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Quantum secret sharing via 
local operations and classical 
communication
Ying-Hui Yang1,2, Fei Gao1, Xia Wu1, Su-Juan Qin1, Hui-Juan Zuo3 & Qiao-Yan Wen1

We investigate the distinguishability of orthogonal multipartite entangled states in d-qudit system 
by restricted local operations and classical communication. According to these properties, we propose 
a standard (2, n)-threshold quantum secret sharing scheme (called LOCC-QSS scheme), which solves 
the open question in [Rahaman et al., Phys. Rev. A, 91, 022330 (2015)]. On the other hand, we find 
that all the existing (k, n)-threshold LOCC-QSS schemes are imperfect (or “ramp”), i.e., unauthorized 
groups can obtain some information about the shared secret. Furthermore, we present a (3, 4)- 
threshold LOCC-QSS scheme which is close to perfect.

Quantum secret sharing (QSS) is an important branch of quantum cryptography, which was simultane-
ously proposed by Hillery et al.1 and Cleve et al.2. It allows a secret to be shared among many participants 
in such a way that only the authorized groups can reconstruct it. In a (k, n)-threshold QSS scheme, the 
dealer distributes a shared secret among n participants, and any group of k or more participants can 
collaboratively recover the shared secret, however, no group of fewer than k participants can.

During the past two decades, many interesting QSS schemes1–11 were proposed (for an incomplete 
list). Recently, Rahaman et al. concentrated on the implementation of classical secret sharing by quan-
tum means, and first introduced the theory of local distinguishability of quantum states to the design of 
QSS scheme12. A novel, simple and efficient model of QSS scheme was presented, where the participants 
only used local quantum operations and classical communication (LOCC), in other words, any joint 
quantum operations were not required. This QSS model is called LOCC-QSS model. According to the 
model, a series of (k, n)-threshold LOCC-QSS schemes were proposed in ref. [12]. The designs of them 
are based on the local distinguishability of orthogonal multipartite quantum states. That is, some pairs 
of locally distinguishable orthogonal multipartite entangled states which represent the encoded secret 
can be collaboratively distinguished by a sufficient number of participants using LOCC, but cannot be 
distinguished by any fewer than the threshold k participants.

The topic of LOCC-QSS is very interesting, meanwhile, it brings us some valuable study points. First, 
(2, n)-threshold LOCC-QSS scheme in ref.  [12] is a nonstandard QSS scheme since it needs a strictly 
restricted condition, i.e., the two cooperating participants must come from two disjoint groups. A natu-
ral question how to design a standard (2, n)-threshold LOCC-QSS scheme is an open question. Second, 
all the existing (k, n)-threshold LOCC-QSS schemes are ramp (or “imperfect”) QSS schemes, i.e., there 
exist some information leakages in these schemes. How to quantify the information leakages and design 
a (k, n)-threshold LOCC-QSS scheme of less information leakages or even a perfect (k, n)-threshold 
LOCC-QSS scheme is also an interesting topic.

In this paper, we revolve around above study points to research and try to solve them. On the one 
hand, we study the properties of orthogonal multipartite entangled states in d-qudit system. What’s more, 
a standard (2, n)-threshold LOCC-QSS scheme is presented, i.e., there is no any restricted condition 
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for the two cooperating participants. On the other hand, we find that all the existing (k, n)-threshold 
LOCC-QSS schemes are ramp schemes, i.e., unauthorized groups can obtain some information about the 
shared secret. Then a near-perfect (3, 4)-threshold LOCC-QSS scheme is proposed.

Results
Local distinguishability of quantum states in high dimension system. The paradigm of local 
distinguishability can be described as follows. Suppose some parties shared a multipartite quantum state 
which is secretly chosen from a known set of orthogonal quantum states. Their aim is to identify the 
unknown quantum state perfectly using local operations and classical communication. Numerous inter-
esting results have been reported13–25. Now we discuss the distinguishability about a pair of orthogonal 
multipartite entangled states by restricted local operations and classical communication (rLOCC). Here, 
rLOCC means only a subset of parties is allowed to communicate with each other12.

