation; and (3) whether given the number of bits we are
imagining, cosmological bounds are also relevant. Let us address these questions in turn.

(1) One could argue that to maintain a ‘quantum database’ of sizen requiresn computing elements
([32], though see also [24]). So why not just exploit those elements to search the database in
parallel? Then it becomes trivial to show that the search time is limited only by the radius of
the database, so the algorithms of this paper are unnecessary. Our response is that, while there
might ben ‘passive’ computing elements (capable of storing data), there might be many fewer
‘active’ elements, which we consequently wish to place in a superposition over locations. This
assumption seems physically unobjectionable. For a particle (and indeed any object) really does
have an indeterminate location, not merely an indeterminate internal state (such as spin)at some
location. We leave as an open problem, however, whether our assumption is valid for specific
quantum computer architectures such as ion traps.

(2) So long as we invoke general relativity, should we not also consider the effects of time dilation?
Those effects are indeed pronounced near a black hole horizon. Again, though, for our upper
bounds we will have in mind systems far from the Schwarzschild limit, for which any time dilation
is by at most a constant factor independent ofn.

(3) How do cosmological considerations affect our analysis? Bousso [8] argues that, in a spacetime
with positive cosmological constantΛ > 0, the total number of bits accessible to any one exper-
iment is at most 3π/(Λ ln2), or roughly 10122 given current experimental bounds [26] on Λ.3

Intuitively, even if the universe is spatially infinite, most of it recedes too quickly from any one
observer to be harnessed as computer memory.

One response to this result is to assume an idealization in whichΛ vanishes, although Planck’s
constant̄h does not vanish. As justification, one could argue that without the idealizationΛ = 0,
all asymptotic bounds in computer science are basically fictions. But perhaps a better response is
to accept the 3π/(Λ ln2) bound, and then ask how close one can come tosaturatingit in different
scenarios. Classically, the maximum number of bits that can be searched is, in a crude model4,
actually proportional to 1/

√
Λ ≈ 1061 rather than 1/Λ. The reason is that if a region had much

more than 1/
√

Λ bits, then after 1/
√

Λ Planck times—that is, about 1010 years, or roughly the
current age of the universe—most of the region would have receded beyond one’s cosmological

3Also, Lloyd [21] argues that the total number of bits accessibleup till now is at most the square of the number of Planck

times elapsed so far, or about
(
1061

)2 = 10122. Lloyd’s bound, unlike Bousso’s, does not depend onΛ being positive. The
numerical coincidence between the two bounds reflects the experimental finding [26, 25] that we live in a transitional era, when
bothΛ and “dust” contribute significantly to the universe’s net energy balance (ΩΛ ≈ 0.7, Ωdust≈ 0.3). In earlier times dust
(and before that radiation) dominated, and Lloyd’s bound was tighter. In later timesΛ will dominate, and Bousso’s bound will
be tighter. Whywe should live in such a transitional era is unknown.

4Specifically, neglecting gravity and other forces that could counteract the effect ofΛ.
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horizon. What our results suggest is that, using a quantum robot, one could come closer to
saturating the cosmological bound—since, for example, a 2-D region of size 1/Λ can be searched

in time O
(

1√
Λ

polylog 1√
Λ

)
. How anyone couldpreparea database of size much greater than

1/
√

Λ remains unclear, but if such a database existed, it could be searched!

3 The Model

Much of what is known about the power of quantum computing comes from theblack-boxor query
model [2, 4, 7, 17, 29], in which one counts only the number of queries to an oracle, not the number of
computational steps. We will take this model as the starting point for a formal definition of quantum
robots. Doing so will focus attention on our main concern: how much harder is it to evaluate a function
when its inputs are spatially separated? As it turns out, all of our algorithmswill be efficient as measured
by the number of gates and auxiliary qubits needed to implement them.

For simplicity, we assume that a robot’s goal is to evaluate a Boolean functionf : {0,1}n → {0,1},
which could be partial or total. A ‘region of space’ is a connected undirected graphG = (V,E) with
verticesV = {v1, . . . ,vn}. Let X = x1 . . .xn ∈ {0,1}n be an input tof ; then each bitxi is available only
at vertexvi . We assume the robot knowsG and the vertex labels in advance, and so is ignorant only
of thexi bits. We thus sidestep a major difficulty for quantum walks [1], which is how to ensure that a
process on an unknown graph is unitary.

At any time, the robot’s state has the form

∑αi,z|vi ,z〉 .

Herevi ∈V is a vertex, representing the robot’s location; andz is a bit string (which can be arbitrarily
long), representing the robot’s internal configuration. The state evolves via an alternating sequence of
T algorithm steps andT oracle steps:

U (1) → O(1) →U (1) → ··· →U (T) → O(T).

An oracle stepO(t) maps each basis state|vi ,z〉 to |vi ,z⊕xi〉, wherexi is exclusive-OR’ed into the first
bit of z. An algorithm stepU (t) can be any unitary matrix that (1) does not depend onX, and (2) acts
‘locally’ on G. How to make the second condition precise is the subject ofSection3.1.

The initial state of the algorithm is|v1,0〉. Let α
(t)
i,z (X) be the amplitude of|vi ,z〉 immediately after

thetth oracle step; then the algorithm succeeds with probability 1− ε if

∑
|vi ,z〉 :zOUT= f (X)

∣∣∣α(T)
i,z (X)

∣∣∣2 ≥ 1− ε

for all inputsX, wherezOUT is a bit ofz representing the output.

3.1 Locality Criteria

Classically, it is easy to decide whether a stochastic matrix actslocally with respect to a graphG: it does
if it moves probability only along the edges ofG. In the quantum case, however, interference makes the
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question much more subtle. In this section we propose three criteria for whether a unitary matrixU is
local. Our algorithms will then be implemented using the most restrictive of these criteria.

The first criterion we callZ-locality (for zero): U is Z-local if, given any pair of non-neighboring
verticesv1,v2 in G, U “sends no amplitude” fromv1 to v2; that is, the corresponding entries inU are all
0. The second criterion,C-locality (for composability), says that this is not enough: not only mustU
send amplitude only between neighboring vertices, but it must be composed of a product of commuting
unitaries, each of which acts on a single edge. The third criterion is perhaps the most natural one to a
physicist:U is H-local (for Hamiltonian) if it can be obtained by applying a locally-acting, low-energy
Hamiltonian for some fixed amount of time. More formally, letUi,z→i∗,z∗ be the entry in the|vi ,z〉 column
and|vi∗ ,z∗〉 row of U .

Definition 3.1. U is Z-local if Ui,z→i∗,z∗ = 0 wheneveri 6= i∗ and(vi ,vi∗) is not an edge ofG.

Definition 3.2. U is C-local if the basis states can be partitioned into subsetsP1, . . . ,Pq such that

(i) Ui,z→i∗,z∗ = 0 whenever|vi ,z〉 and|vi∗ ,z∗〉 belong to distinctPj ’s, and

(ii) for eachj, all basis states inPj are either from the same vertex or from two adjacent vertices.

Definition 3.3. U is H-local ifU = eiH for some HermitianH with eigenvalues of absolute value at most
π, such thatHi,z→i∗,z∗ = 0 wheneveri 6= i∗ and(vi ,vi∗) is not an edge inE.

If a unitary matrix is C-local, then it is also Z-local and H-local. For the latter implication, note that
any unitaryU can be written aseiH for someH with eigenvalues of absolute value at mostπ. So we can
write the unitaryU j acting on eachPj aseiH j ; then since theU j ’s commute,

∏U j = ei ∑H j .

Beyond that, though, how are the locality criteria related? Are they approximately equivalent? If
not, then does a problem’s complexity in our model ever depend on which criterion is chosen? Let
us emphasize that these questions arenot answered by, for example, the Solovay-Kitaev theorem (see
[22]), that ann×n unitary matrix can be approximated using a number of gates polynomial inn. For
recall that the definition of C-locality requires the edgewise operations to commute—indeed, without
that requirement, one could produce any unitary matrix at all. So the relevant question, which we leave
open, is whether any Z-local or H-local unitary can be approximated by a product of, say,O(logn)
C-local unitaries. (A product ofO(n) such unitaries trivially suffices, but that is far too many.)

