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Av. Rovisco Pais 1049-001, Lisbon, Portugal

December 11, 2012

Abstract

Boyer, Kenigsberg, and Mor [Phys.Rev.Lett.99, 140501(2007)] pro-
posed a novel idea of semi-quantum key distribution where a key can
be securely distributed between Alice who can perform any quantum
operation and Bob who is classical. Extending the idea of “semi-
quantum” to other tasks of quantum information processing is of in-
terest and worth considering. In this article, we consider the issue of
semi-quantum secret sharing where a quantum participant Alice can
share a secret key with two classical participants Bobs. After analyz-
ing the existing protocol, we propose a new protocol of semi-quantum
secret sharing. Our protocol is more realistic, since it utilizes product
states instead of entangled states. We prove that any attempt of an
adversary to obtain information necessarily induces some errors that
the legitimate users could notice.

1 Introduction

In the past two decades, quantum information processing (QIP) has attracted
wide attention from the academic community. Roughly speaking, QIP is to
process information using quantum systems (qubits), instead of classical sys-
tems (bits). Quantum mechanics has been showed to provide novel features
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to information processing, and has lead to many striking results such as tele-
portation, Shor’s factoring algorithm, quantum cryptography and so on. In
most of the QIP tasks that show advantage over classical ones, superposition
of quantum states and entanglement play a key role. For example, entan-
glement is necessary for teleportation, and Shor’s factoring algorithm makes
use of superposition of quantum states.

Quantum key distribution (QKD) is a central problem in quantum cryp-
tography. In a QKD protocol, the conventional setting is as follows: Alice
and Bob have labs that are perfectly secure, they use qubits for their quan-
tum communication, and they have access to an unjammable public classical
communication channel. Then Alice and Bob choose to perform some quan-
tum operations on the transmitted qubits, so that a random bit string is
shared between them which is used as the key.

Recently, Boyer, Kenigsberg, and Mor [1] proposed the concept of semi-
quantum key distribution (SQKD) where a key can be distributed between
Alice who has full quantum power and Bob who is classical. In this SQKD
protocol, a quantum channel leads from Alice’s lab to the outside world and
back to her lab. Bob can access a segment of the channel, and whenever a
qubit passes through that segment Bob can choose to: (1) either let it go
undisturbed, (2) or measure the qubit in the computational basis {|0〉, |1〉}
and then resend it in the state he found. A participant like Bob who is
limited to perform operations (1) and (2) is said to be classical. It can be
seen that if all parties were limited to perform only operations (1) and (2),
the protocol would then be equivalent to a full classical one. In Ref. [1],
it was showed that a semi-quantum protocol using less quantum properties
than a pure quantum protocol still has an absolute advantage over classical
protocols.

Indeed, it is of great interest to understand how to accomplish a QIP
task using quantum properties as less as possible, but still keeping the ad-
vantage over classical ones. The idea of “semi-quantum” probably provides
an approach to this problem. While Boyer, Kenigsberg, and Mor [1] have
successfully incorporated the idea of “semi-quantum” into QKD, it is natural
to ask: can we extend “semi-quantum” to other important QIP protocols?
Recently, Li et al.[2] have extended this idea to quantum secret sharing [3],
another important aspect of quantum cryptography.

Secret sharing addresses the problem where Alice wants to send a secret
message to Bob and Charlie so that Bob and Charlie can collaborate to re-
cover the message, but none alone can. There are classical solutions to this
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problem [4], but for addressing the problem of eavesdropping, classical secret
sharing should be used in conjunction with other techniques such as encryp-
tion. Interestingly, Hillery, Buzek, and Berthiaume [3] in 1999 proposed a
protocol based on quantum mechanics that can simultaneously achieve secret
sharing and eavesdropping detection in an economical way. Such procedures
that use quantum properties to achieve secret sharing are generally called
quantum secret sharing (QSS).

After the seminal work [3], much work has been devoted to the study of
quantum secret sharing (e.g. [2, 5, 6, 7, 8, 9, 10]). Note that in quantum
secret sharing, the message to be shared can be either classical bits or quan-
tum states. In this paper, we focus on sharing of classical messages, but it
is worth pointing out that there are also many papers considering sharing
of quantum states (e.g. [3, 11, 12, 13, 14]). Especially, unified approaches
to secret sharing of both classical and quantum messages employing graph
states were developed in [15, 16].