Let | 〉, | 〉, , | − 〉 d{ 0 1 1 } be a standard orthonormal basis of a d-dimensional Hilbert space. Consider 
the following two orthogonal state ψ1 , ψ2 , which can act as generalized Bell states in d-qudit system.
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where “+ ” is performed modulo d. For d =  2, the two states are known as Bell states. Now we show that 
the two states in Eq.(1) have the following properties.

Theorem 1. Two orthogonal entangled states ψ1 , ψ2  in Eq.(1) can always be exactly distinguished by 
no less than two cooperating participants using LOCC. But they cannot be distinguished by only one 
participant.

Proof. On the one hand, according to the forms of the two states, it is easy to obtain a distinguishable 
protocol. All the cooperating participants (no less than two) measure their own particle in the compu-
tational basis =

−j{ } j
d

0
1 locally. If they have precisely the same results, then the shared state is ψ1 . Otherwise, 

if they have completely different results, the state is ψ2 .
On the other hand, for the two states, it is straightforward to calculate that any single particle reduced 

density matrices are I/d, where I is the identity operator in d-dimensional system. It means that only 
one participant cannot obtain any information from his own particle. That is, the two states cannot be 
distinguished by only one participant.

Now we recall the notion of stabilizer state. The generalized Pauli operators in d-dimensional Hilbert 
space are
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where ω =  e2π�/d. A stabilizer state ψ  is a state of an n-qudit system that is the simultaneous eigenvector, 
with eigenvalues 1, of a subgroup of dn commuting elements of the Pauli group which does not contain 
multiples of the identity other than the identity itself. We call this subgroup as the stabilizer G of ψ 26. 
When d is prime, G can always be generated by n suitably chosen group elements gj, where the order of 
each gj is d. =g{ }j j

n
1 is called a set of generators. When d is not prime, one might need more than n gen-

erators in some cases.
In d-qudit system, d is a prime. Let us define two sets of quantum operations
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According to the definition of stabilizer, we can easily obtain the following lemma.
Lemma 1. The elements of  i in Eq.(3) constitute the generators set of the stabilizer of the state ψi , i =  1, 2.
It is easy to see that quantum state ψ2  is the unique eigenstate of all the elements of 1 with eigen-

values ω ( = , , − )j d0 1j . So we have the following theorem.
Theorem 2. If an unknown state ψ?  satisfy: ψ λ ψ=Oi i? ? , ∀ ∈Oi 1. Then
(1) eigenvalues λi =  1 if and only if ψ ψ=? 1 , = , ,i d1 ;
(2) eigenvalues λi =  ωi−1 if and only if ψ ψ=? 2 , = , ,i d1 .
Note that whether d is a prime or not, the two states ψ1 , ψ2  are both the eigenstates of all the ele-

ments of 1. However, Theorem 2 holds only when d is a prime. It means that both of the two states can 
be uniquely determined by the set 1 according to eigenvalues. If d is not a prime, they may not be 
uniquely determined by the set 1 according to eigenvalues.

Theorem 3. Two orthogonal entangled states in Eq. (4) can always be exactly distinguished by no less 
than three cooperating participants using LOCC. However, they cannot be deterministically distinguished 
by any two or fewer participants by LOCC.
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where P is the set of all possible distinct permutations.
Proof. All the cooperating participants (no less than three) measure their own particle in the compu-

tational basis =
−j{ } j

d
0
1 locally. If they have precisely the same results or completely different results, then 

the shared state is ϕ1 . Otherwise, if there exist two participants who have the same results, but their 
results are different from the other participants’ results, then the shared state is ϕ2 .