4 General Bounds

Given a Boolean functionf : {0,1}n → {0,1}, the quantum query complexityQ( f ), defined by Beals
et al. [4], is the minimumT for which there exists aT-query quantum algorithm that evaluatesf with
probability at least 2/3 on all inputs. (We will always be interested in thetwo-sided, bounded-error
complexity, sometimes denotedQ2( f ).) Similarly, given a graphG with n vertices labeled 1, . . . ,n, we
let Q( f ,G) be the minimumT for which there exists aT-query quantum robot onG that evaluatesf
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with probability 2/3. Here we require the algorithm steps to be C-local. One might also consider the
corresponding measuresQZ ( f ,G) andQH ( f ,G) with Z-local and H-local steps respectively. Clearly
Q( f ,G)≥QZ ( f ,G) andQ( f ,G)≥QH ( f ,G); we conjecture that all three measures are asymptotically
equivalent but were unable to prove this.

Let δG be the diameter ofG, and call f nondegenerateif it depends on alln input bits.

Proposition 4.1. For all f ,G,

(i) Q( f ,G)≤ 2n−3.

(ii) Q( f ,G)≤ (2δG +1)Q( f ).

(iii) Q( f ,G)≥ Q( f ).

(iv) Q( f ,G)≥ δG/2 if f is nondegenerate.

Proof.

(i) Starting from the root, a spanning tree forG can be traversed in 2(n−1)−1 steps (there is no
need to return to the root).

(ii) We can simulate a query in 2δG steps, by fanning out from the start vertexv1 and then returning.
Applying a unitary atv1 takes 1 step.

(iii) Obvious.

(iv) There exists a vertexvi whose distance tov1 is at leastδG/2, and f could depend onxi .

We now show that the model is robust.

Proposition 4.2. For nondegenerate f , the following change Q( f ,G) by at most a constant factor.

(i) Replacing the initial state|v1,0〉 by an arbitrary (known)|ψ〉.

(ii) Requiring the final state to be localized at some vertex vi with probability at least1− ε, for a
constantε > 0.

(iii) Allowing multiple algorithm steps between each oracle step (and measuring the complexity by the
number of algorithm steps).

Proof. (i) We can transform|v1,0〉 to |ψ〉 (and hence|ψ〉 to |v1,0〉) in δG = O(Q( f ,G)) steps, by
fanning out fromv1 along the edges of a minimum-height spanning tree.

(ii) Assume without loss of generality thatzOUT is accessed only once, to write the output. Then after
zOUT is accessed, uncompute (that is, run the algorithm backwards) to localize the final state at
v1. The state can then be localized at anyvi in δG = O(Q( f ,G)) steps. We can succeed with any
constant probability by repeating this procedure a constant number of times.
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(iii) The oracle stepO is its own inverse, so we can implement a sequenceU1,U2, . . . of algorithm steps
as follows (whereI is the identity):

U1 → O→ I → O→U2 → ···

A function of particular interest isf = OR(x1, . . . ,xn), which outputs 1 if and only ifxi = 1 for some
i. We first give a general upper bound onQ(OR,G) in terms of the diameter ofG. (Throughout the
paper, we sometimes omit floor and ceiling signs if they clearly have no effect on the asymptotics.)

Proposition 4.3.

Q(OR,G) = O
(√

nδG

)
.

Proof. Let τ be a minimum-height spanning tree forG, rooted atv1. A depth-first search onτ uses
2n− 2 steps. LetS1 be the set of vertices visited by depth-first search in steps 1 toδG, S2 be those
visited in stepsδG +1 to 2δG, and so on. Then

S1∪·· ·∪S2n/δG
= V.

Furthermore, for eachSj there is a classical algorithmA j , using at most 3δG steps, that starts atv1, ends
at v1, and outputs ‘1’ if and only ifxi = 1 for somevi ∈ Sj . Then we simply perform Grover search at

v1 over allA j ; since each iteration takesO(δG) steps and there areO
(√

2n/δG

)
iterations, the number

of steps isO
(√

nδG
)
.

The bound ofProposition 4.3is tight:

Theorem 4.4. For all δ , there exists a graph G with diameterδG = δ such that

Q(OR,G) = Ω
(√

nδ

)
.

Proof. Let G be a ‘starfish’ with central vertexv1 andM = 2(n−1)/δ legsL1, . . . ,LM, each of length
δ/2 (seeFigure2). We use the hybrid argument of Bennett et al. [7]. Suppose we run the algorithm on

the all-zero inputX0. Then define thequery magnitudeΓ(t)
j to be the probability of finding the robot in

legL j immediately after thetth query:

Γ(t)
j = ∑

vi∈L j

∑
z

∣∣∣α(t)
i,z (X0)

∣∣∣2 .

Let T be the total number of queries, and letw = T/(cδ ) for some constant 0< c < 1/2. Clearly

w−1

∑
q=0

M

∑
j=1

Γ(T−qcδ )
j ≤

w−1

∑
q=0

1 = w.

THEORY OFCOMPUTING, Volume 1 (2005), pp. 47–79 56

http://dx.doi.org/10.4086/toc


QUANTUM SEARCH OFSPATIAL REGIONS

δδδδ/2δδδδ/2

Figure 2: The ‘starfish’ graphG. The marked item is at one of the tip vertices.

Hence there must exist a legL j∗ such that

w−1

∑
q=0

Γ(T−qcδ )
j∗ ≤ w

M
=

wδ

2(n−1)
.

Let vi∗ be the tip vertex ofL j∗ , and letY be the input which is 1 atvi∗ and 0 elsewhere. Then letXq be a
hybrid input, which isX0 during queries 1 toT−qcδ , butY during queriesT−qcδ +1 toT. Also, let∣∣∣ψ(t) (Xq)

〉
= ∑

i,z

α
(t)
i,z (Xq) |vi ,z〉

be the algorithm’s state aftert queries when run onXq, and let

D(q, r) =
∥∥∥∣∣∣ψ(T) (Xq)

〉
−
∣∣∣ψ(T) (Xr)

〉∥∥∥2

2

= ∑
vi∈G

∑
z

∣∣∣α(T)
i,z (Xq)−α

(T)
i,z (Xr)

∣∣∣2 .

Then for allq ≥ 1, we claim thatD(q−1,q) ≤ 4Γ(T−qcδ )
j∗ . For by unitarity, the Euclidean distance

between
∣∣ψ(t) (Xq−1)

〉
and

∣∣ψ(t) (Xq)
〉

can only increase as a result of queriesT − qcδ + 1 through
T− (q−1)cδ . But no amplitude from outsideL j∗ can reachvi∗ during that interval, since the distance
is δ/2 and there are onlycδ < δ/2 time steps. Therefore, switching fromXq−1 to Xq can only affect
amplitude that is inL j∗ immediately after queryT−qcδ :

D(q−1,q)≤ ∑
vi∈L j∗

∑
z

∣∣∣α(T−qcδ )
i,z (Xq)−

(
−α

(T−qcδ )
i,z (Xq)

)∣∣∣2
= 4 ∑

vi∈L j∗
∑
z

∣∣∣α(T−qcδ )
i,z (X0)

∣∣∣2 = 4Γ(T−qcδ )
j∗ .

It follows that√
D(0,w)≤

w

∑
q=1

√
D(q−1,q)≤ 2

w

∑
q=1

√
Γ(T−qcδ )

j∗ ≤ 2w

√
δ

2(n−1)
=

T
c

√
2

δ (n−1)
.
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Here the first inequality uses the triangle inequality, and the third uses the Cauchy-Schwarz inequality.

Now assuming the algorithm is correct we needD(0,w) = Ω(1), which implies thatT = Ω
(√

nδ

)
.

It is immediate thatTheorem 4.4applies toZ-local unitaries as well asC-local ones: that is,

QZ (OR,G) = Ω
(√

nδ

)
. We believe the theorem can be extended toH-local unitaries as well, but

a full discussion of this issue would take us too far afield.

5 Search on Grids

Let Ld (n) be ad-dimensional grid graph of sizen1/d × ·· · × n1/d. That is, each vertex is specified
by d coordinatesi1, . . . , id ∈

{
1, . . . ,n1/d

}
, and is connected to the at most 2d vertices obtainable by

adding or subtracting 1 from a single coordinate (boundary vertices have fewer than 2d neighbors). We
write simplyLd whenn is clear from context. In this section we present our main positive results: that
Q(OR,Ld) = Θ(

√
n) for d≥ 3, andQ(OR,L2) = O(

√
npolylogn) for d = 2.