As mentioned before, Li et al. [2] have recently extended the idea of
“semi-quantum” to quantum secret sharing, and proposed a protocol of semi-
quantum secret sharing (SQSS) where a quantum participant, Alice, can
share a secret key with two classical participants. However, one can observe
that in the protocol in [2], there are two points going against its experimental
implementation: (a) firstly, three-particle entangled states are needed in the
protocol, which in fact play a crucial role; (b) secondly, Alice needs to perform
joint measurements on three qubits. As we know, multipartite entangled
states are generally difficult to prepare, and joint measurements are more
difficult to implement than single-qubit measurements.

Taking all the above into account, in this paper we attempt to design a
new SQSS protocol which uses product states. Also, in the new protocol, the
communication parties need only to perform single-qubit measurements. Be-
sides the above considerations concerning the experimental implementation,
we are also motivated from the theoretical point of view to propose an SQSS
protocol that does not require entanglement. Theoretically speaking, it is
of great significance to discuss whether entanglement is necessary for a QIP
task. For example, Ref. [17] discussed whether entanglement is necessary for
quantum computation, and Ref. [18, 19] showed that entanglement is not
necessary for distinguishing unitary operations.

The remainder of this paper is organized as follows. In Section 2 we first
have a brief review on the SQSS protocol proposed by Li et al. [2], and then
extend it to multiparty cases. In Section 3 we give a new SQSS protocol
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that uses product states. In Section 4 the security analysis of the proposed
protocol is presented. Finally, a conclusion is made in Section 5.

2 On the existing SQSS protocol

In this section, we start by giving a brief review on the SQSS protocol pro-
posed in [2], and then extend it to the multiparty case from which we obtain a
deeper understanding on the role that entangled states played in the existing
protocol.

2.1 A review on the existing SQSS protocol

Suppose that Alice wants to share a secret key with Bob and Charlie so
that they can collaborate to recover the secret message, but none alone can.
Since the protocol is semi-quantum, it is required that Alice has full power of
quantum, but Bob and Charlie are classical. The main steps are as follows:
1. Alice first prepares a sufficient number of three-particle entangled states,
of which each entangled state is in the following form

|ψ〉 =
1√
2

(|0〉|00〉+ |11〉√
2

+ |1〉 |01〉+ |10〉√
2

). (1)

After that, Alice sends the second and the third particle of each entangled
state to Bob and Charlie, respectively, and keeps the remaining for herself.

2. Upon receiving each qubit, Bob randomly determines either to measure
the qubit using the basis {|0〉, |1〉} and resend the state he found, or to reflect
it back to Alice without disturbance. Charlie does similarly.

3. Alice temporarily restores these qubits from Bob and Charlie, and
announces by a public classical channel that she has received all the qubits.
After that, Bob and Charlie declare which qubits they have measured.

4. Alice chooses to perform different operations on the qubits at his end,
depending on Bob and Charlie’s choices. If both Bob and Charlie choose to
measure the qubits using the basis {|0〉, |1〉}, then Alice also measures his
own qubit in the basis, and then uses this measurement result as a secret key
bit. Note that, by denoting rA, rB, rC the measurement result of Alice, Bob
and Charlie, respectively, the following condition holds

rA = rB ⊕ rC . (2)
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Therefore, Bob and Charlie can only recover Alice’s secret key if they col-
laborate. If either Bob or Charlie choose to reflect their qubit, then Alice
can take advantage of this choice to detect eavesdropping. For example, if
both Bob and Charlie choose to reflect the qubits back to Alice, then Alice
measures all the three qubits at her end using a basis which includes the state
given in Eq. (1). Thus, if Alice measured a state different from the state
given in Eq. (1), she can ascertain that an eavesdropper has been interfering
with the quantum channel.

The steps described above are the main steps of the SQSS protocol pro-
posed in [2]. The efficiency of this protocol is 25%, that is, only one quarter
of the qubits are used to produce the shared secret. Note that in the above
protocol the entangled state |ψ〉 plays a crucial role. In addition, Alice needs
to perform a joint measurement on three qubits in order to check for eaves-
dropping and noise.

2.2 Extending the existing SQSS protocol to multi-
party cases

Next, we extend the SQSS protocol given in Section 2.1 to the multiparty
case. In fact, such extension is not straightforward from Ref. [2].