On the other hand, for the two states, it is straightforward to calculate that any one participant have 
the same reduced density matrix I/d, where I is the identity operator in d-dimensional system. It means 
that only one participant cannot obtain any information from his own particle. All the bipartite reduced 
density matrices of ϕ1  are same because of the symmetry of ϕ1 , so are that of ϕ2 . Employing the 
probability formula of the minimum-error state discrimination ρ ρ= ( + | − |)p tr q q11

2 2 2 1 1
27, where  

q1, q2 are a priori probabilities and ρ1, ρ2 are two states, we can calculate that the probability with which 
any two participants can distinguish the states is 0.5536. It means that two participants cannot perfectly 
distinguish the two states even if they use joint quantum operations. So the two states cannot be exactly 
distinguished by any two participants by LOCC. That completes the proof.

LOCC-QSS. Suppose the sender Alice wants to share a key between n separated participants Bob1, 
Bob2, …, Bobn. Only no less than k participants can collaboratively recover the shared secret. That is, a 
(k, n)-threshold QSS should be designed. Here, we still adopt the basic model of LOCC-QSS in ref. [12] 
since the basic model is very simple and efficient. For readability, we still use the same notations.

The standard (2, n)-threshold LOCC-QSS scheme. Step 1. Alice first prepares a large number (say 
L >  n) of states chosen randomly from a specified pair of orthogonal n-qudit (n =  d) entangled states in 
Eq.(1) according to her requirement. Let us denote the prepared states by ( , )S a bt  to keep details of 
each prepared state in each run (run t is associated with the prepared state ( , )S a bt  at time t). Here, a 
represents the state randomly chosen from a pair of orthogonal states, that Alice prepares at time 
(= , ,…, )t L1 2 , where = ( , , …, )b n1 2t t t t  represents the positions of all n qudits of a prepared state 
( , )S a bt  at time t, i.e., the position of ith qudit of a prepared state a at time t is denoted by 
( = , ,…, )i i n1 2t .

Step 2. Alice prepares at random, a different sequence, = Π ( , ,…, )r L1 2i i  for each Bobi, and sends 
the itth qudit (i =  1, 2, …, n; t =  1, 2, …, L) to Bobi according to the ri sequence order, where Πi is an 
arbitrary permutation of the sequence (1, 2, …, L). No one has the information about Πi except for Alice. 
After receiving their associated sequence of qudits, all of the receivers now share L n-qudit entangled 
states | , ( ) 〉S a r b[ ]t . Here ( ) = Π ( ), Π ( ), …, Π ( )r b t t t[ ]t n1 2 .

Step 3. Alice now randomly selects some run, say (⊂ , ,…, )=t L{ } {1 2 }s s
u

1 , and also computes n arbi-
trarily chosen permutations, pi of {1, 2, …, u}, only known to herself. She then prepares list 

σ= ( ), Π ( )( ) ( ) =C t t{ }i i p s i p s s
u

1i i
 for Bobi (for i =  1, 2, …, n) and sends it to him. After receiving the list 

Ci, Bobi measures his Π ( )( )t thi p si
 qudit in the σ ( )( )ti p si

 basis and sends the measurement outcome 

( )( )v ti p si
 to Alice.
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Here Alice choose randomly elements of the set 1 in Eq.(3) to determine Bobi′ s measurement basis. 
Now we interpret it. First, for the set 1, both ψ1  and ψ2  are the eigenstates of the elements of 1. They 
have the following relation

λ| , ( ) 〉 = ( , )| , ( ) 〉, ∀ ∈ , ( )( ) ( )
O S a r b a t S a r b O[ ] [ ] 5t t s t t 1s p s p s s

where eigenvalue λ ω( , ) ∈ =
−a t { }s

j
j
n

0
1 and ( ) = Π ( ), Π ( ), …, Π ( )( ) ( ) ( )( )

r b t t t[ ]t p s p s n p s1 1p s n1 1
. Therefore, 

all the product of all the local measurement results ( )( )v tj p sj
 for Ot s

 must be equal to the corresponding 
eigenvalue, i.e., λ ( , ) = Π ( )= ( )a t v ts j

n
j p s1 j

. It should be noted that the generalized Pauli operators X and 
Z are not Hermite, so X, Z and Ot s

 cannot act as observables. However, they are unitary operators. Since 
the relation between unitary operator U and Hermite operator H is U =  exp(�H), and they have the same 
eigenstates. While the above measurement can always be completed using Hermite operator H as observ-
ables. For simplicity, roughly speaking, one can use the eigenstates of U as measurement basis to com-
plete projective measurement, and measurement results can be denoted by eigenvalues.