Before proving these claims, let us develop some intuition by showing weaker bounds, taking the
cased = 2 for illustration. ClearlyQ(OR,L2) = O

(
n3/4

)
: we simply partitionL2(n) into

√
n sub-

squares, each a copy ofL2(
√

n). In 5
√

n steps, the robot can travel from the start vertex to any
subsquareC, searchC classically for a marked vertex, and then return to the start vertex. Thus, by
searching all

√
n of theC’s in superposition and applying Grover’s algorithm, the robot can search the

grid in timeO
(
n1/4

)
×5

√
n = O

(
n3/4

)
.

Once we know that, we might as well partitionL2(n) into n1/3 subsquares, each a copy ofL2
(
n2/3

)
.

Searching any one of these subsquares by the previous algorithm takes timeO
((

n2/3
)3/4

)
= O(

√
n),

an amount of time that also suffices to travel to the subsquare and back from the start vertex. So using

Grover’s algorithm, the robot can searchL2(n) in time O
(√

n1/3 ·
√

n
)

= O
(
n2/3

)
. We can continue

recursively in this manner to make the running time approachO(
√

n). The trouble is that, with each
additional layer of recursion, the robot needs to repeat the search more often to upper-bound the error
probability. Using this approach, the best bounds we could obtain are roughlyO(

√
npolylogn) for

d ≥ 3, or
√

n2O(√logn) for d = 2. In what follows, we use the amplitude amplification approach of
Grover [19] and Brassard et al. [11] to improve these bounds, in the case of a single marked vertex, to

O(
√

n) for d ≥ 3 (Section5.2) andO
(√

nlog3/2n
)

for d = 2 (Section5.3). Section5.4 generalizes

these results to the case of multiple marked vertices.
Intuitively, the reason the cased = 2 is special is that there, the diameter of the grid isΘ(

√
n), which

matches exactly the time needed for Grover search. Ford ≥ 3, by contrast, the robot can travel across
the grid in much less time than is needed to search it.

5.1 Amplitude Amplification

We start by describing amplitude amplification [11, 19], a generalization of Grover search. LetU be a
quantum algorithm that, with probabilityε, outputs a correct answer together with a witness that proves
the answer correct. (For example, in the case of search, the algorithm outputs a vertex labeli such that
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xi = 1.) Amplification generates a new algorithm that callsU order 1/
√

ε times, and that produces both
a correct answer and a witness with probabilityΩ(1). In particular, assumeU starts in basis state|s〉,
and letm be a positive integer. Then the amplification procedure works as follows:

(1) Set|ψ0〉= U |s〉.

(2) For i = 1 tom set|ψi+1〉= USU−1W |ψi〉, where

• W flips the phase of basis state|y〉 if and only if |y〉 contains a description of a correct
witness, and

• Sflips the phase of basis state|y〉 if and only if |y〉= |s〉.

We can decompose|ψ0〉 as sinα |Ψsucc〉+ cosα |Ψfail〉, where|Ψsucc〉 is a superposition over basis
states containing a correct witness and|Ψfail〉 is a superposition over all other basis states. Brassard et
al. [11] showed the following:

Lemma 5.1 ([11]). |ψi〉= sin[(2i +1)α] |Ψsucc〉+cos[(2i +1)α] |Ψfail〉.

If measuring|ψ0〉 gives a correct witness with probabilityε, then|sinα|2 = ε and|α| ≥ 1/
√

ε. So
takingm= O(1/

√
ε) yields sin[(2m+1)α]≈ 1. For our algorithms, though, the multiplicative constant

under the big-O also matters. To upper-bound this constant, we prove the following lemma.

Lemma 5.2. Suppose a quantum algorithmU outputs a correct answer and witness with probability
exactlyε. Then by using2m+1 calls toU or U−1, where

m≤ π

4arcsin
√

ε
− 1

2
,

we can output a correct answer and witness with probability at least(
1− (2m+1)2

3
ε

)
(2m+1)2

ε.

Proof. We performm steps of amplitude amplification, which requires 2m+ 1 calls toU or U−1. By
Lemma 5.1, this yields the final state

sin[(2m+1)α] |Ψsucc〉+cos[(2m+1)α] |Ψfail〉

whereα = arcsin
√

ε. Therefore the success probability is

sin2[(2m+1)arcsin
√

ε
]
≥ sin2[(2m+1)

√
ε
]

≥

(
(2m+1)

√
ε − (2m+1)3

6
ε

3/2

)2

≥ (2m+1)2
ε − (2m+1)4

3
ε

2.

Here the first line uses the monotonicity of sin2x in the interval[0,π/2], and the second line uses the
fact that sinx≥ x−x3/6 for all x≥ 0 by Taylor series expansion.
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Note that there is no need to uncompute any garbage left byU, beyond the uncomputation that
happens “automatically” within the amplification procedure.

5.2 Dimension At Least 3

Our goal is the following:

Theorem 5.3. If d ≥ 3, then Q(OR,Ld) = Θ(
√

n).

In this section, we proveTheorem 5.3for the special case of a unique marked vertex; then, in
Sections5.4 and 5.5, we will generalize to multiple marked vertices. Let OR(k) be the problem of
deciding whether there are no marked vertices or exactlyk of them, given that one of these is true.
Then:

Theorem 5.4. If d ≥ 3, then Q
(

OR(1),Ld

)
= Θ(

√
n).

Choose constantsβ ∈ (2/3,1) andµ ∈ (1/3,1/2) such thatβ µ > 1/3 (for example,β = 4/5 and
µ = 5/11 will work). Let `0 be a large positive integer; then for all positive integersR, let `R =
`R−1

⌈
`

1/β−1
R−1

⌉
. Also letnR = `d

R. Assume for simplicity thatn= nR for someR; in other words, that the

hypercubeLd (nR) to be searched has sides of length`R. Later we will remove this assumption.
Consider the following recursive algorithmA. If n= n0, then searchLd (n0) classically, returning 1

if a marked vertex is found and 0 otherwise. Otherwise partitionLd (nR) into nR/nR−1 subcubes, each
one a copy ofLd (nR−1). Take the algorithm that consists of picking a subcubeC uniformly at random,
and then runningA recursively onC. Amplify this algorithm(nR/nR−1)

µ times.

The intuition behind the exponents is thatnR−1 ≈ nβ

R, so searchingLd (nR−1) should take aboutnβ/2
R

steps, which dominates then1/d
R steps needed to travel across the hypercube whend ≥ 3. Also, at level

R we want to amplify a number of times that is less than(nR/nR−1)
1/2 by some polynomial amount,

since full amplification would be inefficient. The reason for the constraintβ µ > 1/3 will appear in the
analysis.

We now provide a more explicit description ofA, which shows that it can be implemented using
C-local unitaries and only a single bit of workspace. At any time, the quantum robot’s state will have
the form∑i,zαi,z|vi ,z〉, wherevi is a vertex ofLd (nR) andz is a single bit that records whether or not
a marked vertex has been found. Given a subcubeC, let v(C) be the “corner” vertex ofC; that is, the
vertex that is minimal in alld coordinates. Then the initial state when searchingC will be |v(C) ,0〉.
Beware, however, that “initial state” in this context just means the state|s〉 from Section5.1. Because of
the way amplitude amplification works,A will often be invoked onC with other initial states, and even
run in reverse.

For convenience, we will implementA using a two-stage recursion: given any subcube, the task ofA

will be to amplify the result of another procedure calledU, which in turn runsA recursively on smaller
subcubes. We will also use the conditional phase flipsW andS from Section5.1. For convenience, we
write AR,UR,WR,SR to denote the level of recursion that is currently active. Thus,AR callsUR, which
callsAR−1, which callsUR−1, and so on down toA0.
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Algorithm 5.5 (AR). Searches a subcube C of size nR for the marked vertex, and amplifies the result to
have larger probability. Default initial state:|v(C) ,0〉.

If R= 0 then:

(1) Use classical C-local operations to visit all n0 vertices of C in any order. At each vi ∈C, use a
query transformation to map the state|vi ,z〉 to |vi ,z⊕xi〉.

(2) Return to v(C).

If R≥ 1 then:

(1) Let mR be the smallest integer such that2mR+1≥ (nR/nR−1)
µ .

(2) Call UR.

(3) For i = 1 to mR, call WR, thenU−1
R , then SR, thenUR.