In order to construct a multiparty SQSS protocol, we first introduce the
following multi-particle entangled state

|ψ〉n =
1

(
√

2)
n+1

[ n⊗
j=1

(|0〉+ |1〉) +
n⊗

j=1

(|0〉 − |1〉)
]
. (3)

The above state satisfies this property: it has a uniform superposition on the
basis states {|c1c1 · · · cn〉} where ci is 0 or 1 and the total number of 1’s is
even. For instance, when n = 2, we have

|ψ〉2 =
1√
2

(|00〉+ |11〉). (4)

When n = 3, we have

|ψ〉3 =
1

2
(|000〉+ |011〉+ |101〉+ |110〉) (5)

=
1√
2

(|0〉 |00〉+ |11〉√
2

+ |1〉 |01〉+ |10〉√
2

) (6)

5



which is the state given in Eq. (1). When n = 4, we have

|ψ〉4 =
1√
2
|0〉(|000〉+ |011〉+ |101〉+ |110〉)

2

+
1√
2
|1〉(|001〉+ |010〉+ |100〉+ |111〉)

2
(7)

In fact, by using the state |ψ〉n, Alice can share a secret key with n − 1
classical Bobs as follows. (1) Alice prepares a sufficient number of states like
|ψ〉n, keeps the first qubit of each state for herself and sends the second to
the n-th particle to the n−1 Bobs. (2) Each Bob chooses either to reflect the
received qubit without disturbance or to measure it, using the basis {|0〉, |1〉},
and resend the state he found. (3) The remainder steps are similar those in
the protocol presented in Section 2.1.

If Alice and all Bobs measure their own qubits using the basis {|0〉, |1〉},
then their measurement results have the following correlation:

rA = rB1 ⊕ rB2 ⊕ · · · ⊕ rBn−1 (8)

where rA denotes the result of Alice’s measurement, and rBi
denotes the

result of the measurement performed by the i-th Bob. Thus, Alice can use
her measurement results as the shared secret key.

Note that if Alice wants share a secret key with n Bobs, the efficiency of
this protocol is 1/2n, and therefore, decreases exponentially with the number
n. So for a large number of parties the protocol is definitely impractical. For
this reason, it is relevant to find a semi-quantum multiparty scheme whose
efficiency does not decrease exponentially with the number of parties. To
be honest, our main purpose for presenting here such scheme is to offer an
insight into the role that the entanglement played in the protocol proposed
in [2], instead of to propose a perfect semi-quantum multiparty scheme.

In addition, there are also other factors going against the experimental
implementation of the protocol: (i) the above protocol requires multipartite
entangled states, and (ii) in the error checking steps Alice needs to do joint
measurements on several qubits. In the next section we propose a SQSS
protocol that does not require entangled states and joint measurements.
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3 The description of our SQSS protocol with-

out entanglement

Suppose that Alice wants to share a secret key with Bob and Charlie, so
that they can collaborate to recover the secret message, but none alone can.
We are going to design a semi-quantum protocol for this task. The term
“semi-quantum” means that Alice has full quantum power, but Bob and
Charlie are restricted to the following two operations: (1) either to measure
the qubit using the basis {|0〉, |1〉} and resend it in the found state (briefly
referred to as MEASURE), (2) or to reflect the qubit back to Alice without
disturbance (briefly referred to as REFLECT). For simplicity, we refer to
the basis {|0〉, |1〉} as Z basis, and the basis {|+〉, |−〉} as X basis, where
|±〉 = 1√

2
(|0〉 ± |1〉). Now, our protocol is described as follows:

Step 1. Alice prepares N two-qubit product states, each pair of which is
in the state:

|+〉|+〉 =
1√
2

(|0〉+ |1〉)B ⊗
1√
2

(|0〉+ |1〉)C . (9)

We denote the ordered N two-qubit states by {[P1(B),P1(C)], [P2(B),P2(C)],
· · · , [PN(B),PN(C)]}, where the subscript indicates the order of each state
in the sequence, and B, C represent the two particles of each state. Alice
sends particles B and C of each pair to Bob and Charlie, respectively.

Step 2. When each particle arrives, Bob chooses randomly either to MEA-
SURE, or to REFLECT. Charlie does similarly.