For example, if Alice chooses = ∈O g gt 1 2 1s
, then σ ( ) =( )

−t XZp s
d

1
1

1
, σ ( ( )) =t s XZp2 2

, 
σ ( ) = ( = , ,…, )( )t X j n3 4j p sj

. Bob1 uses the eigenstates of XZd−1 as measurement basis to complete 
projective measurement, and measurement result can be denoted by eigenvalues. Other Bobi have the 
similar way to completed measurement. If the unknown state is ψ1 , then Π ( ) == ( )v t 1j

n
j p s1 j

. If the 
unknown state is ψ2 , then ωΠ ( ) == ( )v tj

n
j p s1 j

.
In this step, two very important points should be emphasized. First, when Alice prepares list Ci for 

Bobi and sends it to him, Bobi still does not know which n qudits come from the same entangled state. 
It is very crucial for design of eavesdropping detection in a concrete LOCC-QSS scheme. Second, Alice 
starts to send lists Ci only if all of the receivers confirm the receipt of all their L qudits.

Step 4. For each selected run ts, Alice check whether or not the the product of local measurement 
results is equal to the corresponding eigenvalue λ(a, ts), i.e., λ ( , ) = Π ( )= ( )a t v ts j

n
j p s1 j

. If 
ψ| , ( ) 〉 = | 〉

( )
S a r b[ ]t 1p s

, then

λ ( , ) = + ,∀ ∈ , ( )a t O1 6s t 1s

and if ψ| , ( ) 〉 = | 〉
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By analyzing the measurement results, Alice can easily detect whether there is an eavesdropper or not. 
If there is one, she aborts the protocol and starts again from step 1.

Step 5. If no eavesdropper is detected, Alice announces, to the respective parties, all qudit positions 
of an unmeasured state | , ( ) 〉S a r b[ ]t . Alice selects this | , ( ) 〉S a r b[ ]t  according to her secret a (= 0 or 1). 
The mapping between classical bit value and orthogonal entangled states is fixed and is communicated 
securely from Alice and Bobs in advance. If Alice’s secret is more than one bit, then she reveals the qudit 
positions of a sequence of unmeasured states | , ( ) 〉S a r b[ ]t .

According to Theorem 2, the states ψ1 , ψ2  can be uniquely determined by the set S1 according to 
eigenvalues if d is prime. It makes the protocol be more secure. On the other hand, although ψ1  and 
ψ2  cannot be uniquely determined if d is not prime, the protocol is still secure due to the design method 
of this scheme. It will be shown in the section of security analysis.

Employing Theorem 1, the two states can be exactly distinguished by no less than two cooperating 
participants using LOCC. But they cannot be distinguished by only one participant. Thus, this is a stand-
ard (2, n)-threshold LOCC-QSS scheme.

Example 1. In a (2,3)-threshold LOCC-QSS scheme, the pair of the states are

ψ
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1
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2

and  = , ⊗ ⊗ , ⊗ ⊗⊗X XZ XZ X XZ X XZ{ }1
3 2 2 . The steps are described in detail in the standard  

(2, n)-threshold LOCC-QSS scheme. Here, we only consider the Step 4. If ψ| , ( ) 〉 = | 〉S a r b[ ]t 1 , then
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λ ( , ) = + , ∀ ∈ ,a t O1s t 1s

and if ψ| , ( ) 〉 = | 〉S a r b[ ]t 2 , then
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The security analysis of standard (2, n)-threshold LOCC-QSS scheme. The standard  
(2, n)-threshold LOCC-QSS scheme can be regarded as secure because the shared secret cannot be 
eavesdropped without being detected. Usually, there are three eavesdropping strategies for Eve (she may 
be dishonest Bob). Now we consider the security of our scheme under the three attacks.