SupposeAR is run on the initial state|v(C) ,0〉, and letC1, . . . ,CnR/n0
be theminimal subcubesin

C—meaning those of sizen0. Then the final state afterAR terminates should be

1√
nR/n0

nR/n0

∑
i=1

|v(Ci) ,0〉

if C does not contain the marked vertex. Otherwise the final state should have non-negligible overlap
with |v(Ci∗) ,1〉, whereCi∗ is the minimal subcube inC that contains the marked vertex. In particular, if
R= 0, then the final state should be|v(C) ,1〉 if C contains the marked vertex, and|v(C) ,0〉 otherwise.

The two phase-flip subroutines,WR andSR, are both trivial to implement. To applyWR, map each
basis state|vi ,z〉 to (−1)z|vi ,z〉. To applySR, map each|vi ,z〉 to−|vi ,z〉 if z= 0 andvi = v(C) for some
subcubeC of sizenR, and to|vi ,z〉 otherwise. Below we give pseudocode forUR.

Algorithm 5.6 (UR). Searches a subcube C of size nR for the marked vertex. Default initial state:
|v(C) ,0〉.

(1) Partition C into nR/nR−1 smaller subcubes C1, . . . ,CnR/nR−1
, each of size nR−1.

(2) For all j ∈ {1, . . . ,d}, let Vj be the set of corner vertices v(Ci) that differ from v(C) only in the
first j coordinates. Thus V0 = {v(C)}, and in general

∣∣Vj
∣∣= (`R/`R−1) j . For j = 1 to d, let

∣∣Vj
〉

be the state ∣∣Vj
〉

=
1

`
j/2
R

∑
v(Ci)∈Vj

|v(Ci) ,0〉

Apply a sequence of transformations Z1, Z2, . . ., Zd where Zj is a unitary that maps
∣∣Vj−1

〉
to
∣∣Vj
〉

by applying C-local unitaries that move amplitude only along the jth coordinate.

(3) Call AR−1 recursively. (Note that this searches C1, . . . ,CnR/nR−1
in superposition. Also, the

required amplification is performed for each of these subcubes automatically by step (3) ofAR−1.)
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If UR is run on the initial state|v(C) ,0〉, then the final state should be

1√
nR/nR−1

nR/n0

∑
i=1

|φi〉 ,

where|φi〉 is the correct final state whenAR−1 is run on subcubeCi with initial state|v(Ci) ,0〉. A key
point is that there is no need forUR to call AR−1 twice, once to compute and once to uncompute—for
the uncomputation is already built intoAR. This is what will enable us to prove an upper bound of
O(

√
n) instead ofO

(√
n2R
)

= O(
√

npolylogn).
We now analyze the running time ofAR.

Lemma 5.7. AR uses O
(
nµ

R

)
steps.

Proof. Let TA (R) andTU (R) be the total numbers of steps used byAR andUR respectively in searching
Ld (nR). Then we haveTA (0) = O(1), and

TA (R)≤ (2mR+1)TU (R)+2mR

TU (R)≤ dn1/d
R +TA (R−1)

for all R≥ 1. ForWR andSR can both be implemented in a single step, whileUR usesd`R = dn1/d
R steps

to move the robot across the hypercube. Combining,

TA (R)≤ (2mR+1)
(

dn1/d
R +TA (R−1)

)
+2mR

≤
(
(nR/nR−1)

µ +2
)(

dn1/d
R +TA (R−1)

)
+(nR/nR−1)

µ +1

= O
(
(nR/nR−1)

µ n1/d
R

)
+
(
(nR/nR−1)

µ +2
)

TA (R−1)

= O
(
(nR/nR−1)

µ n1/d
R

)
+(nR/nR−1)

µ TA (R−1)

= O
(
(nR/nR−1)

µ n1/d
R +(nR/nR−2)

µ n1/d
R−1 + · · ·+(nR/n0)

µ n1/d
1

)
= nµ

R ·O

(
n1/d

R

nµ

R−1

+
n1/d

R−1

nµ

R−2

+ · · ·+
n1/d

1

nµ

0

)
= nµ

R ·O
(

n1/d−β µ

R + · · ·+n1/d−β µ

2 +n1/d−β µ

1

)
= nµ

R ·O
(

n1/d−β µ

R +
(

n1/d−β µ

R

)1/β

+ · · ·+
(

n1/d−β µ

R

)1/β R−1)
= O

(
nµ

R

)
.

Here the second line follows because 2mR + 1≤ (nR/nR−1)
µ + 2, the fourth because the(nR/nR−1)

µ

terms increase doubly exponentially, so adding 2 to each will not affect the asymptotics; the seventh

becausenµ

i = Ω
((

nµ

i+1

)β
)

, the eighth becausenR−1 ≤ nβ

R; and the last becauseβ µ > 1/3≥ 1/d, hence

n1/d−β µ

1 < 1.
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Next we need to lower-bound the success probability. Say thatAR or UR “succeeds” if a measure-
ment in the standard basis yields the result|v(Ci∗) ,1〉, whereCi∗ is the minimal subcube that contains
the marked vertex. Of course, the marked vertex itself can then be found inn0 = O(1) steps.

Lemma 5.8. Assuming there is a unique marked vertex,AR succeeds with probabilityΩ
(

1/n1−2µ

R

)
.

Proof. Let PA (R) andPU (R) be the success probabilities ofAR andUR respectively when searching
Ld (nR). Then clearlyPA (0) = 1, andPU (R) = (nR−1/nR)PA (R−1) for all R≥ 1. So byLemma 5.2,

PA (R)≥
(

1− 1
3

(2mR+1)2PU (R)
)

(2mR+1)2PU (R)

=
(

1− 1
3

(2mR+1)2 nR−1

nR
PA (R−1)

)
(2mR+1)2 nR−1

nR
PA (R−1)

≥
(

1− 1
3

(nR/nR−1)
2µ nR−1

nR
PA (R−1)

)
(nR/nR−1)

2µ nR−1

nR
PA (R−1)

≥
(

1− 1
3

(nR−1/nR)1−2µ

)
(nR−1/nR)1−2µ PA (R−1)

≥ (n0/nR)1−2µ
R

∏
r=1

(
1− 1

3
(nR−1/nR)1−2µ

)
≥ (n0/nR)1−2µ

R

∏
r=1

(
1− 1

3n(1−β )(1−2µ)
R

)

≥ (n0/nR)1−2µ

(
1−

R

∑
r=1

1

3n(1−β )(1−2µ)
R

)
= Ω

(
1/n1−2µ

R

)
.

Here the third line follows because 2mR+1≥ (nR−1/nR)µ and the functionx− 1
3x2 is nondecreasing in

the interval[0,1]; the fourth becausePA (R−1)≤ 1; the sixth becausenR−1 ≤ nβ

R; and the last because
β < 1 andµ < 1/2, thenR’s increase doubly exponentially, andn0 is sufficiently large.

Finally, takeAR itself and amplify it to success probabilityΩ(1) by running itO(n1/2−µ

R ) times.

This yields an algorithm for searchingLd (nR) with overall running timeO
(

n1/2
R

)
, which implies that

Q
(

OR(1),Ld (nR)
)

= O
(

n1/2
R

)
.

All that remains is to handle values ofn that do not equalnR for any R. The solution is simple:

first find the largestR such thatnR < n. Then setn′ = nR
⌈
n1/d/`R

⌉d
, and embedLd (n) into the larger

hypercubeLd (n′). ClearlyQ
(

OR(1),Ld (n)
)
≤ Q

(
OR(1),Ld (n′)

)
. Also notice thatn′ = O(n) and

thatn′ = O
(

n1/β

R

)
= O

(
n3/2

R

)
. Next partitionLd (n′) into n′/nR subcubes, each a copy ofLd (nR). The

algorithm will now have one additional level of recursion, which chooses a subcube ofLd (n′) uniformly
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at random, runsAR on that subcube, and then amplifies the resulting procedureΘ
(√

n′/nR

)
times. The

total time is now

O

(√
n′

nR

((
n′
)1/d +n1/2

R

))
= O

(√
n′

nR
n1/2

R

)
= O

(√
n
)
,

while the success probability isΩ(1). This completesTheorem 5.4.

5.3 Dimension 2

In thed = 2 case, the best we can achieve is the following:

Theorem 5.9. Q(OR,L2) = O
(√

nlog5/2n
)

.

Again, we start with the single marked vertex case and postpone the general case to Sections5.4
and5.5.

Theorem 5.10.Q
(

OR(1),L2

)
= O

(√
nlog3/2n

)
.