Step 3. Alice temporarily restores the received particles in quantum mem-
ory and informs Bob and Charlie that she has received particles B and C.
After that, Bob and Charlie publish which particles they have chosen to
MEASURE and which ones they have chosen to REFLECT.

Step 4. Alice performs one of the four operations on each received particle
depending on Bob’s and Charlie’s choices, as illustrated in Table 1. In Table
1, ACTION 1 means measuring both particlesB and C in Z basis, ACTION 2
means measuring particle B in Z basis and particle C in X basis, ACTION
3 means measuring particle B in X basis and particle C in Z basis, and
ACTION 4 means measuring both particles B and C in X basis. Suppose
that the four cases in Table 1 occur with the same probability. Then Alice
can use cases (2,3,4) to detect eavesdropping and use case (1) to share the
secret key. We provide more details in the following discussion.
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Case Bob Charlie Alice
(1) MEASURE MEASURE ACTION 1
(2) MEASURE REFLECT ACTION 2
(3) REFLECT MEASURE ACTION 3
(4) REFLECT REFLECT ACTION 4

Table 1: Participants’ actions on the qubits in each position.

(i) If both Bob and Charlie choose to MEASURE, Alice can obtain both
their measurement results by implementing ACTION1, and then she encodes
her secret key as shown in Table 2. If we denote respectively rB, rC the
measurement results of Bob and Charlie, and denote sK the secret bit, then
Alice encodes sK as

sK ≡ rB ⊕ rC . (10)

Thus, Bob and Charlie can recover the secret bit only if they collaborate.

Bob’s result Charlie’s result Alice’s result Secret
0 0 00 0
0 1 01 1
1 0 10 1
1 1 11 0

Table 2: The communication parties’ measurement results and the shared
secret key.

(ii) If cases (2,3,4) in Table 1 occur, then Alice can use them to de-
tect eavesdropping. For example, if Bob chooses to MEASURE and Charlie
chooses to REFLECT, then the state received by Alice should be |r〉B|+〉C
where |r〉 = |0〉 or |r〉 = |1〉 and |+〉 = 1√

2
(|0〉 + |1〉). Thus, by performing

ACTION2, Alice can check whether there exists an eavesdropper at the line
between her and Charlie, since if there is no eavesdropping, Alice will always
measure Charlie’s qubit in state |+〉, otherwise Alice may measure the state
|−〉. Similarly, if case (3) occurs, Alice can check whether there exists an
eavesdropper at the line between her and Bob. If case (4) occurs, Alice can
check whether there exists an eavesdropper at the line between her and Bob
or at the line between her and Charlie. In the next section we provide more
details concerning the security analysis.
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Step 5. Alice checks the error rate in cases (2,3,4) given in Table 1. If
the error rate in any case is higher than some predefined threshold value, the
protocol aborts.

Step 6. Alice checks the error rate in case (1). She chooses randomly
a sufficiently large subset from the measurement results in case (1) and an-
nounces which are the chosen particles. Bob and Charlie then publish their
measurement results. Alice then compares the measurement results obtained
by implementing ACTION1 with those published by Bob and Charlie. If the
error rate is below some predefined threshold value, Alice uses the remaining
measurement results to form the final secret string which can be recovered
only when Bob and Charlie work together.
Remark 1: Note that after Hillery, Buzek, and Berthiaume [3] proposed the
idea of quantum secret sharing (QSS) where entangled states played a key
role, some QSS protocols such as the one in [8] using no entanglement were
proposed. The protocol in [8] is essentially a combination of two parallel
BB84 key distribution protocols. Similarly, our protocol can be regarded as
a combination of two parallel semi-quantum key distribution protocols [20].
However, the detailed security analysis presented in the next section is not
trivial.

The above protocol can be directly extended to multiparty cases as fol-
lows: Alice distributes a state |+〉⊗n to n Bobs, who choose to measure in Z
basis or to reflect, and then use the same idea as in the bipartite case. One
can then find that the efficiency of this case is again 1/2n as the extending
protocol mentioned in Section 2.2. This probability decreases exponentially
with the number n, which implies that such multiparty protocol is not suit-
able for a large number of parties. Whether there exists a semi-quantum
multiparty protocol whose efficiency does not decreases with the number of
parties is worthy of further consideration. As pointed out by an anonymous
referee, a possible approach to mitigate the rapid decrease of the efficiency
is to increase the MEASURE probability of Bob, Charlie etc. above 1/2 and
adapt Steps 5 and 6 accordingly.
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4 The security analysis of the proposed pro-