The first eavesdropping strategy is called “intercept-measure-resend”, that is, Eve intercepts the legal 
particles when Alice sends them to Bobi, chooses local or global measurement basis to measure them, 
then resends them to Bobi. (i) If Eve wants to obtain Alice’s secret, she can choose and measure n qudits 
by global measurement to distinguish the unknown state. However, Eve does not know which n qudits 
come from the same entangled state because Alice has scrambled the order of qudits using permutation 
Πi, and no one has the information about Πi except for Alice. Therefore, this attack will be detected in 
the eavesdropping detection if Eve chooses this method of attack. (ii) If Eve wants to obtain Bobi′ s secret 
or wants to obtain Alice’s secret according to more than t (threshold value) Bobi′ s secrets, she can meas-
ure one or more qudits by local measurement. However, the original correlations of quantum states will 
be destroyed. For example, Eve chooses computation basis to locally measure the unknown state ψ? . 
Then ψ?  collapses to a product state, which does not satisfy the conditions of eavesdropping detection. 
This attack will be detected in the eavesdropping detection.

The second one is “intercept-replace-resend”, i.e., Eve intercepts the legal particles and replaces them 
by her counterfeit ones. If Eve escapes from the detection of Alice, she will obtain Alice’s secret. Now we 
show that our scheme is security under the attack. (i) If d is a prime, according to Theorem 2 Eve cannot 
find a quantum state which satisfies the conditions of eavesdropping detection to replace the legal parti-
cles. (ii) if d is not a prime, ψ1 , ψ2  cannot be uniquely determined by the set S1 according to eigenval-
ues, that is, there exists another state which satisfies λ ( , ) = Π ( )= ( )a t v ts j

n
j p s1 j

. However, Alice has 
scrambled the order of qudits using permutation Πi, according to Step 2 and 3 anyone does not know 
which n qudits come from the same entangled state except for Alice before the end of the eavesdropping 
detection. Thus the eavesdropper cannot use the illegal states satisfying λ ( , ) = Π ( )= ( )a t v ts j

n
j p s1 j

 to 
replace the states which are sent by Alice. Otherwise, the eavesdropping will be found by Alice.

The third one is “entangle-measure”, i.e., Eve entangles an ancilla with the n-qudit, at some later time 
she can measure the ancilla to gain information. Without loss of generality, assume that Eve uses a uni-
tary operator such that the ancilla 0  entangles with the quantum state ψi , i.e., ψ φ=U 0B E BE1 1 , 
ψ φ=U 0B E BE2 2 , where the subscripts B and E express the particles belonging to Bobi and Eve, 

respectively. In fact, This kind of attack is general, it contains the above two attacks. Now we will show 
that the legal particles (B) and the ancilla (E) must be not entangled if no error is introduced into the 
QSS procedures. It means that Eve will gain no information about the secret by observing the ancilla.

(i) If d is a prime, according to Theorem 2, ψ1  and ψ2  are uniquely determined by S1. In other 
words, the state φ ( = , )i 1 2i BE

 must be not entangled between B and E, otherwise, this attack will be 
detected by Alice with certain probability.