For d ≥ 3, we performed amplification on large (greater thanO
(
1/n1−2µ

)
) probabilities only once,

at the end. Ford = 2, on the other hand, any algorithm that we construct with any nonzero success
probability will have running timeΩ(

√
n), simply because that is the diameter of the grid. If we

want to keep the running timeO(
√

n), then we can only performO(1) amplification steps at the end.
Therefore we need to keep the success probability relatively high throughout the recursion, meaning that
we suffer an increase in the running time, since amplification to high probabilities is less efficient.

The proceduresAR, UR, WR, andSR are identical to those inSection5.2; all that changes are the
parameter settings. For all integersR≥ 0, we now letnR = `2R

0 , for some odd integer̀0 ≥ 3 to be set
later. Thus,AR andUR search the square gridL2(nR) of size`R

0 × `R
0 . Also, letm= (`0−1)/2; then

AR appliesm steps of amplitude amplification toUR.
We now prove the counterparts of Lemmas5.7and5.8for the two-dimensional case.

Lemma 5.11. AR uses O
(
R̀ R+1

0

)
steps.

Proof. Let TA (R) andTU (R) be the time used byAR andUR respectively in searchingL2(nR). Then
TA (0) = 1, and for allR≥ 1,

TA (R)≤ (2m+1)TU (R)+2m,

TU (R)≤ 2n1/2
R +TA (R−1) .

Combining,

TA (R)≤ (2m+1)
(

2n1/2
R +TA (R−1)

)
+2m

= `0
(
2`R

0 +TA (R−1)
)
+ `0−1

= O
(
`R+1

0 + `0TA (R−1)
)

= O
(
R̀ R+1

0

)
.
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Lemma 5.12. AR succeeds with probabilityΩ(1/R).

Proof. Let PA (R) andPU (R) be the success probabilities ofAR andUR respectively when searching
L2(nR). Then PU (R) = PA (R−1)/`2

0 for all R≥ 1. So byLemma 5.2, and using the fact that
2m+1 = `0,

PA (R)≥

(
1− (2m+1)2

3
PU (R)

)
(2m+1)2PU (R)

=
(

1−
`2

0

3
PA (R−1)

`2
0

)
`2

0
PA (R−1)

`2
0

= PA (R−1)− 1
3

P2
A (R−1)

= Ω(1/R) .

This is becauseΩ(R) iterations of the mapxR := xR−1− 1
3x2

R−1 are needed to drop from (say) 2/R to
1/R, andx0 = PA (0) = 1 is greater than 2/R.

We can amplifyAR to success probabilityΩ(1) by repeating itO
(√

R
)

times. This yields an algo-
rithm for searchingL2(nR) that usesO

(
R3/2`R+1

0

)
= O

(√
nRR3/2`0

)
steps in total. We can minimize

this expression subject tò2R
0 = nR by taking `0 to be constant andR to be Θ(lognR), which yields

Q
(

OR(1),L2(nR)
)

= O
(√

nR logn3/2
R

)
. If n is not of the form`2R

0 , then we simply find the smallest

integerR such thatn < `2R
0 , and embedL2(n) in the larger gridL2

(
`2R

0

)
. Since`0 is a constant, this

increases the running time by at most a constant factor. We have now provedTheorem 5.10.

5.4 Multiple Marked Items

What about the case in which there are multiplei’s with xi = 1? If there arek marked items (wherek
need not be known in advance), then Grover’s algorithm can find a marked item with high probability

in O
(√

n/k
)

queries, as shown by Boyer et al. [10]. In our setting, however, this is too much to hope

for—since even if there are many marked vertices, they might all be in a faraway part of the hypercube.
ThenΩ

(
n1/d

)
steps are needed, even if

√
n/k < n1/d. Indeed, we can show a stronger lower bound.

Recall that OR(k) is the problem of deciding whether there are no marked vertices or exactlyk of them.

Theorem 5.13.For all dimensions d≥ 2,

Q
(

OR(k),Ld

)
= Ω

( √
n

k1/2−1/d

)
.

Here, for simplicity, we ignore constant factors depending on d.

Proof. For simplicity, we assume that bothk1/d and
(
n/3dk

)1/d
are integers. (In the general case, we

can just replacek by
⌈
k1/d

⌉d
andn by the largest integer of the form(3m)d k which is less thann. This

only changes the lower bound by a constant factor depending ond.)
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We use a hybrid argument almost identical to that ofTheorem 4.4. Divide Ld into n/k subcubes,
each havingk vertices and side lengthk1/d. Let S be a regularly-spaced set ofM = n/

(
3dk
)

of these
subcubes, so that any two subcubes inShave distance at least 2k1/d from one another. Then choose a
subcubeCj ∈ S uniformly at random and mark allk vertices inCj . This enables us to consider each
Cj ∈ S itself as asinglevertex (out ofM in total), having distance at least 2k1/d to every other vertex.

More formally, given a subcubeCj ∈ S, let C̃j be the set of vertices consisting ofCj and the 3d−1
subcubes surrounding it. (Thus,C̃j is a subcube of side length 3k1/d.) Then the query magnitude of̃Cj

after thetth query is

Γ(t)
j = ∑

vi∈C̃j

∑
z

∣∣∣α(t)
i,z (X0)

∣∣∣2 ,

whereX0 is the all-zero input. LetT be the number of queries, and letw= T/
(
ck1/d

)
for some constant

c > 0. Then as inTheorem 4.4, there must exist a subcubẽCj∗ such that

w−1

∑
q=0

Γ(T−qck1/d)
j∗ ≤ w

M
=

3dkw
n

.

Let Y be the input which is 1 inCj∗ and 0 elsewhere; then letXq be a hybrid input which isX0 during
queries 1 toT−qck1/d, butY during queriesT−qck1/d +1 toT. Next let

D(q, r) = ∑
vi∈G

∑
z

∣∣∣α(T)
i,z (Xq)−α

(T)
i,z (Xr)

∣∣∣2 .

Then as inTheorem 4.4, for all c < 1 we haveD(q−1,q)≤ 4Γ(T−qck1/d)
j∗ . For in theck1/d queries from

T−qck1/d +1 throughT− (q−1)ck1/d, no amplitude originating outsidẽCj∗ can travel a distancek1/d

and thereby reachCj∗ . Therefore switching fromXq−1 to Xq can only affect amplitude that is iñCj∗

immediately after queryT−qck1/d. It follows that

√
D(0,w)≤

w

∑
q=1

√
D(q−1,q)≤ 2

w

∑
q=1

√
Γ(T−qck1/d)

j∗ ≤ 2w

√
3dk
n

=
2
√

3dk1/2−1/dT
c
√

n
.

HenceT = Ω
(√

n/k1/2−1/d
)

for constantd, since assuming the algorithm is correct we needD(0,w) =
Ω(1).

Notice that ifk≈ n, then the bound ofTheorem 5.13becomesΩ
(
n1/d

)
which is just the diameter of

Ld. Also, if d = 2, then 1/2−1/d = 0 and the bound is simplyΩ(
√

n) independent ofk. The bound of
Theorem 5.13can be achieved (up to a constant factor that depends ond) for d≥ 3, and nearly achieved
for d = 2. We first construct an algorithm for the case whenk is known.

Theorem 5.14.

(i) For d≥ 3,

Q
(

OR(k),Ld

)
= O

( √
n

k1/2−1/d

)
.
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(ii) For d = 2,

Q
(

OR(k),L2

)
= O

(√
nlog3/2n

)
.

To proveTheorem 5.14, we first divideLd (n) into n/γ subcubes, each of sizeγ1/d × ·· · × γ1/d

(whereγ will be fixed later). Then in each subcube, we choose one vertex uniformly at random.

Lemma 5.15. If γ ≥ k, then the probability that exactly one marked vertex is chosen is at least k/γ −
(k/γ)2.

Proof. Let x be a marked vertex. The probability thatx is chosen is 1/γ. Given thatx is chosen, the
probability that one of the other marked vertices,y, is chosen is 0 ifx andy belong to the same subcube,
or 1/γ if they belong to different subcubes. Therefore, the probability thatx alone is chosen is at least

1
γ

(
1− k−1

γ

)
≥ 1

γ

(
1− k

γ

)
.

Since the events “x alone is chosen” are mutually disjoint, we conclude that the probability that exactly
one marked vertex is chosen is at leastk/γ − (k/γ)2.