tocol

Before presenting a more general discussion of eavesdropping, we first con-
sider a specific situation in order to show that it can be detected. Suppose
that Bob is dishonest and he has managed to get Charlies’s states as well as
his own. Note that Bob’s eavesdropping can impact on the information from
Alice to Charlie and on the information from Charlie to Alice. In the specific
situation, we assume that Bob’s eavesdropping is only on the information
from Alice to Charlie. He then may measure the two particles sent by Alice
and send one to Charlie. His object is to discover Alice’s secret key without
any assistance from Charlie, and to do so in a way that can not be detected.

To decrease the probability of being detected by Alice, Bob can do as
follows. (1) When he chooses to REFLECT his own particle, he does nothing
on the particle from Alice to Charlie, which will not introduce any error. (2)
When he chooses to measure his own particle in Z basis, he may choose to
do nothing on Charlie’s particle and thus he obtains no information about
Alice’s secret; also, Bob may choose to measure the particle in Z basis and
then send the state he found to Charlie, from which Bob can obtain some
information about Alice’s secret key, but he has the risk of being detected
by Alice. If Bob measures Charlie’s qubits in the position where Charlie has
chosen to MEASURE, then Bob can obtain Charlie’s measurement results,
and thus can use them to recover the secret key without introducing any
error. But if Bob measures Charlie’s qubits in the position where Charlie
has chosen to REFLECT, then with half of the time Alice finds an error by
measuring the qubits received from Charlie in X basis, since it holds that
|0〉 = |+〉+|−〉√

2
and |1〉 = |+〉−|−〉√

2
. Thus, in this case the probability of Bob

introducing an error is 25%.
Notice that there are two cases of eavesdropping. The first is that one

dishonest participant (Bob or Charlie) attempts to find Alice’s secret without
cooperating with the other party. The second is that a fourth eavesdropper
Eve aims to find Alice’s secret without being detected. Without loss of
generality, we should only consider the case of one dishonest participant (Bob
or Charlie), since the eavesdropper in this case can obtain more information
than a fourth eavesdropper Eve.

Now let us look at a general situation. Suppose that an eavesdropper, Eve
(who could be Bob or Charlie), attempts to attack the information between

10



Alice and Bob/Charlie. We show that Eve cannot obtain information on the
secret bits without being detectable. Eve’s most general attack is comprised
of two unitary operators: U attacking qubits as they go from Alice to Bob
and Charlie and V as they go back from Bob and Charlie to Alice, where
without loss of generality, U and V are assumed to share a common probe
space HE (see Figure 1). Note that the shared probe allows Eve to make the
attack on the returning qubits depend on knowledge acquired by U , and if
Eve does not take advantage of that fact, the “shared probe” can simply be
the composite system comprised of two independent probes, which has no
influence on the following proof. As stated before, without loss of generality
we need only consider the case that an insider, say Bob, wants to eavesdrop
Alice’s secret without cooperating with Charlie.

Alice

U
Charlie

V

Bob

Figure 1: Eve attacks the qubits sent from Alice to Charlie/Bob and back to
Alice with entangling unitary operators (U, V ).

Theorem 1: Suppose that Bob performs attack (U, V ) on the qubits sent
from Alice to him and Charlie. Then, for this attack inducing no error
in Steps 5 and 6, the final state of Bob’s probe should be independent of
Charlie’s measurement result and therefore Bob gets no information on the
secret key.

Proof: Denote the qubits sent from Alice to Bob and Charlie by B and
C, respectively, and denote Bob’s probe by E. Let us have a look at the
evolution of the system B + C + E.

(1) Before Bob’s attack, the state is |+〉B|+〉C |0〉E.
(2) After Bob has performed U , the state evolves to

|ψ〉 = |00〉BC |E00〉+ |01〉BC |E01〉+ |10〉BC |E10〉+ |11〉BC |E11〉
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where |Eij〉 are un-normalized states of Eve’s probe. In particular, if Eve
does noting, then |Eij〉’s equal to 1

2
|0〉.

(3) When Bob and Charlie receive the qubits sent from Alice, they choose
either to measure or reflect the qubits. After that, Bob performs V . We want
to prove that the state of E after V having been performed is independent
of Charlie’s final state.