(ii) Next we consider that d is not a prime. Firstly, since Eve does not know which n qudits come from 
the same entangled state, the unitary operator can only act on one qudit from ψi  and the ancilla. 
Secondly, note that the operator Z⊗n can be generated by the elements of S1, i.e., = Π⊗

=Z On
i
n

i1 , ∈O Si 1 
in Eq. (3). Then λ λ= Π =i

n
i1 , where ψ λ ψ=⊗Z n

i i , ψ λ ψ=Oi i i i . Therefore, only if the state φi BE
 

satisfies the property that the product of all Bobi′ s measurement results measured by computation basis 
is equal to λ (= 1), may Eve escape from the detection of Alice. So φ

BE1  and φ
BE2  have the form 

φ α| 〉 = ∑ | 〉 | 〉=
−

jj j
BE j

d
B j E1 0

1  and φ β| 〉 = ∑ | , + ,…, + − 〉 | 〉=
− j j j d1 1

BE j
d

B j E2 0
1 , where 

α β| 〉 = ∑ | 〉, | 〉 = ∑ | 〉=
−

=
−a i b ij E i

m
ij j E i

m
ij0

1
0

1 . It should be noted that we do not put constraints on the 
dimensions of α j E

 and β j E
. Next we will show that this attack will be detected when participants 

check eavesdropping with the basis ⊗ ⊗ ⊗X X X. Using the inverse Fourier transform 
= ∑ =

− −j w x
d k

d jk
k

1
0
1 , we consider the form of the n legal qudits of quantum state φ

BE1  in the Fourier 
basis, where | 〉 =

−j{ } j
d

0
1 is the computation basis, | 〉 =

−x{ }k k
d

0
1 is the Fourier basis and w =  e2π�/d. It is easy to 

calculate the terms
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α α α α| 〉 (| 〉 + | 〉 + | 〉 + + | 〉),− ⋅ − ⋅ −( − )⋅
− x x x x w w wj B

j j d j
d0 0 0 0
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2
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j ≠ 0. Obviously, they must be eliminated, i.e., α α α α+ + + + =− ⋅ − ⋅ −( − )⋅
−w w w 0j j d j

d0
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2
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1 , 
j ≠ 0. Otherwise, this attack will be found by Alice. It means ( ) ⋅ ( ) =

× ×( − )
a w 0ij m d ij d d 1

, where
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So ( ) + ( ) ≤
× ×( − )

rank a rank w d[ ] [ ]ij m d ij d d 1
. Since the matrix ( )

×( − )
wij d d 1

 contains a Vandermonde 

submatrix with the order d −  1, we have ( ) = −
×( − )

rank w d[ ] 1ij d d 1
. Thus ( ) ≤

×
rank a[ ] 1ij m d

. It means 

that α α α= = = − d0 1 1  (up to global phase). So φ
BE1  is a product state between legal qudits 

and the ancilla. The similar discussion can be applied for the analysis of quantum state φ
BE2 , and we 

can obtain the same result.
Intuitively, maybe it is surprised that the scheme is secure despite ψi  cannot be uniquely determined 

by the set S1 for non-prime d. The reason is that Alice has scrambled the order of qudits such that the 
states satisfying conditions of eavesdropping detection are excluded. If the unitary operator can only act 
on one qudit from ψi  and the ancilla, Eve cannot obtain any information according to the above proof.

The quantification of information leakages. It is difficult to design a perfect (without any infor-
mation leakage) (k, n)-threshold LOCC-QSS scheme. At present all of the existing (k, n)-threshold 
LOCC-QSS schemes are ramp schemes. We try to quantify the information leakages.

Now we consider conspiracy attack for (k, n)-threshold LOCC-QSS scheme. If there exist l(< k) dis-
honest Bobi, they can recover the secret together. This attack method is called conspiracy attack. For 
the (k, n)-threshold LOCC-QSS scheme12, according to the following two intentions, they can choose 
different ways to eavesdrop.

(i) No matter whether eavesdroppers obtain the shared secret or not, it is not allowed that they obtain 
a wrong shared secret and disturb the authorized groups to recover the shared secret. For simplicity, the 
eavesdropping probability of success is called unambiguous probability.

(ii) In order to obtain information about the shared secret as much as possible, it is allowed that 
eavesdroppers minimize the errors that occur in a state discrimination task and can disturb the author-
ized groups to recover the shared secret. The eavesdropping probability of success is called guessing 
probability.