In particular, fixγ so thatγ/3< k < 2γ/3; thenLemma 5.15implies that the probability of choosing
exactly one marked vertex is at least 2/9. The algorithm is now as follows. As in the lemma, subdivide
Ld (n) into n/γ subcubes and choose one location at random from each. Then run the algorithm for
the unique-solution case (Theorem5.4or 5.10) on the chosen locations only, as if they were vertices of
Ld (n/γ).

The running time in the unique case wasO
(√

n/γ

)
for d≥ 3 or

O

(√
n
γ

log3/2(n/γ)
)

= O

(√
n
γ

log3/2n

)
for d = 2. However, each local unitary in the original algorithm now becomes a unitary affecting two
verticesv andw in neighboring subcubesCv andCw. When placed side by side,Cv andCw form a
rectangular box of size 2γ1/d × γ1/d × ·· · × γ1/d. Therefore the distance betweenv andw is at most
(d+1)γ1/d. It follows that each local unitary in the original algorithm takesO

(
dγ1/d

)
time in the new

algorithm. Ford≥ 3, this results in an overall running time of

O

(√
n
γ

dγ
1/d
)

= O

(
d

√
n

γ1/2−1/d

)
= O

( √
n

k1/2−1/d

)
.

For d = 2 we obtain

O

(√
n
γ

γ
1/2 log3/2n

)
= O

(√
nlog3/2n

)
.
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5.5 Unknown Number of Marked Items

We now show how to deal with an unknownk. Let OR(≥k) be the problem of deciding whether there
are no marked vertices orat least kof them, given that one of these is true.

Theorem 5.16.

(i) For d≥ 3,

Q
(

OR(≥k),Ld

)
= O

( √
n

k1/2−1/d

)
.

(ii) For d = 2,

Q
(

OR(≥k),L2

)
= O

(√
nlog5/2n

)
.

Proof. We use the straightforward ‘doubling’ approach of Boyer et al. [10]:

(1) For j = 0 to log2(n/k)

• Run the algorithm ofTheorem 5.14with subcubes of sizeγ j = 2 jk.

• If a marked vertex is found, then output 1 and halt.

(2) Query a random vertexv, and output 1 ifv is a marked vertex and 0 otherwise.

Let k∗ ≥ k be the number of marked vertices. Ifk∗ ≤ n/3, then there exists aj ≤ log2(n/k) such
thatγ j/3≤ k∗ ≤ 2γ j/3. SoLemma 5.15implies that thej th iteration of step (1) finds a marked vertex
with probability at least 2/9. On the other hand, ifk∗ ≥ n/3, then step (2) finds a marked vertex with
probability at least 1/3. Ford≥ 3, the time used in step (1) is at most

log2(n/k)

∑
j=0

√
n

γ
1/2−1/d
j

=
√

n

k1/2−1/d

[
log2(n/k)

∑
j=0

1

2 j(1/2−1/d)

]
= O

( √
n

k1/2−1/d

)
,

the sum in brackets being a decreasing geometric series. Ford = 2, the time isO
(√

nlog5/2n
)

, since

each iteration takesO
(√

nlog3/2n
)

time and there are at most logn iterations. In neither case does step

(2) affect the bound, sincek≤ n implies thatn1/d ≤
√

n/k1/2−1/d.

Taking k = 1 gives algorithms for unconstrained OR with running timesO(
√

n) for d ≥ 3 and
O(
√

nlog5/2n) for d = 2, thereby establishing Theorems5.3and5.9.

THEORY OFCOMPUTING, Volume 1 (2005), pp. 47–79 68

http://dx.doi.org/10.4086/toc


QUANTUM SEARCH OFSPATIAL REGIONS

6 Search on Irregular Graphs

In Section1.2, we claimed that our divide-and-conquer approach has the advantage of beingrobust: it
works not only for highly symmetric graphs such as hypercubes, but for any graphs having comparable
expansion properties. Let us now substantiate this claim.

Say a family of connected graphs{Gn = (Vn,En)} is d-dimensionalif there exists aκ > 0 such that
for all n, ` andv∈Vn,

|B(v, `)| ≥ min
(

κ`d,n
)

,

whereB(v, `) is the set of vertices having distance at most` from v in Gn. Intuitively, Gn is d-
dimensional (ford ≥ 2 an integer) if its expansion properties are at least as good as those of the hy-
percubeLd (n).5 It is immediate that the diameter ofGn is at most(n/κ)1/d. Note, though, thatGn

might not be an expander graph in the usual sense, since we have not required that every sufficiently
smallsetof vertices has many neighbors.

Our goal is to show the following.

Theorem 6.1. If G is d-dimensional, then

(i) For a constant d> 2,
Q(OR,G) = O

(√
npolylogn

)
.

(ii) For d = 2,

Q(OR,G) =
√

n2O(√logn).

In proving part (i), the intuition is simple: we want to decomposeG recursively into subgraphs
(calledclusters), which will serve the same role as subcubes did in the hypercube case. The procedure is
as follows. For some constantn1 > 1, first choosedn/n1e vertices uniformly at random to be designated
as 1-pegs. Then form 1-clustersby assigning each vertex inG to its closest 1-peg, as in a Voronoi
diagram. (Ties are broken randomly.) Letv(C) be the peg of clusterC. Next, split up any 1-cluster
C with more thann1 vertices intod|C|/n1e arbitrarily-chosen 1-clusters, each with size at mostn1 and
with v(C) as its 1-peg. Observe that

dn/n1e

∑
i=1

⌈
|Ci |
n1

⌉
≤ 2

⌈
n
n1

⌉
,

wheren = |C1|+ · · ·+
∣∣Cdn/n1e

∣∣. Therefore, the splitting-up step can at most double the number of
clusters.

In the next iteration, setn2 = n1/β

1 , for some constantβ ∈ (2/d,1). Choose 2dn/n2e vertices
uniformly at random as 2-pegs. Then form 2-clusters by assigning each 1-clusterC to the 2-peg that
is closest to the 1-pegv(C). Given a 2-clusterC′, let |C′| be the number of 1-clusters inC′. Then as
before, split up anyC′ with |C′| > n2/n1 into d|C′|/(n2/n1)e arbitrarily-chosen 2-clusters, each with

size at mostn2/n1 and withv(C′) as its 2-peg. Continue recursively in this manner, settingnR = n1/β

R−1

5In general, it makes sense to consider non-integerd as well.
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and choosing 2R−1dn/nRe vertices asR-pegs for eachR. Stop at the maximumRsuch thatnR≤ n. For
technical convenience, setn0 = 1, and consider each vertexv to be the 0-peg of the 0-cluster{v}.

For R≥ 1, define theradius of an R-clusterC to be the maximum, over all(R−1)-clustersC′ in
C, of the distance fromv(C) to v(C′). Also, call anR-clustergood if it has radius at most̀R, where

`R =
(

2
κ

nR lnn
)1/d

.

Lemma 6.2. With probability1−o(1) over the choice of clusters, all clusters are good.

Proof. Let v be the(R−1)-peg of an(R−1)-cluster. Then|B(v, `)| ≥ κ`d, whereB(v, `) is the ball of
radius` aboutv. So the probability thatv has distance greater than`R to the nearestR-peg is at most(

1− κ`d
R

n

)dn/nRe

≤
(

1− 2lnn
n/nR

)n/nR

<
1
n2 .

Furthermore, the total number of pegs is easily seen to beO(n). It follows by the union bound thatevery
(R−1)-peg forevery Rhas distance at most`R to the nearestR-peg, with probability 1−O(1/n) =
1−o(1) over the choice of clusters.

At the end we have a tree of clusters, which can be searched recursively just as in the hypercube
case. Lemma 6.2gives us a guarantee on the time needed to move a level down (from a peg of an
R-cluster to a peg of anR−1-cluster contained in it) or a level up. Also, letK′ (C) be the number of
(R−1)-clusters inR-clusterC; thenK′ (C)≤K (R) whereK (R) = 2dnR/nR−1e. If K′ (C) < K (R), then
placeK (R)−K′ (C) “dummy” (R−1)-clusters inC, each of which has(R−1)-pegv(C). Now, every
R-cluster contains an equal number ofR−1 clusters.

Our algorithm is similar toSection5.2 but the basis states now have the form|v,z,C〉, wherev is
a vertex,z is an answer bit, andC is the label of the cluster currently being searched. (Unfortunately,
because multipleR-clusters can have the same peg, a single auxiliary qubit no longer suffices.)