(i) Firstly, for Bob not being detectable in Step 6, V must satisfy the
following conditions:

V |x1x2〉BC |Ex1x2〉 = |x1x2〉BC |Fx1x2〉, (11)

where x1, x2 ∈ {0, 1}, and the key point is that V can not change the state
of B + C. Otherwise, Alice will detect this attack with a non-zero proba-
bility. For example, suppose that V changes |00〉BC |E00〉 to |00〉BC |F ′00〉 +
|01〉BC |F ′01+〉|10〉BC |F ′10〉 + |11〉BC |F ′11〉. Then, while Bob and Charlie have
measured their qubits in |00〉, Alice may observe an state not in |00〉 with
probability |||F ′01〉||2 + |||F ′10〉||2 + |||F ′11〉||2, and thus some errors will be in-
duced in Step 6.

(ii) Secondly, we show that |F00〉 = |F01〉 and |F10〉 = |F11〉. Assume that
Bob has chosen to measure his qubit and Charlie has chosen to reflect his
qubit. After that, the state of B + C + E is given in Table 3.

Bob’s result state of B+C+E
0 |00〉BC |E00〉+ |01〉BC |E01〉
1 |10〉BC |E10〉+ |11〉BC |E11〉

Table 3:

Assume that Bob measured 0. Then after performing V , the state is

|00〉BC |F00〉+ |01〉BC |F01〉 = |0〉B(|0〉C |F00〉+ |1〉C |F01〉)

Let |ψ0〉 = |0〉C |F00〉 + |1〉C |F01〉. Replacing |0〉 by |+〉+|−〉√
2

and |1〉 by |+〉−|−〉√
2

gives

|ψ0〉 =
[
|+〉C

|F00〉+ |F01〉√
2

+ |−〉C
|F00〉 − |F01〉√

2

]
. (12)

According to the protocol, for Bob inducing no error in Step 5, the probability
of Alice measuring the qubit reflected by Charlie in the result |−〉 must be
zero, and thus it must hold that

|F00〉 = |F01〉. (13)
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Similarly, assuming Bob measured 1 necessarily leads to

|F10〉 = |F11〉. (14)

In summary, for Bob not inducing errors in Step 5, Eqs. (13, 14) must
simultaneously hold, which means that the final state of Bob’s probe is in-
dependent of Charlie’s measurement result (but dependent on his own mea-
surement result). Therefore, we have proved Theorem 1. �

Remark 2: (i) In the above proof, if the entangling attack (U, V ) was per-
formed by a fourth eavesdropper Eve, we can further show that |F00〉 =
|F01〉 = |F10〉 = |F11〉, which means that the state of Eve’s probe is indepen-
dent of Bob’s and Charlie’s measurement results. (ii) One can also consider
the case that an eavesdropper first temporarily stores all the qubits sent from
Alice to Bob and Charlie and then does a collective unitary operation U on
them. When the qubits come back from Bob and Charlie to Alice, they can
do another collective unitary operation V . The idea for proving this case is
similar to the one we have presented, and thus we omit the details.

5 Conclusion

The idea of “semi-quantum” was first introduced by Boyer, Kenigsberg and
Mor [1] to design a protocol of semi-quantum key distribution. In this paper,
we have considered the issue of semi-quantum secret sharing (SQSS). By
analyzing the existing SQSS protocol and extending it to multiparty cases,
we have a deeper understanding on the role that entangled states played in
the existing protocol. However, multipartite entangled states are generally
difficult to prepare in practice. Therefore, in this paper we have proposed
a new SQSS protocol using product states, where a quantum party, Alice,
prepares a product state |+〉|+〉 of two qubits and then sends one to Bob and
one to Charlie, and Bob and Charlie are classical, that is, Bob and Charlie
choose either to reflect the received qubit without disturbance, or to measure
the qubit in Z basis and then resend it in the found state. We have proven
that any attempt of an adversary to obtain information necessarily induces
some errors that the legitimate users could notice.

Note that in this paper we have only given a preliminary security analysis,
and a deeper security analysis is required for the protocol to be feasible in
practice. We hope this work will stimulate further discussion, and in the
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further study, one can consider to take a deep security analysis in the line of
articles like [21] (we are grateful to one of anonymous referees for pointing
out this reference to us).
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