For the sake of simplicity, we only analyze the example 3 in ref. [12], i.e., (5, 6)-threshold LOCC-QSS 
scheme. It is easy to be generalized for (k, n)-threshold LOCC-QSS scheme. First we recall the key steps 
in the original scheme.

Step 1. Alice randomly chooses the states from the pair orthogonal Dicke states

∑
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( )

P

1 6 1
6

[ 100000 010000 001000

000100 000010 000001 ]
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Other steps are similar to the standard (2, n)–threshold LOCC-QSS scheme. It should be noted that 
there is a mistake in original (5, 6)-threshold LOCC-QSS scheme, i.e., if | , ( ) 〉 = | , >S a r b[ ] 3 6t , then 
λ ( , ) = +a t 1s , ∀ ∈ , ,⊗ ⊗ ⊗O X Y Z{ }t

6 6 6
s

.
Now we consider conspiracy attack for (5, 6)-threshold LOCC-QSS scheme.
The method of conspiracy attack: these dishonest Bobi will faithfully perform the protocol until Alice 

believes no eavesdropper. For intention (i): when Alice announces all qubit positions of unmeasured 
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states, these l(< 5) dishonest Bobi measure their own qubit in the computational basis locally to recover 
the secret together. For intention (ii): when Alice announces all qubit positions of unmeasured states, 
these l(< 5) dishonest Bobi use joint quantum measurement to measure their l qubits according to the 
minimum-error state discrimination.

Now we calculate the probability when l(< 5) participants recover the secret together.
(1) l =  4. For intention (i): if the local measurement results of the four dishonest Bobi are three same 

states 1  and one state 0  or two states 1  and two states 0 , they can determine the state is ,3 6 . If the 
local measurement result are four same states 0 , they can determine the state is ,1 6 . So the unambig-
uous probability is 17/30. On the other hand, for intention (ii), we can calculate that the guessing prob-
ability is 0.7 according to the probability formula of the minimum-error state discrimination, i.e., the rate 
of information leakages is 11.87%.

(2) l =  3. For intention (i): if the local measurement results of the three dishonest Bobi are three same 
states 1  or two states 1  and one state 0 , they can determine the state is ,3 6 . The unambiguous prob-
ability is 1/4. For intention (ii): the guessing probability is 0.625, namely, the rate of information leakages 
is 4.56%.

(3) l =  2. For intention (i): Only the local measurement results of the two dishonest Bobi are two same 
states 1 , they can determine the state is ,3 6 . For other local measurement results they cannot distin-
guish the states. So the unambiguous probability is 1/10. For intention (ii): the guessing probability is 
0.6167, that is, the rate of information leakages 3.97%.

(4) l =  1. Obviously, the unambiguous probability is zero. The guessing probability is 7/12. That is, the 
rate of information leakages 2.01%.

All the cases can be shown in Table 1, where l is the number of dishonest Bobi, pu, pg, r are unambig-
uous probability, guessing probability and the rate of information leakages, respectively. The intention (i) 
is very interesting. Since dishonest Bobi can always exactly recover the secret with nonzero probability 
if the unambiguous probability is nonzero, and they cannot disturb the authorized groups to recover the 
shared secret.

Now we introduce two parameters k1, k2 in (k, n)-threshold LOCC-QSS scheme, denoted as (k1, k2, k, 
n), to describe the information leakages. It means that (i) any fewer than k1 participants cannot obtain 
any information; (ii) any l (k1 ≤  l <  k) participants can obtain the shared secret with guessing probability 
more than 1/2; (iii) any l (k2 ≤  l <  k) participants can obtain the shared secret with nonzero unambiguous 
probability. Obviously, for ramp LOCC-QSS scheme, it has 1 ≤  k1 ≤  k2 ≤  k. And the more k1, k2 are close 
to k, the less information leakages are. For perfect LOCC-QSS scheme, it has k1 =  k2 =  k. For the above 
(5, 6)-threshold LOCC-QSS scheme, it can be denoted as (1, 2, 5, 6)-threshold LOCC-QSS scheme.