The algorithmAR from Section5.2 now does the following, when invoked on the initial state
|v(C) ,0,C〉, whereC is anR-cluster. If R = 0, thenAR uses a query transformation to prepare the
state|v(C) ,1,C〉 if v(C) is the marked vertex and|v(C) ,0,C〉 otherwise. IfR≥ 1 andC is not a
dummy cluster, thenAR performsmR steps of amplitude amplification onUR, wheremR is the largest in-
teger such that 2mR+1≤

√
nR/nR−1.6 If C is a dummy cluster, thenAR does nothing for an appropriate

number of steps, and then returns that no marked item was found.
We now describe the subroutineUR, for R≥ 1. When invoked with|v(C) ,0,C〉 as its initial state,

UR first prepares a uniform superposition

|φC〉=
1√

K (R)

K(R)

∑
i=1

|v(Ci) ,0,Ci〉 .

It does this by first constructing a spanning treeT for C, rooted atv(C) and having minimal depth, and
then moving amplitude along the edges ofT so as to prepare|φC〉. After |φC〉 has been prepared,UR

then callsAR−1 recursively, to searchC1, . . . ,CK(R) in superposition and amplify the results. Note that,

6In the hypercube case, we performed fewer amplifications in order to lower the running time from
√

npolylogn to
√

n.
Here, though, the splitting-up step produces a polylogn factor anyway.
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because of the cluster labels, there is no reason why amplitude being routed throughC should not pass
through some other clusterC′ along the way—but there is also no advantage in our analysis for allowing
this.

We now analyze the running time and success probability ofAR.

Lemma 6.3. AR uses O
(√

nR log1/d n
)

steps, assuming that all clusters are good.

Proof. Let TA (R) andTU (R) be the time used byAR andUR respectively in searching anR-cluster.
Then we have

TA (R)≤
√

nR/nR−1TU (R) ,
TU (R)≤ `R+TA (R−1)

with the base caseTA (0) = 1. Combining,

TA (R)≤
√

nR/nR−1(`R+TA (R−1))

≤
√

nR/nR−1`R+
√

nR/nR−2`R−1 + · · ·+
√

nR/n0`1

=
√

nR ·O

(
(nR lnn)1/d

√
nR−1

+ · · ·+ (n1 lnn)1/d

√
n0

)
=
√

nR

(
ln1/d n

)
·O
(

n1/d−β/2
R + · · ·+n1/d−β/2

1

)
=
√

nR

(
ln1/d n

)
·O
(

n1/d−β/2
1 +

(
n1/d−β/2

1

)1/β

+ · · ·+
(

n1/d−β/2
1

)(1/β )R−1)
= O

(√
nR log1/d n

)
,

where the last line holds becauseβ > 2/d and thereforen1/d−β/2
1 < 1.

Lemma 6.4. AR succeeds with probabilityΩ(1/polylognR) in searching a graph of size n= nR, as-
suming there is a unique marked vertex.

Proof. For all R≥ 0, letCR be theR-cluster that contains the marked vertex, and letPA (R) andPU (R)
be the success probabilities ofAR andUR respectively when searchingCR. Then for allR≥ 1, we have
PU (R) = PA (R−1)/K (R), and therefore

PA (R)≥

(
1− (2mR+1)2

3
PU (R)

)
(2mR+1)2PU (R)

=

(
1− (2mR+1)2

3
· PA (R−1)

K (R)

)
(2mR+1)2 PA (R−1)

K (R)

= Ω(PA (R−1))
= Ω(1/polylognR) .

Here the third line holds because(2mR+1)2 ≈ nR/nR−1 ≈ K (R)/2, and the last line becauseR =
Θ(log lognR).
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Finally, we repeatAR itself O(polylognR) times, to achieve success probabilityΩ(1) using
O
(√

nRpolylognR
)

steps in total. Again, ifn is not equal tonR for any R, then we simply find the
largestR such thatnR < n, and then add one more level of recursion that searches a randomR-cluster

and amplifies the resultΘ
(√

n/nR

)
times. The resulting algorithm usesO(

√
npolylogn) steps, thereby

establishing part (i) ofTheorem 6.1for the case of a unique marked vertex. The generalization to mul-
tiple marked vertices is straightforward.

Corollary 6.5. If G is d-dimensional for a constant d> 2, then

Q
(

OR(≥k),G
)

= O

(√
npolylogn

k

k1/2−1/d

)
.

Proof. Assume without loss of generality thatk = o(n), since otherwise a marked item is trivially found
in O

(
n1/d

)
steps. As inTheorem 5.16, we give an algorithmB consisting of log2(n/k)+1 iterations.

In iteration j = 0, choosedn/ke verticesw1, . . . ,wdn/ke uniformly at random. Then run the algorithm for
the unique marked vertex case, but instead of taking all vertices inG as 0-pegs, take onlyw1, . . . ,wdn/ke.
On the other hand, still choose the 1-pegs, 2-pegs, and so on uniformly at random from among all
vertices inG. For all R, the number ofR-pegs should bed(n/k)/nRe. In general, in iterationj of
B, choose

⌈
n/
(
2 jk
)⌉

verticesw1, . . . ,wdn/(2 j k)e uniformly at random, and then run the algorithm for a
unique marked vertex as ifw1, . . . ,wdn/(2 j k)e were the only vertices in the graph.

It is easy to see that, assuming there arek or more marked vertices, with probabilityΩ(1) there exists
an iterationj such that exactly one ofw1, . . . ,wdn/(2 j k)e is marked. HenceB succeeds with probability
Ω(1). It remains only to upper-boundB’s running time.

In iteration j, notice thatLemma 6.2goes through if we usè( j)
R :=

(
2
κ

2 jknR ln n
k

)1/d
instead of̀ R.

That is, with probability 1−O(k/n) = 1−o(1) over the choice of clusters, everyR-cluster has radius

at most̀ ( j)
R . So lettingTA (R) be the running time ofAR on anR-cluster, the recurrence inLemma 6.3

becomes
TA (R)≤

√
nR/nR−1

(
`
( j)
R +TA (R−1)

)
= O

(√
nR
(
2 jk log(n/k)

)1/d
)

,

which is

O

( √
nlog1/d n

k

(2 jk)1/2−1/d

)
if nR = Θ

(
n/
(
2 jk
))

. As usual, the case where there is noR such thatnR = Θ
(
n/
(
2 jk
))

is trivially
handled by adding one more level of recursion. If we factor in theO(1/polylognR) repetitions ofAR

needed to boost the success probability toΩ(1), then the total running time of iterationj is

O

(√
npolylogn

k

(2 jk)1/2−1/d

)
.

ThereforeB’s running time is

O

(
log2(n/k)

∑
j=0

√
npolylogn

(2 jk)1/2−1/d

)
= O

(√
npolylogn

k1/2−1/d

)
.
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For thed = 2 case, the best upper bound we can show is
√

n2O(√logn). This is obtained by simply

modifying AR to have a deeper recursion tree. Instead of takingnR = n1/µ

R−1 for someµ, we take

nR = 2
√

lognnR−1 = 2R
√

logn, so that the total number of levels is
⌈√

logn
⌉
. Lemma 6.2goes through

without modification, while the recurrence for the running time becomes

TA (R)≤
√

nR/nR−1(`R+TA (R−1))

≤
√

nR/nR−1`R+
√

nR/nR−2`R−1 + · · ·+
√

nR/n0`1

= O
(

2
√

logn(R/2)
√

lnn+ · · ·+2
√

logn(R/2)
√

lnn
)

=
√

n2O(√logn).

Also, since the success probability decreases by at most a constant factor at each level, we have that

PA (R) = 2−O(√logn), and hence 2O(√logn) amplification steps suffice to boost the success probability
to Ω(1). Handling multiple marked items adds an additional factor of logn, which is absorbed into

2O(√logn). This completesTheorem 6.1.

6.1 Bits Scattered on a Graph

In Section2, we discussed several ways to pack a given amount of entropy into a spatial region of given
dimensions. However, we said nothing about how the entropy isdistributedwithin the region. It might
be uniform, or concentrated on the boundary, or distributed in some other way. So we need to answer
the following: suppose that in some graph,h out of then verticesmightbe marked, and we know which
h those are. Then how much time is needed to determine whether any of theh is marked? If the graph
is the hypercubeLd for d ≥ 2 or is d-dimensional ford > 2, then the results of the previous sections
imply thatO(

√
npolylogn) steps suffice. However, we wish to use fewer steps, taking advantage of the

fact thath might be much smaller thann. Formally, suppose we are given a graphG with n vertices,
of which h are potentially marked. Let OR(h,≥k) be the problem of deciding whetherG has no marked
vertices or at leastk of them, given that one of these is the case.