Finally, we show that a secure (3, 4)-threshold LOCC-QSS scheme cannot be designed based on the 
model of (k, n)-threshold LOCC-QSS scheme in ref. [12]. Since threshold k =  n −  r +  1 =  3, the distance12 
r between the pair of states is 2. If the pair of states which Alice chooses contains the Dicke state ,2 4 , 
the other is ,0 4 , or ,4 4 . It contradicts with the definition of Dicke state. If the pair of states does not 
contain the state ,2 4 , the pair of states must be ,1 4  and ,3 4 . In the stage of eavesdropping detection, 
only condition σ , = (− ) ,⊗ m 4 1 m 4z

m4  (m =  1 or 3) can be used to detect eavesdropping. Obviously 
it is insecure. Since the eavesdropper Eve can always measure all the qubit in the computational basis 
then send the post-measurement states to Bobi, but Alice cannot find Eve’s eavesdropping.

The (3, 4)-threshold LOCC-QSS scheme. Now we propose a (3, 4)-threshold LOCC-QSS scheme, 
in which dishonest Bobi cannot obtain the shared secret with nonzero unambiguous probability. All the 
steps are similar to the standard (2, n)-threshold LOCC-QSS scheme, so we only show the differences.

Step 1. Alice prepares the states, the desired pair of the states are in Eq. (4).
Step 4. If ϕ| , ( ) 〉 = | 〉

( )
S a r b[ ]t 1p s

, then λ ( , ) = +a t 1s , ∀ ∈ ′Ot s
, and if ϕ| , ( ) 〉 = | 〉

( )
S a r b[ ]t 2p s

, 
then λ ( , ) = +a t 1s , ∀ ∈ ′Ot s

, where

′ = ⊗ ⊗ ⊗ , ⊗ ⊗ ⊗ .X X X X Z Z Z Z{ }2 2 2 2

Because both ϕ1  and ϕ2  are the eigenstates of the element in ′ with eigenvalue 1.
According to Theorem 3, we know it is a (3, 4)-threshold LOCC-QSS scheme. Employing the forms 

of the two states in Eq.(4), it is easy to see that the unambiguous probability is zero for any l dishonest 
Bobi (l <  3). According to the proof of Theorem 3, we know that the guessing probability is zero when 

l 1 2 3 4

pu 0 1/10 1/4 17/30

pg 0.5833 0.6167 0.625 0.7

r 2.01% 3.97% 4.56% 11.87%

Table 1.  The information leakages of (5, 6) scheme.
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l =  1, and the guessing probability is 0.5536 when l =  2. The rate of information leakages is 0.83%. So the 
scheme can be denoted as (2, 3, 3, 4)-threshold LOCC-QSS scheme. It is close to perfect (3, 4)-threshold 
LOCC-QSS scheme.

Discussion
In ref. [11], Gheorghiu et al. also proposed an efficient QSS scheme by LOCC, which is based on quantum 
error-correcting codes to distribute a quantum secret. In their QSS scheme, they reduced the required 
quantum communication at the cost of some classical communication. But our schemes are based on 
local discrimination of quantum states to distribute classical secrets. And any joint quantum operations 
and quantum communication are not required in secret recovery stage. Although the designs of these 
schemes have all used LOCC, their essences are completely different.

In this paper, based on the distinguishability of orthogonal multipartite entangled states by rLOCC 
in d-qudit system, we present a standard (2, n)-threshold LOCC-QSS scheme, which work out the open 
question in ref.  [12]. In addition, we take (5, 6)-threshold LOCC-QSS scheme as a example to pres-
ent that all the existing (k, n)-threshold LOCC-QSS schemes are ramp schemes. Then we propose a  
(3, 4)-threshold LOCC-QSS scheme, which is close to perfect. We hope that these results will encourage 
researchers to study generalized (k, n)-threshold LOCC-QSS scheme.
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