Proposition 6.6. For all integer constants d≥ 2, there exists a d-dimensional graph G such that

Q
(

OR(h,≥k),G
)

= Ω

(
n1/d

(
h
k

)1/2−1/d
)

.

Proof. Let G be thed-dimensional hypercubeLd (n). Createh/k subcubes of potentially marked ver-
tices, each havingk vertices and side lengthk1/d. Space these subcubes out inLd (n) so that the

distance between any pair of them isΩ
(
(nk/h)1/d

)
. Then choose a subcubeC uniformly at random

and mark allk vertices inC. This enables us to consider each subcube as a single vertex, having distance

Ω
(
(nk/h)1/d

)
to every other vertex. The lower bound now follows by a hybrid argument essentially

identical to that ofTheorem 5.13.

In particular, if d = 2 thenΩ(
√

n) time is always needed, since the potentially marked vertices
might all be far from the start vertex. The lower bound ofProposition 6.6can be achieved up to a
polylogarithmic factor.
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Proposition 6.7. If G is d-dimensional for a constant d> 2, then

Q
(

OR(h,≥k),G
)

= O

(
n1/d

(
h
k

)1/2−1/d

polylog
h
k

)
.

Proof. Assume without loss of generality thatk = o(h), since otherwise a marked item is trivially
found. Use algorithmB from Corollary 6.5, with the following simple change. In iterationj, choose⌈
h/
(
2 jk
)⌉

potentially marked verticesw1, . . . ,wdh/(2 j k)e uniformly at random, and then run the algo-
rithm for a unique marked vertex as ifw1, . . . ,wdh/(2 j k)e were the only vertices in the graph. That is, take
w1, . . . ,wdh/(2 j k)e as 0-pegs; then for allR≥ 1, choose

⌈
h/
(
2 jknR

)⌉
vertices ofG uniformly at random

asR-pegs. Lemma 6.2goes through if we usè̂( j)
R :=

(
2
κ

n
h2 jknR ln h

k

)1/d
instead of̀ R. So following

Corollary 6.5, the running time of iterationj is now

O

(
√

nR

(n
h

2 jk
)1/d

polylog
h
k

)
= O

(
n1/d

(
h

2 jk

)1/2−1/d

polylog
h
k

)

if nR = Θ
(
h/
(
2 jk
))

. Therefore the total running time is

O

(
log2(h/k)

∑
j=0

n1/d
(

h
2 jk

)1/2−1/d

polylog
h
k

)
= O

(
n1/d

(
h
k

)1/2−1/d

polylog
h
k

)
.

Intuitively, Proposition 6.7says that the worst case for search occurs when theh potential marked
vertices are scattered evenly throughout the graph.

7 Application to Disjointness

In this section we show how our results can be used to strengthen a seemingly unrelated result in quantum
computing. Suppose Alice has a stringX = x1 . . .xn ∈ {0,1}n, and Bob has a stringY = y1 . . .yn ∈
{0,1}n. In thedisjointness problem, Alice and Bob must decide with high probability whether there
exists ani such thatxi = yi = 1, using as few bits of communication as possible. Buhrman, Cleve, and
Wigderson [12] observed that in the quantum setting, Alice and Bob can solve this problem using only
O(

√
nlogn) qubits of communication. This was subsequently improved by Høyer and de Wolf [20]

to O
(√

nclog∗ n
)
, wherec is a constant and log∗n is the iterated logarithm function. Using the search

algorithm ofTheorem 5.3, we can improve this toO(
√

n), which matches the celebratedΩ(
√

n) lower
bound of Razborov [23].

Theorem 7.1. The quantum communication complexity of the disjointness problem is O(
√

n).

Proof. The protocol is as follows. Alice and Bob both store their inputs in a 3-D cubeL3(n) (Figure3);
that is, they letx jkl = xi andy jkl = yi , wherei = n2/3 j +n1/3k+ l +1 and j,k, l ∈

{
0, . . . ,n1/3−1

}
. To
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A BA B

Figure 3: Alice and Bob ‘synchronize’ locations on their respective cubes.

decide whether there exists a( j,k, l) with x jkl = y jkl = 1, Alice simply runs our search algorithm for an
unknown number of marked items. If the search algorithm is in the state

∑α j,k,l ,z

∣∣v jkl ,z
〉
,

then the joint state of Alice and Bob will be

∑α j,k,l ,z,c

∣∣v jkl
〉
⊗|z〉⊗ |c〉⊗

∣∣v jkl
〉
, (7.1)

where Alice holds the first
∣∣v jkl

〉
and |z〉, Bob holds the second

∣∣v jkl
〉
, and |c〉 is the communication

channel. Thus, whenever Alice is at location( j,k, l) of her cube, Bob is at location( j,k, l) of his cube.

(1) To simulate a query, Alice sends|z〉 and an auxiliary qubit holdingx jkl to Bob. Bob performs
|z〉 → |z⊕ y jkl 〉, conditional onx jkl = 1. He then returns both bits to Alice, and finally Alice
returns the auxiliary qubit to the|0〉 state by exclusive-OR’ing it withx jkl .

(2) To simulate a non-query transformation that does not change
∣∣v jkl

〉
, Alice just performs it herself.

(3) By examining Algorithms5.5and5.6, we see that there are two transformations that change
∣∣v jkl

〉
.

We deal with them separately.

First, step 1 ofAlgorithm 5.5 uses a classicalC-local transformation
∣∣v j,k,l

〉
→ |v j ′,k′,l ′〉. This

transformation can be simulated by Alice and Bob each separately applying|v j,k,l 〉 → |v j ′,k′,l ′〉.
Second, step 2 ofAlgorithm 5.6 applies transformationsZ1, Z2, andZ3. For brevity, we restrict
ourselves to discussingZ1. This transformation maps an initial state

∣∣v j,k,l ,0
〉

to a uniform su-
perposition over|v j ′,k,l ,0〉 for all ( j ′,k, l) lying in the sameCi as( j,k, l). We can decompose this
into a sequence of transformations mapping|v j ′,k,l 〉 to α|v j ′,k,l 〉+β |v j ′+1,k,l 〉 for someα, β . This
can be implemented in three steps, using an auxiliary qubit. The auxiliary qubit is initialized to
|0〉 and is initially held by Alice. At the end, the auxiliary qubit is returned to|0〉. The sequence
of transformations is

|v j ′,k,l 〉 |0〉 |v j ′,k,l 〉 → α|v j ′,k,l 〉 |0〉 |v j ′,k,l 〉+β |v j ′,k,l 〉 |1〉 |v j ′,k,l 〉
→ α|v j ′,k,l 〉 |0〉 |v j ′,k,l 〉+β |v j ′,k,l 〉 |1〉 |v j ′+1,k,l 〉
→ α|v j ′,k,l 〉 |0〉 |v j ′,k,l 〉β |v j ′,k,l 〉 |0〉 |v j ′+1,k,l 〉.
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The first transformation is performed by Alice who then sends the auxiliary qubit to Bob. The
second transformation is performed by Bob, who then sends the auxiliary qubit back to Alice,
who performs the third transformation.

Since the algorithm usesO(
√

n) steps, and each step is simulated using a constant amount of com-
munication, the number of qubits communicated in the disjointness protocol is therefore alsoO(

√
n).

8 Open Problems

As discussed inSection3.1, a salient open problem raised by this work is to prove relationships among
Z-local, C-local, and H-local unitary matrices. In particular, can any Z-local or H-local unitary be
approximated by a product of a small number of C-local unitaries? Also, is it true thatQ( f ,G) =
Θ
(
QZ ( f ,G)

)
= Θ

(
QH ( f ,G)

)
for all f ,G?

A second problem is to obtain interesting lower bounds in our model. For example, letG be a√
n×

√
n grid, and supposef (X) = 1 if and only if every row ofG contains a vertexvi with xi = 1.

ClearlyQ( f ,G) = O
(
n3/4

)
, and we conjecture that this is optimal. However, we were unable to show

any lower bound better thanΩ(
√

n).
Finally, what is the complexity of finding a unique marked vertex on a 2-D square grid? As men-

tioned inSection1.2, Ambainis, Kempe, and Rivosh [3] showed thatQ
(

OR(1),L2

)
= O(

√
nlogn).

Can the remaining factor of logn be removed?
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